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Abstract

The motivation of this thesis is the observational cohort study called Prospective Epidemiological
Research on Functioning Outcomes Related to Magjor depressive disorder (PERFORM) since we
are interested in the causal effect of cognitive symptoms (exposure) on functional impairment
at a later time (outcome). This PhD thesis consists of three manuscripts and each manuscript
contains an analysis of the PERFORM study. The PERFORM study is introduced in Chapter
1.

In Chapter 2, we introduce to causal inference. We consider the g-formula and the inverse
probability weights to estimate the causal effect in the presence of time-dependent confounding
for longitudinal data. We list the assumptions that we need to assume to identify the causal
effect of cognitive symptoms on functional impairment at a later time. We consider two esti-
mators for the g-formula and the inverse probability weighted estimator. Chapter 2 consists
only of existing methods from the literature.

We consider mediation analysis in Chapter 3 because we want to estimate the direct effect of
cognitive symptoms on functional impairment at a later time. We propose with Manuscript I a
new definition of sequential mediation for the interventional direct effect and the interventional
indirect effects for multiple mediators. We obtain the overall effect to be equal to the total
causal effect using our new definition. The new definition is shown in Chapter 3.

We consider data containing missing observations in Chapter 4. Patients tend to drop-out
of studies. It applies for observational studies as well as interventional studies. This will cause
data to contain missing observations. We could reduce the data to a subset of fully observed
patients but this may result in biased estimates. We propose a doubly robust estimator in
Manuscript I for the g-formula when the data contains missing observations. The estimator is
unbiased even if the models relating to the missingness mechanism in the data are misspecified.
The models relating to the missingness mechanism may be misspecified since the knowledge of
the models may be unknown. We also propose a doubly robust estimator in Manuscript 111 for
sequential mediation for multiple mediators when the data contains missing observations. The
two estimators are shown in Chapter 4.

In Chapter 5, we analyse the data of the PERFORM study that were not shown in the three
manuscripts. The reason for the additional analysis of the PERFORM study is to connect
the dots between the two time points that are shown in Manuscript I and Manuscript I1I. We
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compare our new estimators from Chapter 4 to other existing estimators from the literature.
In Chapter 6, we finalize the thesis with a discussion of our findings.

The PERFORM study was used as an example in this thesis. The estimators that have been
developed in this thesis can be applied to a longitudinal data with repeated measurements and
monotone missingness. We have shown a list at page 51 of the abbreviations that we have used
in this thesis.




Resumé

Motivationen for denne afhandling kommer fra observationsstudiet Prospective Epidemiological
Research on Functioning Outcomes Related to Major depressive disorder (PERFORM), da vi
er interesseret i at estimere den kausale effekt af kognitive symptomer (exposure) pa funktion-
snedseettelse til et senere tidspunkt (outcome). Denne afhandling indeholder tre manuskripter
og hvert manuskript indeholder en analyse af PERFORM studiet. Studiet PERFORM er in-
troduceret i kapitel 1.

Vi introducerer i kapitel 2 til kausal inference, hvor vi betragter g-formlen og de inverse
sandsynlighed veegte justeret for tidsafheengig confounding for longitudinelt data. Vi opskriver
antagelserne, som vi er ngdt til at antage for at kunne identificere den kausale effekt af kognitive
symptomer pa funktionsnedsattelse til et senere tidspunkt. Vi betragter to estimatorer for g-
formlen og estimatoren for de inverse sandsynlighed vaegte i kapitel 2. Kapitlet indeholder kun
eksisterende metoder fra litteraturen.

Vi betragter mediation analyse i kapitel 3, da vi er interesseret i den direkte effekt af kognitive
symptomer pa funktionsnedseaettelse til et senere tidspunkt. I Manuskript IT foreslar vi en ny
definition af sekventiel mediation for den interventionale direkte effekt og de interventionale
indirekte effekter for multiple mediatorer. Vi kan med den nye definition opna at den samlet
(overall) effekt er lig med den totale kausale effekt. Den nye definition er vist i kapitel 3.

I kapitel 4 betragter vi data, som ikke er fuldt observeret. Patienter har en tendens til at
droppe ud af studier. Det geelder bade for observationsstudier og interventionsstudier og det
bidrager til manglende observationer i data. Vi kunne reducere data til kun fuldt observeret
patienter, men det kan maske resultere i ikke-centrale (biased) estimater. Vi foreslar en dobbelt
robust estimator i Manuskript I for g-formlen nar data mangler observationer. Den nye estima-
tor er robust i tilfeelde af at man skulle veelge de forkerte modeller for mekanismen, som skaber
de manglende observationer. Man kan komme til at veelge de forkerte modeller for mekanis-
men, som skaber de manglende observationer, da man maske ikke kender dem pa forhand. Vi
foreslar ogsa en dobbelt robust estimator i Manuskript III med den nye definition af sekventiel
mediation nar data ikke er fuldt observeret. De to nye estimatorer er vist i kapitel 4.

I kapitel 5 analyser vi resten af PERFORM studiet, som ikke blev vist i de tre manuskripter.
De ekstra analyser af PERFORM studiet er lavet, fordi vi vil forbinde de to tidspunkter, som
er vist i Manuskript I og Manuskript III. Vores nye estimatorer fra kapitel 4 sammenlignes med



eksisterende estimatorer fra litteraturen. Kapitel 6 afslutter athandlingen med en diskussion af

vores fund.

Vi har brugt PERFORM studiet, som et eksempel. Estimatorne, som er blevet udviklet i
denne afhandling, vil ogsa kunne bruges til at analysere andre studier. Data kan veere longi-
tudinelt med gentagende malinger og manglende observationer. Pa side 51 finder man en liste
over de forkortelser, som vi har brugt i denne afthandling.

vi
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1 Introduction

Major depressive disorder (MDD) is a multidimensional disease characterised by emotional,
physical and cognitive symptoms. Treatment of cognitive symptoms may hold the key to
achieving functional recovery in patients with MDD and the relationship between cognitive
symptoms and functional impairment is not well understood (Chokka et al. (2019)). The
Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive
disorder (PERFORM) study was conducted to better understand the course of a depressive
episode and its impact on patient functioning in outpatients with MDD. The PERFORM study
describes the course of functional impairment, perceived cognitive symptoms and depression
symptoms over two years in outpatients with MDD (Hammer-Helmich et al. (2018)). The work
in this thesis is motivated by the PERFORM study. We are interested in the effect of cognitive
symptoms on functional impairment at a later time. The g-formula is needed to estimate
the causal effect of the time-varying exposure (cognitive symptoms) in the presence of time-
dependent confounding (Robins (1986); Daniel et al. (2013)). Mediation analysis is also needed
because we have assumed that the causal effect of cognitive symptoms on functional impairment
at a later time contains one direct path and three indirect paths. We are interested in estimating
the direct effect of cognitive symptoms on functional impairment at a later time. Methods for
adjusting time-dependent confounding and estimating the direct and indirect effects already
exists in the literature. Methods for working with data containing missing observations exist
in the literature too. However, none of the existing methods can be used for our data. See the
three manuscripts (Manuscript I, Manuscript IT and Manuscript IIT) for the different methods
and the reason for why the existing methods do not work for our data.

1.1 The aim

The aim of this thesis is to develop an estimator to analyse longitudinal data with time-
dependent confounding and missing observations that follow a monotone pattern. We also
want to develop an estimator for mediation analysis for multiple mediators so that the overall
effect is equal to the total causal effect while data contains missing observations that follow
a monotone pattern. To the best of our knowledge the two estimators do not exist in the
literature. The importance of the two estimators is that they utilize data better and reducing
bias of the estimates compared to estimators using only complete cases. The assumption about
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the missing observations for our two estimators is less strict compared to estimators using only
complete cases.

1.2 The PERFORM study

The patients in the PERFORM study were either starting their first course of antidepressant
monotherapy or undergoing their first switch of antidepressant. The patients were enrolled by
a general practitioner or a psychiatrist. All the patients have been measured on three self-
reported scales (Shechan Disability Scale, Perceived Deficit Questionnaire and Patient Health
Questionnaire) at six time points. The patients have a baseline and they have been measured
again after 2, 6, 12, 18 and 24 months since baseline. Data were collected in five European coun-
tries: France, Germany, Spain, Sweden and United Kingdom. Eligible patients had a current
diagnosis of MDD. Participation in the study was independent of the choice of antidepressant
prescribed to the patient.

The Sheehan Disability Scale (SDS). The scale was used to measure the patient’s func-
tional impairment. The Sheehan Disability Scale assesses the functional impairment over the
previous seven days. The scale consists of three items and the scale covers: work/school, social
life/leisure activities and family life/home duties. Each item ranges from 0 to 10 with a global
score ranging from 0 to 30. The global score of functional impairment at 0 corresponds to be
unimpaired and the global score at 30 corresponds to be highly impaired. The score of SDS is
categorised as follows: 0 — 5 corresponds to minimal functional impairment, 6 — 11 corresponds
to mild functional impairment, 12 — 20 corresponds to moderate functional impairment and
21 — 30 corresponds to moderately functional impairment (The categories were introduced at
the 2019 ECNP Congress (Llora et al. (2019))).

The Perceived Deficit Questionnaire (PDQ-5). The scale was used to measure the
patient’s cognitive symptoms: memory, concentration and executive function over the past
four weeks (we suppress the ”-5” in the name of the scale PDQ-5 to simplify the notation).
The scale consists of five items with each item ranging from 0 to 4 with a global score ranging
from 0 to 20. A higher score of PD(Q corresponds to the patient suffers greater severity of their
cognitive symptoms.

The Patient Health Questionnaire (PHQ-9). The scale was used to measure depression
severity of the patient (we suppress the ”-9” in the name of the scale PHQ-9 to simplify the
notation). The scale consists of nine items with each item ranging from 0 to 3 with a global
score ranging from 0 to 27. The global score at 0 corresponds to absence of depression and the
global score at 27 corresponds to severe depression. The score of PHQ is categorised as follows:
0 — 4 corresponds to none or minimal depression, 5 — 9 corresponds to mild depression, 10 — 14
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corresponds to moderate depression, 15 — 19 corresponds to moderately severe depression and
20 — 27 corresponds to severe depression (Kroenke and Spitzer (2002)). See Hammer-Helmich
et al. (2018) for further information about the PERFORM study.

We assume in Manuscript I that depression severity (PHQ) affects both cognitive symptoms
(PDQ) and functional impairment (SDS) and that cognitive symptoms affect functional im-
pairment. We also assume in Manuscript I that all the present measurements affect all the
future measurements at the next time point and all the present measurements do not affect
the past measurements (Haro et al. (2019)). Let ¢ denote the time point. Let ¢ = b denote
the baseline, and let ¢ be equal to 2, 6, 12, 18 and 24 (months) which denotes the measure-
ment time points since baseline. Let SDS; denote the functional impairment at time t. Let
PDQ, denote the cognitive symptoms at time ¢t. Let PHQ; denote the depression severity at
time ¢. Let W, denote the vector of all three measurements at time ¢ € {b,2,6,12,18,24},
W, = (PHQ;, PDQ,, SDS;). The process is indicated by the Directed Acyclic Graph (DAG)
in Figure 1.1 with all six time points over the two years.

SDSy SDS> SDSg SDS12 SDS1g SDS24
PDQy PDQ2 PDQs PDQ1 PDQy. PDQ24
PHQ, PHQ> PHQs PHQy PHQy PHQ24

Figure 1.1: Let SDS,; denote the functional impairment at time ¢ € {b,2,6,12,18,24}. Let
PDQ, denote the cognitive symptoms at time ¢ € {b,2,6,12,18,24}. Let PHQ, denote the
depression severity at time t € {b,2,6,12,18,24}. Let ¢ = b denote the baseline, and let ¢
be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points since
baseline.

We let pt denote the prior time point before time ¢ and we let st denote the subsequent time
point after time ¢. An example: if ¢ is equal to b (the time point is baseline) then pt does not
exist and st is equal to 2. If ¢ is equal to 18 then pt is equal to 12 and st is equal to 24. See
Manuscript I for further information.

Patients in both observational studies and interventional studies tend to drop-out which
means that the data contains missing observations. The analysis of a longitudinal study with
repeated measurements and time-dependent confounding may be complicated when data con-
tains missing observations. The PERFORM study has substantial many missing observations
besides time-dependent confounding and mediated effects. Table 1.1 shows the numbers of the
observed patients for each scale at each time point.

Table 1.1 shows that the number of patients with fully observed vectors will decrease when
we combine the three different scales across the same time point. For example, the three scales
at baseline (¢t = b) have at least/minimum 750 patients who have answered on each scale but

3
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Time points

Scale b 2 6 12 18 24
Sheehan Disability Scale (SDS) 750 607 586 554 486 458
Perceived Deficit Questionnaire (PDQ) 770 714 644 654 580 564
Patient Health Questionnaire (PHQ) 940 805 740 701 638 604
Fully observed vectors across the time point (W) 564 474 458 450 399 379

Table 1.1: The Scale column shows the three different scales.

The different numbers in the six
columns: b, 2, 6, 12, 18 and 24 represent the number of patients who have an observation for
a specific time point and a scale. The Fully observed vectors across the time point (W) row

shows the number of patients who have all three scales observed at the same time point.

only 564 patients have answered all three scales at the same time point. The Table also shows
that the number of patients with fully observed vectors will decrease when we combine different
time points since the numbers of W; decrease over the six time points. See a similar Table in

Haro et al. (2019).




2 The causal effect

Section 2.1 introduces causal inference and the assumptions for identifying the causal effect
for one binary exposure. Section 2.2 considers the g-formula with a time-varying exposure in
the presence of time-dependent confounding. Section 2.3 shows three estimators for estimating
a time-varying exposure (binary) in the presence of time-dependent confounding. Section 2.4
and Section 2.5 (based on the PERFORM study) show two different simulation studies. The
two simulation studies are used to compare the three different estimators to each other.

2.1 One exposure

Let L, A and Y be observed. Let Y denote the continuous outcome variable. Let A denote a
binary exposure (A = 1 is exposed and A = 0 is un-exposed). Let Y* be the potential outcome
that would have been observed if A is set to a (Rubin (1978)). The variable Y%=1 defines the
outcome Y that would have been observed if the subject had been exposed. The variable Y =0
defines the outcome Y that would have been observed if the subject had been un-exposed. The
exposure A has a causal effect on the subject if Y= £ Y%=9. The average causal effect for the
exposed is not null if E(Y*=1) # E(Y*=). The assumptions to identifying the causal effect
are: exchangeability, positivity and consistency. The assumption exchangeability states that:
Yo 1L Afor all a € A. We assume that some will be exposed and some will be un-exposed with
the positivity assumption given by P(A =a) > 0 for all a € A. The consistency assumption is
given by

if A=athen Yo=Y =Y. (2.1)

We assume with the assumption that the observed outcome Y is equal to the potential outcome
Y when the observed exposure A is equal to a. Let L be a potential confounder. Let the
exposure A and the outcome Y share a cause L. The conditional exchangeability is given by

Yol AL (2.2)

for all @ € A. The assumption states that the potential outcome is independent of the observed
exposure given the measured confounder. The assumption is not equal to Y 1L A | L. Unmea-
sured confounding between the exposure and the outcome may bias the estimation of the true



Chapter 2. The causal effect

causal effect (Ding and VanderWeele (2015)). The assumption for positivity is given by
0<PA=alL=1 <1l (2.3)

for all [ € L with P(L = 1) > 0. Unfortunately, the two assumptions (2.1) and (2.2) are
untestable on the observed data (Robins et al. (2000); Cole and Herndn (2008); Cole and
Frangakis (2009); VanderWeele (2009¢); Pearl (2009, 2010)).

The marginal structural model (MSM) with one binary exposure A may be given by E(Y*) =
Br + Pra. The coefficient (; denotes the average causal effect for the un-exposed and the sum
of the two coefficients 8; and 1 denotes the average causal effect for the exposed (Herndn and
Robins (2017)). The g-formula (Robins (1986)) with one exposure is given by

E(Y") = /E E(Y* | L=0)fu()dl (2.4)
_ / E(Y®|A=a,L=1)fs(l)d (25)

L
_ / E(Y | A=a,L=10)f(0)d. (2.6)

We use the conditional exchangeability assumption (2.2) to obtain the equation at (2.5) from
(2.4) and we use the consistency assumption (2.1) to obtain the equation at (2.6) from (2.5).
The inverse probability weight (IPW) with one binary exposure is given by

E(Y") = / E(Y |A=a,L=1)f,(l)dl

//ny|LA y | 1, a)dyfr(l)dl

—/y B MfYLA(Z/J a)d(y,1)

where f41(a | 1) is the probability for receiving the exposure A given L (Robins et al. (2000)).
The last equality is only true if assumption (2.3) holds.

Studies may have repeated measurements. It applies for both observational studies and
interventional studies. The next Section considers the g-formula for estimating the causal
effect of a time-varying exposure in the presence of time-dependent confounding in longitudinal
studies with repeated measurements.

2.2 Time-varying exposure

Suppose that our data comprises of n independent and identically distributed (iid) realization,
Zy,...,Z,. Let Z; denote an ordered sequence (Lo, Ao, ..., Lr;, Ar;, Y;). We suppress the
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index ¢ to simplify the notation. Let Y denote the continuous outcome variable and the variable
is measured at time 7'+ 1. Let A; denote the exposure at time ¢ € {0,...,T}. Let L, denote
the measured potential confounders at time ¢t € {0,...,T}. Let Az denote the vector of all
exposures up to time T', Ay = (Ao, ..., Ar). Let Ly denote the vector of all measured potential
confounders up to time T, Ly = (Lo, ..., Ly). Let @r denote the vector (ag,...,ar) and let
I7 denote the vector (I, ...,lr). See Manuscript I for further information. Let the potential
outcome Y be the outcome that would have been observed if the vector Ap is set to @p. The
outcome Y may be causally influenced by the whole history of A and Ly. See the DAG in
Figure 2.1. See a similar DAG in Daniel et al. (2013). If the potential confounders Ly are
ignored in the analysis then may the effect of Az on Y be confounded (Robins et al. (2007);
Lok and DeGruttola (2012); Robins and Wasserman (2013); Daniel et al. (2013); Vansteelandt
and Sjolander (2016); Keogh et al. (2018)).

Figure 2.1: Let A; denote the exposure at time ¢, let L, denote the measured potential con-
founders at time t and let Y denote the continuous outcome variable.

The consistency assumption for 7'+ 1 exposures is given by
Y =Y if Ap =ap; LY = Ly if Ay =@y (2.7)

for time ¢ € {0,...,T}. The conditional exchangeability for a time-varying exposure in the
presence of time-dependent confounding is given by

YO 1L Ay | Ly, Ar s (2.8)

for all ap € Ag for all t € {0,...,T}. The positivity assumption for a time-varying exposure
in the presence of time-dependent confounding is given by

0< fAt|zt,anl(at | ihat,l) <1 (29)

for all [;,a,; € L;, A1 with 0 < fzhziil(ihat_l) for t = 0,...,T with probability one.
The g-formula (Robins (1986)) for a time-varying exposure in the presence of time-dependent
confounding is given by

T
E (YET) = /CE(Y | ZT - ET7ZT - ZT) H thlzi—l,Kt—l(lt | 7t_17ﬁt_1)dlt (210)

t=0
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with the set (L_;, A_;) as the empty set. The inverse probability weights for a time-varying
exposure in the presence of time-dependent confounding is obtained by rewriting (2.10) to

E<wv‘>—/yx,:yﬂ{ ol }fy,LT,ATcu,lT,aT>d<y>lT>- 21

Fazo 7, (| oy, @)

The weight for receiving the exposure A; given L,_; and A;_; will become large if the probability
a3, (a | l;—1,@—1) in the denominator is close to zero while the assumption (2.9) holds.
This can lead to a biased estimate. Stabilized inverse probability weights are sometimes used
instead to avoid the possibility that the weights explode. See Daniel et al. (2013) for further
information. The MSM may be given by E (Y°T) = Ba} with 3 as the row vector of causal
parameter values and the vector has the same length as the column vector @}.. The column
vector @y contains the value 1 for the intercept [, all the exposures and all the possible
interactions between the different exposures. It is exemplified in Section 2.4.

2.3 Three estimators for estimating the causal effect

We show three estimators for estimating E(Y?7). Let V; denote the vector (L;, 4;) and v, =
(I;,@;). Manuscript I defines an estimator £(Y7) for E(Y") (at (2.10)) to be given by

E(Yr) = lZM{VO,Z-,"Y} (2.12)

n

with m{vr, &} = BE(Y | Ly = lp, Ar = ET)J /ﬁLUT_l,’}’} = Em{Vp, &} | Ly = lp 1, Ar_1 =
ar—1) and p{ve, v} = E(u{Vis1,v} | Lt = lt, As = @;). The last model is given by p{vo, v} =
E(u{Vi,v} | Lo = lo, Ay = ag). We refer to the m{vy, £}-model and all the p{v,v}-models
for t € {0,...,T} as the p-models. All the g-models in (2.12) have hats to indicate predicted
values from the specified p-models that have been used for the estimation and the predicted
values are plugged into the estimator. Let 7(Vy) denote the m{Vy, €}-model and let fi(V;)
denote the p{V;, 4 }-model for ¢ € {0,...,T} to simplify the notation. Let m(vr, &,) denote the
true model with the vector of true parameter values &, and let j{v;,v,} denote the true model
with the vector of true parameter values «, for ¢t € {0,...,7}. We show in the Appendix in
Manuscript I that the estimator (2.12) is asymptotically normally distributed in the situation
when T is equal to 1. The estimator £(Y?") solves the estimating equation 0 = S U(Z,)
with

U(Zi) = 1{Vou, Yo} — B (V7). (2.13)

The p{V;,v}-model can be extended if the confounder L; is multivariate. Section 2.4 shows
an example where the confounder is multivariate consisting of two variables. The estimator
(2.12) is unbiased if the p-models are correctly specified. The estimator (2.12) is obtained by
a series of iterated conditional expectations (Kreif et al. (2017)). See Manuscript I for further
information.
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The IPW estimator: The inverse probability weighted (IPW) estimator E(Y ) for E(Y )
(at (2.11)) is given by

B (y™) = ZYHW{V;“OL} (2.14)

with 7{v;,a} = 7(A; = a; | Ly = Iy, A;_1 = @;_1) which denotes the probability for the
exposure A; is equal to a; given L; and A; ; for t € {0,...,T}. The indicator I(A; = a;) is
denoted by I(a;) for t € {0,...,T}. We refer to all the 7T{’Ut, a}-models for t € {0,...,T} as
the m-models. All the hats in (2.14) indicate predicted values from the specified 7- models that
have been used for the estimation and the predicted values are plugged into the estimator. Let
m{v;, g} denote the true model with the vector of true parameter values o for ¢t € {0,...,T}.
The estimator (2.14) is unbiased if the m-models are correctly specified. The estimator (2.14)
solves the estimating equation 0 = Y7, U;pw (Z;) with

Urpw(Z;) = Yi H n{vt “ao} —E(Y™r). (2.15)

The doubly robust estimator: Bang and Robins (2005) show an augmented inverse prob-
ability weighted estimator of the g-formula with a time-varying exposure in the presence of
time-dependent confounding. The doubly robust estimator E(Y?T) for E(YT) is given by

T t-1

. I(a, N
E(Y™) :fZ YHW{V;“a}+ZHw{Vk“a}( W{é7i72})/L{W,i77}

t=0 k=0

(2.16)

with u{ve, v} = E(m{Vig1, €} | L = I, Ay = @) and 7{v;, a} = 71(A; = a; | Ly = 1y, Ay =
G;1). See the estimator (2.12) for further information about the p{v;, v}-models and see the
estimator (2.14) for further information about the 7{v;, @}-models. The indicator I(A4; = a,) is
denoted by I(a;) for t € {0,...,T}. Let I(a_1)7{V_1, @}~ = 1. All the hats in (2.16) indicate
predicted values from the specified y-models and the specified 7-models that have been used for
the estimation and the predicted values are plugged into the estimator. The estimator (2.16)
is unbiased if either the p-models or the m-models are correctly specified. Table 2.1 shows
the different combinations of the p-models and the m-models to obtain an unbiased estimator.
Let m(Vr) denote the true m{Vr, &;}-model with the vector of true parameter values &, and
let p(V;) denote the true p{V;, -, }-model with the vector of true parameter values =y, for
t € {0,...,T} to simplify the notation. Let 7(V;) denote the true 7{V}, ao}-model with the
vector of true parameter values ey for ¢ € {0,...,T} to simplify the notation. The estimator
(2.16) solves the estimating equation 0 = """ | Uarpw(Z;) with

T I(a T -1 I, )
Uarpw (Z ng Vo) + tz;k ) 7T(V;“ < w((\(;“))> w(Vii) — F (Y T) : (2.17)

t—
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Let T7(Z;) be given by

I 1 Qg I ag
Tr(Z;) = Z H 7T((sz)) (1 B 7T((Vf?)> 1(Vig).

We show in Appendix A that E(Yr(Z)) is equal to zero. We also show in Appendix A that the
estimator (2.16) is unbiased when either the p-models or the m-models are correctly specified.

1 Correct Wrong
s Correct Wrong Correct Wrong
Unbiased v 4 v X

Table 2.1: The combinations of the g-models and the m-models for the estimator (2.16). The
Unbiased row shows if the estimator is unbiased or biased. The estimator is unbiased with the
combination of the models denoted by ¢/. The estimator is biased with the combination of the
models denoted by X. The Correct column and the Wrong column indicate if the p-models and
the m-models are correctly specified or misspecified.

We notice that the first part of the estimator (2.16) is the inverse probability weighted
estimator. The estimator (2.16) has the advantage that some of the included models are
allowed to be misspecified compared to the estimator (2.12) and the IPW estimator (2.14).
However, the estimator (2.16) may also inherit the unstable weights from the IPW estimator.

2.4 Simulation study

The marginal structural model (MSM) is given by
E(SDSP™ ")) = g1+ Bipda, + Bapdgs + Bspdaspdas. (2.18)

Let Z, denote the vector (W;, Wy) where W; is defined in Chapter 1. The sample size of the data
is 2000 and the data are replicated 3000 times. The simulated data correspond to the first two
time points in the DAG in Figure 1.1. Data are simulated as follows: PHQ, ~ Normal(0, 1.12),
PDQy, ~ Bernoulli(56,44, ), SDSy ~ Normal(nss,, 1.1%), PHQ2 ~ Normal(n,ng,, 1.1%), PDQy ~
Bernoulli(5¢,44,) and SDSy ~ Normal(74s,, 1.1?) where the means are given by

Neds, :=0.2PHQ, — PDQ,,

Nphas =0APHQ, + 0.4PDQ, — SDS, and

Nsds, =15 — 1.5PHQy + 1.7PDQ, — 0.5SDS, — PHQy — 3PDQs + PDQoPHQ,
—2PDQ,PHQ, — 34PDQ,PDQ, — 2PDQ,PHQ, — 0.3PDQ-PHQ,

10



2.4. Simulation study

and the two probabilities are given by

logit(6p4q,) :=1 — 1.6PDQ;, and
10git (34dg,) = — 0.8 + 0.6PHQ, + 0.9PDQ, + 0.55DS, + 0.APHQ,
— 0.8PHQyPDQy — 0.7PDQ,SDS, — 0.5PDQyPHQs

where logit(z) = log(z) — log(1 — ). The true causal effects 3 = (f;, 1, 52, #3) are shown
in Table 2.2. We use the seed 3 in R (set.seed(3)) to make it possible to replicate all the
simulation studies. This applies for all the simulation studies in the three manuscripts and all
the simulation studies in this thesis.

We let the p-models in the estimator (2.12) be correctly specified. We let the m-models in the
IPW estimator (2.14) be correctly specified. We specify the p-models and the m-models in the
estimator (2.16) according to Table 2.1. The estimation of the causal effects 3 are evaluated by
the mean and the standard error. Table 2.2 shows the mean and the standard error of the 3000
estimates of B = (0, 01, B2, B3). We denote the estimator (2.12) with the letters SG (Simple
G-formula) and we denote the estimator (2.16) with the letters DR (Doubly Robust).

SG | IPW DR
I Correct Wrong
T Correct Wrong Correct Wrong

Br 8999 | 8.991 8.997  9.002 8.997  8.844
£y 1.003 | 1.017 1.004  0.998 1.003  1.094

Mean o 9002 | 2004 | 2003 1997 2004 2330
By 0994|0988 | 0994 1.003 0995 0871
B, 0061|0350 0.083 0089 0188 0.231
g B 0096|0506 | 0126 0150 0213 0268

B2 0.106 | 1.825 0.176  0.143 0.298  0.268
B3 0.155 | 1.880 0.229  0.214 0.399  0.342

Table 2.2: The Mean row shows the mean of the 3000 estimates of 8 and the SE row shows
the standard error of the 3000 estimates of 3. The SG column shows the estimation using the
estimator (2.12). The IPW column shows the estimation using the estimator (2.14). The DR
column shows the estimation using the estimator (2.16). See Table 2.1 for the description of
the Correct and Wrong columns. The true causal effects are 8 = (01, 1, 52, 83) = (9,1,2,1).

Table 2.2 shows that the SG estimator (2.12) has the smallest standard errors. The higher
standard errors obtained using the DR estimator (2.16) may be caused by the m-models that
are included in the estimator since the standard errors obtained using the IPW estimator
(2.14) are the highest. It appears that the price for using the doubly robust estimator is larger
standard errors when we compare the DR estimator (2.16) to the SG estimator (2.12). The
IPW estimator (2.14) may also be unstable and this can lead to biased estimates even though
the m-models are correctly specified. This happens in the next Section.
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Chapter 2. The causal effect

2.5 Simulation study based on the PERFORM study

The MSM is given by (2.18). The simulation study in this Section is from Manuscript I but
all the vectors are fully observed. See Chapter 4 for further information about fully observed
vectors. The simulation study is based on the two vectors (W, Ws) from the PERFORM study.
The sample size of the data is 1000 and the data are replicated 5000 times. See Manuscript I for
further information about the simulation study. The three estimators: SG (2.12), IPW (2.14)
and DR (2.16) are used for estimating the four expected potential outcomes: E(S’DSS’I))7
E(SDSéO’D), E(SDSS’O)) and E(SDS;O’O)), The p-models in the SG estimator (2.12) are
correctly specified. The 7-models in the IPW estimator (2.14) are correctly specified. We
specify the p-models and the m-models in the DR estimator (2.16) according to Table 2.1. Table
2.3 shows the mean, the standard error and the absolute value of bias (the difference between
the mean and the true value) of the 5000 estimates of the expected potential outcomes. We
use the function Bias because the expected potential outcomes are real numbers and it is hard
to determine by the function Mean if the estimates are biased or unbiased.

SG | 1PW DR
I Correct Wrong
s Correct  Wrong Correct Wrong
E(SDSSM) 15394 [ 15396 | 15.393 15.394  15.393 15.398
Mean E(SDSY™V) 13401 | 11.850 | 13.446 13.404 13167 12.690
E(SDSS™) 13577 | 13554 | 13.585 13.574  13.592 13.825
E(SDSY™™) 95823 | 9563 | 9834 9783 9862  9.306
E(SDSS™Y)y 0253 | 0276 0270 0267 0270  0.267
op  B(SDS™V) 1343 | 17485 | 6.096 1759  6.655 1573
ESDSM™Y 0703 | 6.266 | 1.266 1.657 1275  1.571
E(SDS™™) 0909 | 7.807 | 2146 4278 1997 4.154
ESDSMYY 0,005 0002 0005 0005 0005 0.000
Bins  E(SDSYY) 0017 | 1568 | 0028 0014 0251 0.728
E(SDSS™)  0.008 | 0.032] 0001 0012 0006 0.239
E(SDSY™)  0.006| 0254 | 0.017 0.034 0045 0511

Table 2.3: The Mean row shows the mean of the 5000 estimates of the expected potential
outcomes. The SE row shows the standard error of the 5000 estimates of the expected potential
outcomes. The Bias row shows the absolute value of the difference between the mean and the
true value. See Table 2.2 for the description of the five columns: SG, IPW, DR, Correct and
Wrong. See Table 3 in Manuscript I for the true values of the expected potential outcomes.
A numerical problem occurred for the estimation when the m-models were correctly specified.
This means that the Mean, the SE and the Bias are based on 4999 estimates instead of 5000
estimates.

Table 2.3 shows that all the estimates of E(SDSS’I)) are unbiased even when the p-models
and the m-models are misspecified. It may be a coincidence. The SG estimator did not show

12



2.5. Simulation study based on the PERFORM study

any problems of estimating the different effects and all the estimates are also unbiased. We
obtained biased estimates using the IPW estimator even though the m-models were correctly
specified. This is a good example of the problem concerning the weights in the IPW estimator.
The DR estimator shows that one of the estimates is biased when the p-models are misspecified
and the m-models are correctly specified. The estimator with this specific combination of the
p-models and the m-models should provide an unbiased estimate according to Table 2.1. The
standard error of the estimate of E(SDS;O’D) is also the largest one. The m-models may cause
the biased estimate. The DR estimator may inherit the downside of the IPW estimator that
the weights may explode even if the m-models are correctly specified. The m-models may also
cause the standard errors to be large. The numerical problem was a convergence problem for
the m-models.

We will return to the U(Z)-function (2.13) and the Uarpw (Z)-function (2.17) again in Chap-
ter 4. We will not consider the U;pw (Z)-function (2.15) in the rest of this thesis because we
obtained biased estimates using the IPW estimator when the m-models were correctly specified.
We will not discard the Uaspy (Z)-function (2.17) despite that one of the estimates was biased.
The number of the specific combination of the two exposures (0, 1) is sparse in the simulated
data. This may cause the estimate to be biased but the simulation study shows some concern
about the estimator (2.16).

13



Chapter 2. The causal effect

14



3 Mediation

Mediation analysis lies in the interest of the direct effect of the exposure on the outcome as
well as the transmitted effect via one or more intermediate measurements. The investigation
of the transmitted effect is interesting even if the (total) causal effect is almost zero. It may
happen that the direct effect may cancel out with the transmitted effect via the intermediated
measurements. Section 3.1 revisits briefly the different assumptions that we need to assume to
identify the different direct and indirect effects. Section 3.2 considers the causal estimands from
Manuscript II. Section 3.3 and Section 3.4 (based on the PERFORM study) are two mediation
analysis of the two simulation studies from Chapter 2.

3.1 Direct and indirect effects

Let A denote the exposure and let M denote the mediator. Let Y denote the continuous
outcome variable. Let C' denote some baseline measurements not affected by the exposure. See
the DAG in Figure 3.1a. Let Y be the value that would have been observed if the exposure
A is set to a. Let M“ be the value that would have been observed if the exposure A is set to
a. Let Y™ be the value that would have been observed if the exposure A is set to a and the
mediator M is set to m.

Pearl (2001) defined the controlled direct effect by E(Y ™) — E(Y*™). Tt is the difference
between two expected potential outcomes with two different values of the exposure, a and
a*, when the mediator is kept fixed at level m. Robins and Greenland (1992) and Pearl
(2001) defined the natural direct effect by E(YM* ) — E(Y"M*"). Tt is the difference between
two expected potential outcomes with two different values of the exposure, a and a*, but the
mediator is set to its natural level had A been set to a*. Robins and Greenland (1992) and Pearl
(2001) defined the natural indirect effect by E(Y“Ma)fE(Y“Ma* ). It is the effect of the exposure
on the outcome via the mediator. The total causal effect is defined by FE(Y*M") — E(Y“*Ma*)
(Pearl (2001)). The sum of the natural direct effect and the natural indirect effect has the
property that the sum is equal to the total causal effect. VanderWeele et al. (2014) defined
the interventional direct effect and the interventional indirect effect. Let G denote a random
drawn from the distribution of the mediator among those with exposure status a conditional
on C' (VanderWeele et al. (2014)). The interventional direct effect E(Y“Ga*lc) — E(Y“*Ga*‘c) is
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Chapter 3. Mediation

defined by
JEm €= - B | € = )funaclm | @) felehd(m, o)
and the interventional indirect effect E(Y¢"'“) — E(Y ¢ '“) is defined by

/E(Y“m | C = c)(fuac(m | a,c) = fajac(m | a*,c)) fe(c)d(m, c).

The sum of the interventional direct effect and the interventional indirect effect is defined by
E(Y*¢"'9) — B(Y*'6¢"'“). However, the sum of the interventional effects may necessarily not
be equal to the total causal effect. It will instead be called ”the overall effect”.

M M,

A\

e

m/léi
~

A

(2) One mediator (b) Two mediators

Figure 3.1: Let Y denote the continuous outcome variable. Let A denote the exposure and
let C' be some baseline measurements not affected by the exposure. This applies for the two
DAGs. Figure 3.1a shows a DAG with one mediator M and Figure 3.1b shows a DAG with
two mediators M; and Ms. The measurement M is a mediator-outcome confounder.

The assumptions for the identification of the five effects are: (i) Y™ 1 A | C = ¢ for all
(a,m,c) € A, M,C, (i) Y L M | A=a,C = cfor all (a,m,c) € A, M,C, (iii) M* 1L A |
C = cfor all (a,m,c) € A,M,C and (iv) Y™ 1L M*" | C = c for all (a,a*,m,c) € A, M,C.
The controlled direct effect is identified if we assume the two assumptions: (i) and (ii). The
interventional direct effect and the interventional indirect effect are identified if we assume the
three assumptions: (i), (i) and (iii). The natural direct effect and the natural indirect effect are
identified if we assume all four assumptions: (i), (ii), (iii) and (iv). Assumption (iv) is the cross-
world assumption (VanderWeele (2009a,b, 2011, 2016); Tchetgen Tchetgen and VanderWeele
(2014)). See also Goetgeluk and Vansteelandt (2008) and VanderWeele and Tchetgen Tchetgen
(2016). The interventional direct and indirect effects have the advantage of being meaningful
even though the exposure is not manipulable (VanderWeele and Robinson (2014); Vansteelandt
and Daniel (2017)). It is exemplified in Chapter 5 and the three manuscripts.
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3.2. Multiple mediators

3.2 Multiple mediators

We consider two mediators for pedagogic purpose and the causal estimands can be extended
to K mediators. Let M; and M, denote two ordered mediators, see the DAG in Figure 3.1b
(Daniel et al. (2015); Vansteelandt and Daniel (2017)). We propose a definition of sequential
mediation for multiple mediators in Manuscript II. The measurement M is a mediator-outcome
confounder and it violates the cross-world assumption (Avin et al. (2005)). Manuscript II
defines the causal estimand for the interventional direct effect of the exposure on the outcome
to be given by

/ (E(Yamlmz | ¢) = B(yemms | C)) fM,_gL*|Mla*,C(m2 ‘ 77llvc).fo*|c(m1 | ¢) fe(e)d(ma, c)

and it corresponds to the causal path: A — Y. Let dir denote the interventional direct effect.
The causal estimand for the interventional indirect effect of the exposure on the outcome via
M, is given by

/ BOC™ 1.6) g e c(ma | ma,0) { Faggicmi | €) = faggeic(ma | 0} fe(e)d(ima, o)

and the causal estimand corresponds to the sum of the two causal paths: A — M; — Y and
A — My — My — Y. Let indiry;, denote the interventional indirect effect of the exposure on
the outcome via M;. The causal estimand for the interventional indirect effect of the exposure
on the outcome via Ms is given by

/E(Y“’”'”m2 [ c) {fzvfgle,C(mz | m1,¢) = fager s o(m2 | ml,c)} fugic(ma | €) fe(e)d(my, c)

and the causal estimand corresponds to the causal path: A — My — Y. Let indiry, denote
the interventional indirect effect of the exposure on the outcome via M,. Manuscript II shows
that the sum of the three causal estimands is equal to the total causal effect. The assumptions
for identification of the causal estimands above (with two mediators) are (i’) Y2 1l A | C =
c Y(a,ma,c) € A, My, C, (i') Y92 1L (M1, M) | A=a,C =c Y(a,Ma,c) € A, My, C and
(i) (Mg, M) L A|C =c Y(a,c) € A C. See Manuscript II for further information about
the statistical estimands that are identified under the assumptions (i), (ii’) and (iii’).

Estimator

Manuscript III rewrites the causal estimand for the interventional direct effect to be given by
I(a,a*, a*) —T'(a*, a*, a*) with

I'(j k1) = /E(ijlm2 | C)sz'wa',c("h | ml:c)fMﬂc(ml | ¢) fe(e)d(mz, c) (3.1)
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for different j, k,l € {a,a*}. The causal estimand for the interventional indirect effect via M,
is given by I'(a,a*,a) — I'(a,a*,a*) using (3.1). The causal estimand for the interventional
indirect effect via My is given by I'(a, a,a) — I'(a, a*, a) using (3.1). Manuscript IIT shows that
the estimator f(j7 k,1) for T'(j, k,1) is given by

F]7k l Z/’L]kl{vbw’)l} (32)

Wlth mj{v27£} = (Y | JV[Q m27M1 7ml7A:j7C:C)7 Mj,k{vlvfy} :E(m]{‘/Z7€}A| Ml -
my, A=k C =c)and pp{ve, v} = E(ujr{Vi.7} | A =1C = ¢). The estimator I'(j, k,[)
solves the estimating equation 0 = """, U; ;,(Z;) with

Ujri(Zi) = 1 6{Voi, Yo} — L (4, k). (3.3)

Let the m;{V3,&;}-model denote the true model with the vector of true parameter values
&,. Let the p; {V1,vo}-model and let the p;x,;{Vo,vo}-model denote the true models with
the vector of true parameter values v,. Let 1i2;(V3) denote the m;{Vs, &}-model, let i, x(V7)
denote the p1;,{V1,¥}-model and let fi;;,(V5) denote the p;5:{Vo,¥}-model to simplify the
notation. All the hats indicate predicted values from the specified models that have been used
for the estimation and the predicted values are plugged into the estimator. We will refer to
the m;{vs, £}-model, the ;1 {v1,v}-model and the ;1 {vo, v}-model as the p;x,;-models. See
Manuscript III for further information. The estimator dir for the interventional direct effect,
I(a,a*,a*) = T'(a*,a*, a*), is given by

n

- 1 . .
dir = E Z(,ua,a*,a*(‘/o,i) - M(L*,a*,a*(v(),i))~

i=1

The estimator indiry,, for the interventional indirect effect via My, I'(a,a*, a) — I'(a, a*, a*), is
given by

n
—

— 1 . .
anlr]\h = E Z(#a,a*,a(%,i) - Ma,a*,a*(‘/(),i))

i=1

and the estimator indiryy, for the interventional indirect effect via My, I'(a, a,a) — I'(a, a*, a),
is given by

n
—

— 1 . .
an“n]ﬂz = ﬁ Z(ﬂa,a,a(‘fo,i) - /La,a*,a(‘/o.,i))

i=1

3.3 Simulation study

We conduct a mediation analysis of the simulated data from Section 2.4. We want to estimate
the interventional direct effect of PD(@Q, on SD.S;. We also want to estimate the interventional
indirect effect of PD@Q, on SDS; via SDS, and the interventional indirect effect of PDQ); on
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SDS, via PH(Q),. Let pdg, be equal to 1 and let pdg; be equal to 0 in the estimation of the
three different effects of PDQ, on SDSs. Let pdgs be equal to 0 and let pdg; be equal to 0 in
the estimation of the three different effects of PD@y, on SD.S;. We use the marginal structural
model (2.18) to obtain the equality

E(SDS¥0y _ p(SDSY ) = B, (pdg, — pdq))

and we have plugged the values of pdgs and pdg; into the marginal structural model. We have
pdqy, pdqyp,
> ( D Sépdqb,o)) B ( S gPinsPs, " PH; ,0))
which means that the total causal effect for the exposure PD@), is given by

pday, pdqy, " pday pdaj
E <SDS§”dq"SDSb PHe; ’°’> —E (SDsgpdquDSb P, ’°)> = Bi(pday — pda;).

We compare the overall effect from Table 3.1 with the coefficient 8; from the SG column from
Table 2.2 when we compare the overall effect to the total causal effect. We use the estimator
(3.2) to estimate the interventional direct and indirect effects and we only use the true p;x -
models with respect to the data for estimating the interventional direct and indirect effects.
We denote the estimator (3.2) with the letters SSM (Simple Sequential Mediation formula).
The estimation is evaluated by the mean and the standard error of the 3000 estimates of
n = (diry, indirgps,, indir pgo,, Overall). Table 3.1 shows the results of the estimation of 7.

diry, indirgps, indirppg, Overall
Mean 0.504 0.300 0.200 1.003
SE 0.110 0.039 0.034 0.096

Table 3.1: Let n = (diry, indirsps,, indir ppg,, Overall). The Mean row shows the mean of
the 3000 estimates of 1 and the SE row shows the standard error of the 3000 estimates of 7.
The dir, column is the interventional direct effect of PDQ;, on SDSy. The indirgps, column
is the interventional indirect effect of PDQ), on SDS, via SDS,. The indir pug, column is the
interventional indirect effect of PD@Q, on SDS; via PHQ@Q5. The Overall column shows the
sum of the three interventional effects (the overall effect). See the estimate of the coefficient /3
in the SG column in Table 2.2 to see the total causal effect. The true direct effect is 0.5. The
true mediated effect via SDSj is 0.3 and the true mediated effect via PH(Q), is 0.2.

Table 3.1 shows that we are able to obtain the true direct and indirect effects with our
definition and we are also able to obtain the overall effect to be equal to the total causal effect
with our definition. The results are in line with Manuscript II.
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3.4 Simulation study based on the PERFORM study

We also conduct an analysis of the simulated data from Section 2.5 (based on the PERFORM
study). Table 3.2 shows the estimates of the causal effects 8 of the MSM (2.18) and the
estimates from the mediation analysis. We compare the overall effect to the coefficient 3; when
we compare the overall effect to the total causal effect. We use the same arguments from
Section 3.3 for the comparison between the overall effect and the coefficient ;. We use the
SG estimator (2.12) and we only use the true g-models with respect to the data for estimating
the causal effects. We use the SSM estimator (3.2) and we only use the true p;;;-models with
respect to the data for estimating the interventional direct and indirect effects. Table 3.2 shows
the mean of the 5000 estimates of n = (diry, indirsps,, indir pug,, Overall), the standard error
of the 5000 estimates of 77 and the absolute value of bias (the difference between the mean and
the true value).

SG SSM
b1 1 o 3 diry, indirgps, indirppg, Owverall
Mean 9.823 3.754 3.578 -1.762 | 1.392 2.468 -0.106 3.754
SE 0909 1.123 1.359 1.571 | 0.996 0.360 0.540 1.123
Bias 0.006 0.014 0.023 0.026 | 0.010 0.005 0.001 0.014

Table 3.2: Let n = (diry, indirgps,, indir ppg,, Overall). The SG column shows the estimates
of the causal effects 3 obtained using the SG estimator (2.12). The SSM column shows the
estimates of the mediated effects obtained using the SSM estimator (3.2). The Mean row shows
the mean of the 5000 estimates of 7, the SE row shows the standard error of the 5000 estimates
of n and the Bias row shows the absolute value of the difference between the mean and the
true value. See Table 3.1 for the description of the four columns: diry, indirsps,, indirpuq,
and Overall. The true causal effects are 3 = (531, 1, 52, B3) = (9.8,3.8,3.6,—1.8). The true
direct effect is 1.4. The true mediated effect via SDS, is 2.5 and the true mediated effect via
PH(@4 is —0.1. The true effects are rounded.

Table 3.2 shows that we are able to obtain the true direct and indirect effects with our
definition and we are also able to obtain the overall effect to be equal to the total causal effect
with our definition. The results are in line with Manuscript II.

20



4 Missing observations

Data may contain vectors/individuals/patients with missing observations. Section 4.1 intro-
duces data with missing observations. Section 4.2 introduces the adaptive estimator to analyse
longitudinal data containing missing observations that follow a monotone pattern. An estima-
tor for mediation analysis with data containing missing observations that follow a monotone
pattern is also introduced. Section 4.3 and Section 4.4 finish the two simulation studies from
Chapter 2. In Section 4.5, we argue for the choice of the U(Z)-function that has been used
in the three manuscripts. In Section 4.6, we sketch an estimator with data containing missing
observations that follow a nonmonotone pattern.

4.1 Missing observations in data

Let full data denote data that would have been collected on all the vectors in the sample. Let
observed data denote the actually observed data containing vectors with missing observations.
Let complete data denote a subset of the observed data with no missing observations. If the
missingness mechanism is missing completely at random (MCAR) then the probability of being
observed is independent of the data. If the missingness mechanism is missing at random (MAR)
then the probability of missingness depends only on the observed data. If the missingness
mechanism is missing not at random (MNAR) then the probability of missingness may also
depend on the unobserved data (Tsiatis (2006)). Multiple imputation is one solution for data
containing missing observations (Bartlett et al. (2015)). Reducing data to complete data is
another solution but we may obtain biased estimates. However, if the missingness mechanism
is missing completely at random then using only complete data will not cause biased estimates.

Coarsened data

Let Z be defined in Section 2.2. Let C € {1,...,c} U {oco} denote a random variable. If C is
equal to 1 then Ly is the only observed variable in the ordered sequence. If C is equal to 2 then
Lo and Ay are the only two observed variables in the ordered sequence. If C is equal to ¢ then it
is only the outcome that is missing from Z. Note that c is an integer and it is not equal to c. If
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Chapter 4. Missing observations

the variable C is equal to co then Z is fully observed. See Manuscript I for further information.
Tsiatis (2006) defines a map G, and it maps a vector from the full data to the observed data.
The map is given by G, : Z — g, where g, denote the observed vector in the data with r
observed variables for r = 1,...,¢c. Coarsening completely at random (CCAR) corresponds
to C is independent of the data like MCAR. Coarsening at random (CAR) corresponds to C
depends on the observed data like MAR. Coarsening not at random (CNAR) is a function
that may depend on the not observed data like MNAR. We also need to distinguish between
monotone and nonmonotone missingness.

Monotone missingness

The vectors in the observed data are denoted by the iid random quantities given by

{Gcl(Zl)7 Cl}7 R {GCn(Zn)7 Cﬂ}

where {Ge,(Z;),C;} denote the i-th vector in the observed data. A complete case is a vector
denoted by {G(Z),00}. Complete data contains only complete cases ({Goo(Z),00}). The
pattern of missingness in the data can be described by the following vectors: G1(Z) = (L),
Go(Z) = (Lo, Ao), G3(Z) = (Lo, Ao, L), ..., Ge(Z) = (EO,AO,..,LLT,AT) and G (Z2) =
Z. In the pattern described above, if L; is observed then L, ; and A, ; are necessarily also
observed. This pattern is known as monotone missingness (Tsiatis (2006)). See Manuscript I
for further information about monotone missingness. The pattern of nonmonotone missingness
allows a variable between two observed variables in an ordered sequence to be missing. As
an example, Ly and L; are the only two observed variables in the ordered sequence Z =
(Lo, Ao, L1, ..., Ly, Ap,Y) and the exposure Ay is missing. The vector in the data is given by
G5(Z) = (Lg, Ly) and the variable C is equal to 2. We will not look further into nonmonotone
missingness but Section 4.6 sketches an estimator for nonmonotone missingness. We refer
to monotone coarsening or monotone missingness. We assume the conditional probability of
observing a complete vector given 7 is strictly greater than zero, i.e. that:

w{oo, Z, ¢y} = P(C=00| Z) > 0.

The probability w{oo, Z, 1} denotes the true model with the vector of true parameter values.
We sometimes refer to the probability w{co, Z, 4} as the w-model. Let \.{G,(Z),%,} =
P(C =r|C=>rZ) for r # co denote the probability of stopping the observing of addi-
tional observations given r observed. Let 1, denote the true model with the vector of true
parameter values. We refer to the A\, {G,(Z),}-models as the \-models. Let K,.{G,(Z), ¢}
be equal to the product [[}_, (1 = A\{G;(Z),1}) and Kc{Gc(Z), 4} is equal to the probability
w{oo, Z, 4} (Tsiatis (2006)). We assume the missingness mechanism is CAR which means that
the coarsening probabilities only depend on the data as a function of the observed data. The
coarsening probabilities are given by w{r,G,(Z), ¥} = \{G(Z), Y} K, 1{G,-1(Z), 4} (see
Tsiatis (2006) for further information). The w-model is correctly specified if all the A-models
are correctly specified. The w-model is misspecified if one of the A-models is misspecified. We
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4.2. Adaptive estimator

assume the probability A\, {G,.(Z), 1} is given by

€Xp (wl,r + GT(Z)’I:br)
L+ exp (Yr, +Gr(2)Y,)

MG (Z), 9} =

where the column vector 4, has the same dimension as the row vector G,(Z) (Tsiatis (2006)).
Let the vector of parameter values be given by 1 = (¢, .. where the coefficient ¢, denotes
the intercept and 1)/, is the transpose row vector of p,.

The IPW estimator for missing observations: The inverse probability weighted (IPW)
estimator (e.g. with the U(Z)-function (2.13)) is a suitable estimator to solve the issue of
missing observations (Seaman and White (2013); Li et al. (2013)). We assume that the pattern
of the missing observations is monotone and the missingness mechanism is CAR. We also assume
that the g-models in the U(Z)-function (2.13) are correctly specified. The IPW estimator with
the U(Z)-function (2.13) is given by

I Ci=00) oo 1(C=00)
N ) E (w o 1/)}#(‘/0)) |

The estimator is unbiased if the probability w{co, Z, 12)} is correctly specified. Unfortunately,
the @w{oo, Z,}-model is most likely unknown and we may specify the w{oo, Z, 1 }-model
wrong. The next Section shows how we can handle the issue of the misspecification of the
w{oo, Z, 1 }-model.

4.2 Adaptive estimator

Let U(Z;) be written in the form U(Z;) = h(Z;) — E(Y") for the estimating equation 0 =
Sn ., U(Z;) and fulfilling at the same time E(U(Z)) = 0. Let h(Z;) be a function of the data

and let E(Y?T) denote a constant. The estimator E(YT) for E(Y*T) is given by

n

By =1 3 (I(Ci =) jy(z)

n i \@{oo, Zu"l’}‘
+ Xc: ](CZ = T) B )\T{GT(ZZ)v:(/J}I(Cl 2 T’)
o K {G(Z). b}

(4.1)

for data containing missing observations that follow a monotone pattern and the missingness
mechanism is CAR. We show in the Appendix of Manuscript I how we have derived the es-
timator at (4.1). All the hats indicate predicted values from the specified models that have
been used for the estimation and the predicted values are plugged into the estimator. The
estimator (4.1) is a doubly robust estimator. Let h(Z) be correctly specified with respect to
the distribution of Z. The estimator (4.1) is unbiased if either the conditional expectations
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Chapter 4. Missing observations

E(h(Z) | G.(Z),¢) are correctly specified with respect to the distribution of Z or the A-models
relating to the missingness mechanism are correctly specified. The estimator (4.1) solves the
estimating equation

[ I(Ci =0 S I(Ci=71) = MGH(Z) Y H(C =7 .
o—Z( ) u(z)+ Y A2 MC 1) by (2)) 62, 0) )
i=1 W{OO,Z“’QP} r=1 KT{G’I‘(ZZ)>¢}

Let (00, Z) denote the probability w{oc, Z, 121} to simplify the notation, let ;\T(GT(Z)) denote
the probability A\, {G.(Z),%} to simplify the notation and let K,.(G,(Z)) denote the probability
K, {G,(Z),%} to simplify the notation.

The causal effect with data containing missing observations

Returning to the U(Z)-function (2.13) and the Uarpw (Z)-function (2.17) from Chapter 2 and
the U, ;(Z)-function (3.3) from Chapter 3. Pick v € {1,...,c}. Manuscript I shows that
the conditional expectation of the U(Z)-function (2.13) is given by E(U(Z) | G(Z),¢{,) =
E(u{Vo,v} | G (2),¢y) — E(YT) with the set G,.(Z). The vector ¢, of true parameter
values denotes the true model with respect to the distribution of Z. The estimator (4.1) with
the U(Z)-function (2.13) for estimating £(YT) is given by

By = 13 | HE =95

A (12)

[(Ci =) = MG Z)I(Ci 2 7) 1
&G/ ()

(10%) | G:(2).¢) } .

Manuscript I denotes the estimator (4.2) with the letters DRMGY (Doubly Robust estimator
for Monotone missingness for the G-formula). See Manuscript I for further information about
the estimator. The difference between the SG estimator (2.12) and the DRMGf estimator (4.2)
will become small if the included covariates are poor at predicting drop-out. We also show in
the Appendix in Manuscript I that the estimator (4.2) is asymptotically normally distributed
in the situation when 7' is equal to 1.

The conditional expectation of the Ua;py (Z)-function (2.17) is given by
E(Uarpw (Z) | Gr(Z),6y) = E(O(2)|Gr(Z), Co) — E (Y™)

with

T ]at T t—1 [(Lk [(Lt
o=y ST (- sy )«

with the set G,/(Z). The estimator (4.1) with the Ua;pw (Z)-function (2.17) for estimating
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4.2. Adaptive estimator

E(Y?) is given by

N 1(C; = 00 L Ia L= Iay, I(a) \ .
By =23 [é(oo Z.)) (Yi 11 ﬁt((\/ti) 211 ﬂ'kEVk)) (1 - ﬁt((Vti)> M(Vt’i)>

All the hats indicate predicted values from the specified models that have been used for the
estimation and the predicted values are plugged into the estimator (4.3). The estimator is
unbiased if the p-models are correctly specified. The estimator is also unbiased if both the
m-models and the A-models are correctly specified simultaneously. We denote the estimator
(4.3) by the name Bang and Robins for data with Monotone Missingness (BRMM). Table 4.1
shows the combinations of the u-, the m- and the A-models to obtain an unbiased estimator. We
show in Appendix A that the BRMM estimator (4.3) is unbiased with a specific combination
of the p-, the - and the A\-models (Table 4.1).

1 Correct Wrong

0 Correct Wrong Correct Wrong

A Correct Wrong Correct Wrong Correct Wrong Correct Wrong
Unbiased 4 4 v v v X X X

Table 4.1: The combination of the u-, the 7- and the A-models to obtain an unbiased BRMM
estimator (4.3). See Table 2.1 for the description of the Unbiased row, the two symbols ¢ and
X and the Correct and Wrong columns.

Mediation analysis with data containing missing observations

Pick " € {1,...,c} again. Manuscript III shows that the conditional expectation of the
U; 11(Z)-function (3.3) is given by E (U 5,(Z) | Gr(Z)) = E (i {Vo,v} | G (Z),€)—T(4, k,1)

with the set G,.(Z). The estimator I'(j, k, 1) for T'(j, k, 1) is given by

n

(k1) = %Z %MMJ{%@’Y}
L I(C =) —AXT(GT(ZZ-))I(CZ- >7)
r=1 KT(GT(ZZ))

(4.4)
+

(Mj,k,l{vo,iv’Y} | G.(Z:), é)}

for data containing missing observations that follow a monotone pattern. All the hats indicate
predicted values from the specified models that have been used for the estimation and the
predicted values are plugged into the estimator (4.4). Manuscript I1I denotes the estimator (4.4)
with the letters DRMSM (Doubly Robust estimator for Monotone missingness for Sequential
Mediation). See Manuscript III for further information about the estimator.
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Chapter 4. Missing observations

4.3 Simulation study

We simulate missing observations to the data from Section 2.4 and the pattern is mono-
tone missingness. The monotone missingness is simulated with the probabilities as follows:
logit(A(G1(Zy))) = —2.5 + 04PHQ,, logit(A2(G2(Z))) = —1.9 + 0.9PHQ, — 0.9PDQy,
logit(A3(G5(Zy))) = —1.940.9PHQ,—0.9PDQ,—0.85DS,+1.65 DS, PDQy, logit(\(G4(Z))) =
—1.94+09PHQ, —0.9PDQ, —0.9SDS, +0.5PHQ5 + 0.65DS,PDQy and logit(As(G5(Z,))) =
—2.0+09PHQ, — 0.9PDQ;, — 0.65DS, + 0.3PHQ> + 0.9PDQ5. To analyse the simulated
data, we only use the estimator for the simpler g-formula (SG) and our DRMGf{ estimator for
estimating the causal effects 3 . Both estimators are using the true p-models with respect
to the data. The SG estimator uses only complete data. We use the mean and the standard
error to evaluate the estimation with the two estimators. Table 4.2 shows the results of the
two estimators. We also use the BRMM estimator (4.3) for the estimation with the different
combinations of the y-, the 7- and the \-models. We also use the mean and the standard error
to evaluate the estimation using the BRMM estimator (4.3) and Table 4.3 shows the results.

SG DRMGf
/J)I 61 62 63 ‘ 6[ 61 62 ﬂ&
Mean 9.443 0.786 1.708 1.253 [8.998 1.006 2.003 0.991
SE  0.095 0.133 0.167 0.220 [ 0.090 0.129 0.154 0.216

Table 4.2: See Table 2.2 for the description of the two rows: Mean and SE and the true causal
effects B = (81, 1, 2, B3). The SG column shows the estimation with the SG estimator (2.12).
The DRMGYf column shows the estimation with our DRMGH estimator (4.2).

Table 4.2 shows that the estimates obtained using the SG estimator (2.12) are biased. The
estimator shows weakness in estimating the parameters of interest when data contains missing
observations that follow a monotone pattern. However, the DRMGf estimator (4.2) is able to
estimate all four causal effects and the estimates are unbiased.

1 Correct Wrong
™ Correct Wrong Correct Wrong
A Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Br 8.998  8.998 8.997  8.997 9.021  9.322 8.782  9.121
B 1.003  1.003 1.003  1.002 0.980  0.664 1.210  0.858

Mean 5 9003 2003 2001 2002 1985 1766 2479  2.180
By 0994 0994 0997 0997  1.015 1413  0.609 1.067
By 0.144 0114 0161 0.124 0549 0.305 0.685 0.387
g P 0203 0183 0245 0214 0566 0339 0710 0428

Ba 0.330  0.242 0.257  0.198 0.822 0475 0.776  0.433
B3 0.399  0.338 0.353  0.315 0.916  0.625 0.839  0.551

Table 4.3: See Table 2.2 for the description of the two rows: Mean and SE and the true causal
effects B = (81, b1, B2, B3). See Table 4.1 for the description of pu, 7, A, Correct and Wrong.
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4.4. Simulation study based on the PERFORM study

Table 4.3 shows the expected performance of the BRMM estimator (4.3) since the estimates
in the first five columns are unbiased and it is in line with Table 4.1. All the standard errors are
higher compared to the standard errors in Table 4.2 (our DRMGf estimator). The m-models
may cause the standard errors to be higher.

The mediation analysis of the simulation study.

We use the estimator for the simpler sequential mediation formula (SSM) and our DRMSM
estimator (4.4). The SSM estimator (3.2) uses only complete data. Both estimators are using
the true j; 5 ,-models with respect to the simulated data. Table 4.4 shows the results of the
estimation of the interventional direct and indirect effects for both estimators. We use the
mean and the standard error to evaluate the two estimators.

SSM DRMSM
diry indirsps, indirppg, Overall ‘ diry indirsps, indirppg, QOverall
Mean 0.211 0.332 0.332 0.786 | 0.507 0.300 0.200 1.006
SE 0.162 0.068 0.068 0.133 | 0.148 0.056 0.046 0.129

Table 4.4: The SSM column shows the estimates obtained using the estimator for the simpler
sequential mediation formula (SSM) and the DRMSM column shows the estimates obtained
using our DRMSM estimator. See Table 2.2 for the description of the two rows: Mean and SE.
See Table 3.1 for the true direct effect of PD@Q, on SDSs, the true indirect effect of PD(@Q;, on
SDS;y via SDS)y, and the true indirect effect of PDQ, on SDS, via PHQ,. See also Table 3.1
for the description of the four columns: diry, indirsps,, indirpug, and Overall.

Table 4.4 shows that our DRMSM estimator provides unbiased estimates and the SSM es-
timator shows weakness in estimating the parameters of interest when data contains missing
observations that follow a monotone pattern. The results are in line with Manuscript III.

4.4 Simulation study based on the PERFORM study

We simulate missing observations to the data from Section 2.5 and the pattern is monotone
missingness. The probabilities generating the missing observations are shown in Manuscript I.
The simulated data are identical to the simulated data used in Manuscript I and Manuscript
ITI. We use the BRMM estimator (4.3) for estimating the four expected potential outcomes:
E(SDSS’D), E(SDSéO"l)), E(SDS;LO)) and E(SDS;O’())). The wo-model is only correctly speci-
fied. It is not possible to specify the A-models wrong because the predictors for the probabilities
are only linear. Table 4.5 shows the results of the estimation using the BRMM estimator (4.3).
The estimation with the BRMM estimator is evaluated by the mean, the standard error (SE)
and the absolute value of bias.
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I Correct Wrong
7r Correct Wrong Correct Wrong
) 15.422  15.420 15405 15.411
) 13.623 13.628 12.895 12.874
) 13.671 13.650 13.610 13.701
) 9.721 9.243 10.206  9.411
) 3.748  3.756 3.657  3.685
SDSY) 32705 24537 25138 19.366
)
)
)
)
)
)

E
Mean E
E
E

6.878  6.333 8.030  6.899
19.600 45.947  26.838 67.539
0.024  0.021 0.006  0.012
0.205  0.210 0.523  0.544
0.085  0.064 0.024  0.115
0.096  0.574 0.389  0.406

E
s F
B
E

E
Bias E
E
E

Table 4.5: The estimates are obtained using the BRMM estimator (4.3) with the true w-model.
See Table 2.3 for the description of the three rows: Mean, SE and Bias, the two columns:
Correct and Wrong and the true effects. Numerical problems occurred for the estimation when
the m-models were correctly specified. It caused a reduction of 80 estimates. It means that the
Mean, the SE and the Bias are based on 4920 estimates instead of 5000 estimates.

Table 4.5 shows that the estimates obtained using the BRMM estimator (4.3) are biased
even though the p-models and the m-models are correctly specified. The standard errors ob-
tained using the BRMM estimator are also bigger compared to the standard errors (Table 3 in
Manuscript I) obtained using our DRMGf estimator. The numerical problems were convergence
problems for the m-models.

4.5 The choice of the U-function

We use the U(Z)-function (2.13) in the three manuscripts because we want the possibility of
letting the A-models be misspecified and still obtain an unbiased estimator. We will not use the
Uarpw (Z)-function (2.17) because it is possible to obtain biased estimates even though the u-,
the 7- and the A-models are correctly specified. The simulation study from Section 4.4 is a good
example of biased estimates even when the -, the - and the A-models are correctly specified.
The mmodels and the A\-models need to be correctly specified simultaneously in the BRMM
estimator (4.3) to obtain an unbiased estimator which means that we lose the opportunity for
letting the A-models be misspecified. We also obtain smaller standard errors with the U(Z)-
function (2.13) compared to the Ua;pw (Z)-function (2.17). The U;pw (Z)-function was already
discarded in Chapter 2 because the IPW estimator (2.14) showed weakness in estimating the
parameters of interest in the simulation study from Section 2.5. The estimates obtained using
the IPW estimator were biased even though the m-models were correctly specified.
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4.6. Nonmonotone missingness

4.6 Nonmonotone missingness

We sketch an estimator to analyse data containing missing observations that follow a non-
monotone pattern. Let the missing observations be CAR. We will use Hilbert H spaces but
we will not go into details about Hilbert H spaces. See Tsiatis (2006) for further information
about Hilbert H spaces. Let HI denote the full-data Hilbert space. Let UF(Z) denote the
U(Z)-function on the full-data. Tsiatis (2006) defines a linear operator £ that maps from the
full-data Hilbert space to the observed-data Hilbert space and the linear operator L is defined
by

L{U*(2),¢y =) 1€ =nE (U (2)| G:(2).C) -
r=1
Tsiatis (2006) defines furthermore a linear operator M that maps from the full-data Hilbert

space to the full-data Hilbert space. The linear operator M{U¥(Z),,{} is defined by
E(L{UY(Z),¢} | Z) and the operator is given by

M{UT(2),4.¢} =D wf{r, G.(2). 9 }E (UT(2) | G.(2),¢).-

Tsiatis (2006) shows that the inverse operator M~'{U(Z),,{} exists and the inverse operator
is defined by dF(Z,,¢) = M-H{U(Z),%,C}.

We need to solve the estimating equation

0= 12:: <m[](zz) + L3{C;, Ge,(Z:), @é}) (4.5)
with
L3{C, Ge,(7),8,&) = — & =) Y wf{rG. (2 w}E(szngG( )g)

w{oo Zz:’lvb} r#oco
£ 3 1(€=E (4 (Z26.) | G(Z).).

r#00

Unfortunately, it may be difficult to compute the inverse operator M~! for nonmonotone
missingness. An iterative approach is to approximate the inverse operator M~! by the approx-
imation dFj>(Z 1, €) after (j) iterations. Tsiatis (2006) defines

S A e r, G, E (dF\ (2,4, G.(Z),
e 79 2 P GAZ) DI (15(2..0) 1 G20, 0)
+ Z I(C;=r)E (df;.)(Z,zp,C) | Gr(&%&)

r#00

sy {Ci, Ge,(Z3), P, é‘} —_
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Chapter 4. Missing observations

and we replace L3{C;, Ge,(Z;), 4, ¢} with Lg(j){Cthi(Zi),{b,é} in the estimating equation
(4.5). We need to solve the following estimating equation

- I Cz = o0 % A A
0= ; (MU(Zz) + L2(j){cia Ge,(Z:), v, E}) (4.6)

The element Lgm{Ci, Ge, (Zy), 12), é’} lies in the Augmentation space even though the approxi-
mation dfj (Z, 1, ¢) is not equal to M~{U(Z), 1, ¢} (Tsiatis (2006)). See Tsiatis (2006) for
further information about the Augmentation space. The estimating equation (4.6) is doubly
robust if the conditional expectations E(d"(Z,4,¢) | G,(Z),¢) are misspecified with respect
to the distribution of Z or the models relating to the missingness mechanism are misspecified.

The inverse operator M~! for monotone missingness

Tsiatis (2006) shows that the inverse operator M~! for monotone missingness is given by

M) 8.6 =U(2)+ 3 R Gy VD) - U@ 1642).0).

The conditional expectation of the inverse operator E(d"(Z,4,¢) | G.(Z),¢) is equal to
EU(Z) | G/(Z),€) because the sum is equal to zero. The sum is equal to zero because
MGH(Z2), ¢}, K {G(Z),4} and E(U(Z) | G,(Z),¢) are measurable with respect to the set
G,(Z). The element L3{C,G¢(Z),, ¢} is given by

LS{C,Gc(Z),w,C}:—ﬁZ w{r, G (Z),YYE (U(Z) | G(2),¢)
+ > 1C=1EU(Z) | Gi(2),C)
r#00
B oy I(C = c0)w{r,G,.(Z),v}
%(Nc ) oo, 701 )E<U<Z>|GT<Z>7<>
— MG, (2), 9}I(C > 1)
—gojo e E(U(2)]G(2).0).

The estimating equation (4.5) is equal to the estimating equation that was used to obtain the
estimator at (4.1). Tsiatis (2006) shows the equality

€= 0w Gl2). 9} _ - 1(C= 1) = MCL(2).9}(C > 1)
Z(“‘ ) {00 2.9} ) 2 KAG(2). %) '

r#o0o

30



5 Analysing the PERFORM study

Section 5.1 sketches the statistical analysis of the PERFORM study from Manuscript I and
Manuscript III. Section 5.2 summaries briefly the results from Manuscript I and Manuscript
ITI. An analysis of the three middle time points (¢t = 2, t = 6 and ¢t = 12) of the PERFORM
study is also conducted with the same methods that were introduced and used in Manuscript
I and Manuscript III to analyse the two time points ¢t = b and ¢t = 18. The results of the
new analysis of the PERFORM study are then compared to the results from Manuscript I and
Manuscript III. The reason for the additional analysis is caused by the clinical interest of the
course of the disease over the two years. Analysing the three middle time points will connect
the dots between the two separate analysis for the early (¢t = b) and the later (¢ = 18) time
points and the course of the acute phase and the maintenance phase of the disease for patients
with MDD may be revealed.

5.1 Statistical analysis

Patients are included in the analysis if depression severity at the prior time point before time ¢
(PHQ,) is observed for ¢t € {2,6, 12}. If the pattern of the missing observations is nonmonotone
then the missing observations are forced to follow a monotone pattern. The missing observations
are forced to follow a monotone pattern by setting the subsequent measurements to be missing
in the ordered sequence. We use the dichotomized version of PDQ;. If the original global
score of PD(@), is less than or equal to 5 then it corresponds to having no or minimal cognitive
symptoms at time ¢t € {2,6,12,18}. If the original global score of PDQ), is strictly greater than
5 then it corresponds to having cognitive symptoms at time ¢ € {2,6,12,18}. Let PDQ, be
equal to 0 if the patient has no or minimal cognitive symptoms and let PD(@); be equal to 1 if
the patient has cognitive symptoms at time ¢ € {2,6,12,18}. We assume that the sequential
conditional exchangeability is given by

SDSY ) 1 PDQ, | PHQy, SDSy, PDQy, PHQy

and

SpSwlarda) 1| ppQ,, | PHQy, SDS,, PDQ,, PHQ,
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Chapter 5. Analysing the PERFORM study

for ¢ € {2,6,12} (Manuscript I). The marginal structural model is given by

E (SDSngi’pdqm) = Br¢ + Brapdg + Bopdqs + B3pdgipdqs:

and let B, = (Br+, But, Par, P3+) denote the vector of causal effects at time ¢ € {2,6,12}. See
Manuscript I for further information. Let Zy,; = (W,;, Wa,;, We,), let Zg; = (Way, Wei, Wias)
and let Zyo,; = (W3, Wia;, Wis,;) with Wy, = (PHQy;, PDQy;, SDS, ;). Our DRMGH estimator
is compared to the naive estimator, the LSmeans (SAS Institute Inc (2012)) estimator and the
estimator for the simpler g-formula (SG) (Robins (1986)). We use all four estimators that were
used in Manuscript I. See Manuscript I for the description of the naive estimator, the LSmeans
estimator, the estimator for the simpler g-formula (SG) and our DRMGf estimator. We also
compare our DRMSM estimator to the estimator for the simpler sequential mediation formula
(SSM) for the mediation analysis of Z;; for t € {2,6,12}. We use all four estimators that were
used in Manuscript IIT (the two estimators for the mediation analysis and the two estimators
that were used to estimate the causal effects B, = (814, B4, B2, B54)). See Manuscript III for
the description of the four estimators. All the patients with the pattern G4(Z;) and G7(Z;) for
t € {2,6,12} are removed from the data. The vector G4(Z;) is the four measurements given
by (PHQpt, PDQy, SDSy, PHQ);) and the vector G7(Z;) is the seven measurements given
by (Wye, PHQ:, PDQy, SDS,, PHQ ) with Wy, = (PHQu, PDQpt, SDSy). The patients are
removed from the data because we want to avoid numerical problems for the estimation using the
p-models and the A-models. The two A-models for G4(Z;) and G7(Z;) are given by \y(G4(Z;)) =
M(G7(Zy)) =0 for t € {2,6,12}. The confidence intervals are obtained using 1000 bootstraps.
However, the analysis for ¢ = 2 had some numerical problems. These numerical problems
were caused by the bootstrap sample was not large enough to estimate the parameter of the
interaction between PDQ; and PDQ,. The confidence intervals in Figure 5.1a (the analysis
for t = 2) are obtained using 927 bootstraps. All four estimators failed in 73 bootstraps. The
confidence intervals in Table 5.2 and Table B.4 for ¢ = 2 are obtained using 954 bootstraps
because all four estimators failed in 46 bootstraps.

5.2 Result

Manuscript I shows the results of the expected value of the four different counterfactual levels
for both the early (¢t = b) and the later (¢ = 18) time points of the PERFORM study with
four different estimators (the naive estimator, the LSmeans estimator, the estimator for the
simpler g-formula (SG) and our DRMGf estimator). The analysis for both time points (¢ = b
and ¢ = 18) shows that patients with cognitive symptoms at both visits have worse functioning
than patients with no or with minimal cognitive symptoms at both visits. It applies for all four
estimators. The differences in the expected outcomes between the four groups of exposures
shrink when the estimators adjust for confounding. The pattern is most pronounced for the
naive estimator compared to the other three estimators. The analysis also shows that the
difference between the estimator for the simpler g-formula (SG) and our DRMGf estimator is
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5.2. Result

surprisingly small. The included covariates are poor at predicting drop-out. This is causing the
estimates to be almost similar for the two estimators. See Manuscript I for further information.

Manuscript III shows the results of the mediation analysis of the PERFORM study using
the estimator for the simpler sequential mediation formula (SSM) and our DRMSM estimator.
The results show that the estimates are almost similar for the two estimators. The similarities
of the estimates for the two estimators may be caused by the included covariates are poor at
predicting drop-out. The direct effect of cognitive symptoms on functional impairment at a
later time is positive for ¢ = b. This applies for both estimators (SSM and DRMSM). The
direct effect of cognitive symptoms on functional impairment at a later time is negative for
t = 18. This applies for both estimators (SSM and DRMSM). The negative direct effect for the
later time point (¢ = 18) may be caused by many patients are doing very well after 18 months
and we see the effect that patients with cognitive symptoms are the only ones who can improve
their functioning. The scales do not allow for further improvement among the patients if the
patients already have the lowest score on the scale. See Manuscript I1I for further information.

The results of expected score of functional impairment

Figure 5.1 shows the results of the estimates of the expected value of the four different counter-
factual levels for the three time points, t € {2,6,12}. Each plot shows the estimates with the
confidence intervals. See Manuscript I for further information. The actual numbers are shown
in Table B.1, Table B.2 and Table B.3 in Appendix B.
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(a) Analysis for t = 2. (b) Analysis for ¢ = 6. (c¢) Analysis for t = 12.

Figure 5.1: The horizontal lines are the estimates. The verticals lines are the 95% confidence
intervals. The confidence intervals are obtained using 1000 bootstraps. The confidence inter-
vals for the analysis for t = 2 are obtained using 927 bootstraps since all four estimators had
numerical problems. The actual numbers are shown in Appendix B. See Figure 2 in Manuscript
I for further information.

The results of the analysis of the three time points ¢ € {2,6,12} are almost similar to the
results of the analysis for ¢ equal to b and 18. The large variations in the expected outcomes
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Chapter 5. Analysing the PERFORM study

between the four combinations of cognitive deficits for the naive estimator are similar to the
results in Manuscript I. The differences in the expected outcomes between the four groups of ex-
posures shrink when the estimators adjust for confounding similar to the analysis in Manuscript
I. All four estimators suggest that patients with cognitive symptoms at both visits have worse
functioning than patients with no or with minimal cognitive symptoms at both visits. How-
ever, this does not apply for the analysis for ¢ equal to 12. The three estimators: LSmeans,
g-formula (SG) and DRMG show (the analysis ¢ = 12) that patients having no or minimal
cognitive symptoms at visit 12 and having cognitive symptoms at the subsequent visit have
worse functioning than patients having cognitive symptoms at both visits. The results show
that the impact of cognition on functioning is worse for the patient if the patient experiences a
relapse of cognitive symptoms compared to have stable cognitive symptoms over the two years.

The analysis shows that the presence of cognitive symptoms will cause poor functioning and
the pattern is most pronounced for the naive estimator. The results are not surprising since
the analysis from Manuscript I shows similar results.

The results from the estimator for the simpler g-formula (SG) and our DRMGf estimator are
also not surprising. We know from the analysis in Manuscript I that the included covariates are
poor at predicting drop-out and this is causing the small difference between the two estimators.
Table 5.1 shows the minimum and maximum of the predicted values of each \.{G,(Z), %} for
the three time points ¢ € {2,6,12}.

Analysis Range A1 Ao DT VI e A A w
i 9 Minimum 0.200 0.219 0.171 0 0.060 0.042 0 0.041 0.112
Maximum 0.225 0.253 0.314 0 0.290 0.533 0 0.385 0.391
f— 6 Minimum 0.158 0.207 0.199 0 0.065 0.068 0 0.039 0.112
Maximum 0.173 0.330 0.347 0 0.378 0.369 0 0.533 0.352
f— 12 Minimum 0.159 0.171 0.155 0 0.064 0.086 0 0.036 0.135
Maximum 0.227 0.354 0.361 0 0.481 0413 0 0.334 0.386

Table 5.1: The minimum and maximum of the predicted values of each A\ {G,(Z), %} for the
three time points ¢ € {2,6,12}. See Table 2 in Manuscript I for further information.

Table 5.1 shows almost similar ranges of the minimum and maximum of the predicted values
of M\ {G.(Z;),4} as Table 2 in Manuscript I. The narrow ranges cause the estimator for the
simpler g-formula (SG) and our DRMGH estimator to provide almost the same estimates. The
similarity of the two estimators have been explored with simulation studies. The results of the
analysis with the three time points are in line with Manuscript I.

The results of the mediation analysis

Table 5.2 shows the estimates of the interventional direct effect and the interventional indirect
effects of cognitive symptoms on functional impairment at a later time with the confidence
intervals for the three time points (¢t € {2,6,12}). The estimate of the causal effect 5, with

34



5.2. Result

the confidence interval is also shown in the Table for the three time points (¢ € {2,6,12}). The
coefficient /31, is the causal effect of cognitive symptoms on functional impairment at a later
time for the time point ¢ € {2,6,12}. We use the same arguments from Section 3.3 when we
compare the overall effect to 1, for the comparison between the overall effect and the total
causal effect. We have only shown the estimate of the coeflicient ;; in Table 5.2 because we
only need 3, for the comparison between the overall effect and the total causal effect. Table
B.4 (in Appendix B) shows the estimates of the causal effects B, = (814, 81, Ba, B3.) with the
confidence intervals.

SSM/SG DRMSM/DRMGf
Analysis Effect SE 95%-CI Effect SE 95%-CI

diry 1.006 1.383 1.704 ; 3.715 1.197 1.447 (-1.639 ; 4.033
indirsps, 0.271 0.608 (-0.920 ; 1.462) | 0.910 0.492 (-0.054 ; 1.873
Zy indirppg,  0.658 0.595 (-0.507 ; 1.824) | 0.491 0.590 (-0.666 ; 1.648
Overall 1.935 1.573 1.148 ; 5.018) | 2.598 1.601 (-0.541 ; 5.736

(_

(_

(- ) )

(- ) )

(- ) )

(- ) )

B 1.935 1573 (-1.148:5.018) | 2,508 1.601 (-0.541 ; 5.736)

dirg 0571 1414 (-3.343;2.202) | -0.769 1.487 )
indirsps, ~ 0.637 0438 (-0.221 ;1.495) | 0.706 0.365 (-0.009 ; 1.422)
Zs  indirpug, 0.762 0.694 (-0.599 : 2.123) | 0.736 0.655 (-0.548 ; 2.020)
(- ) )

(- ) )

(- ) )

(- ) )

(- ) )

(- ) )

) )

3.683 ; 2.145

Overall 0.828 1.692 (-2.489 ; 4.145) | 0.673 1.698 (-2.654 ; 4.001
Bis 0.828 1.692 (-2.489 ; 4.145) | 0.673 1.698 (-2.654 ; 4.001
diris -2.437 1.651 (-5.674;0.800) | -2.447 1.877
indirsps,,  0.442 0.227 (-0.003 ; 0.887
Zis indirprg,, -0.464 0.556 (-1.553 ; 0.625
Owerall -2.459 1.651 5.694 ; 0.777
Br12 -2.459 1.651 (-5.694 ; 0.777

(-6.127 ; 1.232
0.377 0.214 (-0.043 ; 0.796
0.154 0.516 (-1.165 ; 0.857
2225 1.885 (-

2225 1.8%5 (-

5.919 ; 1.470
5.910 ; 1.470

Table 5.2: The SSM/SG column shows the estimates obtained using the estimator for the
simpler sequential mediation formula (SSM) and the estimator for the simpler g-formula (SG).
The DRMSM/DRMG] column shows the estimates obtained using our two estimators DRMSM
and DRMG{. The Effect column shows the estimated effects. The SE column shows the
standard error for each estimate. See Table 3.2 for further information about the five rows:
diry, indirsps,, indir ppg,,, Overall and Sy for t € {2,6,12}. The standard errors are obtained
using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals. The confidence
intervals for the analysis for t = 2 are obtained using 954 bootstraps because the estimators had
numerical problems.

Table 5.2 shows that the estimates for the two estimators (the estimator for the simpler
sequential mediation formula (SSM) and our DRMSM estimator) are almost similar. The
difference between the two estimators is not surprising since the included covariates are poor at
predicting drop-out. This causes the estimates for the two estimators to be almost similar. We
notice that the overall effect is equal to the total causal effect for all six analysis. The results
are similar to the results in Manuscript III. At first sight, the negative effects can be surprising
since a negative effect indicates that patients with cognitive symptoms at time ¢ (equal to 2, 6
and 12) are more likely to improve directly their functioning in contrast to patients with no or
with minimal cognitive symptoms. We had expected positive estimates. However, the negative
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Chapter 5. Analysing the PERFORM study

effects may indicate the ceiling and floor effect that more patients become better over time and
it becomes more difficult for patients with no or with minimal cognitive symptoms to further
improve if the patients already have the lowest score on the scale. The results are in line with
Manuscript II1.
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6 Discussion

This thesis contributes to the statistical methodology of causal inference to analyse longitudinal
data with repeated measurements and missing observations.

The aim of this thesis was to develop an estimator to analyse longitudinal data with time-
dependent confounding and missing observations that follow a monotone pattern. An estimator
for mediation analysis for multiple mediators and missing observations that follow a monotone
pattern was also needed. The aim was to utilize data better instead of using only complete
cases and reducing bias of the estimates when data contains missing observations that follow a
monotone pattern. The work in this thesis was motivated by the PERFORM study since the
study has substantial many missing observations. We were interested in the effect of cognitive
symptoms on functional impairment at a later time. An analysis using only complete cases was
not a satisfactory analysis of the PERFORM study. We have therefore proposed a doubly robust
estimator (DRMG() in Manuscript I to estimate the causal effect of a time-varying exposure
in the presence of time-dependent confounding when data contains missing observations that
follow a monotone pattern. We have also proposed a doubly robust estimator for sequential
mediation (DRMSM) in Manuscript III when data contains missing observations that follow a
monotone pattern. The overall effect obtained using the DRMSM estimator is equal to the total
causal effect. The estimator is based on the new definition of sequential mediation proposed
in Manuscript II. The two estimators and the new definition were applied to the observational
cohort study PERFORM consisting of patients with depression.

Our DRMGT estimator and three existing estimators from the literature were applied to the
PERFORM study. The difference of the expected outcomes between the four exposure groups
became smaller as the confounders were included in the models. Our DRMGf estimator was
compared to the estimator for the simpler g-formula (SG). The results of our DRMGH estimator
and the estimator for the simpler g-formula (SG) were surprisingly similar. The similarities of
the two estimators were caused by the included covariates were poor at predicting drop-out. The
robustness of our estimator was not revealed in the analysis of the PERFORM study. We also
did a mediation analysis of the PERFORM study. The doubly robust estimator (DRMSM) for
sequential mediation was used to analyse the PERFORM study. Our DRMSM estimator was
compared to the estimator for the simpler sequential mediation formula (SSM) in the analysis
of the PERFORM study. The robustness of our two estimators DRMGf and DRMSM were
not revealed in the analysis of the PERFORM study. However, the simulation studies revealed
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the robustness of our two estimators (DRMGf and DRMSM). We must remember that we have
only considered a simplified version of the PERFORM study. We might have seen a bigger
difference between our DRMG( estimator and the SG estimator or our DRMSM estimator and
the SSM estimator if we had included age, gender, disease history and other relevant predictors.
The results from the analysis for all ¢ € {b,2,6,12,18} reflect that the treatment goal in the
first months of treatment (the acute phase) is to relieve the depressive symptoms while the goal
later in treatment (the maintenance phase) shifts towards stabilisation and relapse prevention.
It appears from the analysis of the expected value of the four different counterfactual levels
that the impact of cognition on functioning is worse for a patient if the patient experiences a
relapse of cognitive symptoms compared to having stable cognitive symptoms. The mediation
analysis may indicate that the ceiling and floor effect occur in the PERFORM study since the
study is scale based and each scale has a finite range. It may happen that almost all patients
have the highest score in the beginning of the study which cause the ceiling effect and then
some months later almost all patients have the lowest score which cause the floor effect. It is
easier to see an improvement among the patients if almost all/many patients have a high score
and it becomes more difficult to detect any improvement if almost all/many patients have a low
score. We are not able to see any improvement of the patient if the patient’s score is already on
the lower boundary of the scale compared to a patient with a higher score. The scales do not
leave any room for further improvement if the patient is already doing well because the scales
have a lower finite limit. It is a limitation for scales based studies.

It is now tempting to only use the estimator for the simpler g-formula (SG) instead of our
DRMGf estimator when data contains missing observations. There was almost no difference
between the two estimators in the analysis of the PERFORM study. The estimator for the
simpler g-formula (SG) is also easier to use compared to our DRMGI estimator. However, the
simulation studies (this thesis, Manuscript I and Manuscript III) have shown that we obtain
biased estimates using only complete cases if the included covariates are strong at predicting
drop-out. The simulation studies with the missing observations have revealed the robustness of
our DRMGf estimator. The estimates obtained using the estimator for the simpler g-formula
(SG) were biased when the included covariates were strong at predicting drop-out. The overall
interpretation of the simulation studies is that our DRMG{ estimator is better of estimating
the parameters of interest than the estimator for the simpler g-formula (SG). The simulation
studies with the missing observations have also revealed that our DRMGf estimator is better
of estimating the parameters of interest than the BRMM estimator (4.3) (the extended version
of the doubly robust estimator introduced by Bang and Robins (2005) when data contains
missing observations). The estimates obtained using the BRMM estimator (4.3) were biased
even though the pu-, the m- and the A-models were correctly specified. This is not surprising
because the doubly robust estimator (2.16) showed already a bit of weakness compared to the
estimator for the simpler g-formula (SG) with full data in Section 2.5. The conclusion is that the
BRMM estimator (4.3) should be avoided because it is possible to obtain biased estimates even
when the p-models and the m-models are correctly specified. The simulation studies with the
missing observations have also revealed the robustness of our DRMSM estimator. The estimates
obtained using the estimator for the simpler sequential mediation formula (SSM) were biased
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when the included covariates were strong at predicting drop-out. The overall interpretation of
the simulation studies is that our DRMSM estimator is better of estimating the parameters of
interest than the estimator for the simpler sequential mediation formula (SSM).

We are able to obtain the overall effect to be equal to the total causal effect using our new
definition of sequential mediation. The simulation studies have revealed that our definition is
able to obtain the true effects (Manuscript II). Our definition is able to obtain the interventional
direct effect and the interventional indirect effects for multiple mediators so that the overall
effect is equal to the total causal effect. Our definition allows the included models to have
interactions between the different measurements/variables. Our definition was compared to an
already existing definition by VanderWeele and Vansteelandt (2013) in three simulation studies
and our definition was better of estimating the parameters of interest compared to the existing
definition.

The conclusion is that our two estimators DRMGf and DRMSM protect against biased
estimates compared to the two simpler estimators (the estimator for the simpler g-formula (SG)
and the estimator for the simpler sequential mediation formula (SSM)). Our two estimators
(DRMG{ and DRMSM) also utilize data better compared to the two simpler estimators (SG
and SSM). The assumption about the missingness is weaker for our two estimators (DRMGf and
DRMSM) compared to the two simpler estimators. Our two estimators (DRMGf and DRMSM)
hinge on the assumption missing at random which is less strict than the assumption missing
completely at random (the two estimators SG and SSM hinge on the assumption missing
completely at random). The two estimators SG and SSM show weakness in estimating the
parameters of interest when data contains missing observations that follow a monotone pattern.
The cost that we may have to pay with our two estimators is larger standard errors. Our two
estimators DRMGf and DRMSM share the same advantages, disadvantages and limitations.

6.1 Perspectives and limitations

The consistency assumption and the conditional exchangeability assumption for no unmeasured
confounding are a limitation for the two estimators and the definition. These two assumptions
are untestable. Another limitation for the two estimators (DRMGf and DRMSM) and the
definition of sequential mediation is the ordering of the variables because it may be a natural
assumption for some studies. However, the order of the different domains in the PERFORM
study is partially clear because the three domains were measured simultancously for each pa-
tient. The causal ordering between the different time points is introduced by time itself but
the causal ordering between the different domains within the same time point is less clear. The
causal ordering between the different domains within the same time point is based on clinical
insight (a change in depression severity causes a change in cognitive performance, which in
turn causing a change in functioning). The assumption of monotone missingness is a realistic
assumption since patients tend to drop-out of studies but it does not allow for intermittent
missing data. It may be unrealistic to assume that the missing observations in the PERFORM
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study follow a monotone pattern and the missing observations are missing at random. However,
to analyse a subset of the PERFORM study with only fully observed patients is not less critical
because an analysis using only complete cases depends on the assumption missing completely
at random.

The interpretation of the results hinges on our assumptions but they are not guaranteed and
the data will not provide us with any information whether the assumptions are correct or not.
The assumption of monotone missingness leaves room for further research for extending the two
estimators for data containing missing observations that follow a nonmonotone pattern. Further
research is to obtain the influence function of the g-formula instead of the U(Z)-function (2.13)
that has been used in this thesis. The influence function of the g-formula will make it possible
to obtain the asymptotic variance instead of estimating the variance by bootstrapping.
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7 Summary of manuscripts

7.1 Summary of Manuscript I

A doubly robust estimator for monotone missing data in the presence of time-
dependent confounding

This manuscript presents a doubly robust estimator for estimating the causal effect in the pres-
ence of time-dependent confounding while data contains missing observations. The estimator
allows the models relating to the missingness mechanism in the data to be misspecified and the
estimator will still be unbiased. The estimator is an extension of the g-formula. Our estimator
utilizes data better compared to an estimator using only complete data since our estimator
allows partially observed vectors to be included in the analysis without reducing data to a
subset of complete cases. The observational study Prospective Epidemiological Research on
Functioning Outcomes Related to Major depressive disorder (PERFORM) was the motivation
to develop the estimator. Our doubly robust estimator was used to estimate the causal effect
of cognitive symptoms on functional impairment at a later time while data contains missing
observations. However, the analysis of the PERFORM study did not reveal the robustness of
our estimator.

Manuscript I is submittable.

7.2 Summary of Manuscript 11

Sequential mediation analysis with multiple mediators

This manuscript proposes a new definition of sequential mediation to obtain the interventional
direct effect and the interventional indirect effects for multiple mediators. The overall effect
with our definition is equal to the total causal effect. The definition is inspired by Vansteelandt
and Daniel (2017) for decomposing the total causal effect into the interventional direct and

41



Chapter 7. Summary of manuscripts

indirect effects for multiple mediators. The observational study Prospective Epidemiological
Research on Functioning Outcomes Related to Major depressive disorder (PERFORM) was
the motivation to develop the definition since we are interested in the direct effect of cognitive
symptoms on functional impairment at a later time, and we prefer that the overall effect is
equal to the total causal effect for the sake of the interpretation.

Manuscript II is submittable.

7.3 Summary of Manuscript 111

Sequential mediation analysis with multiple mediators for data with missing
observations

This manuscript presents a doubly robust estimator for estimating the interventional direct
effect and the interventional indirect effects for multiple mediators while data contains missing
observations. We have developed an estimator that allows the models relating to the missing-
ness mechanism in the data to be misspecified and the estimator will still be unbiased. The
estimator is an extension of the definition of sequential mediation from Manuscript II. Our
estimator utilizes data better compared to an estimator using only complete data since our
estimator allows partially observed vectors to be included in the analysis. The observational
study Prospective Epidemiological Research on Functioning Outcomes Related to Major de-
pressive disorder (PERFORM) was the motivation to develop the estimator. Our doubly robust
estimator was used for estimating the direct effect of cognitive symptoms on functional impair-
ment at a later time and the mediated effects. The analysis of the PERFORM study did not
reveal the robustness of our estimator.

Manuscript III is submittable.
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A The doubly robust estimator

The estimator (2.16) by Bang and Robins (Part of Chapter 2): We show that the
estimator (2.16) is a doubly robust estimator but we begin the Appendix by showing that the
mean E(Y7(Z)) is equal to zero. We assume that the p-models and the m-models are correctly
specified. We also assume conditional exchangeability and consistency. We have the equality

E ((1 — WIT((‘“;T))) m{Vr, €} LT,ATl) -y ((1 _ Mar) ) E(Y™ Ly, Ap_y) LT,AT1>

mr(Vr)
because we have assumed conditional exchangeability and consistency. We notice the following

equalities
[(aT) == — - — E(I(CLT)|ZT7ZT,1) ar T T
E E(Y | Ly, Ap 1)Ly, Ar_1 | = E(Y*|Ly, Ap_
<7TT(VT) (Y| Ly, Ap_1)|Ly Tl) (V) (Y| Ly, Ar—1)
mr(Vr) -
= E(Y Ly, Ap_
o BT Ly )

where the conditional expectation E(I(ar) | Ly, Ap_1) is equal to (V) such that

(- 2)more

Now, we can show that the mean F(Yr(Z)) is equal to zero by the following calculations

LT7AT1>>

LTyAT1> =0.

17 L) <1 _ Iar)

E(Yr(Z))=FE <E (H (V) > m(Vr) + Yr_1(Z)

t=0 mr(Vr)
- T—1 I(a:) B I(ar) . L
-k (tl_! m(W)E ((1 7TT(VT)> (V) LT’AT1> + TTl(Z)>
=E(Yr-1(2))

The mean E(Yr(Z)) is equal to zero because we have shown that the mean E(Yr(Z)) is
equal to E(Yr_1(Z)) and it is possible to show the equality 7" — 1 times more and the last
mean E(Yo(Z)) is equal to zero. To show that the estimator (2.16) is doubly robust then
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we need to show that the estimator is unbiased when either the p-models or the m-models
are correctly specified. We assume that the m-models are correctly specified and we let the
p-models be misspecified denoted by p*. We let T‘}* (Z) denote the T-term when the p-models
are misspecified. The mean E(Ua;pw(Z)) is given by

E(Uarrw(2)) = E (YH ! (:Vtt)) ST é(&)) (1 ) é((%) mvt)> -

= B(T7(2)

which is zero because the expectation £ (T‘qﬂ (7)) is equal to zero since the m-models are correctly
specified. Showing that the mean E(T% (Z)) is equal to zero are almost the same as showing
that the mean E(Yr(Z)) is equal to zero (replace p with p* in the calculations above). We
assume that the y-models are correctly specified and we let the m-models be misspecified denoted
by 7*. The mean E(Ua;pw(Z)) is given by

E(Uarpw(2)) = E( H *((;t/f +ZH I(ay) < ]Z((a‘t/t))) M(Vt)> *E(YET)

TIat Tt_l[ak T ot I(an
- (Y 1 = 211 A - 211 A0
- (H i v+ T S -3 T “(”)>
T er T t-1 I(a
- (H o+ T2 - mm)

which is zero using the law of iterated conditional expectations.

The BRMM estimator (Part of Chapter 4): We show that the BRMM estimator (4.3)
is robust in case of misspecification of the included models (the p-, the m- and the A-models)
according to Table 4.1. We assume that the p-models or the m-models are correctly specified
for now. We need to show that the expectation

ar) ~MG(Z), ¢ }H(C>7)
(Yﬂm{wa}wT( E(Y +Z KT{G,.( o HT(Z)> (A1)

is equal to zero for a specific combination of the included models (the p-, the 7~ and the
A-models) with

(YH 7Tt{vt7a} Tr(Z))6n( ) <YH 7Tt{Vt Ot} ’ TT(Z)) .
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It is possible to rewrite the =1 (Z)-term to the expression E(Uarpw (Z) | G- (Z), ) —Uarpw (Z).
The expectation of the part before the sum Y v (...) in (A.1) is equal to zero by construction
because the p-models or the m-models are correctly specified. We need to show that the
expectation of the sum > °_ (...) in (A.1) is equal to zero. We define the set F, = o(I(C =
1),...,1(C =r—1),7) and we obtain the equality E(I(C =) | F.) = M{G.(Z), ¥} (C > r)
(Tsiatis (2006)). We obtain by conditioning on the set F, the following equality

p (=D S DM 02, 5)) — b5 (G2 10 2 122(2)

with
)\r{G'r‘(Z)7 ¢0} — )‘7'{G7'(Z)7 1P*}

KT{G"‘(Z)7¢*} '
If the models relating to the missingness mechanism are correctly specified ™ = 1, then the
S(G,(Z)) is equal to zero for r = 1,...,c¢ which means that the sum Y ¢ (...) in (A.1) is
equal to zero. If the models relating to the missingness mechanism are misspecified ¥* # 1,
then the S(G,(2)) is not equal to zero for r = 1,..., ¢ which means that the sum > °_,(...)
in (A.1) is not equal to zero. Now, we assume that the p-models are correctly specified and we

S (GT(Z)) =

are allowing the m-models to be either correctly specified or misspecified. Pick r € {1,...,c}.
We have the conditional expectation

EEr(Z) [ I(C 2 1), G (Z)) = E(Uarrw (Z) | Gr(2),€) = E (Uarrw(Z) [ 1(C = 1), G1(Z))

and the conditional expectation E (Uarpw (Z) | -) is rewritten to

E<Hmf(vt)a}(y 1{Vr.7}) +Z ﬂf(vata} ,'r}u{ij})")E(Y”)

j=11=0

and all the parts with the p-models are equal to zero because the p-models are correctly
specified. This means that the conditional expectation E(Zp(Z) | I(C > r),G.(Z)) is equal
to zero because the conditional expectation E (Uarpw (Z) | G-(Z),€) is equal to E (YT) and
the conditional expectation E (Uarpw (Z) | I(C > 1), G,(Z)) is equal to E (Y?T). We have the
equality

EAS (G (2)) I(C 2 1)Ea(Z)} = 0

because

E{S(G:(2)) I(C = r)Er(2)} = E{S(G(2)) I(C = r)E (Ex(2) | I(C = 7),GA(2))}

and the conditional expectation E(Z¢(Z) | I(C > r),G.(Z)) is equal to zero. This implies
that the expectation of the sum > °_,(...) in (A.1) is equal to zero because the pg-models are
correctly specified. We must recall that the p{Vy,~}-model is equal to the m{Vr, £}-model.
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B Tables from the analysis of the PER-

FORM study

Tables with the actual numbers for Figure 5.1: Table B.1 shows the estimates with the
confidence intervals for Figure 5.1a (the analysis for ¢ = 2). Table B.2 shows the estimates with
the confidence intervals for Figure 5.1b (the analysis for ¢ = 6). Table B.3 shows the estimates
with the confidence intervals for Figure 5.1c (the analysis for ¢t = 12).

Estimator Estimate SE 95%-CI Width of CI

1,1) 14397 0.610 (13.202; 15.593) 2.392

Nuive (0,1) 8.500 2401 (3.795 ; 13.205) 9.411
(1,0) 7.387 1.096  (5.240 ; 9.535) 4.295

(0,0) 4225 0836  (2.586 ; 5.864) 3.278

(1,1) 11.869 0590 (10.712; 13.026) 2.314

— (0,1) 6.901 2.091 (2.802 ; 10.999) 8.198
(1,0) 10.034  0.923 (8.225 ; 11.843) 3.618

(0,0) 9.177 1.260 (6.709 ; 11.646) 4.937

E(SDSMY) 12,094 0.627 (10.864 ; 13.323) 2.459
Coformula E(SDSEY) 5822 2450  (1.020 ; 10.624) 9.605
E(SDS!™) 10215 0978 (8.299 ; 12.131) 3.832
E(SDS 8.280 1.250 (5.830 ; 10.729) 4.899
E(SDS™)  12.8060 0552 (11.724 ; 13.889) 2.165

DRMGE  E(SDS™Y) 59400 2417 (1.203 ; 10.676) 9.473
E(SDSM)  11.0140 0930  (9.191 ; 12.837) 3.646
E(SDS"™™) 84160 1.307 (5.853 : 10.979) 5.125

Table B.1: Figure 5.1a is based on the actual numbers. The analysis for t = 2. The Estimator
column shows the estimator that was used to obtain the estimates. The Fstimate column shows
the estimates obtained using the different estimators. The SE column shows the standard errors
obtained using 927 bootstraps. The 95%-CI column shows the 95% confidence intervals. The
Width of CI column shows the width of the confidence intervals.
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Estimator Estimate SE 95%-CI Width of CI

(1,1) 12.858 0.608 (11.666 ; 14.051) 2.385

Nuive (0,1) 10462 2.231  (6.089 ; 14.834) 8.745
(1,0) 5208 0.876  (3.492 ; 6.925) 3.433

(0,0) 3813 0.771  (2.302 ; 5.323) 3.020

(1,1) 10207 0.598 (9.036 ; 11.379) 2.343

T (0,1) 9.936 1.307 (7.375 ; 12.497) 5.122
i (1,0) 8.104 1.046 (6.053 ; 10.155) 4.102

(0,0) 8811 1.429 (6.010 ; 11.612) 5.603

E(SDSYY)  10.643 0.646  (9.378 ; 11.909) 2.531

Cformula E(SDSYY) 8.771 1.394 (6.039 ; 11.504) 5.465
E(SDSHY) 8.520 1.053  (6.456 : 10.584) 4127
E(SDS9Y) 7.692 1.536 (4.682 ;10.701) 6.019
E(SDSYY) 11404 0544 (10.338 ; 12.471) 2.133

DRMGE  E(SDSHY) 9.691 1.385 (6.975 ; 12.406) 5.430
E(SDSHY) 9.059 1.157 (6.792 : 11.326) 4535
E(SDSYY 8.386 1.521 (5.405 ; 11.366) 5.961

Table B.2: Figure 5.1b is based on the actual numbers. The analysis for ¢t = 6. The FEstimator
column shows the estimator that was used to obtain the estimates. The Estimate column shows
the estimates obtained using the different estimators. The SE column shows the standard errors
obtained using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals. The
Width of CI column shows the width of the confidence intervals.

Estimator Estimate SE 95%-CI Width of CI

(1,1) 13.010 0.839 (11.367 ; 14.654) 3.287

Natve (0,1) 12.937 2.097 (8.827 ; 17.048) 8.222
(1,0) 5000 1.276  (2.500 ; 7.500) 5.000

(0,0) 3579 0.554  (2.493 : 4.665) 2.172

(1,1) 9.097 0.698 (7.729 : 10.466) 2.737

T (0,1) 9439 1412 (6.672 ; 12.206) 5.534
(1,0) 6.921 1.223  (4.524;9.317) 4.793

(0,0) 9.168 1.339  (6.545 ; 11.792) 5.247

E(SDSEY) 8.889 0.771 (7.378 ; 10.400) 3.022
Coformula E(SDSEY) 9.979 1.597 (6.849 ; 13.109) 6.260
E(SDSEY) 6.913 1.301  (4.363 : 9.462) 5.100
E(SDSYY) 9.371 1417 (6.593 ; 12.149) 5.556
E(SDSYY) 10324 0670  (9.010 ; 11.637) 2.626

DRMGE  E(SDSRY)  10.856 1675  (7.573 ; 14.138) 6.565
E(SDSYY) 8.042 1.313 (5.468 ; 10.616) 5.148
E(SDSYYY 10267 1528 (7.272 ; 13.262) 5.989

Table B.3: Figure 5.1c is based on the actual numbers. The analysis for ¢ = 12. See Table B.2
for the description of the five columns: Estimator, Estimate, SE, 95%-CI and Width of CI.
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Table with the results of the causal effects: Table B.4 shows all the estimates and the
confidence intervals from the analysis of the causal effects B, = (8., Bi.t, Bau, B34) for ¢ equal
to 2, 6 and 12.

SG DRMGf
Analysis Effect SE 95%-CI Effect SE 95%-CI
Bro 8280 1.291 (5.750;10.810) 8.416 1.313 (5.842; 10.990
7 b2 1935 1573 (-1 148 ;5.018)  2.598 1.601 0. 541 ; 5.736
’ Pao  -2457 2591 (-7.536 ; 2.621) -2.476 2.445 (-7.269 ; 2.316
Bs2 4336 2.881 (-1.310;9.982) 4.269 2.733 1.088 ; 9.626
Bre  7.692 1.501 (4.749;10.634) 8.386 1.513 (5.421;11.351
Z Bis  0.828 1.692

1.951 ; 4.560
2.072 ; 4.153
7.098 ; 13.435
5.919 ; 1.470

(-
Boe  1.079 1530 (-1.920 ;4.079) 1.305 1.661
Bss  1.044 1543 (-1.981;4.068) 1.040 1.588
Bri2 9371 1A78 (6.475;12.267) 10.267 1.617
P Briz -2.459 1.651 (-5.694:0.777) -2.225 1.885
2 B, 0608 1.715 (-2.754:3.970) 0589 1.836 (-3.010 ;4.188
Biio 1369 1.946 (-2.445:5.182)  1.693 2.047 (-2.319 ; 5.704)

Table B.4: The estimation of the causal effects B, = (814, B4, Por, B34) for ¢ equal to 2, 6
and 12. The SG column shows the estimates obtained using the estimator for the simpler g-
formula (SG). The DRMGf column shows the estimates obtained using our DRMGf estimator.
The Effect column shows the estimated effects. The SE column shows the standard errors.
The standard errors are obtained using 1000 bootstraps. The 95%-CI column shows the 95%
confidence intervals. The standard errors are obtained using 954 bootstraps for t = 2 because
the estimators had numerical problems. See Table 1 in Manuscript III for further information.

( )
(- )
(- )
amioms

2.489 ; 4.145)  0.673 1.698 (-2. 654 ; 4.001)
(- )
(- )
( )
(- )
(- )
(-
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A doubly robust estimator for monotone missing
data in the presence of time-dependent
confounding

Thomas Maltesen??”, Torben Martinussen®, Klaus Groes Larsen® and Lene
Hammer-Helmich?

Patients in observational and interventional studies tend to drop-out, which leads to data with missing observations.
Missing observations may complicate the analysis of a longitudinal study with repeated measures over time with
time-dependent confounding. Standard methods fail in the presence of time-dependent confounding and reducing
the data to fully observed vectors can cause biased estimates. We propose an augmented inverse probability
weighted (AIPW) estimator to estimate the causal effect of a binary time-varying exposure in the presence of
time-dependent confounding with a continuous outcome subject to missingness. The estimator is robust regarding
misspecification of the parametric model for the monotone missingness in the data under the assumption that the
missingness is missing at random (MAR). Our estimator requires only partially observed vectors to be included
in the analysis. We use the proposed estimator on the observational study Prospective Epidemiological Research
on Functioning Outcomes Related to Major depressive disorder (PERFORM), which is a longitudinal study with
time-dependent confounding and missing observations. Copyright (©) 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, g-formula, time-dependent confounding, doubly robust estimator, monotone
missingness

1. Introduction

Major depressive disorder (MDD) is a multidimensional disease characterized by emotional, physical and cognitive
symptoms. Treatment of cognitive symptoms may hold the key to achieving functional recovery in MDD, but the
relationship between cognitive symptoms and functional impairment is not well understood [1]. The observational study
Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive disorder (PERFORM)
(NCTO01427439) is an observational cohort study undertaken to better understand the course of a depressive episode and
its impact on patient functioning over two years in outpatients with MDD [2]. Functional impairment, cognitive symptoms
and depression severity have been measured for each patient in the PERFORM study. The measurements were based on
self-reported scales. Data were collected at different time points: at baseline and after 2, 6, 12, 18 and 24 months [2]. A
naive regression analysis of functional impairment on cognitive symptoms may lead to a biased estimate since depression
severity may impose time-dependent confounding [3]. The data contains a substantial number of patients with missing
observations. Reducing data with missing observations to a subset of fully observed vectors may also result in biased
estimates.

Methods have been proposed to handle data with missing observations e.g. inverse probability weighting (IPW) where
fully observed vectors are up-weighted to represent full data. Multiple imputation (MI) is another popular method to
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handle data with missing observations. MI has two main advantages over IPW. First, (unless it is monotone missing or a
more complicated MI-model is used) the IPW uses only the fully observed data. Second, the MI is more efficient than IPW,
but IPW is less technical, easier to understand and easier to explain to collaborators [4, 5]. Robins, J. M. and Rotnitzky,
A., among others, have considered methods of semiparametric models with inverse probability weighted estimators when
data contains missing observations [6, 7, 8]. Bang, H. and Robins, J. M., for binary exposure, introduced a doubly robust
estimator for data with missing outcomes and an augmented inverse probability weighted (AIPW) estimator for causal
inference models with time-dependent confounding [9]. Williamson, E. J., Forbes, A., and Wolfe, R. introduced a doubly
robust estimator in case of the (causal) exposure of interest, the confounder or the outcome being missing. Confounding
and missingness in the data may occur simultaneously and the model for the missingness mechanism in the data is typically
uncertain. A doubly robust estimator is desirable to overcome the issue of the missingness in the data [10]. The properties
of these methods are appealing; however, these methods are mainly attractive if only one variable is missing at a time or
data do not have any time-dependent confounding while data contains missing observations. Missingness in the data can
occur for outcome, exposure and time-dependent confounding at the same time.

The PERFORM study is the motivation to develop an estimator for longitudinal data with missing observations while
adjusting for time-dependent confounding at the same time. The previously mentioned methods cannot be used for our data
since more than one measurement is missing at a time and we also have time-dependent confounding. Therefore, we need
an estimator for a time-varying exposure that is robust of misspecification of the parametric model for the missingness
mechanism and at the same time can adjust for time-dependent confounding. We will first consider the estimator derived
from the g-formula for estimating the effect of the time-varying exposure in the presence of time-dependent confounding.
Then, we will extend the estimator to handle partially observed vectors using the techniques developed in Tsiatis [11].
The estimator includes as many vectors as possible and the estimator is not restricted to only one missing variable at
a time. The article is organized as follows. Section 2 revisits the estimator of the g-formula for continuous outcome
and binary exposure. Section 3 considers data containing missing observations and then extends the g-formula to handle
missing observations using the techniques developed in Tsiatis [11]. We denote our estimator by DRMGt (Doubly Robust
estimator for Monotone missingness for the G-formula). In Section 4, we apply our DRMGT estimator from Section 3 to
analyse the PERFORM study. Section 5 shows a simulation study with data simulated with parameters obtained from the
PERFORM study to show the performance of the DRMGH estimator. Section 6 is a discussion of our findings.

2. The estimator for estimating the causal effects in full data

Suppose that our data comprises n identical and independent distributed realizations of random variables 7, . .., Z, with
Z,; denoting the i-th vector in the data (we suppress the index ¢ for simplicity). The vector Z defines an ordered sequence
of variables (Lo, Ao, L1, A1, ..., Ly, Ap,Y). The outcome variable Y is assumed to be continuous and we let A, denote
the binary exposure at time t € {0,...,T}. Define A; to be a vector of exposures up to time ¢ (Ao, ..., A;). Let Ap
denote (Ao, ..., Ar). Let Y7 be the potential outcome that would have been observed if A7 had been set to @r. Let L;
be a set of measured potential confounders at time ¢ € {0, ..., T} [3]. Let Ly denote the vector (Lq, ..., L) and let I
denote the vector (lo, . .., Ir). The outcome Y may be causally influenced by the whole history of Ap and L. We define
V, = (L, A;) and v; = (I;,a;). We assume sequential conditional exchangeability

YO AL Ay | Ly, Ay Vap € Ap, vt €{0,..., T}

The g-formula [12] is given by

T
E (YET) = /E(Y | Ly = lp, Ap = ar) H'th‘Zt—lazt—l(lL | @1, li—1)dly (€Y
t=0

and can be rewritten as a series of iterated conditional expectations given by
E (YET) = E( . E(E(Y | ZT7ZT = ET) ‘ ZT*hszl = anl) e ‘ fo,Zo = 60)

[13]. From the series of iterated conditional expectations we may then estimate (Y ") with full data by the estimator
N B 1 n
E(Y') =— Vo34 2
(vor) - ;_1 m{ Vo3 4} (@)

with the first model m{vr, &} = E(Y | Ly = Iy, Ar = @r). The next models are given by uf{vr 1,7} = E(m{Vr, &} |
Ly =lr_1,Ar—y =ar—1) and p{ve, v} = E(u{Vig1,v} | Lt = li, Ay = @;). The last model is given by u{vo, v} =
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E(u{V1,v} | Lo = lo, Ao = ap). We refer to the m{vp,£}-model and all the u{v;,v}-models as the p-models. Let
m{vr, &y} denote the true model with the vector of true parameter values &, and let u{v:,~y,} denote the true models
with the vector of true parameter values =y. All the -models in (2) contain hats to indicate that we have plugged in the
predicted values from the specified p-models that have been used for the estimation. The estimator (2) is unbiased if the
p-models are correctly specified with respect to the underlying process that has generated the data. See Kreif et al. [13]
for the steps of the estimation. The estimator (2) solves the estimating equation

with _
U(Zs) = i1{Voir vo} — B (Y1) . 3)

The p{V;,~}-model can be extended if the confounder L, = (L;,,..., L;,) is g-dimensional at time ¢ € {0,...T'}. See
Daniel et al. [3] for further information. Section 4 shows an example where the time-dependent confounder is multivariate
(¢ = 2). The estimator (2) is asymptotically normally distributed with the mean E(Y“T) and a variance. We show in
Appendix B that the estimator (2) is asymptotically normally distributed in the situation when 7" is equal to 1.

3. Vectors with missing observations

Define C to be a random variable and it takes positive integers or infinity C € {1,...,c} U {oo}. Let G¢(Z) C Z denote a
vector and let {G¢,(Z;),C;} denote the i-th vector in the observed data. If C is equal to 1 then it corresponds to have only
observed L in Z and the vector is denoted by G1(Z) = (Ly). If C = 2 then L and A are the only two observed variables
in Z and G2(Z) = (Lo, Ap). We mean by C equal to c that only the outcome is missing from Z. Note that c is an integer
and it is equal to 2(7" + 1). If C is equal to infinity then a vector is complete and G (Z) = (Z). In the pattern described
above, if L, is observed then L;_; and A;_; are also necessarily observed, and if A, is observed then L; and A,_; are
also necessarily observed. Such a pattern is known as monotone missingness [11]. Complete cases (CC) are a subset of
the observed data. Complete cases contain only vectors of the form G..(Z). We assume the conditional probability of
observing a complete vector given Z is strictly greater than zero, i.e. that:

PC=00]Z)>0
and w{oo, Z, 1} denotes the probability P(C = co | Z) [11]. Let
MG Z2), ¢} =PC=r|C>r2)

for r # oo denote the probability of stopping the observing additional observations given r observed. Tsiatis defines

r

KAGH(2),9} = [[(1 = M{G;(2),4})

j=1

where K.{G¢(Z),%} is the probability w{oo, Z, 4} [11]. We assume that data are coarsened at random (CAR) which
means the coarsening probabilities only depend on the data as a function of the observed data and the coarsening
probabilities are given by w{r, G, (Z), ¢} = M {G(Z), Y} K, _1{G,-1(Z),v}. We assume \,{G,(Z), 1} is given by

_exp(Yrr +Gr(2),)
Mi{Gr(2) 4} = 1+exp (U1, + Gr(2)3,)]

“

where the column vector 4, has the same dimension as the row vector G.,.(Z). Let 1 = (¢1,,,..) where the coefficient
¥y, denotes the intercept and 1. is the transposed row vector of 1),.. We refer to the \,.{G,(Z),}-models as the \-
models. To distinguish between the models we let w{oc, Z,1,} denote the true function of the missing mechanism with
the true parameter values 1. Tsiatis [11] shows that the augmented inverse probability weighted (AIPW) estimator for
E(Y?") is obtained by solving the estimating equation given by

" (1(Ci = 00)U(Z) | = I(Ci=1) = M{Gr(Zi), p}(C; > 1) ;
0= )y : E(U(2)|Gr(2).¢
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where the probabilities of the models relating to the missingness mechanism are given by K, {G,(Z), 12)} = H;:1(1 —
)\j{Gj(Z),ﬁJ}) and the probability of observing a complete vector is given by w{co, Z, 9} = Kc(Ge(Z), ). The
estimates ) are obtained using maximum likelihood estimation according to the specific model of A\, {G,(Z),}. The
hat indicates that we have chosen a model to estimate and we have afterwards used the model to predict the values with
respect to the set G,.(Z) for r = 1, ..., c. The conditional expectation E(U(Z) | G,(Z),¢) of (3) is given by

EB(U(2)]6:(2).8) = B (Vo 70} | G(2).) = B(Y™).

We need to evaluate the conditional expectation for every set of G,.(Z) for r =1,...,c; this is exemplified in Section
4. We use ¢ to denote that we have modelled the conditional expectation of U(Z) with respect to the set G,.(Z). The
estimator for E(Y?7) is given by
o yary - L | 1= 00)u{Voi 7Y | <~ LG = 1) = M{Gol(Z), %} (Ci > 1)
By =Ly RISy :
w{o0, Zi, 1} = K AG.(Zi),}

and it is doubly robust of misspecification. Let the p-models be correctly specified. The estimator (5) is unbiased if the
E(u{Vo,~} | G+(Z),¢)-models are correctly specified with respect to the distribution of Z and the A-models relating
to the missingness mechanism may be misspecified. The estimator (5) is also unbiased if the A-models relating to the
missingness mechanism are correctly specified and the E(u{Vy,~v} | G(Z), ¢)-models may be misspecified with respect
to the distribution of Z. Let the estimator (5) be denoted by DRMGf (Doubly Robust estimator for Monotone missingness
for the G-formula). In the estimator (5) we have plugged in the predicted values using all the -models and the A-models.
All the conditional expectations are evaluated and afterwards used to predict the values with respect to the set G,.(Z). We
show in Appendix A how the estimator (5) is derived. In the next Section we refer to a vector in the data as a patient. The
estimator (5) is asymptotically normally distributed with the mean E(Y®T) and a variance. We show in Appendix B that

the estimator (5) is asymptotically normally distributed in the situation when 7" is equal to 1.

E (u{Vo, 7} | c,,,(zi),a)} )

=1

4. Application to the PERFORM study

4.1. Study design and variables

We apply our DRMGf estimator to the PERFORM study consisting of 1090 patients. We are interested in the causal effect
of cognitive symptoms on functional impairment at a later time. The functional impairment was measured by the Sheehan
Disability Scale (SDS) consisting of 3 items with each item ranging from 0 to 10 with a global score ranging from 0
to 30. The Scale describes patients’ work/school, social life/leisure activities and family life/home duties. The cognitive
symptoms (memory, concentration and executive function) were measured by the Perceived Deficit Questionnaire (PDQ-
5). The scale consists of 5 items with each item ranging from 0 to 4 with a global score ranging from 0 to 20 (we suppress
the ’-5 in the name PDQ-5 to simplify the notation). The depression severity of the patient was measured by the Patient
Health Questionnaire (PHQ-9) and the scale consists of 9 items with each item ranging from 0 to 3 with a global score
ranging from 0 to 27 (we suppress the -9’ in the name PHQ-9 to simplify the notation). A greater score for all three
scales correspond to being more constrained, suffering greater severity of their cognitive symptoms and more severe
depression. All three scales were measured over two years repeatedly. We assume that depression severity affects both
cognitive symptoms and functional impairment and that cognitive symptoms affect functional impairment. We further
assume that the present measurements affect all the future measurements at the next time point. We also assume that the
present measurements do not affect the past measurements [14]. The process is indicated by the directed acyclic graph
(DAG) in Figure 1 for all six time points over the two years.

If the global score of PDQ is less than or equal to 5, then it corresponds to patients having no or minimal cognitive
symptoms and if the score is strictly greater than 5 then it corresponds to patients having cognitive symptoms. For
simplicity, and since this analysis is mainly for illustration, we therefore dichotomized PDQ to be 0 if the original global
score of PDQ is less than or equal to 5 and 1 otherwise. Let SD.S; denote SDS at time ¢ to simplify the notation. Let
PDQ); denote PDQ at time ¢ to simplify the notation. Let PH(); denote PHQ at time ¢ to simplify the notation. Let
t = b denote the baseline, and let ¢ be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points
since baseline. We use b to denote the time point for baseline instead of 0 because we want to avoid any confusion when
we refer to the time point and the true parameter values. Let 1V; denote the vector of all three measurements at time
t€4{b,2,6,12,18,24}, W, = (PHQ,, PDQ,, SDS,;). We define pt to denote the prior time point before ¢, ¢ denotes the
present time point and st denotes the subsequent time point after ¢ in the subscript of PHQ, PD(Q and SDS. Hence, if ¢
is equal to 6 (month 6) then pt is equal to 2 (month 2) and st is equal to 12 (month 12). We assume the subsequent effect
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SDS), SDS, SDSg SDSy SDSis SDS24
PDQy PDQ2 PDQs PDQy PDQ1 PDQ24
PHQ, PHQ> PHQs PHQ:: PHQu. PHQ24

Figure 1. The DAG displays the measurements of the three scales over the two years. The node SD S denotes the Sheehan Disability Scale (SDS) at time ¢, the node PDQ;
denotes the Perceived Deficit Questionnaire (PDQ) at time ¢ and the node P H Q+ denotes the Patient Health Questionnaire (PHQ) at time ¢. We let ¢ = b denote the baseline and
let ¢ be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points since baseline.

of depression severity, cognitive symptoms and functional impairment are conditionally independent of the prior effect
of depression severity, cognitive symptoms and functional impairment given the present effect of depression severity,
cognitive symptoms and functional impairment. It means we have assumed that the effect of (PHQ,,, PDQ,, SDSy;)
does not affect (PHQs;, PDQst, SDSs;) directly but only via (PHQ, PDQy, SDS,).

Let PDQ; denote the exposure of cognitive symptoms at time ¢ € {b,2,6,12,18,24}. Let SDS,; denote the outcome
of functional impairment at time st € {2,6,12,18,24}. We assume according to the DAG the sequential conditional
exchangeability and it is generalized to

§pg\Plaerda || ppQ, | PHQ., SDSy, PDQy, PHQ,,

and
§pg\Phaerda) || ppQ,, | PHQ, SDS,, PDQ,, PHQ,

for t € {b,2,6,12,18}. We assume the confounder L; at time ¢ is defined by (PHQp, PDQpt, SDSy:, PHQ:)
for ¢t € {b,2,6,12,18}. We also assume that the confounder L at time st is defined by Ly = (SDS;, PHQ:).
The set V; is given by the confounder and the exposure at time ¢, V; = (L;, PDQ;) and the set Vy is
defined by the confounders and the exposures up to time st, Vi = (Ly, PDQ,,) where Ly = (L, Ly) and
PDQ,, = (PDQ:, PDQs). A Table in the Supplementary material displays the two confounders L; and L
and the outcome SDS, for different t. We define Z;; to be the set (W ;, Wy, Wy ;) in the analysis for
t=1,...,1090 and t € {b,2,6,12,18} with W, being the empty set since it corresponds to the vector of the
measurements before baseline. It means that Z,; denotes (PHQp;, PDQyi, SDSy;, PHQ2,:,PDQ2;,SDSs;),
ZQ’»L' denotes (PHQ;,;“PDQ[,J./SDS{,J',PHQQ_{,,PDQQJ',SDSQ_{,,PHQ@J,PDQGJ'.,SDSGJ') and Z6,7', denotes
(PHQ217;7 PDQ2'i7SDS21Z'7 PHQGJ;,PDQGJ', SDSGY“PHQHJ, PDQ12,Z‘7 SDSlzyi), etc. for i = ]., ey 1090. See the
Supplementary material for further information about the different vectors Z; ; fori = 1,...,1090 and ¢ € {b, 2,6, 12, 18}.

4.2. Statistical methods

We use the following marginal structural model (MSM)

E (SDSG™ 1)) — 31, + B1pda, + Bapdag + B epdaipdase ©

for ¢ € {b,2,6,12,18}. The ¢ index of the coefficients B, = (814, S1,t, P2+, P3,) indicates which period of ¢ e
{b,2,6,12,18} we analyse. Let 3, denote the true vector of the causal parameters. We are interested in what could
be achieved if an effective therapy was developed that could relieve cognitive symptoms. Model (6) presents four
combinations: (pdgy, pdgs:) = (1,1) corresponds to having cognitive symptoms at visit ¢ and st, (pdq, pdgs:) = (0,1)
corresponds to having no or minimal cognitive symptoms at visit ¢ and having cognitive symptoms at visit st,
(pdq, pdgse) = (1,0) corresponds to having cognitive symptoms at visit ¢ and having no or minimal cognitive symptoms
at visit st and (pdq, pdqst) = (0,0) corresponds to having no or minimal cognitive symptoms at visit ¢ and st. The score
of functional impairment at 0 corresponds to being unimpaired and 30 corresponds to being impaired. The E(SDSS ’1))
is the expected score of functional impairment that would be seen if the patient had cognitive symptoms at the two time
points ¢ and st. The E(SDS, _E?’l)) is the expected score of functional impairment that would be seen if the patient had no
or minimal cognitive symptoms at the time point ¢ and had cognitive symptoms at the time point st. The E(SDSS ’0)) is
the expected score of functional impairment that would be seen if the patient had cognitive symptoms at the time point
t and had no or minimal cognitive symptoms at the time point st. The E(SDSE?’O) ) is the expected score of functional
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impairment that would be seen if the patient had no or minimal cognitive symptoms at the two time points ¢ and st. We
define the m{Vy, &, }-model and the p{V, 7, }-model for ¢ € {b, 2, 6,12, 18} with the main effects and let the interactions
between depression severity and cognitive symptoms be included in the m{ Vs, &, }-model. The m{ Vs, &, }-model is given
by

m{Vst-ft} :E(SDSst ‘ PDQsmPHquSDSt-,PDQnPHQt)

=4+ & PHQ + & PDQy + &3¢SDSy + §4, PHQ 4 + &5, PDQ g + &6, PDQPHQ+ (7)
§riPDQoPHQ: + &3t PDQiPHQ gt + £t PDQ ot PHQ st + €104 PDQtPDQ

where the ¢ index of the coefficients ¢. ; indicate which time point ¢ € {b, 2,6, 12,18} is considered. Let &; ; denote the
intercept. We must recall that the main effects of depression severity (PHQ), cognitive symptoms (PDQ) and functional
impairment (SDS) at time pt are not included in the m{V, &, }-model because we assume that functional impairment
(SDS) at time st is conditionally independent of W,,; given by depression severity (PHQ), cognitive symptoms (PDQ) and
functional impairment (SDS) at time ¢, (SDSy; AL W), | W;). The confounder L, at time st has two measurements on
the causal path which means that the following ;{V;,~y, }-model is given by:

eaAVe, Ve b =E(m{Viy, &} | SDSy, PDQy, PHQy)

(8
=V1,ts + M, PHQt + 72,6, PDQ¢ + 73,4, S DS}

and
Ntl{Vt:"/tl} :E(Mtg(%77t2) | PDQtvPHQtvsDSphPDthvPHth)

=Y1.t; + V1.0, PHQpt + Y2,6, PDQpt + 73,4, SDSpt + Va6, PHQ¢ + 75,4, PDQy
for t € {b,2,6,12,18}. Let v7 4, and 77, denote the intercepts. The two subscripts of ¢ (¢; and ¢3) indicate the order of

the two mediators of the causal path between the exposure PD(); and the outcome SDJS,;. The model at (8) is obtained
from the equality between the two following equations

©

E(m{Vs, &} | SDSy, PDQy, PHQy, SDSpi, PDQpy, PHQpt) = E(m{Vit, &} | SDSy, PDQy, PHQy)

since we are assuming that the future is conditional independent of the past given the present m{Vy,&,} 1 Wy | Ws.
The U(Z;) at (3) for the analysis of the PERFORM study is given by

U(Zfl) = 1, {‘/t,ix,'ytl} _E (SDsi;todl]u:ﬁdqm))

with respect to either Z, ;, Z 4, Zs,i, Z12,: O Z1s,; fori =1,...,1090 patients. In the analysis for t = b or ¢t = 2 we use
all the patients in the data who have observed depression severity at baseline (PH@Q)y). In the analysis for ¢ = 6 we use
all the patients who have observed depression severity at month 2 (PH()2), and so on. If the patient has a nonmonotone
pattern (see Tsiatis [11] for further information) then the patient is modified to follow a monotone pattern by setting the
subsequent variables to be missing as well as in the ordered sequence.

t GiUZ) GolZ) Gs(Z) Gu(Z) Gs(Z) Ge(Z) Go(Z) Gs(Z) Guo(Z)
b 200 176 126 11 86 341 940
2 200 176 126 11 86 76 1 38 226 940
6 132 199 115 4 58 56 5 31 205 805
12 135 147 105 5 64 60 3 25 196 740
18 89 162 105 4 52 39 1 34 215 701

Table 1. The number of patients in the data fulfilling the monotone pattern. The number of complete cases for a specific
analysis are displayed by the G, (Z;) column and the Total (n;) column displays the number of patients who follow the
monotone pattern for a specific ¢.

We define the conditional probabilities \,{G,(Z;),%} by the hazard function at (4) to model the mechanism
relating to the missingness in the data. The A-models include only the main effects without any interactions or
quadratic terms. We need to model the hazard function A,{G,(Z;),%} five times for ¢ = b because a patient at
time ¢ = b has five possible sets of ordered measurements without including the outcome, see Table 1. The different
patients in the data for the analysis with ¢ = b are given by G1(Z,) = (PHQy), G2(Zy) = (PHQyw, PDQy,), G3(Z) =
(PHQy, PDQy, SDSy), G4(Zy) = (PHQy, PDQy, SDSy, PHQ2), G5(Zp) = (PHQp, PDQb, SDSy, PHQ2, PDQ2)
and G (Zy) = (Z)). We have, according to Table 1 for ¢ = b, 200 patients in the data who only have the first measurement
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observed (G1(Zy) = (PHQy)). An additional 176 patients in the data contain only the first two observed measurements
(G2(Zy) = (PHQp, PDQy)). Table 1 shows that the analysis for ¢ = b only includes 341 patients in the data who are
complete cases. We need to model the hazard function A\, {G,(Z;), 1} eight times for each t € {2, 6, 12, 18} because it is
possible to have eight different sets of ordered measurements without including the outcome, see Table 1. The different
patients in the data for ¢ € {2,6,12,18} are given by G1(Z;) = (PHQ), G2(Z) = (PHQp, PDQyp), G3(Z) =
(Wpt), Ga(Zt) = (Wi, PHQy), G5(Zt) = (Wi, PHQy, PDQy), G6(Zt) = (Wyt, Wi), G7(Zt) = (Wi, Wi, PHQ1),
Gs(Zy) = (Wpe, Wy, PHQt, PDQ ;) and Goo(Z;) = (Z;). We must recall that W, denotes the vector before time ¢
and W, denotes the vector at time . We have, according to Table | e.g. for ¢ = 18, 89 patients in the data who only
have PHQ12 observed (G1(Z1s) = (PHQ12)). An additional 162 patients in the data contain only the two observed
measurements PHQ2 and PDQ12 (G2(Z1s) = (PHQ12, PDQ12)). Table 1 shows that the analysis for ¢ = 18 only
includes 215 patients in the data who are complete cases. Let n; denote the sample size for a specific ¢, see Table 1.
The estimator for the analysis of the PERFORM study is given by

Tt

E <SD5(Pde,PdlIm,)> _ i Z I(C’t = Oo)utl {‘/t1i7 ’Ayh}
o n i {00, Zt i, }

e N
IC,;:rf)\,.G,.Z”i, ICIZT
s ( ) = AdGr(Zei), 3} )

r=1 KT{GT(Zty’i)ﬂw}
when c is equal to 5 for ¢ = b and c is equal to 8 for ¢ € {2,6, 12, 18}. Furthermore, we need to model the conditional
expectations in (10) and afterwards use the model for predicting values according to the different sets of G,.(Z; ;) for

r=1,...,c,i=1,...,n; and t € {b,2,6,12,18}. The conditional expectations E(us, {V4, v, } | Gr(Zs), ¢,) fort=b
are modelled according to

10)

E <Ht1{v137'7t1} | Gr(Zt«,i)v&J ]

E(/‘Lbl {VEN’Ybl} ‘ GT(Zb)ﬁ &b) forr =1
by {%,751} forr e {2¢3a47 5}

and we model the conditional expectation £ (y, (Vs) | G1(Z), ¢,) with the main effect only without any quadratic terms
and it is afterwards used to predict values. The conditional expectations E (i, {Vi, v, } | Gr(Z1), C;) fort € {2,6,12,18}
are modelled according to

E(/l’tl{‘/tvﬂ)/tl} ‘ GT(Zt)?&t) forr e {1721 34}
meAVeve, b forr € {5,6,7,8}

and we model the conditional expectations E (s, (V;) | G,(Z;), ¢,) with the main effects only without any interactions or
quadratic terms and they are afterwards used to predict values. We compare our DRMGf estimator to the naive estimator
(described below), LSmeans [15] estimator and the estimator for the the g-formula [12] (described below). We only use
complete cases for the analysis with the naive estimator, LSmeans estimator and the estimator for the simpler g-formula.
We will sometimes refer to the g-formula as the simpler g-formula since our DRMGf estimator is an extended g-formula.
The m{vs:, &, }-model at (7) that is used in our DRMGf estimator is also used for the LSmeans estimator and the estimator
for the simpler g-formula. The naive estimator is a regression of the outcome, S DS, on both exposures PDQ; and PDQ;
and the interaction between the two exposures PDQ; PDQ; to estimate the coefficients &, = (£1,4,&1.4, 82,6, E3,0)- Let Er

denote the intercept. The estimated coefficients 3 , are used to predict four pseudo outcomes with the model

g],f, + &.zpdqt + g2,tpd(Ist + éﬁ},tpdqtdeSt

with respect to the four pairs (pdg:, pdgs:) = (1,1), (pdgs, pdgst) = (0,1), (pdge, pdgst) = (1,0) and (pdq, pdgst) =
(0, 0). The naive estimator has causal interpretation if there are no confounding at all. The LSmeans works in the following
way: Estimate all the coefficients from the m{v, &, }-model and then the estimated coefficients (that are indicated by hats)
are multiplied to the average of the different measurements in the model and it is given by

é[,z + él,tavg(PHQt) + é?,tdet + fa,taUQ(SDSt) + é4,ta'ug(PHQst) + éS,tdeSt + éﬁ,tavg(detPHQt)
+ &7 0avg(pdgs PHQy) + &s savg(pdge PHQst) + &o.1avg(pdqse PHQsr) + €10,.0pdq:pdas:.

It is used to predict four pseudo outcomes with respect to either (pdg:,pdgs:) = (1,1), (pdg:,pdgst) = (0,1),
(pdgy, pdgst) = (1,0) or (pdqs, pdgst) = (0,0) and avg(-) denotes the average of a specific measurement. The estimator
for the simpler g-formula with the estimator (2) is given by

an

Tt

) — 1

B (SDSS 40P q*”) = =Y i {Vie i)
=1

t
i=
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where the m{vg, &, }-model at (7) and the two u-models that are given by (8) and (9) are used for the estimation
and prediction to obtain the estimates of the four expected potential outcomes given by E(SDSS’U), E(SDSi?’l)),
E(SDSS "0)) and E(SDSVE?"O)). The 72; denotes the number of complete cases. The confidence intervals for all four
estimators are obtained by using 1000 bootstraps. Table 1 shows the number of patients who fulfil the monotone
missingness pattern. The G (Z;) column in Table 1 shows the number of complete cases. If the analysis is based on
complete cases then it only utilizes about 18% to 31% of the sample size. We have removed some of the patients from
the data to avoid numerical problems for the estimation with the y-models and the A\-models used for the analysis with
t = band t = 18. It applies for all the patients with the partially observed vector G4(Z;) for t € {b, 18} and all the patients
with the partially observed vector G7(Z1s). The A4-model is given by A4(G4(Z;)) = 0 for ¢ € {b, 18} and the A\7-model
is given by A7(G7(Z15)) = 0. The sample size ny, is reduced from 940 to 929. The sample size n;g is reduced from 701 to
696. We utilize about 64% to 85% of the sample size when we use patients with monotone missingness.

4.3. Results

Here, we present the results for all four estimators for ¢ = b and ¢ = 18. The MSM at (6) for ¢ = b is given by

E (SDsépdm”pdqg)> = Br.b + B1,updgy + B2,ppdge + B3 ppdgypdgs
and for ¢t = 18 it is given by
E <SDS£TQISM(IM)) = Br18 + B1,18pdq1s + Po,180dq24 + B3,18pdq18pd 24
This means that the expected value at the four different counterfactual levels are modelled freely without restrictions. The

estimates of the four means are shown in Figure 2 for an early (¢ = b) and a later (¢ = 18) time point with confidence
intervals. The actual numbers are in two Tables in the Supplementary material.
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Figure 2. The plot on the left hand side is the estimation for ¢ = b with the two exposures P DQ;, and P D Q2. The plot on the right hand side is the estimation for t = 18
with the two exposures PDQ1g and PDQ24. The y-axis/range in the two plots show the score of the functional impairment. The x-axis/domain in the two plots show the
four different estimators and the different pairs (pdq¢, pdqs¢) for each estimator. The combinations of visits are given by (pdqe, pdgs¢) = (1,1), (pdqe, pdgst) = (0, 1),
(pdqe, pdqse) = (1,0) and (pdqe, pdqgse) = (0,0). The horizontal lines are the estimates. The vertical lines are the corresponding 95%-confidence intervals. The 95%-
confidence intervals are obtained using 1000 bootstraps.

For the analysis at both the earlier and the later time points, the naive estimator shows a larger variation in the expected
outcome between the four combinations of cognitive deficits at the two visits than the other three estimators. All four
estimators suggest that patients with cognitive symptoms at both visits have worse functioning than patients with no or
with minimal cognitive symptoms at both visits. In the analysis of the early time point, the expected outcome, if patients
present cognitive symptoms at one of the visits but not the other, lies between the other two, while for the late time point
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patients with cognitive symptoms at one but not the other of the two visits have similar expected outcome to those with
no or with minimal cognitive symptoms at both visits. Note that the length of the confidence interval reflects the actual
proportion of patients with the combination of cognitive symptoms observed in the data, as expected.

The general pattern of differences in the expected outcome between the “exposure” groups as defined by the presentation
of cognitive symptoms at the two latest visits are really to be expected: presence of more cognitive symptoms is a precursor
for poor functioning. The pattern is most pronounced for the naive estimator. This is also not surprising, because the naive
estimator fails to account for any confounders, such as depression severity at both visits and functioning at the earlier
visit. The estimators based on counterfactuals, the g-formula and the DRMGf estimators, both allow for taking observed
confounders into account through standardization, and thereby key confounding variables may be accounted for. Doing so,
the trend across the groups stays intact, though differences between “exposure” groups markedly shrink, when compared
to the naive estimator. Table 2 shows the minimum and maximum of the predicted values of each ,.{G,.(Z;), ¥} for both
analysis of ¢ € {b, 18}.

Analysis Range A1 Ao A3 A4 A5 A6 A7 Ag w

i—b Minimum 0.200 0.219 0.171 0  0.059 0.319
B Maximum 0.224 0.252 0313 0 0.291 0.447
f— 18 Minimum 0.086 0.188 0.192 0 0.065 0.065 0 0.023 0.172

Maximum 0.224 0415 0261 0 0375 0239 0 0464 0413
Table 2. Displays the minimum and maximum of the predicted values of A\, {G.(Z;), 1 }. We let A, denote the probabilities
MAG(Zy), ¢} forr =1, ..., 8 for both analysis of t € {b, 18}. We let wv denote the probabilities for observing a complete
vector for both analysis of ¢ € {b, 18}.

The estimator for the simpler g-formula and the DRMGf estimator yield surprisingly similar estimates. This is likely
because the included covariates are poor at predicting drop-out, which seems to be the case. The weights in the estimator
(10) have a low contribution to the estimation because the values of probabilities A\, {G,(Z;), v} displayed in Table 2 are
low. While the naive estimator ignores confounding altogether and thereby supposedly overestimates differences between
exposure groups, the LSmeans estimator adjusts for confounders. Although the estimates are formally predicted values at
average values of the covariates, these are closer to the standardization-based estimates of the g-formula and the DRMGf
than to the naive estimates. Some differences between the LSmeans and the two latter estimators should be noted: at
the early time point, LSmeans estimates indicate smaller differences between groups, and - as the only case - patients
presenting cognitive problems at both visits prior are not predicted to have the worst functioning subsequently, which
would be difficult to explain from a clinical point of view; at the later time point, the ordering of the four cognition
combinations is different for the LSmeans estimates compared with the other two, which are in mutual agreement.

The similarity of the g-formula and DRMGf estimates prompts for a further exploration of scenarios, where a correct
handling of missing data due to drop-out would be crucial for the interpretation of the data and whether the DRMGf
estimator better recovers the parameters of interest in that setting. This is explored further in the simulation study in
Section 5. The simulation study shows how the probabilities regarding the missingness mechanism have an impact on the
estimates. It will cause the difference between the simpler g-formula and our DRMGf estimator.

5. Simulation study

The purpose of the simulation study is to investigate the proposed DRMGTf estimator within a situation that is similar
to the PERFORM study with a substantial amount of drop-out, but - contrary to the PERFORM data - where the
ranges of the predicted values of \.{G,(Z;),v} are broader than the ones we obtained in the PERFORM study.
The simulation study is based on the estimated coefficients from the first two vectors (W, W5) that we observed
in the PERFORM study. The sample size for each data is 1000 and the data are replicated 5000 times. Data
are simulated as follows: PHQ, ~ Normal(1,ng, , 5.3142), PDQ}, ~ Bernoulli(3¢,4q, ), SDSy ~ Normal(ns4s, , 5.0582),
PHQ ~ Normal(1hq,, 5.215%), PDQ2 ~ Bernoulli(5¢,44,) and SDSy ~ Normal(7sgs,,4.663%) where the means are
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given by

Nphgy :=17.615,

Nsds, =3.949 + 0.693PHQy, 4 4.373PDQy,

Nphdy :=2.475 + 0.47T1PHQ,, — 0.113PDQ;, + 0.0865 DS}, and

Nsdsy :=0.144 — 0.38TPHQ, + 1.179PDQy, + 0.4845DS), + 0.74PHQ2 + 0.67PD(Q2 — 0.131PDQy PHQy
+0.308PDQ2PHQy + 0.209PDQyPHQ2 — 0.206PDQ2: PHQ)2 — 1.734PDQy PDQ>

and the probabilities are given by

logit(stpaq, ) := — 2.512 4+ 0.298 PHQ);, and
10git(34p4q,) := — 3.092 — 0.441PHQ,, + 2.144PDQy, + 0.1985DS), + 0.445PHQ, + 0.42PDQ, PHQ,,
—0.176PDQ,SDS;, — 0.161PDQ, PHQ>

where logit(z) = log(x) — log(1 — «). We have included all the main effects in the logit( 4, )-model and the interactions
between PD(Q);, and the two measurements for depression severity at the two time points are also included. We want
to include the effect of the interactions between depression severity and cognitive symptoms. The interaction between
PDQy and SDSy is also included. We have chosen more extreme values of v for the models relating to the missing
mechanism to make the robustness of our DRMG( estimator more clear. The probabilities to simulate the monotone
missingness in the data are given by logit(A\; (G1(Zp))) := —12.3 + 0.5PHQy, logit(A2(G2(Z))) :== —9.2+ 0.5PHQ, —
0.8PDQy, logit(A3(G5(Zy))) := —=3.6 + 0.7TPHQ, — 0.6PDQp, — 0.65DSy, logit(A\s(G4(Zp))) := —3.2+ 0.5PHQ, —
0.6PDQp — 0.65DSy, + 0.4PHQ5 and logit(A\s(G5(Zp))) := —2.5+ 04PHQ, + 0.6PDQ, — 0.65DS, + 0.4PHQ2 +
0.5PDQ2 where \,.(G,(Zy)) is P(C =r | C > r, Z;,). We have used all four estimators from the previous Section on the
simulated data. The four estimators are: the naive estimator, the LSmeans estimator, the estimator for the simpler the
g-formula and our DRMGT estimator for the estimation. We use the same models given in Subsection 4.2 for ¢ = b to
analyse the simulated data. We have the results of the estimation in Table 3. The simulation study is evaluated by the mean
of the 5000 estimates obtained across the replicated data, the empirical standard error (SE) of the 5000 estimates obtained
across the replicated data, the absolute value of bias (the difference between the empirical mean and the true value), the
ratio between the absolute value of bias and the empirical standard error scaled 100 times and the mean squared error
(MSE) is also displayed [10].

Estimator True  Mean SE  Bias % 100 MSE
1,1 15398 15317 0424 0081 19.196 0.186

Naive (0,1) 13418 13540 1731 0.122  7.062 3.013
(1,0) 13.586 7732 0.872 5854 671.577 35.030

(0,0) 9817  6.046 1.023 3.771 368.655 15.266

1,1) 15398 13582 0432 1817 420380 3.488

LSmeans (0,1) 13418 14079 1991 0.661 33214  4.401
(1,0) 13586 12112 0.897 1473 164.171 2976

(0,0) 9817 10.874 1244 1057 84999  2.664

E(SDSS™Y) 15398 13858 0437 1540 352193 2564

Geformula E(SDSY'V) 13418 12515 2142 0903 42137  5.405
E(SDSS™Y) 13586 12415 0917 1171 127.734 2211
E(SDSP?) 9817 9149 1364 0.668 49.007 2306
E(SDSS™Y) 15398 15399 0511 0.000  0.040 0261

DRMGF  E(SDSY"V) 13418 13390 2452 0028 1135 6014
E(SDSS™Y) 13586 13.608 1239 0022 1793 1536
E(SDSY™™) 9817 9810 1907 0007 0359  3.635

Table 3. The True column displays the true values. The Mean column displays the mean of the 5000 estimates obtained

across the replicated data. The SE column displays the standard error of the 5000 estimates obtained across the replicated

data. The Bias column displays the absolute value of the difference between the empirical mean and the true value. The

%100 column displays the ratio between the absolute value of bias and the standard error scaled 100 times. The MSE
column is the mean square error obtained by Bias? + SE”.
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Table 3 shows that the naive estimator as well as the LSmeans estimator are biased and should be avoided. The estimates
from the simulation study have similar sizes as the estimates from the analysis of the PERFORM study for ¢ = b for both
the naive estimator and the LSmeans estimator. Table 3 shows that the simpler g-formula does not perform very well
compared to our DRMGf estimator when the parameter values of 1) for probabilities relating to the missing mechanism
in the data are more extreme than the ones in the PERFORM study. The g-formula sometimes shows an even poorer
performance of estimating the effects compared to the naive and LSmeans estimator. Our DRMGf estimator shows that
the bias of the estimates are low compared to the three other estimators. The simulation study has also shown that our
DRMGT estimator will protect against biased estimates compared to the estimator for the simpler g-formula and our
DRMGT estimator should be used for analysing data containing missing observations. The price we pay for unbiased
estimates is potentially larger standard errors.

6. Discussion

Motivated by the PERFORM study, this manuscript proposed a robust estimator (the DRMGf estimator) for the estimation
of the effect of a time-varying exposure in the presence of time-dependent confounding and missing data. The proposed
estimator was applied to data from an observational study (PERFORM) on patients with depression. The example showed
that accounting for the time-varying confounders shrunk the difference between the exposure groups, which was to be
expected from a clinical point of view, as disease severity accounted for some of the differences in exposure levels while
at the same time influenced the level of functioning among the patients. This property was shared with the estimator
for the simpler g-formula, which does not take the missing data into account. The similarities in the estimates were
because there were no strong predictors of patients dropping out in the example. Thereby, the presumed robustness of
the DRMGT did not show. Contrary to what was seen in the data example, the simulation study revealed that if variables
predicting drop-out were present, then the estimator for the simpler g-formula was biased, while the DRMGf was not.
Another advantage of the proposed estimator is that it allows for a better use of the data as it utilizes all data points
and not only so-called complete cases. In the PERFORM example, this means 2.5 to 4 times as many patients in the
sample. This comes at the price of specific model assumptions that need to be addressed, but a complete case analysis
hinges on assumptions that are not less critical and even less plausible (such as missing completely at random). One
limitation of the DRMGT estimator is that the model framework assumes monotone missing data, and does not in itself
allow for intermittent missing data. Consequently, outcome variables need to be ordered. While this may often be a
natural assumption, in the PERFORM study such ordering was only partly clear. This is because several patient relevant
domains were measured simultaneously. In this example, disease severity, cognitive performance and functioning were
measured at the same time points up to six occasions throughout two years. While time itself induced a causal ordering of
measurements at different time points, the ordering between domains within time points were less clear, and assumptions
had to be made based on clinical insights (change in disease severity causing change in cognitive performance, which in
turn causes change in functioning). Obviously, any interpretation of results hinge on these assumptions, which cannot be
verified in the data. Based on a missing at random argumentation, intermittent missing data is often considered less of
a problem than monotone missing data in indications such as depression (PERFORM), as it may be overcome, e.g. by
multiple imputation methods. However, in other disease areas this may not be the case, and new methodology would be
needed for such situations.
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A. Monotone missingness

The estimating equation for monotone missingness is given by

U(Z) N~ I(Ci=7) = A{Gr(Z0). $}I(Ci > 7) | s
- 2( w{oo Z 9} +; K AG.(Z), 9} E(U(Z”GT(Z’)’C))
N [ (G = 00) (p{Vo.n Yo} = B (V™))
; < W{OO,Z%’(L}

KT{GT(ZZ')V‘L’}
Z( (€= )itV ol 5 MG =) = AAGHE) DG 2D p (v, )| 6,(20.0) E(wT))

+ Z MG =) - MG ) PG 2 1) (g (14,70 | Gr(20.8) — B (7)) )

i=1 @{oo, Zi, 9} r=1 K AG(Z;), 4}

and the estimator £(Y ") at (5) solves the equation above.

B. The asymptotic properties of the estimators

B.1. The estimator with full data

We show that the estimator (2) is asymptotically normally distributed in the situation when 7" is equal to 1. The two
p-models in (2) are given by m{vy, &} = E(Y | Ay = @1, L1 = [1) and p{vg, v} = E(m{V1,€} | Ag = ao, Lo = ly). The
Z vector defines an ordered sequence of the variables (Lg, Ao, L1, A1,Y"). The outcome variable Y is assumed to be
continuous and we let A; denote the binary exposure at time ¢ € {0, 1}. Define A; to be the vector of the two exposures
(Ag, A;) and let @; be the vector (ag, a1). Let Y (90:¢1) be the potential outcome that would have been observed if (4g, A1)
had been set to (ag, a1). Let L; be a potential confounder at time ¢ € {0, 1} and let L; denote the vector of (Lo, L1). The
outcome Y may be causally influenced by the whole history of A; and L;. We define the function

U(Z,€.7) = By(Be(Y | Ay =11, L) | Ay = ao, Lo) — E(Y“)
according to Stefanski and Boos [16]. The function U(Z, &, ) fulfills

Er(W(Z,€0,70)) = / W (2, €0, 7o) AF(2) = 0.

Define a G,, function to be given by

n

P 1 _ o
Gu(Z,6,4) = ~ > By(Be(Y | Ay =1, Tag) | Ao = ao, Log) = E(Y )
Ci=1
so that

n

1 _ _
Gn(Z,€&y,70) = o ZE%(E&)(Y | A1 =@, L) | Aoy = ao, Lo ;) — E(Y(@0an)y,

i=1

Let E(Y (@0:@1)) denote the estimator given by
B(y(a0an)y ZE Y|A1z—a17L1;)\A0L—ao Loi).

The Taylor expansion of G,,(Z, €,4) is given by

\/ﬁGn,(Z,é,;Y) = \/ﬁGn(Zv £0770) + G.E,n(Zv 50170)\/77(% - 50) + G‘Y,n(Zv 607’70)\/5(;7 - PYO) + \/ﬁRn (12)
where G n(Z, €0, 70) and G..(Z, &y, 7,) denote

Gen(Z,€0,70) = % and Gy n(Z,&0,70) = %7
£=£0,7=0 £=£0,7="0
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respectively. The two partial derivatives G ,,(Z, &, ,) and Gy..(Z, €5, 7,) are given by

1 n 9 - B
Genl(Z,€0,70) = Z L)f Ey(Be(Y | Ay =a1,L1;) | Aoy = aoﬁLo,i)}

£€=£0,7="0

and

Cyn(Z.€0,%0) Z [ Ey(Ee(Y | A = a1, Li) | Ao = a0, Lo,i)

£=£0,7=70
respectively. The two partial derivatives G ,(Z, &9, 7,) and G"%n(Z ,€0,70) are two row vectors. If the two row vectors
Ae(&o. o) and A, (&), 7o) exist then we have by the weak law of large numbers (WLLN)

Gf,n(za g()a 70) £> AE (507 '7[)) and Gﬂy,n(zv 607 ’70) ﬁ) A‘Y(E(]v ’70)
where A¢(&,,7,) is equal to E(U¢(Z, &y, ,)) with

0 _ _
Ve(Z,&0,70) = {WE-y(Es(Y | At =@y, L1) | Ao = amLo)}
£=£0,7="0
and A (79, 7,) being equal to E(¥(Z, &,,7,)) with
9 -
Ve (Z,&0,70) = a,TTE +(Ee(Y | Ay =@y, L) | Ao = ao, Lo)
£=£0,7=70

We have that \/nG,,(Z, €,%) in (12) converges in distribution to a normal distribution with the mean zero and a variance
[16]. This implies that the estimator F(Y (#0-91)) is asymptotically normally distributed with the mean E(Y (%0:%1)) and a
variance. The empirical variance is obtained using the estimator given by

a 2
L3 { (2089 + Cen(ZEA)m(Z3,€) + Con (2. ADK(ZisH) §

n

s(ag,a1) =

with
U(Zi,€,4) = Ex(Eg(Y | Ay = a1, L) | Aosi = ao, Losi) — B(yeom)).

We have that m(Z;, 3 ) denotes the influence function with the estimated parameter £ obtained using the influence function

m(Z;,§)
V(€ —&) = meZs

and k(Z;,4) denotes the influence function with the estimated parameter 4 obtained using the influence function k(Z;, v)
NOCEED! =7 Z k(Zi, ).

B.2. The estimator with data with monotone missingness

We continue with the example being T is equal to 1 and the two z-models are given by m{v,, &} = E(Y | Ay =@, L1 =
11) and p{vg, v} = E(m{V1, €} | Ao = ag, Lo = lo). The value of c is equal to 4. The G4 (Z) vector contains only the first
variable L and the G5 (Z) vector contains the first two variables Ly and Ag. The G'5(Z) vector contains the three variables
Lo, Ao and L; and the G4(Z) vector contains the four variables Lo, A, L1 and A;. Define a M,, function to be given by

M, (2.2.4) = IZﬁE( (Y | Ay = a1, L1a) | Ao = ao, L)

+ Z I(Ci=r) - )\T{GT(Z,-),'(ZJ}I(Q >r)
Kr{Gr(Zi)v"z’}

E (E.,(EE(Y | Ay =@y, L1) | Ao = ao, Lo) | GAZ:)@)

— E(y(eoa)y,
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Let £(Y (®0:41)) denote the estimator to be given by
Beytonen) = 13~ HE=2) b v 1 A — a0, T | Ao = a0 o)
lmﬂw2¢}

+ Z I Ci = "> - A1{67‘1(27)712J}I(C1 Z 7’)
Kr{Gr(Zi)v'lz’}

B (EA,(Eg(Y | A, =@, I1) | Ao = ao, Lo) | GT(Zi),&) .

The Taylor expansion of M,,(Z, &,4) is given by
\/EALL(Zv év‘y) = \/EALL(Zv E(Jv‘Y()) + ]\'./I&TL(Zs 5[)3 70)\/5(& - é()) + Z\"/[’YJL(Z7 507 70)\/5(;7 - 70) + \/ERVL (13)
where M ,,(Z, &y, 7o) and M., ,(Z, &,,~,) denote

oM, (Z,€,7)
oeT

OMn(Z,€,7)
and M. T

Mﬁ n(Z:€0:70) = v n(Z: €0, Y0) =

£=£0,7=70 £=£0,7="0

respectively. The two partial derivatives Mg ,,(Z, &, ;) and ]\;[.Y,H(Z &, 7) are given by

| I(C=x) O _ _
{( ' ) By (E¢(Y | A1 =a1,L1;) | Ao = ao, Loi)+

y 1
M (Z,80,70) = o Z ol Z, 12)} f

=1
A .

Z ICi=r)— /\‘T{G‘r(?i)lﬂ’}l(ci >r) «
— K, {G7 (Zq)fll’}

B (%E (Be(Y | Ay = @1, L) | Ag = ao, L) | GAZJ,&)}

£=£0,7="0
and
n(Z,&0,70) = lzn: 700) 0 Ey(Be(Y | Ay =@, Li) | Aoy = ao, Loi)+
’Y 7 n =1 W{OO Z ’lp} 67T K Y 7 ) 7 / 1
ZI(Ci:r 0 AGH(Z) BHC 2 1)
— KT{GT( i)u’l/}}
E (aiTE'y(Eg(Y | Ay =@y, L) | Ao = ao, L) | Gr(%)-ﬁ)}
7 £=£0,7=70

respectively. The two partial derivatives MgﬂZ ,&0:Y0) and M.,TH(Z ,€0,7) are two row vectors.

Let the A\, {G,(Z), " }-models relating to the missingness mechanism be correctly specified (such as ¥ = 1) or
let the E(EL(Ee(Y | A=1a,L) | Ay = ag, Lo) | G-(Z),¢*)-models with respect to the distribution of Z be correctly
specified (such as ¢* = () so that we then have

b |3 HEER A S DN C D (b 2,60.30) - B (W62 60070 | 61 (2) c*))} —0 a9
and .
B[S IC=D - MGDNVIC 2N (4 7 b (i 2 GT(Z)’C*))} Lo as)

Kr{Gr(Z)vw*}

The expectation (14) implies that

4
I —“M{GA(2), Y (C>7) . - i}
E ‘I’g Z &o, "/0 Z K, {{G (( ))w*}} ( ) (\I’£(Z7€07’70) _E(\IJE(wao:’Yo) ‘ Gr(Z)7C )):|
—1 r r )
[\IIE(Zéo,A/O)J
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and the expectation (15) implies that

Z 50 70 Z I Ki\{{Ger ( ))w’lf;}l(c = T) (\P‘Y(Z?é.()?’yl)) ) (¢7(Z7£O770) | GT(Z)vc*))

r=1

= E[V4(Z,€.7,)] -

If the two row vectors Ag (&g, 7v,) and A, (&y, o) exist then we have by the WLLN

AIE,rL(Z: €0:70) S Ae(&9, 7o) and j\['y w(Z,€0,70) 2 Ay (&0:70)

where Ag(€,7,) is given by E(Ue(Z,€0,7,)) and A,(vy,7,) is given by E(U.(Z,£&y,7,)). We have that
nM, (Z, 57 4) in (13) converges in distribution to a normal distribution with the mean zero and a variance [16]. This
implies that the estimator /(Y (0-01)) is asymptotically normally distributed with the mean E(Y (40-91)) and a variance.
The empirical variance is obtained using the estimator given by

S {0 84) + V(2,6 A2 &) + Vi (2,8 )K(Z0 )}

n

s(ap,a1) =

with .
U(Zi,€,4) = Ex(Bg(Y | Avi =@, L1s) | Ao = ao, Los) — E(Y(@0")).

We have that m(Z;, 5 ) denotes the influence function with the estimated parameter E obtained using the influence function
m(Z;, &) such that

Vin(é - &) = meZ“s

and k(Z;,4) denotes the influence function with the estimated parameter 4 obtained using the influence function k(Z;,~)
such that

Vil =) kaZ'v

‘We have now shown that the estimator (2) and the estimator (5) are asymptotically normally distributed when 7" is equal
to 1 but this can also be shown for a larger 7'. The Taylor expansion at (12) and (13) will contain more parameters for a
larger T". We conduct a simulation study in the next Subsection.

B.3. Simulation study

We consider only full data as an illustrative example. All the models are correctly specified in the simulation study.
We consider data with a sample size of 1000 and the data are replicated 2000 times. The data are simulated as follows:
Lo ~ Normal(n,,, 1?), Ag ~ Bernoulli(,, ), L1 ~ Normal(r;,, 1?), A; ~ Bernoulli(,, ) and Y ~ Normal(n,, 1%) where
the means and the probabilities are given by 7, := 0, logit(s,,) := —0.2L¢, n;, := 1.5+ 0.4Lg + Ao, logit(s,,) :=
*02[;1 - L() + A() and Ny = O.4L() + 2.7A() + L1 + Al.

We consider the coverage of the estimator with full data given by

E(yleom)) e (E(Y(ao’al)) — Z0.9755(ag, ar), B(Y@0®)) 4 20.9753(1107@1))

where zj 975 is equal to the value of the 97.5 percentile point of the standard normal distribution. We count the number of
times when the expected potential outcome is included in their confidence interval.
Table 4 shows the percentage of the 2000 times of the coverage using the estimator with full data, the average of the 2000
estimates of the empirical standard deviation and the empirical standard deviation of the 2000 estimates of E (v (a0:a1)),
Table 4 shows that the coverages of the estimator are close to 95% and the average of the empirical standard deviations
are almost equal to the empirical standard deviations of E‘(Y(““*‘“))‘ The simulation study shows and supports the theory
that the estimator with full data is asymptotically normally distributed.
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(10:07(11:0 00:1,(11:0 aO:O,alzl a0:17a1:1

Coverage 95.40% 94.60% 94.90% 94.95%
s(ag, ay) 0.075 0.081 0.079 0.074
sd(E (Y (@0a)y) 0.074 0.079 0.079 0.073

Table 4. The estimator with full data. The Coverage row shows the percentage of the coverage. The s(ag, a1) row shows
the average of the 2000 estimates of the empirical standard deviation when (ao, a1) is set to (0,0), (1,0), (0,1) or (1,1).

The sd(E(Y («0-:91))) row shows the empirical standard deviation of the 2000 estimates of E(Y (@0:@1),
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1. Analysis of the PERFORM study

Table | displays the different vectors that contribute to a specific Z, for t € {b,2,6,12,18}.

t Zt vat LVt Wst
b Z, (PHQ,, PDQ,, SDS,) (PHQ, PDQ3, SDSs)
2 Zy  (PHQy, PDQy,SDS)) (PHQs, PDQs, SDS5) (PHQq, PDQg, SDSs)

6 Zs (PHQ2,PDQ2,5DS5) (PHQgs, PDQg, SDSg) (PHQ12,PDQ12,5DS)2)
12 Zi» (PHQg, PDQg, SDSe) (PHQ12, PDQ12,5DS12) (PHQ1s, PDQ1s,SDS1s)
18 Zig (PHQi2,PDQ12,SDS12) (PHQis, PDQ1s, SDS1s) (PHQ24, PDQ24,SDSs4)
Table 1. The ¢ column displays the five periods and Z, displays the five different possible combinations of vectors. The
W, Wi and W, columns indicate which vectors that contribute to a specific Z;.

Table 2 displays the time-varying exposure, the time-dependent confounding and the outcome for all five periods.

t Ly PDQ, Ly PDQ, SDSy
b (PHQ,) PDQ, (SDS,,PHQ,) PDQ, SDS,
2 (PHQy, PDQy, SDSy, PHQz) PDQs  (SDSy, PHQs)  PDQs  SDSs

6 (PHQ2,PDQ2,5DS5, PHQg) PDQs (SDSs, PHQR12) PDQi2 SDSi2
12 (PHQGPDQ(,.SDSGPHQH) PDle (SD312,PHQ18) PDQlS SDSlg
18 (PHQIQ,PDng,SDSlz,PHng) PDQH; (SDSlg,PHQQL;) PDQ24 SD524
Table 2. The ¢ column displays the five periods and L, displays the confounder at time ¢. The PD(); column displays the
exposure at time ¢. The Lg; column displays the confounder at time st. The PD(Q),, column displays the exposure at time
st. The SDS,; column displays the outcome at time st.
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Table 3 displays the estimates and the confidence intervals of the four estimators for t = b and Table 4 displays the
estimates and the confidence intervals of the four estimators for ¢ = 18.

Estimator Estimate SE 95%-CI Width of CI

) 16,724 0455 (15.833;17.616) 1.784

Naive (0,1) 13.583  1.892  (9.876; 17.291) 7415
(1,0) 9.108 1.147  (6.860 ; 11.356) 4.495

(0,0) 5737 0.794  (4.181;7.293) 3.112

(1,1) 15.080 0437 (14.223;15.937) 1713

LSmeans (0,1) 15330 1.900 (11.607 ; 19.054) 7.447
(1,0) 13.345  1.688 (10.037; 16.654) 6.616

(0,0) 11.862 1.061 (9.782; 13.941) 4.159

SDSTYY 15471 0453 (14.583 ; 16.358) 1.775

Goformula  E(SDSY"Y) 13154 2,063 (9.110; 17.198) 8.088
DSMY) 13753 1.606  (10.606 ; 16.900) 6.293

DS 9.588 1.204 (7.229;11.948) 4.720

SDSUYY 15477 0419 (14.656 ; 16.299) 1.643

DRMGF SDS™V) 13491 2,063  (9.447;17.535) 8.088
SDSHY 13.672 1734 (10273 ; 17.071) 6.798

SDS™™y 9880 1211 (7.507;12.253) 4746

Table 3. The plot on the left hand side in Figure 2 is based on the actual numbers. The Estimator column displays the

estimator that has been used to obtain the estimates. The Estimate column displays the estimates from the different

estimators. The SE column displays the standard errors obtained using 1000 bootstraps. The 95%-CI column displays
the confidence intervals for the estimates. The Width of CI column displays the width of the confidence intervals.

Estimator Estimate SE 95%-CI Width of CI

1,1 14423 0728 (12.997; 15.850) 2.853

Naive (0,1) 7.148 1267  (4.665;9.631) 4.966
(1,0) 4565 0812 (2.973;6.158) 3.185

(0,0) 3953 0.648  (2.680;5222) 2.542

(1,1) 10554 0.660 (9.262; 11.847) 2585

LSmeans (0,1) 8.806 1.268 (6.321;11.291) 4.970
(1,0) 7642 1177 (5.336;9.949) 4613

(0,0) 9.485 1.188  (7.156; 11.814) 4.658

SDSEY)Y 11100 0707 (9.715 ; 12.485) 2770

Goformula E(SDSSYV) 7916 1192 (55803 10.252) 4.672
SDSUY) 8436 1369 (5.752:11.120) 5367

DSUY) 8238 1230  (5.827:10.649) 4.822

SDSUTY 12069 0.623  (10.847 ; 13.291) 2.444

DRMGE SDSYY) 8618 1293 (6.083;11.153) 5.070
SDS) 9458 1402  (6.709 ; 12.207) 5.498

E(SDSS™)  9.031 1338 (6.410;11.653) 5.243

Table 4. The plot on the right hand side in Figure 2 is based on the actual numbers. See Table 3 for the description of the
columns.
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Sequential mediation analysis with multiple
mediators

Thomas Maltesen®””, Klaus Groes Larsen® and Lene Hammer-Helmich?

The natural direct effect and the natural indirect effect from causal inference are attractive since the sum of the
two effects are equal to the total causal effect. Unfortunately, identification of these effects relies on the cross-world
assumption which is violated if there exists a mediator-outcome relationship. The interventional direct effect and
the interventional indirect effect avoid the cross-world assumption but the overall effect is not necessarily equal
to the total causal effect. We suggest a new definition for mediation analysis where the overall effect is equal to
the total causal effect. We use different simulation scenarios to show that our definition can include models with
interactions with the overall effect equal to the total causal effect. We use our definition to analyse the observational
cohort study Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive disorder
(PERFORM). The (PERFORM) study includes two mediators on the causal path between exposure and outcome.
Copyright (©) 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, direct and indirect effects, longitudinal data, marginal structural model,
sequential mediation
|

1. Introduction

Causal mediation analysis is applied in different scientific disciplines e.g. epidemiology, political science, psychology and
sociology, whenever interest lies in investigating the extent to which the effect of exposure on the outcome is transmitted
via one or more intermediate variables [1]. Methods in social sciences have used structural equation modelling (SEM) to
perform such analysis. The structural equation modelling (SEM) consists of a series of multivariate linear models that are
combined in a single analysis. The model allows the scales at the same time point to be correlated, however, these methods
do not allow for interactions in the models. The indirect effect of the exposure on the outcome may also be obtained by
subtracting the direct effect from the total effect but the strategy will fail if an interaction between the mediator and the
exposure on the outcome exists [2]. The direct and indirect effects can be defined and the total effect can also be dismantled
into direct and indirect effects involving interactions in the models [3].

Robins, Greenland [4] and Pearl [5] proposed the natural direct and indirect effects. These effects are used to obtain
the direct effect of the exposure on the outcome and the transmitted effect via one or more intermediate measurements
between the exposure on the outcome. The natural direct and indirect effects have the attractive property to sum the total
causal effect but it relies on the cross-world assumption. The assumption does not necessarily hold in experimental data
[6, 7]. VanderWeele, Vansteelandt and Robins [8] define the interventional direct and indirect effects between the exposure
and the outcome. The identifications of the interventional effects avoid the cross-world assumption, but one drawback of
the interventional direct and indirect effects is that the sum may not be equal to the total causal effect. Therefore it is called
the overall effect instead.

An observational cohort study, Prospective Epidemiological Research on Functioning Outcomes Related to Major
depressive disorder (PERFORM), was conducted to better understand the course of a depressive episode and its impact
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on patient functioning over 2 years in outpatients with major depressive disorder (MDD). Depression severity, cognitive
symptoms and functional impairment were measured for each patient at six time points. The measurements at the first
two time points (baseline and after 2 months) are used as an example for our definition. The measurement of functional
impairment at baseline and depression severity at month 2 are the two mediators on the causal path between the exposure
(cognitive symptoms at baseline) and the outcome (functional impairment at month 2). See Hammer-Helmich et al. [9]
for further information about the PERFORM study. The treatment of cognitive symptoms may hold the key to achieving
functional recovery in MDD [10]. Unfortunately, using the g-formula in the presence of time-dependent confounding will
only give the (total) causal effect of the cognitive symptoms and it does not facilitate understanding of how cognition may
act on functionality via mediators. We are interested in the direct effect of the exposure (cognitive symptoms at baseline)
on the outcome (functional impairment at month 2) and for the sake of the interpretation we would prefer if the overall
effect is equal to the total causal effect.

In this paper, we are considering the definition proposed by Vansteelandt and Daniel [11] for defining the interventional
direct and indirect effects for multiple mediators. The overall effect is equal to the total causal effect by introducing a
mediated dependence term. Their definition does not require that the variables are in an ordered sequence. Section 2
revisits briefly the setup with only one mediator and the interpretation of the effects under different assumptions. Section
3 reviews the definition proposed by Vansteelandt and Daniel [11] to obtain the interventional direct and indirect effects
for multiple mediators. Section 4 compares our definition of sequential mediation to a definition by VanderWeele and
Vansteelandt [12] using three different simulation studies. Section 5 contains the analysis of the PERFORM study with
our definition. Section 6 concludes with a discussion of our findings.

2. Mediation and the corresponding effects

Let Y denote the outcome, which we assume to be continuous, and let A and M denote the exposure and the mediator
respectively. Let C be some baseline measurements not affected by the exposure, see the directed acyclic graph (DAG)
denoted by (a) in Figure 1. Let Y* and M “ be the values that Y and M would be if the exposure A is set to a respectively.
Let Y be the value that Y would be if the exposure A is set to a and the mediator M is set to m. Pearl [5] defined
the controlled direct effect as the difference between the two expected potential outcomes E(Y ™) and E(Y* ™) for two
different values of the exposure, a and a*, when the mediator is kept fixed at level m. Robins, Greenland [4] and Pearl
[5] define the natural direct effect by F(Y @M “ ) — E(Y‘“Mu*) for two different values of the exposure a and a*, but the
mediator set to its natural levelx of A had been set to a*. Robins, Greenland [4] and Pearl [5] define the natural indirect
effect by E(Y*M") — E(Y*™" ) which defines the effect of the exposure A on Y mediated via the mediator M. The total
causal effect is defined by E(Y*M") — E(Y“*M"* ).

VanderWeele el al. [8] define the random variable G!€. The random G*/© denotes a random drawn mediator from the
distribution among those with exposure status a conditional on C'. VanderWeele el al. [8] define the interventional direct
effect by

B(vee -y e ) = [ (B €= = B € =) fuaclm | 0" feldm.e) )
and VanderWeele el al. [8] define the interventional indirect effect by
E(Y“Ga‘c — Y“Gmc> = / EY ™ |C=c¢) (fA,[‘A,c(m | a,c) = fara,c(m|a®, c)) fe(e)d(m,c). 2)

The disadvantage of the interventional effects is that the sum of (1) and (2) will not necessarily be equal to the total
causal effect. The sum is (sometimes) called the overall effect instead. The overall effect is defined by E (Y“GG‘C) -
E(Y‘l*ca*‘c)'

The assumptions for the identification of these five effects (the controlled effect, the interventional direct and indirect
effects and the natural direct and indirect effects) with only one mediator are listed below:
The controlled effect is identified if we assume these two assumptions:

@ Ym U A|C=c Ya,m,c)e A MC
) Y U M|A=a,C=c Y(a,m,c)e A M,C.

The interventional direct and indirect effects are identified if we assume the two assumptions (i) and (ii) and we also
assume the following assumption:

WWW.sim.org Copyright (© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1-10
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(i) M* L A|C=c Y(a,m,c) € A, M,C.

The natural direct and indirect effects are identified if we assume the previous three assumptions (i), (ii) and (iii) and we
also assume the following assumption:

Gv) Yo" 1L M* |C=c Y(a,a*,m,c) € A M,C.

The last assumption is the cross-world assumption.

3. Interventional direct and indirect effects

‘We assume 2 mediators for simplicity. We also assume that the two mediators are ordered meaning that 1/, may affect M,
but not the other way around. The two mediators may thus result in 4 causal paths: the direct effect of AonY (A — Y),
the indirect effect of A on Y via M; only (A — M; — Y'), via Ms only (A — M — Y), and the indirect effect of A on
Y via both M; and My (A — M; — My — Y) [13]. See the DAG denoted by (b) in Figure 1. Let M5 define the vector
(My, My) and let M denote the vector (M&, Mg).

M My

P

(a) (b)

Figure 1. Let Y denote the outcome, which we assume to be continuous. Let A denote the exposure and let C' be some baseline measurements that are not affected by the exposure.
DAG (a) shows the causal paths with one mediator M. DAG (b) shows the causal paths with two mediators M7 and M2 (H; = (M, M2)).

3.1. The interventional effects for multiple mediators by Vansteelandt and Daniel

Vansteelandt and Daniel [11] do not require that the mediator variables are ordered in a sequence. Vansteelandt and Daniel
define the interventional direct effect by the causal estimand

[ (Bremm 10— B 0) foe cm | fe(Cdma.o. 3
Vansteelandt and Daniel define the causal estimand for the interventional indirect effect via M; to be given by
/ By c) (fo\C(ml L) = farerjc(ma | C)) Jaagjo(ma | €) fe(c)d(ma, c) @)
and define the causal estimand for the interventional indirect effect via M5 to be given by
[ B 10 (fugictma 1) = fugclma | 0) fagiclm | )fe(€)d(rma,o) )

Vansteelandt and Daniel define the additional term by

/E(Y“m1m2 | ¢) (fﬁ;\c(mz | ¢) = faugic(ma | ¢) faraic(ma | o)+ ©

0)(Q)d(iz, )

that captures the indirect effect of A on Y mediated via the dependence of M5 on M;. The effects (3) to (6) sum to the
total causal effect [11]. The assumptions used to identify the estimands above (for two mediators) are

Fagmic(mz | €) fagam o (ma C)*fﬁ;*‘o(m2
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@) Y Il A|C=c Y(a,mac) €A My, C

(ii”) yomz || (]\/Il.ﬂfz) ‘ A=a,C=c V((Z,WQ,C) S A,Hg,c
(i) (Mg, M) L A|C=c V(a,c) e AC.
The interventional direct and indirect effects have the advantage of being meaningful even when the variable is not
manipulable [14, 11]. See the example in Section 5. The interpretation of these three assumptions (i’), (ii’) and (iii’)
are given by: We have with the assumption (i’) that the effect of the exposure A on the outcome Y is unconfounded
conditional on C. With the assumption (ii’) we have that the effect of the two mediators M; and M5 on the outcome
Y is unconfounded conditional on the exposure A and C'. Finally, we have with the assumption (iii’) that the effect of
the exposure A on the two mediators is unconfounded conditional on C' [11]. Recall that C' represents some baseline
measurements.

3.2. A new definition of the interventional indirect effects of sequential mediation

We suggest a new definition of sequential mediation for the path-specific effects with multiple mediators such that the
overall effect is equal to the total causal effect. We assume the three assumptions (i’), (ii’) and (iii’) to identify the
effects. Our definition is inspired by the definition proposed by Vansteelandt and Daniel [11]. The causal estimand for the
interventional direct effect of the exposure on the outcome is defined by

[ (Bremm 10— B 19) fug e elm | ma, g olm | )fe(c)dma.o) @
and the causal estimand at (7) is identified by
/(E(Y | My =m2,A=0a,C=c)— E(Y | My=m3,A=a*,C=c)) fita a0z | a”,c) fe(c)d(mz, ) (8)

where f(My | A = a*,C) denotes the product of the two densities f(My | M1, A = a*,C) f(M, | A = a*,C). The causal
estimand at (7) is the same one as the causal estimand at (3).

The next two causal estimands are the interventional indirect effects of the exposure mediated via the two ordered
mediators and the two causal estimands are defined by

/E(Y“"“"LQ | &) g |pag o (ma [ ma, c) {fo\c(ml I €)= fagamjc(ma | C)} fele)d(ma, ) ©)
and .
/E(Ymrnm'z ‘ (;) {f]\[vxu\ju (77L2 ‘ mi, C ) fA{a, ‘Ma C(WLQ ‘ mi, C )} f]un‘c('ﬂll ‘ ()fc( ) (7”2 () (10)
They are identified by
/E(Y | My =3, A=a,C = c)fagm, a,0(ms | my,a®,c)

{fanja,c(mi | a,¢) = fanjac(my | a*,0)} fo(e)d(my, c)

an

and

/E(Y | My =ma, A=0a,C =c){ fanan,a,c(m2 | mi,a,¢) = faar,a,c(me | my,a®,c)} (12)

f]\,ffl|A,c(m1 | a,c)fo(c)d(ms, c),

respectively. The causal estimand at (9) is the interventional indirect effect via M and it corresponds to the sum of the two
causal paths A — M; — Y and A — M; — My — Y. The causal estimand at (10) is the interventional indirect effect via
My and it corresponds to the path A — M — Y. We assume the three assumptions (i’), (ii”) and (iii’) to identify the three
statistical estimands (8), (11) and (12) from the three causal estimands (7), (9) and (10), respectively. The sum of the three
causal estimands (7), (9) and (10) is given by

(7)+ (9) + (10) =

c)fe(e)d(mz, c)

&) g e o (ma | ma,e) fare o
- / E(Y"'xmlmz | C)f]\,r[;*|1\r1f*10(7n? | mlac)fo*w(ml | ¢) fc(e)d(ma, )
= [ B0 9 g e | Qeledma,e) [ B0 e (| eled(m, o

- / B(MME | ¢)f(e)d(c) — / B(e MEME | 6 f(o)d(e)
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and it is equal to the total causal effect of the exposure A on the outcome Y.

3.3. A definition of sequential mediation by VanderWeele and Vansteelandt

We are using a definition for sequential mediation analysis from VanderWeele and Vansteelandt [12]. The natural direct
effectis E(Y*M —ye M | ) and it is possible to rewrite it to

E<YaMf* _ yaMp MgT | C> 4 E(Y“MF*ME* oy My g ‘ C’>.

The first term in the sum is the mediated effect via My (A — My — Y') and it is identified by the statistical estimand at
(14). The statistical estimand at (14) is identified from the causal estimand under the assumptions (i’), (ii’) and (iii’). The
last term in the sum is the direct effect and it is obtained by the causal estimand at (7). The statistical estimand at (8) is
identified from the causal estimand at (7) under the assumptions (i’), (ii’) and (iii’). The mediated effect of A onY via M;

and the additional effect via My (A — M; — Y and A — M; — My — Y) is defined by E(Y*Mi — yadi” | C') which
is identified by the statistical estimand at (13). The statistical estimand at (13) is identified from the causal estimand under
the assumptions (i’), (ii’) and (iii’). The statistical estimand for the interventional indirect effect via M, is given by

[ B 180 =1, A=0.C =) {fuactm | a.0) ~ fuactm @0} fo@dm,e)— (13)
and the statistical estimand for the interventional indirect effect via My is given by

/{E(Y | ]\11 = 7TL1,A = (L,C = C) — E(Y ‘ MQ = mz,A = (I,C = C)f]uz”\,jl_’A_C(mQ | ml,a*,c)}

faja,c(ma | a*,c)folc)d(ms, ).

14

‘We are comparing our definition to the definition by VanderWeele and Vansteelandt [12] bacause our causal estimands and
the causal estimands by VanderWeele and Vansteelandt [12] use the same three assumptions (i’), (ii’) and (iii’) to identify
the effects.

4. Simulations

We consider three simulation studies with different models (simulation 2(, B and ¢). The sample size is 500 and
the data are replicated 2000 times. Let C' follow a standard normal distribution. Let A be drawn with the probability
logit(P(A =1 C = ¢)) = k1 + k1c where logit(z) = log(z) — log(1 — ).

Simulation 2: Let the following three models be given by

E(Y | My=mo, My =m1,A=0a,C =c) =& + &c+ &a+ Emy + Eama, (15)
E(My | My =my,A=0a,C =c)=a;+ aic+ aza+ agmy (16)

and
EM|A=a,C=c)=(+Cct Ga (17)
to simulate the data. The data are simulated as follows: C' ~ Normal(0, 12), A ~ Bernoulli(s¢,), M; ~ Normal(7,,,, 12),
My ~ Normal(),,,1?) and Y ~ Normal(1,, 1?) where logit(s,) := —0.5C and the means are given by 7,,,, :== —4C —

24, N, = —C + 2A — 2M; and 1, := 3C + 3A — My — 2My.

Simulation ®B: We assume that one interaction between the exposure and the first mediator will simulate the second
mediator and it is given by

E(My| My =mi,A=a,C =c)=ar+aic+ aa+ azmi + asam;. (18)

We also assume the two models defined at (15) and (17) to simulate the data. The data are simulated as follows:
C ~ Normal(0, 12), A ~ Bernoulli(s¢,), M; ~ Normal(1,,, 12), M2 ~ Normal(7,,,, 12) and Y ~ Normal(n,, 12) where
logit(sz,) := —0.5C and the means are given by 7,,, := —4C — 24, n,,, := —C + 2A — 2M, + 4AM, and 7, := 3C +
3A — My — 2Ms.
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Simulation ¢: We assume three interactions between the exposure and the two mediators to simulate the outcome and
it is given by

E(Y | My =mga, My =m1,A=a,C =c)=¢& +&ic+ Sa+Emy + Eama + Esamy + Egama + Ermama, — (19)

and we also assume the two models defined at (16) and (17) to simulate the data. The data are simulated as follows:
C ~ Normal(0, 1), A ~ Bernoulli(, ), M; ~ Normal(n,,, 1), Ma ~ Normal(7,,,, 1?) and Y ~ Normal(,, 1?) where
logit(s,) := —0.5C" and the means are given by 7, := —4C — 2A, 1y, := —C +2A — 2M,; and 7, :=3C + 34 —
My — 2My + 2AM, — AMy — 3My M.

The marginal structural model (MSM) for simulation 2(, B and € is given by E(Y*) = 8; + S1a. Let a be equal to 1
and let a* be equal to 0. The simulation studies are evaluated by the mean of the 2000 estimates of 5, from the MSM, the
empirical standard error (SE) of the 2000 estimates of 3; and the mean squared error (MSE). Table | shows the evaluation
of the estimates of the causal effects from the three simulation studies. Table 2 shows the evaluation of the estimates of
the interventional direct and indirect effects with both definitions.

Simulation True  Mean SE MSE

A -7 -6.999 0354  0.125
B 9 9003 1512 2285
¢ 19 19.009 4.745 22515

Table 1. The Simulation column shows the three different simulation studies. The True column shows the true causal

effect. The Mean column shows the mean of the 2000 estimates of ;. The SE column shows the standard error of the

2000 estimates of 3;. The MSE column shows the mean squared error. The estimation of (; is not shown for the simulation
studies.

Table 1 shows the estimates of the causal effect of A on Y for simulation 2(, B8 and €. We will use the estimation of
the causal effects for comparison with the overall effects that we obtain using the two definitions (our definition and the
definition by VanderWeele and Vansteelandt [12]).

Simulation 2A Simulation 8B Simulation €
Effect Mean SE  MSE | Mean SE MSE | Mean SE MSE
Dir. eff. 3.000 0.161 0.026 | 2.999 0.134 0.018 | 2997  0.751 0.564
Via My, (11) -6.001 0.351 0.123 | -6.001 0.356 0.127 | 10.018  4.280 18.322
Via Ma, (12) -3.998 0.274 0.075 | 12.006 1.570 2464 | 5994 1.224 1.499
The overall eff. w. Our Def.  -6.999 0.354 0.125 | 9.003 1.512 2.285 | 19.009  4.745 22.515
Via M, (13) -6.001 0.351 0.123 1.960 1.509  65.634 | 24.846 13.893  413.426
Via Mo, (14) -3.998 0274 0.075 | 0.258 2.206 142.733 | 71.249 14.307 4462.107
The overall eff. w. Vand V. -6.999 0354 0.125 | 5217 1.653 17.048 | 99.092  9.643 6507.761

Table 2. Simulation 2(: The true direct effect is 3, the true indirect effect via M is —6 and the true indirect effect via My
is —4. Simulation B: The true direct effect is 3, the true indirect effect via M7 is —6 and the true indirect effect via M5 is
12. Simulation €: The true direct effect is 3, the true indirect effect via M; is 10 and the true indirect effect via M> is 6.
See Table | for the true total causal effect of §; and the description of the different columns: Mean, SE and MSE. Dir. eff:
is an abbreviation for the interventional direct effect using the statistical estimand at (8). Via M, (-) is an abbreviation for
the interventional indirect effect via M/; using the statistical estimand at either (11) or (13). Via M, (-) is an abbreviation
for the interventional indirect effect via M5 using the statistical estimand at either (12) or (14). The overall eff. w. Our Def.
is an abbreviation for the overall effect with our definition. The overall eff. w. V and V is an abbreviation for the overall
effect with the definition by VanderWeele and Vansteelandt [12].

Table 2 shows that our definition is able to estimate the interventional direct effect and the interventional indirect effects
in all three simulation studies (simulation 2(, B8 and ). Table 2 shows that the overall effect is equal to the total causal
effect (Table 1) in all three simulation studies (simulation 2(, B and ¢) with our definition. Table 2 shows that the definition
by VanderWeele and Vansteelandt [12] shows weakness when the models have interactions between the measurements.
Their definition is not able to estimate the interventional indirect effects for the last two simulation studies (simulation ‘B
and €) and the overall effects are not equal to the total causal effects for the last two simulation studies.
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5. PERFORM

The PERFORM study was collected over 2 years. For each patient a baseline measurement was taken and they were
measured again after 2, 6, 12, 18 and 24 months. The patients were measured on 3 self-reported scales. Functional
impairment was measured by the Sheehan Disability Scale (SDS) consisting of 3 items. Each item ranges from 0 to 10 with
a global score ranging from 0 to 30. Cognitive symptoms were measured by the Perceived Deficit Questionnaire (PDQ-5)
consisting of 5 items. Each item ranges from 0 to 4 with a global score ranging from 0 to 20 (we suppress *-5’ in the name
PDQ-5 for simplicity). Depression severity was measured by the Patient Health Questionnaire (PHQ-9) consisting of 9
items. Each item ranges from 0 to 3 with a global score ranging from 0 to 27 (we suppress '-9’ in the name PHQ-9 for
simplicity). A higher score corresponds to the patient being more constrained, suffering greater severity of their cognitive
symptoms and more severe depression. We assume that depression severity affects both cognitive symptoms and functional
impairment and that cognitive symptoms affect functional impairment. We further assume that all the measurements at
baseline affect all the measurements at month 2 [15]. See the DAG in Figure 2. We dichotomize the variable PDQ. Let
PDQ be equal to 0 if the original global score is less than or equal to 5 and 1 otherwise. If PDQ is equal to O then it
corresponds to the patient having no or minimal cognitive symptoms, and if PDQ is equal to 1 then it corresponds to the
patient having cognitive symptoms. See Hammer-Helmich et al. [9] for further information about the PERFORM study.
We focused only on the measurements at the first two time points (baseline and month 2) as an example for our definition.
We considered only the subset of data with fully observed vectors (all six variables, see Figure 2). The number of fully
observed vectors in the data is 341.

SDS, ——— SDSy

PDQy PDQ2

PHQp —— > PHQ>

Figure 2. The nodes with the index b and 2 are the measurements at baseline and after 2 months respectively. The nodes PHQ, PDQ and SDS, fort € {b, 2} represent
the scales PHQ, PDQ and SDS respectively.

The MSM is given by
B (SDSE ) = 1 + Bipday + Bapdas + Bypdasidas 20)

where 3 = (B, 1, b2, B3) denotes the vector of causal effects. First, the aim is to estimate the (total) causal effect of
the time-varying exposure on the outcome. The two measurements Mo = (SDS,, PHQ>) are the two mediators for the
exposure, PD(@);, (cognitive symptoms at baseline). We consider the g-formula [16] in the presence of time-dependent
confounding. It is given by

E (SDSépdq”’pdq”) :/7n{U2~,E}fPHQg|SDS;,,PDQ1,A,PHQ1, (phqz | sdsy, pday, phay)
fsDsy|PDQ,.PHQ, (5dsy | pday, phay) frDQ, (Pdas)d(phqa, sdsy, phay),
where
m{Va,&} = E(SDSy | PDQ2, PHQ2,SDS,, PDQy, PHQy)
=&+ & PHQY + &PDQy + §3SDSy + EaPHQ2 + EPDQ2 + E6 PDQy PHQy+
§PDQaPHQ, + §PDQyPHQ2 + §PDQa PHQ2 + E10 PDQp PDQ2
and V5 denotes the set (PDQs, PHQ2,SDSy, PDQy, PHQy). We include the interactions between depression severity

and cognitive symptoms in the m{Vy, &, }-model with all the main effects. We assume that the conditional measures

corresponding to the two densities fppo, ruo, PO, sDs, (Pha2 | Phay, pday, sdsy) and fsps, | pro,.Ppao,(sdsy |
phqy, pdqy) are linear models without any interactions or quadratic terms. We use the three statistical estimands at (8),
(11) and (12) with the model m{v,, £}. Let pdg, be equal to 1 and let pdg; be equal to 0 in the three statistical estimands
of the interventional direct and indirect effects. Let pdgs be equal to 0 and let pdg; be equal to O for the estimation of the
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interventional direct and indirect effects of PDQ;, on SD.S,. See Kreif et al. [17] for further information about the series
of iterated conditional expectations. Let 3 4; denote the interventional direct effect of PD(Q); on SDS,. Let Lindirsps,
and 51 indirp @ denote the two interventional indirect effects via SD.Sy, and P H ) respectively. The confidence intervals
are obtained using 1000 bootstraps.

5.1. Results

The results of the (total) causal effects 3 = (51, 81, B2, 33), the interventional direct effect and the two interventional
indirect effects are shown in Table 3.

Effect Estimate SE 95%-CI

Br 9.588 1.243 (7.152;12.025)
b1 4.165 2.021 (0.204 ; 8.126)
B 3566 2.026 (-0.404 ;7.536)
B3 -1.848 2.613 (-6.969 ;3.272)
51,4ir» Interventional direct of PD(Q), 1.385 1.711 (-1.968 ; 4.739)
[ﬁundwsmb , Interventional indirect of PDQ)y, via SDS} 2490 0.705 (1.109 ; 3.870)
51,i7zdirPHQ2 , Interventional indirect of PDQy, via PHQ> 0.290 0.870 (-1.416;1.995)
Biair + Prindirsps, + Plindirprq,> The overall effect 4.165 2.021  (0.204 ; 8.126)

Table 3. The Effect column shows the causal effects 3, the interventional direct effect of PD(@Q;, on SDSs, the two
interventional indirect effects of PDQ, on SDS5 and the overall effect. The SE column shows the standard errors. The
standard error (SE) is obtained using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals.

Table 3 shows that 3; is the only estimated coefficient of the (total) causal effects that is significant. The coefficient
B corresponds to the expected score of functional impairment for patients having no or minimal cognitive symptoms at
both visits. The coefficient 3y is E(S DS;O’[))). The coefficient 3; is the causal effect of cognitive symptoms at baseline
on functional impairment at month 2. The coefficient 3; corresponds to the additional effect we have to add to 3, for the
expected score of functional impairment for patients having cognitive symptoms at baseline and having no or minimal
cognitive symptoms at month 2. The sum of the two coefficients 5; and (3 is E(SDSél’m). The coefficient 35 is the
causal effect of cognitive symptoms at month 2 on functional impairment at month 2. The coefficient 5, corresponds
to the additional effect we have to add to ; for the expected score of functional impairment for patients having no or
minimal cognitive symptoms at baseline and having cognitive symptoms at month 2. The sum of the two coefficients /31
and fy is E(S DSéO’l)). The coefficient [35 is the causal effect of the interaction between cognitive symptoms at baseline
and cognitive symptoms at month 2 on functional impairment at month 2. The sum of all four coefficients corresponds
to the expected score of functional impairment for patients with cognitive symptoms at both visits. The sum of all four
coefficients is E(SDSél‘l)).

The estimates of the mediated effects are plausible from a clinical perspective since patients with cognitive symptoms
at baseline will be more functionally impaired compared to patients with no or with minimal cognitive symptoms. The
positive sign of the mediated effects do not conflict with the clinical expectation. The mediated effects indicate that patients
with cognitive symptoms at baseline will not improve their functional impairment via one of the mediated effects, in
contrast to patients with no or with minimal cognitive symptoms. More than half of the effect of the cognitive symptoms
at baseline is transmitted via functional impairment at the same time point on functional impairment at a later time
(the interventional indirect effect via SDS}). It appears plausible that the interventional indirect effect via functional
impairment at baseline has a certain proportion of the total causal effect since patients with cognitive symptoms will also
be more functionally impaired at the same time point. It appears from the analysis that if the cognitive symptoms are
relieved and the functioning improved at the same time point, then the patient functioning is more likely to improve at a
later time.

6. Discussion

The motivation for this manuscript was to develop a definition so that the overall effect is equal to the total causal effect
while at the same time avoiding the additional mediated dependence term. Our proposed definition has been worked
through theoretically, and it has been applied on simulated data and real-world data on patients with MDD with the
purpose to facilitate a better understanding of the role of cognition in reaching better functionality for the patients. We
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have compared our definition to an already existing one with different simulation studies. We concluded that the simulation
studies have revealed that our definition is better at obtaining the true effects of interest and the overall effect is equal to
the total causal effect. Our proposed approach also encompasses models that have interactions between the different
measurements. This is in contrast to the definition by VanderWeele and Vansteelandt [12], which shows weakness in the
simulation studies for estimating the true effects. Their definition was not capable of including the interactions in the
models between the different measurements that caused the overall effect not to be equal to the total causal effect.

Finally, the definition was applied to the observational cohort study PERFORM with patients having depression. The
results from the analysis of the PERFORM study were in line with the expectations from a clinical perspective since the
analysis indicates that patients with cognitive symptoms at baseline have worse functioning compared to patients with no
or with minimal cognitive symptoms. A limitation for our definition is that we need the measurements to be ordered in a
sequence. The causal ordering between the two time points in the PERFORM study is introduced by time itself. However,
the causal ordering of the three measurements within the same time point is a limitation since all three measurements are
measured at the same time point and the order is based on clinical insight. The interpretation of the results hinges on these
assumptions. The assumptions are a limitation since we cannot verify them from the data. We have used the PERFORM
study in this manuscript as an example and we have only used fully observed vectors from the data, therefore further
research could focus on extending our definition to include vectors that are not fully observed.
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Sequential mediation analysis with multiple
mediators for data with missing observations

Thomas Maltesen®"”

Causal mediation in both observational studies and interventional studies may be complicated by missing
observations. Mediation analysis for multiple mediators with a mediator-outcome relationship will violate the
cross-world assumption. This means that the identification of the natural direct effect and the natural indirect
effect is not possible. I propose an augmented inverse probability weighted (AIPW) estimator to estimate both the
interventional direct effect and the interventional indirect effects for multiple mediators with a continuous outcome,
including partially observed vectors in the estimation. The estimator is robust regarding misspecification of the
parametric model for the monotone missingness in the data, under the assumption that the missing observations
are missing at random (MAR). The estimator is used on the observational study Prospective Epidemiological
Research on Functioning Outcomes Related to Major depressive disorder (PERFORM), which is a longitudinal
study with time-dependent confounding and missing observations. The causal paths between the exposure and
the outcome contain multiple mediators and the causal paths also contain a mediator-outcome relationship. My
estimator utilizes data better and it reduces bias when data contains missing observations compared to an estimator
using only complete cases. Copyright © 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, sequential mediation, multiple mediators, doubly robust estimator, monotone
missingness, mediation with monotone missingness

1. Introduction

Causal mediation in longitudinal studies may be complicated by missing observations. The study Prospective
Epidemiological Research on Functioning Outcomes Related to Major depressive disorder (PERFORM) (NCT01427439)
is a good example as the study is longitudinal with a need to adjust for time-dependent confounding and a rich opportunity
to study mediation. Missing observations across variables and drop-outs lead to a substantial reduction in observations
when statistical analysis are based on complete cases. This may result in biased estimates. The study was conducted to
better understand the course of a depressive episode and its impact on patient functioning over two years in outpatients
with major depressive disorder (MDD). The treatment of cognitive symptoms may hold the key to achieving functional
recovery in MDD [1]. See Hammer-Helmich et al. [2] for further information about the PERFORM study.

The natural direct and indirect effects [3, 4] are attractive to estimate since the sum of the effects is equal to the total
causal effect. However, the natural direct and indirect effects are not possible to identify if there exists a mediator-outcome
relationship [5]. Identification of the interventional direct and indirect effects avoids the cross-world assumption [6]. The
interventional direct and indirect effects have the advantage of being meaningful even though the exposure variable is
not manipulable [7, 8]. Vansteelandt and Daniel [8] have proposed a definition of causal estimands for the interventional
direct effect and the interventional indirect effects for multiple mediators. The overall effect of the definition is equal to the
total causal effect by introducing an additional mediated dependence term. The definition does not require the mediators
to be ordered. VanderWeele and Vansteelandt [9] have a definition for sequential mediation, however the definition has
issues by including models with interactions between the measurements. It may cause the overall effect not to be equal
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to the total causal effect (Maltesen et al. [10]). Maltesen et al. [10] introduced a definition of sequential mediation for
the interventional direct effect and the interventional indirect effects for multiple mediators. This definition avoids the
additional mediated dependence term and the overall effect is equal to the total causal effect. This definition does however
require the mediators to be ordered. The three definitions apply only to fully observed vectors. Li and Zhou [11] consider
mediation analysis for data containing missing observations with one mediator and with the outcome possibly being
missing. However, the PERFORM study has multiple mediators on the paths between the exposure and the outcome and
the outcome variable is not the only variable missing. The effect of cognitive symptoms is also transmitted via a mediator-
outcome relationship and violates the cross-world assumption. Maltesen et al. [12] consider an estimator to obtain the
causal effect in longitudinal studies with time-dependent confounding while data contains missing observations. However,
the estimator will not provide us with the direct effect if the causal path between the exposure and the outcome contains
mediators.

The PERFORM study is the motivation to develop an estimator for sequential mediation when data contains missing
observations since the before mentioned methods cannot be used in this analysis of the PERFORM study. The causal paths
between the exposure and the outcome contain two mediators resulting in one direct causal path and three indirect causal
paths. The estimation using the g-formula results only in the causal effect. The main interest is the direct effect of cognitive
symptoms on functional impairment at a later time. However, the three indirect causal paths are also of interest because
it may happen that the causal effect is almost zero. The indirect effects will provide us with the information if some
of the effects cancel each other out. The manuscript is organized as follows: Section 2 revisits the causal estimands for
multiple mediators from Maltesen et al. [10]. Section 3 considers data containing missing observations [ 13] and establishes
an estimator for multiple mediators for data containing missing observations. Section 4 considers the PERFORM study.
Section 5 considers a simulation study based on the PERFORM study. Section 6 finalizes with a discussion of the findings.

2. The estimator for the mediated effects

Suppose that our data comprises of n independent and identically distributed realizations of random variables 71, ..., Z,
where Z; denotes the i-th vector (the ¢ index is suppressed to simplify the notation) [13]. I assume two mediators on the
causal paths between the exposure and the outcome for simplicity. Let C' denote some baseline measurements not affected
by the exposure. Let A denote the binary exposure and let Y denote the outcome, which assumes to be continuous. Let M
and M- denote the two mediators. The mediator M5 may be affected by the mediator M; but not the other way around.
Let M denote the vector (My, My) and let My = (M, Mg). Let Y and M, be the values that Y and M, would be if
the exposure A is set to a respectively. Let Y*™2 be the value that Y would be if the exposure A is set to a and the vector
of the two mediators M5 is set to . Let Z be defined by the ordered sequence (C, A, My, M»,Y). Let V; denote the
set (C, A) and let V; denote the set (C, A, M;). Let V5 denote the set (C, A, My, Ms). The outcome Y may be causally
influenced by the whole history of (C, A, M, Ms). Maltesen et al. [10] define the causal estimand for the interventional
direct effect with two mediators to be given by

/ {Bremm o) = B mm |0} fuge e oma | mae) fagge o (ma | 6)fo(e)d(ma,c).
The causal estimand for the interventional indirect effect via M; is given by
/ EY ™™ ) fygar s o (ma | ma, ) {fo\c(’m/l le) = farem o (ma | C)} fe(e)d(mz, )

and the causal estimand for the interventional indirect effect via M5 is given by

/JLJ(Y"'"”m2 X9 {fM.;|M;a,c(mz [m,e) = fagernas o (m2 | mhc)} fugic(ma | e) fe(e)d(ma, c).

The assumptions needed to identify the three causal estimands above (for two mediators) are given by:

() Y2 Il A|C=c ¥Y(a,ma,c)€ A MO, o
(i) yam: || (Afh]\/[Q) ‘ A=a,C=c V((LWQ,C) € A, M5, C and
(iii) (Mg, M{) L A|C=c¢ VY(a,c)€ A,C.

It is possible to rewrite the interventional direct effect to be given by I'(a, a*,a*) — I'(a*, a*, a*) where I is given by

L(j k1) = /E(Y‘ﬂmm ‘ C)fMéﬂM{aC(mZ | mlvc)f]\l“C(ml | €) fe(c)d(my, c) (€]
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for different j, k, I € {a, a*}. The two causal estimands for the interventional indirect effects via M, and M5 can be written
in a similar way. The interventional indirect effect via M; is given by I'(a,a*,a) — I'(a, a*, a*) and the interventional
indirect effect via My is given by I'(a, a,a) — I'(a, a*, a). The causal estimand I'(j, k, ) (1) is identified by the statistical
estimand given by

/E(Y | My =2, A=j,C =)y a,c(me | mik,c) faa,c(my | 1 e) fole)d(Ma, C)

and the statistical estimand is identified by the estimator given by
1 n
Lk l) =~ Zl wiai{Vo,i, 7} (@)
i=

with the models m;{ve,&} = E(Y | My = mo, My =mqy, A =35,C =c), pjr{vi,v} = E(m;{Vs,&} | M1 =my, A=
k,C = c¢)and p;pi{vo, v} = E(ujr{Vi,v} | A=1,C = ¢). I will refer to the m;{vs, £}-model, the y; ;{v1,~}-model
and the /45 .1 {vo, v }-model as the . ;. ;-models. The y; ;. ;-models have hats to indicate predicted values from the specified
models that have been used for the estimation and the predicted values are plugged into the estimator. The estimator is
unbiased if the p; 1 ;-models are correctly specified with respect to the data. The estimator (2) is obtained by solving the
estimating equation 0 = Y"1, U; 1.1(Z;) with

Ui wa(Zi) = pjea{Voirvo} — /E(ij”"2 | &) farsiaar,c(ma | mu, e) fapc(ma | €) fo(e)d(ma, c). (€]

The estimator for the interventional direct effect (dir) is given by dir := I'(a,a*,a*) — I'(a*, a*, a*) using the estimator
(2). The estimator for the interventional indirect effect via M, (indirar, ) is given by indir s, := T'(a,a*,a) — I'(a, a*, a*)

l}sing the est'}mator (2) and the estimator for the interventional indirect effect via My (indiryy,) is given by indir, =
T'(a,a,a) — T'(a,a*, a) using the estimator (2).

3. Vectors with missing observations in the data

Let C be a random variable that takes positive integers or infinity C € {1,...,c} U {oo}. Let {G¢,(Z;),C;} denote the i-th
vector in the observed data. If C is equal to 1 then it corresponds to only observe C in Z (G1(Z) = (C)). If C is equal
to 2 then C and A are the only two observed variables in Z (G2(Z) = (C, A)). If C is equal to ¢ (= 4) then it is only
the outcome that is missing from Z. If C is equal to infinity then the vector is complete (G (Z) = (Z)). This pattern
of missing observations is called monotone missingness. Complete cases (CC) are a subset of vectors containing only
G~ (Z) [12]. Note the distinction between the two letters ¢ and ¢ to avoid any confusion. I assume the probability for
observing a complete vector is strictly greater than zero (P(C = oo | Z) > 0). Let w{oo, Z, 1, } denote the probability for
observing a complete vector with the vector of true parameter values v, [13]. Let

/\T{GT(Z)vw} = P(C =7 | C> T7Z)

denote the probability of stopping the observing of additional observations given r observed. I assume that A\, {G,(Z), ¢}
is given by

exp (Y1 + G (2)9,)
1+ €xXp (’(‘/)I,r + GT(Z),lpr) '

where the column vector 1), has the same dimension as the row vector G,.(Z). Let 4 denote the vector (¢r,,, 1) where
the coefficient 17 , denotes the intercept [12, 13]. I assume that the missingness in the data are coarsened at random (CAR)
which means that the coarsening probabilities only depend on the data as a function of the observed data. The coarsening
probabilities are given by

A{Gr(2), 4} =

“

w{r,Gr(Z),¢} = M{G(2), Y} K —1{Gr—1(Z), 9}

where Tsiatis [13] defines

T

K AGH(Z), 9} = [[(1 = MAG1(2), ).

Jj=1

I refer to the \,.{G,(Z), v }-models as the A-models and K.{G.(Z),v} is equal to the probability w{co, Z,1}. See
Tsiatis [13] for further information about the CAR assumption and monotone missingness.
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Tsiatis [13] shows that the adaptive doubly robust estimator is obtained by solving the estimating equation given by

c

0 z": (1(@- = WiealZ) | g ICi=r) - A{Gr(Z0), W} (Ci 2 7) |, (V02 | G20, <>)

i=1 w{oo,Z,i,{p} r=1 K7‘{G7‘(Zi)’¢}

with the probabilities for monotone missingness under the CAR assumption. The conditional expectation of U; 1, ;(Z) (3)
is given by

EUjri(2) | Gr(2)) = E (1 x,1{Vo, Yo} | Gr(2),Co) =T, K, ).
The vector ¢, indicates the true model with the vector of true parameter values. I need to model the conditional expectation
for every set of G,.(Z) for r = 1,..., c. It is exemplified in Section 4. The estimator I'(j, k, ) for I'(j, k, {) is given by

(k1) = %i |:](Ci ;?Zj/”zk;{);/oﬁ}
+ XC: I(Ci = 1) = A{Gr(Z:), $}(Ci > 7)
r=1 K AG(Z),4}

5

E (uj,}c,z{Voﬁ/} | Gr(Zi)’O

for data with monotone missingness following the CAR assumption. Now, assume that the f1; ;. ;-models are correctly
specified. The estimator (5) is unbiased if the models of the conditional expectations E(u;.1{Vo,vo} | Gr(2),¢)
are correctly specified with respect to the distribution of Z and the A-models relating to the missingness mechanism
may be misspecified. The estimator (5) is also unbiased if the A\-models relating to the missingness mechanism are
correctly specified and the models for the conditional expectations E(u; x:{Vo.vo} | Gr(Z), ¢) may be misspecified
with respect to the distribution of Z. I denote the estimator (5) by the name Doubly Robust estimator for Monotone
missingness for Sequential Mediation (DRMSM). All the hats in the estimator (5) indicate predicted values that are
plugged into the estimator. All the conditional expectations are evaluated and afterwards used to predict values with
respect to the set G,.(Z). We must recall that the probabilities regarding the models for the missingness are given by
KAG(2), 9} = 1=, (1~ M{G5(Z),9}) and w{oo, Z, 9} = K{Ge(Z),4}. The estimates b are obtained using
maximum likelihood estimation according to the specific model for A, {G,(Z),v}. The interventional direct effect is
estimated by dir = D(a,a*,a*) —I'(a*, a*, a*) using the estimator (5). The interventional indirect effect via M is

estimated by indirys, :=1I'(a,a*,a) —T'(a,a*, a*) using the estimator (5) and the interventional indirect effect via M5
is estimated by indiras, := I'(a, a,a) — T'(a, a*, a) using the estimator (5).

4. Analysing the PERFORM study

4.1. Study design and variables

The DRMSM estimator for mediation analysis is applied on the PERFORM study. Patients’” functional impairment were
measured by the Sheehan Disability Scale (SDS) consisting of 3 items with a global score ranging from 0 to 30. A score at
0 corresponds to being unimpaired and 30 corresponds to being impaired. The Scale describes the patients” work/school,
social life/leisure activities and family life/home duties. Cognitive symptoms were measured by the Perceived Deficit
Questionnaire (PDQ-5) consisting of 5 items with a global score ranging from 0 to 20 focusing on memory, concentration
and executive function (the -5’ in the name PDQ-5 is suppressed to simplify the notation). The PDQ scale is dichotomized
meaning that PDQ is 0 if the original global score of PDQ is less than or equal to 5 and 1 otherwise. If PDQ is equal to
0 then it corresponds to having no or minimal cognitive symptoms and 1 corresponds to having cognitive symptoms. The
depression severity was measured by the Patient Health Questionnaire (PHQ-9) consisting of 9 items with a global score
ranging from 0 to 27. The greater the score on the scale the more severe the depression (the ’-9” in the name PHQ-9 is
suppressed to simplify the notation). The sample size of the data is 1090. All three scales were measured over two years
repeatedly. I assume that depression severity affects both cognitive symptoms and functional impairment and that cognitive
symptoms affect functional impairment. I assume that the present measurements affect all the future measurements at the
next time point. I also assume that the present measurements do not affect the past measurements. The process is indicated
by a directed acyclic graph in Maltesen et al. [12]. Let SDS; denote SDS at time ¢ € {b,2,6,12,18,24}. Let PDQ;
denote PDQ at time ¢ € {b,2,6,12,18,24}. Let PHQ, denote PHQ at time ¢ € {b,2, 6,12, 18,24}. Let ¥, denote the
vector Wy = (PHQ,, PDQ,,SDS,) for t € {b,2,6,12,18,24}. Let pt denote the prior time point before ¢, let ¢ denote
the present time point and let st denote the subsequent time point after ¢ in the subscript of PH(), PD() and SDS. See
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Maltesen et al. [12] for further information. I assume that W, 1L W, | W, and the sequential conditional exchangeability
fort € {b,2,6,12,18} is given by

§DSPrda) || ppQ, | PHQy, SDSp, PDQyi, PHQ,

and
§psPdacrda) | ppQ,, | PHQ, SDS,, PDQ,, PHQ;.

Let Zy; = Wy, Wa;) and let Zig; = (Wia;, Wis;, Waa ;) for 4 =1,...,1090. Maltesen et al. [12] define the set
(PHQpi, PDQpi, SDSy, PHQ,) to be the confounder L, at time ¢ € {b,18} and the set (SDS;, PHQ,) to be the
confounder L at time st. We must recall that the set (PHQp¢, PDQpt, SDSy, ) is empty for ¢t = b. Let PDQ; denote
the exposure, cognitive symptoms at time ¢ € {b, 2, 18, 24}. The set V; is given by the confounder and the exposure at time
t, Vi = (L, PDQ;) and the set V;, is defined by the confounders and the exposures up to time st, Vi, = (L, PDQ,;)
where Ly = (Ly, Lyt) and PDQ,, = (PDQ;, PDQs;).

4.2. Statistical methods

The marginal structural model (MSM) is given by

E (SDSgdthdq”» = B¢+ B1,:pdqr + B2,1pdqst + B3.4pdqipdqst

with the vector B, = (01, 81,1, 02,t, B3,4) for t € {b,18}. Let B, denote the true vector of causal parameter values.

Maltesen et al. [12] define the U(Z;;)-function to be given by U(Z;) = s, {Vi, vy, } — E(SDS§®P:r4:0)) for the
analysis with respect to either Z;; or Zs, for i =1,...,n, and t € {b,18}. See the estimator (10) below. Maltesen
et al. [12] define the m{vy:, &, }-model to be given by

m{ Vs, &} =E(SDSs | PDQg, PHQt, SDS;, PDQy, PHQy)
=£r4 + 6, PHQ + &, PDQy + £3,5DS, + 4 PHQ 4 + §5,1 PDQgt + &6, PDQPHQ,+ (6)
&t PDQy PHQ: + & PDQiPHQ st + 9,4 PDQ o PHQ s + £10,: PDQiPDQ 4

and define the two p-models to be given by

teaAVe, Ve, =E(m{Vir, &} | SDSy, PDQy, PHQy)

(7
=V1ts + N, PHQt + 72,4, PDQt + 73,4, SDSy

and
B Ve ve, b =E (e, (Ve ve,) | PDQy, PHQt, SDSpe, PDQpt, PHQ )

=14, T V1.0 PHQpt + 72,6, PDQpt + 73,6, SDSpt + Va0, PHQy + 75,6, PDQy

since the confounder L, consists of two measurements. All the observed patients having depression severity at baseline
(PHQ)y) are used for the analysis with ¢ = b and all the observed patients having depression severity at month 12
(PHQ:2) are used for the analysis with ¢ = 18. For example, if the missingness of the patient follows a nonmonotone
pattern (see Tsiatis [13] for further information about nonmonotone pattern) then the missingness is forced to follow a
monotone pattern. Maltesen et al. [12] define all the A-models to include only the main effects without any interactions or
quadratic terms. The hazard function A, (G, (Z,)) needs to be modelled five times for » = 1, ..., 5 and the hazard function
M (G (Z13)) needs to be modelled eight times for r = 1, . .., 8. The probability A4 (G4(Z})) is set to 0 and all the vectors of
G4(Zy) are removed from the data because there are too few patients for the estimation. The two probabilities Ay (G 4(Z15))
and \7(G7(Z1s)) are also set to 0 and all the vectors of G4(Z15) and G7(Z1s) are removed from the data because there are
too few patients for the estimation. See Maltesen et al. [12] for further information about how the pattern of missingness
is forced to be monotone and the number of patients with the different vectors of {G¢(Z;),C} or {Ge(Z1s),C} in the
observed data. Let n;, denote the sample size for ¢ = b and that n,; is equal to 929. Let n;5 denote the sample size for
t = 18 and that n;g is equal to 696.

Let My = (SDS;, PHQ;) denote the two mediators for ¢ € {b,18}. Let pdg; be equal to 1 and let pdg; be
equal to 0 for obtaining the interventional direct and indirect effects of PD@); on SDSg. Let pdgs be equal
to 0 and let pdg, also be equal to 0 for obtaining the interventional direct and indirect effects of PD(Q; on
SDSg. Let mj{Usmft} = E(SDSst | PDQs; = pdqse, PHQst = phqse, SDSy = sdsy, PDQy = j, PHQ :Pth) be
defined by the m{vs¢, €, }-model at (6). Let 1 1, {ve, Ve, } = E(mj{Vir, &, } | SDSy = sdsy, PDQy = k, PHQ; = phqy)
be defined by the model at (7) and let pwjp, {ve, Ve, } = Bk, Ve Ve, } | PDQr =1, PHQ: = phqy, SDSpt =

®)

Statist. Med. 0000, 00 1-10 Copyright (© 0000 John Wiley & Sons, Ltd. WWW.sim.org
Prepared using simauth.cls



Statistics
in Medicine T. Maltesen

sdspt, PDQpt = pdqpi, PHQp = phgp) be defined by the model at (8). The estimator for analysing the data of the
PERFORM study is given by

. B 1 & I(Ci :OO)N,;ythl{Vtﬁtl}
0RO =22 N ez
L I(Ci = 1) = MG Zei ) > 1)
. ‘
; K AGH(Z), 9}

©

E (/J‘j,k,ltl{‘/ﬁ‘Ytl} | G (Zt4), Cf):|

z}nd it is used to obtaip the interventional direct effect of PDQ; on SDSy; for t € {b,18} with the estimator ciz?t =
I(pdge, pdg; . pdg; ) — T'(pdg; , pdg; , pdg; ). The interventional indirect effect of PDQ, on SDS; via SDS; fort € {b,18}
is obtained with the estimator @SD& = f‘(pdqt,pdqt*,pdqt) - f‘(pdqt,pdqt*,pdqt*) and the interventional indirect
effect of PDQ; on SDS; via PHQ, for ¢t € {b, 18} is obtained with the estimator z‘;(lz\‘mwmgr = f(pdqt,pdqt,pdqt) —
f‘(pdqt, pdqy, pdg:). The c is either 5 or 8 depending on the value of ¢ € {b,18}. The conditional expectations at (9) are
modelled and afterwards used to predict values according to the different sets of G,.(Z; ;) forr =1,...,candi =1,...,n;

for t € {b,18}. The conditional expectations E(t; 51, {Vs,¥s, } | Gr(Zb), ¢,) for t = b are modelled according to

Bt ke, Vor v, } | Gr(Z), ) forr =1
Wity A Vs Yoy } forr € {2,3,4,5}

and the conditional expectation E(u; k1, {Vs,7s, } | G1(Z5), ¢,) is only modelled with the main effect without any
quadratic terms. The model is afterwards used to predict values. The conditional expectations E(u;,k,115, {Vis: V15, } |

G.(Z1), qg) for t = 18 are modelled according to

B piys, {V1is: V18, | G (Z15),8y) forr € {1,234}
'u'j’leS] {V18’7181} forr € {5,6, 7,8}
and the conditional expectations E(f; k1,5 {V1s, 718, } | Gr(Z1s), 1) for 7 € {1,2,3,4} are only modelled with the
main effects without any interactions or quadratic terms. All the models are afterwards used to predict values. The
DRMSM estimator is compared to the estimator for the simpler sequential mediation formula using complete cases.
The estimator for the simpler sequential mediation formula for the interventional direct effect with two mediators is given
by
fir
diry = a Z (dirJf,pdq;‘,pdq;f {Vf,u;)/} — Hpdg; ,pdq; ,pdq; {VM:Y})
=1
and the two estimators for the simpler sequential mediation formula for the interventional indirect effects via SDS; and
PHQy,; are given by

— 1 &

indirsps, = = g (Updq;,pdq;’ pda A Ve ¥} = Hpda, pda; pda; {Vt,iv’Y})
tim1
and
e
—— 1 N .
indirpnq,, = = § (/‘pdqmpdthdqz{vt.i-,’)’} - /‘pdqt,pdq:,pdqf{vt,i-,'Y})
1t 4
=1

respectively. Let m]‘{’Ust, ét} = E(SDS& | PDQst = pd%u PHQst = thSta SDS& = Sd.S‘t, PDQt = j, PHQt = phqt)
be defined by the m{vy, & }-model at (6). Let pijk,, {ve,vs,} = E(my{Vit, &} | SDS; = sdsy, PDQy = k, PHQ: =
phgy) be defined by the model at (7) and let 1 1, {vt, vy, } = E(pj e, {Vevi,} | PDQy = I, PHQ: = phgy, SD S =
sdspt, PDQpt = pdqpe, PHQp = phgp) be defined by the model at (8). The number 72, denotes the number of complete
cases. The number of complete cases for ¢ = b is equal to (7, =)341 and the number of complete cases for ¢ = 18 is equal
to (7113 =)215. The confidence intervals for both estimators are obtained using 1000 bootstraps.
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4.2.1. Causal effect Maltesen et al. [12] show that the doubly robust DRMGf estimator (Doubly Robust estimator for
Monotone missingness for the G-formula) of the g-formula for analysing the PERFORM study with missing observations
is given by

E SDS(pdqg,dest) _ i i I(Cl = OO):U’M{‘{LD’?}
st Ny w{OO-, Zf,,i-, 1/’}

£y LG =0~ MG DG 2 1)
= K{Gr(Z13), 9}

i=1

10)

E (utl{Vt,'y} | Gr(Zt,i)7ét> ]

when c equal to 5 for ¢t = b and c equal to 8 for ¢ = 18. It is also shown that both the estimator (10) and the estimator for
the simpler g-formula below are asymptotically normally distributed in the situation when 7" is equal to 1 but this can also
be shown for a larger 7'. The estimator uses the three models defined at (6), (7) and (8). The conditional expectations at

(10) have to be modelled and afterwards used to predict values according to the different sets of G,.(Z; ;) forr =1,....c
and i =1,...,n, for t € {b, 18}. The DRMGT estimator is compared to the estimator for the simper g-formula and it is
given by

ny

. dg pdges 1 N

E (SDSE‘? qepad >) = ﬁit E /Ltl{%,iv‘)’t]}
i=1

with the three models given at (6), (7) and (8). These three models are used for the estimation and the prediction. The
number 7; denotes the number of complete cases (7, = 341 and n15 = 215). The confidence intervals for both estimators
are obtained using 1000 bootstraps.

4.3. Results

The results of the causal effects are presented first followed by the results of the mediated effects. Table 1 shows
the estimates of the causal effects B, = (81, 1.1, 82,1, 83,1) for t € {b,18} and Table 2 shows the estimates of the
interventional direct effect and the interventional indirect effects with the two mediators. The coefficient 3 ; corresponds
to the expected score of functional impairment for patients having no or minimal cognitive symptoms at both visits for
t € {b,18}. The coefficient /31 ; corresponds to the causal effect of cognitive symptoms on functional impairment at a
later time for time ¢ € {b, 18}. The coefficient /3, ; corresponds to the causal effect of cognitive symptoms on functional
impairment at the same time. The coefficient 83 ; corresponds to the causal effect of the interaction between the two
cognitive symptoms at the two time points for ¢ € {b, 18}. The estimated effect of 1 ; for ¢ € {b, 18} is the main interest
because the causal paths between PDQ, and SDS;, for ¢ € {b, 18} are the only causal paths containing mediators. The
two mediators are SDS; and PH Q). Both Tables show the results for the early (t=b) and the later (t=18) time points with
the standard errors and the confidence intervals.

G-formula DRMGf
Analysis Effect SE 95%-CI Effect SE 95%-CI
Brp 90.588 1.243 (7.152;12.025) 9.880 1.233 (7.463;12.297)
Bip 4.165 2.021 (0.204;8.126)  3.791 1.892  (0.083; 7.500)

Z Ba.b 3.566 2.026 (-0.404;7.536) 3.611 2.076 (-0.458;7.679)
Bap  -1.848 2613 (-6.969;3.272) -1.805 2.539 (-6.781;3.171)
Bris 8238 1.225 (5.837;10.638) 9.031 1.290 (6.504;11.559)
Zis Bias  0.198 1.537 (-2.815;3.212) 0427 1.603 (-2.714;3.568)

B21s  -0.322 1422 (-3.108;2.465) -0.413 1.595 (-3.540;2.714)

8318 2986 1.490 (0.066;5906)  3.024 1.502  (0.080;5.969)

Table 1. The G-formula column shows the estimates obtained using the estimator for the simpler g-formula and the
DRMGf column shows the estimates obtained using the DRMGH estimator. The Analysis column shows the analysis of
the data with respect to either Z;, or Z;g. The Effect column shows the estimated effects. The SE column shows the
standard errors for the estimates. The standard error is obtained using 1000 bootstraps. The 95%-CI column shows the
confidence intervals for the estimates.

Both estimators provide almost the same estimates for the early and the later time points. The two estimators suggest that
patients with cognitive symptoms at both visits have worse functioning than patients with no or with minimal cognitive
symptoms at both visits. Maltesen et al. [12] have shown that the estimator for the simpler g-formula and the DRMGf
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estimator will provide similar results. It is most likely caused by the included covariates that are poor at predicting drop-out
that generate the pattern of monotone missingness in the data.

Seq. mediation formula DRMSM
Analysis  Interventional Effect SE 95%-CI Effect SE 95%-CI

diry, 1.385 1.711 (-1.968;4.739) 1392 1.762 (-2.062 ; 4.846)

7 indirsps, 2490 0.705 (1.109;3.870)  2.461 0.610 (1.266;3.657)

b indirppq, 0290 0.870 (-1.416;1.995) -0.062 0.777 (-1.584;1.461)
The overall effect ~ 4.165 2.021  (0.204;8.126)  3.791 1.892  (0.083 ; 7.500)

dirg -1.741 1.180 (-4.054;0.573) -1.771 1.309 (-4.338;0.795)

7 indirsps,, 0.318 0.370 (-0.408;1.043) 0.680 0.404 (-0.112;1.472)
18 indirprQ.,, 1.621 0.942 (-0.224;3.467) 1.518 0.897 (-0.240;3.277)

The overall effect  0.198 1.537 (-2.815;3.212) 0427 1.603 (-2.714;3.568)
Table 2. The Seq. mediation formula column shows the estimates obtained using the estimator for the simpler sequential
mediation formula and the DRMSM column shows the estimates obtained using the DRMSM estimator. The dir; row is
the direct effect for ¢ € {b,18}. The indirgps, row is the indirect effect via SDS; for ¢t € {b, 18}. The indirppq,, TOW is
the indirect effect via PHQ, for t € {b, 18}. The Interventional column shows the direct effect, indirect effects and the
overall effect. See Table 1 for the description of the Analysis, Effect, SE and 95%-CI columns.

The results from the mediation analysis do not show a large difference between the two estimators. This is not surprising
that the two estimators provide almost similar results since it is most likely caused by the included covariates that are
poor at predicting drop-out. Despite the similar results with the two estimators, the results from the mediation analysis
are slightly more surprising than the results from the estimation of the causal effects in Table 1. The results show a
small difference between the two estimators in estimating the interventional indirect effects. The difference between the
estimator for the simpler sequential mediation formula and the DRMSM estimator is more pronounced compared to the
difference between the estimator for the simpler g-formula and the DRMGf estimator.

The negative sign of the coefficient of the direct effect appears counter-intuitive. It indicates that patients with cognitive
symptoms are more likely to directly improve their functional impairment at a later time compared to patients with no
or with minimal cognitive symptoms. I would have expected the opposite. However, the negative sign of the analysis
with ¢ = 18 may be caused by many patients after 18 months who are doing well. The room for improvement among
the patients is smaller, and we then see the effect that patients with cognitive symptoms are more likely to improve their
functioning compared to patients with no or with minimal cognitive symptoms since the scales have a lower finite limit.

I know from the simulation study in Maltesen et al. [12] that stronger predictors for the missing mechanism will create
a larger difference between the two estimators. A simulation study will also be conducted here for further exploration of
handling missing data due to drop-out and the interpretation of the data. This is explored in the simulation study in the
next Section.

5. Simulation study

The purpose of the simulation study is to investigate the DRMSM estimator with similar data as the PERFORM study
but the probabilities of the missingness mechanism will be more extreme compared to the missingness mechanism in the
PERFORM study. The simulation study is the same one used in Maltesen et al. [12]. It is based on the first two vectors of
the PERFORM study (W}, W>). The sample size of the data is 1000 and the data are replicated 5000 times. See Maltesen
et al. [12] for further information about the simulation study. Table 3 shows the results of the estimation with respect to the
estimator for the simpler sequential mediation formula and the DRMSM estimator. The models in Section 4.2 for ¢t = b
are used for the estimation of the interventional direct and indirect effects of the simulated data. The simulation study is
evaluated by the mean of the 5000 estimates of ) = (diry, indirspg, , indir prq,, Overall), the empirical standard error
(SE) of the 5000 estimates of 7, the absolute value of bias (the difference between the empirical mean and the true value),
the ratio between the absolute value of bias and SE scaled 100 times and the mean squared error (MSE) [12].

Table 3 shows the expected discrepancy between the estimator for the simpler sequential mediation formula and my
DRMSM estimator. It is clear that my DRMSM estimator protects against biased estimates compared to the estimator for
the simpler sequential mediation formula. The estimator for the simpler sequential mediation formula shows weakness
in estimating the mediated effects. My DRMSM estimator should be used for estimating the mediated effects when data
contains missing observations that follow a monotone pattern. The price for using my estimator may result in larger
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Estimator Interventional True Mean SE  Bias % 100 MSE
diry 1402 1.076 1.386 0.326 23.521 2.029

Seq. mediation formula indirsps, 2473 2391 0.655 0.083 12.642 0.436
4 indirpeQ, -0.107 -0.201 0.740 0.094 12.652 0.557
Owverall 3769 3266 1.622 0.503 30.977 2.885

diry 1402 1436 1.991 0.034 1.695 3.999

indirsps, 2473 2478 0497 0.004 0.862 0.251

DRMSM indirpro, -0.107 -0.116 0.683 0.009 1.315 0.476
Owerall 3769  3.798 2.096 0.029 1.386 4.422

Table 3. Let 1 denote the vector (diry, indirsps,,indir prq,, Overall). The Seq. mediation formula row shows the
estimates obtained using the estimator for the simpler sequential mediation formula. The DRMSM row shows the estimates
obtained using the DRMSM estimator. The Interventional column shows the direct effect (diry), the indirect effects
(indirsps, and indir pp,) and the overall effect (Overall). The True column shows the true effects. The Mean column
is the mean of the 5000 estimates of 7). The SE column is the standard error of the 5000 estimates of 7). The Bias column
shows the absolute value of the difference between the empirical mean and the true value. The % 100 column is the ratio
between the absolute value of bias and the standard error scaled 100 times. The MSE column is the mean square error
obtained by Bias® + SE?.

standard errors in order to obtain unbiased estimates. The interpretation of Table 3 is that the missing observations in the
data need to be addressed in mediation analysis otherwise mistakes may happen.

6. Discussion

This manuscript was motivated by the PERFORM study to develop a doubly robust estimator (DRMSM) for estimating
the mediated effects of the exposure on the outcome while data contains missing observations that follow a monotone
pattern. The proposed estimator was applied to the PERFORM study with patients suffering depression. My DRMSM
estimator was compared to the estimator for the simpler sequential mediation formula, which did not take the missing
data into account. The similarities in the estimates in the example are most likely caused by the included covariates
that are poor at predicting drop-out. Thereby, the robustness of my DRMSM estimator was not shown in the results
of the PERFORM study. However, the simulation study revealed that if the included covariates are strong at predicting
drop-out, then the estimator for the simpler sequential mediation formula is biased, while my DRMSM estimator is not.
My DRMSM estimator shares the same advantages, disadvantages and limitations as the DRMGf estimator. This means
that my DRMSM estimator utilizes data better than an estimator using only complete cases. The missing at random
assumption needs to be addressed, but an analysis only with complete cases relies on the assumption that the missingness
is missing completely at random. This is less plausible than missing at random. The assumption regarding monotone
missingness also needs to be addressed because the assumption does not allow data to have intermittent missing values.
The assumption regarding an ordered sequence of variables is sometimes a natural assumption. The causal ordering of
variables in the PERFORM study is only partially clear, as the causal ordering of the variables between the different time
points is introduced by time itself. However, the assumption of the order between the three different domains within the
same time point is not clear because the three domains were measured at the same time points at six occasions over two
years. The assumption of the causal ordering between the three different domains within the same time points had to be
made based on clinical insight such as a change in depression severity causing a change in cognitive performance, which in
turn causes a change in functioning. The interpretation of the results hinges on these assumptions and yet the assumptions
cannot be verified in the data [12]. Further research could be to extend the DRMSM estimator to also include vectors in
the data that follow a nonmonotone pattern.
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