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Abstract

The motivation of this thesis is the observational cohort study called Prospective Epidemiological

Research on Functioning Outcomes Related to Major depressive disorder (PERFORM) since we

are interested in the causal effect of cognitive symptoms (exposure) on functional impairment

at a later time (outcome). This PhD thesis consists of three manuscripts and each manuscript

contains an analysis of the PERFORM study. The PERFORM study is introduced in Chapter

1.

In Chapter 2, we introduce to causal inference. We consider the g-formula and the inverse

probability weights to estimate the causal effect in the presence of time-dependent confounding

for longitudinal data. We list the assumptions that we need to assume to identify the causal

effect of cognitive symptoms on functional impairment at a later time. We consider two esti-

mators for the g-formula and the inverse probability weighted estimator. Chapter 2 consists

only of existing methods from the literature.

We consider mediation analysis in Chapter 3 because we want to estimate the direct effect of

cognitive symptoms on functional impairment at a later time. We propose with Manuscript II a

new definition of sequential mediation for the interventional direct effect and the interventional

indirect effects for multiple mediators. We obtain the overall effect to be equal to the total

causal effect using our new definition. The new definition is shown in Chapter 3.

We consider data containing missing observations in Chapter 4. Patients tend to drop-out

of studies. It applies for observational studies as well as interventional studies. This will cause

data to contain missing observations. We could reduce the data to a subset of fully observed

patients but this may result in biased estimates. We propose a doubly robust estimator in

Manuscript I for the g-formula when the data contains missing observations. The estimator is

unbiased even if the models relating to the missingness mechanism in the data are misspecified.

The models relating to the missingness mechanism may be misspecified since the knowledge of

the models may be unknown. We also propose a doubly robust estimator in Manuscript III for

sequential mediation for multiple mediators when the data contains missing observations. The

two estimators are shown in Chapter 4.

In Chapter 5, we analyse the data of the PERFORM study that were not shown in the three

manuscripts. The reason for the additional analysis of the PERFORM study is to connect

the dots between the two time points that are shown in Manuscript I and Manuscript III. We

iii



compare our new estimators from Chapter 4 to other existing estimators from the literature.

In Chapter 6, we finalize the thesis with a discussion of our findings.

The PERFORM study was used as an example in this thesis. The estimators that have been

developed in this thesis can be applied to a longitudinal data with repeated measurements and

monotone missingness. We have shown a list at page 51 of the abbreviations that we have used

in this thesis.
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Resumé

Motivationen for denne afhandling kommer fra observationsstudiet Prospective Epidemiological

Research on Functioning Outcomes Related to Major depressive disorder (PERFORM), da vi

er interesseret i at estimere den kausale effekt af kognitive symptomer (exposure) p̊a funktion-

snedsættelse til et senere tidspunkt (outcome). Denne afhandling indeholder tre manuskripter

og hvert manuskript indeholder en analyse af PERFORM studiet. Studiet PERFORM er in-

troduceret i kapitel 1.

Vi introducerer i kapitel 2 til kausal inference, hvor vi betragter g-formlen og de inverse

sandsynlighed vægte justeret for tidsafhængig confounding for longitudinelt data. Vi opskriver

antagelserne, som vi er nødt til at antage for at kunne identificere den kausale effekt af kognitive

symptomer p̊a funktionsnedsættelse til et senere tidspunkt. Vi betragter to estimatorer for g-

formlen og estimatoren for de inverse sandsynlighed vægte i kapitel 2. Kapitlet indeholder kun

eksisterende metoder fra litteraturen.

Vi betragter mediation analyse i kapitel 3, da vi er interesseret i den direkte effekt af kognitive

symptomer p̊a funktionsnedsættelse til et senere tidspunkt. I Manuskript II foresl̊ar vi en ny

definition af sekventiel mediation for den interventionale direkte effekt og de interventionale

indirekte effekter for multiple mediatorer. Vi kan med den nye definition opn̊a at den samlet

(overall) effekt er lig med den totale kausale effekt. Den nye definition er vist i kapitel 3.

I kapitel 4 betragter vi data, som ikke er fuldt observeret. Patienter har en tendens til at

droppe ud af studier. Det gælder b̊ade for observationsstudier og interventionsstudier og det

bidrager til manglende observationer i data. Vi kunne reducere data til kun fuldt observeret

patienter, men det kan måske resultere i ikke-centrale (biased) estimater. Vi foresl̊ar en dobbelt

robust estimator i Manuskript I for g-formlen n̊ar data mangler observationer. Den nye estima-

tor er robust i tilfælde af at man skulle vælge de forkerte modeller for mekanismen, som skaber

de manglende observationer. Man kan komme til at vælge de forkerte modeller for mekanis-

men, som skaber de manglende observationer, da man måske ikke kender dem p̊a forh̊and. Vi

foresl̊ar ogs̊a en dobbelt robust estimator i Manuskript III med den nye definition af sekventiel

mediation n̊ar data ikke er fuldt observeret. De to nye estimatorer er vist i kapitel 4.

I kapitel 5 analyser vi resten af PERFORM studiet, som ikke blev vist i de tre manuskripter.

De ekstra analyser af PERFORM studiet er lavet, fordi vi vil forbinde de to tidspunkter, som

er vist i Manuskript I og Manuskript III. Vores nye estimatorer fra kapitel 4 sammenlignes med

v



eksisterende estimatorer fra litteraturen. Kapitel 6 afslutter afhandlingen med en diskussion af

vores fund.

Vi har brugt PERFORM studiet, som et eksempel. Estimatorne, som er blevet udviklet i

denne afhandling, vil ogs̊a kunne bruges til at analysere andre studier. Data kan være longi-

tudinelt med gentagende målinger og manglende observationer. P̊a side 51 finder man en liste

over de forkortelser, som vi har brugt i denne afhandling.
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1 | Introduction

Major depressive disorder (MDD) is a multidimensional disease characterised by emotional,

physical and cognitive symptoms. Treatment of cognitive symptoms may hold the key to

achieving functional recovery in patients with MDD and the relationship between cognitive

symptoms and functional impairment is not well understood (Chokka et al. (2019)). The

Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive

disorder (PERFORM) study was conducted to better understand the course of a depressive

episode and its impact on patient functioning in outpatients with MDD. The PERFORM study

describes the course of functional impairment, perceived cognitive symptoms and depression

symptoms over two years in outpatients with MDD (Hammer-Helmich et al. (2018)). The work

in this thesis is motivated by the PERFORM study. We are interested in the effect of cognitive

symptoms on functional impairment at a later time. The g-formula is needed to estimate

the causal effect of the time-varying exposure (cognitive symptoms) in the presence of time-

dependent confounding (Robins (1986); Daniel et al. (2013)). Mediation analysis is also needed

because we have assumed that the causal effect of cognitive symptoms on functional impairment

at a later time contains one direct path and three indirect paths. We are interested in estimating

the direct effect of cognitive symptoms on functional impairment at a later time. Methods for

adjusting time-dependent confounding and estimating the direct and indirect effects already

exists in the literature. Methods for working with data containing missing observations exist

in the literature too. However, none of the existing methods can be used for our data. See the

three manuscripts (Manuscript I, Manuscript II and Manuscript III) for the different methods

and the reason for why the existing methods do not work for our data.

1.1 The aim

The aim of this thesis is to develop an estimator to analyse longitudinal data with time-

dependent confounding and missing observations that follow a monotone pattern. We also

want to develop an estimator for mediation analysis for multiple mediators so that the overall

effect is equal to the total causal effect while data contains missing observations that follow

a monotone pattern. To the best of our knowledge the two estimators do not exist in the

literature. The importance of the two estimators is that they utilize data better and reducing

bias of the estimates compared to estimators using only complete cases. The assumption about
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Chapter 1. Introduction

the missing observations for our two estimators is less strict compared to estimators using only

complete cases.

1.2 The PERFORM study

The patients in the PERFORM study were either starting their first course of antidepressant

monotherapy or undergoing their first switch of antidepressant. The patients were enrolled by

a general practitioner or a psychiatrist. All the patients have been measured on three self-

reported scales (Sheehan Disability Scale, Perceived Deficit Questionnaire and Patient Health

Questionnaire) at six time points. The patients have a baseline and they have been measured

again after 2, 6, 12, 18 and 24 months since baseline. Data were collected in five European coun-

tries: France, Germany, Spain, Sweden and United Kingdom. Eligible patients had a current

diagnosis of MDD. Participation in the study was independent of the choice of antidepressant

prescribed to the patient.

The Sheehan Disability Scale (SDS). The scale was used to measure the patient’s func-

tional impairment. The Sheehan Disability Scale assesses the functional impairment over the

previous seven days. The scale consists of three items and the scale covers: work/school, social

life/leisure activities and family life/home duties. Each item ranges from 0 to 10 with a global

score ranging from 0 to 30. The global score of functional impairment at 0 corresponds to be

unimpaired and the global score at 30 corresponds to be highly impaired. The score of SDS is

categorised as follows: 0− 5 corresponds to minimal functional impairment, 6− 11 corresponds

to mild functional impairment, 12 − 20 corresponds to moderate functional impairment and

21 − 30 corresponds to moderately functional impairment (The categories were introduced at

the 2019 ECNP Congress (Llora et al. (2019))).

The Perceived Deficit Questionnaire (PDQ-5). The scale was used to measure the

patient’s cognitive symptoms: memory, concentration and executive function over the past

four weeks (we suppress the ”-5” in the name of the scale PDQ-5 to simplify the notation).

The scale consists of five items with each item ranging from 0 to 4 with a global score ranging

from 0 to 20. A higher score of PDQ corresponds to the patient suffers greater severity of their

cognitive symptoms.

The Patient Health Questionnaire (PHQ-9). The scale was used to measure depression

severity of the patient (we suppress the ”-9” in the name of the scale PHQ-9 to simplify the

notation). The scale consists of nine items with each item ranging from 0 to 3 with a global

score ranging from 0 to 27. The global score at 0 corresponds to absence of depression and the

global score at 27 corresponds to severe depression. The score of PHQ is categorised as follows:

0− 4 corresponds to none or minimal depression, 5− 9 corresponds to mild depression, 10− 14

2



1.2. The PERFORM study

corresponds to moderate depression, 15− 19 corresponds to moderately severe depression and

20− 27 corresponds to severe depression (Kroenke and Spitzer (2002)). See Hammer-Helmich

et al. (2018) for further information about the PERFORM study.

We assume in Manuscript I that depression severity (PHQ) affects both cognitive symptoms

(PDQ) and functional impairment (SDS) and that cognitive symptoms affect functional im-

pairment. We also assume in Manuscript I that all the present measurements affect all the

future measurements at the next time point and all the present measurements do not affect

the past measurements (Haro et al. (2019)). Let t denote the time point. Let t = b denote

the baseline, and let t be equal to 2, 6, 12, 18 and 24 (months) which denotes the measure-

ment time points since baseline. Let SDSt denote the functional impairment at time t. Let

PDQt denote the cognitive symptoms at time t. Let PHQt denote the depression severity at

time t. Let Wt denote the vector of all three measurements at time t ∈ {b, 2, 6, 12, 18, 24},

Wt = (PHQt, PDQt, SDSt). The process is indicated by the Directed Acyclic Graph (DAG)

in Figure 1.1 with all six time points over the two years.

SDSb SDS2

PDQb PDQ2

PHQb PHQ2 PHQ6

PDQ6

SDS6 SDS12 SDS18

PDQ12 PDQ18

PHQ12 PHQ18 PHQ24

PDQ24

SDS24

Figure 1.1: Let SDSt denote the functional impairment at time t ∈ {b, 2, 6, 12, 18, 24}. Let
PDQt denote the cognitive symptoms at time t ∈ {b, 2, 6, 12, 18, 24}. Let PHQt denote the
depression severity at time t ∈ {b, 2, 6, 12, 18, 24}. Let t = b denote the baseline, and let t

be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points since
baseline.

We let pt denote the prior time point before time t and we let st denote the subsequent time

point after time t. An example: if t is equal to b (the time point is baseline) then pt does not

exist and st is equal to 2. If t is equal to 18 then pt is equal to 12 and st is equal to 24. See

Manuscript I for further information.

Patients in both observational studies and interventional studies tend to drop-out which

means that the data contains missing observations. The analysis of a longitudinal study with

repeated measurements and time-dependent confounding may be complicated when data con-

tains missing observations. The PERFORM study has substantial many missing observations

besides time-dependent confounding and mediated effects. Table 1.1 shows the numbers of the

observed patients for each scale at each time point.

Table 1.1 shows that the number of patients with fully observed vectors will decrease when

we combine the three different scales across the same time point. For example, the three scales

at baseline (t = b) have at least/minimum 750 patients who have answered on each scale but

3



Chapter 1. Introduction

Time points
Scale b 2 6 12 18 24

Sheehan Disability Scale (SDS) 750 607 586 554 486 458
Perceived Deficit Questionnaire (PDQ) 770 714 644 654 580 564
Patient Health Questionnaire (PHQ) 940 805 740 701 638 604
Fully observed vectors across the time point (W ) 564 474 458 450 399 379

Table 1.1: The Scale column shows the three different scales. The different numbers in the six
columns: b, 2, 6, 12, 18 and 24 represent the number of patients who have an observation for
a specific time point and a scale. The Fully observed vectors across the time point (W ) row
shows the number of patients who have all three scales observed at the same time point.

only 564 patients have answered all three scales at the same time point. The Table also shows

that the number of patients with fully observed vectors will decrease when we combine different

time points since the numbers of Wt decrease over the six time points. See a similar Table in

Haro et al. (2019).
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2 | The causal effect

Section 2.1 introduces causal inference and the assumptions for identifying the causal effect

for one binary exposure. Section 2.2 considers the g-formula with a time-varying exposure in

the presence of time-dependent confounding. Section 2.3 shows three estimators for estimating

a time-varying exposure (binary) in the presence of time-dependent confounding. Section 2.4

and Section 2.5 (based on the PERFORM study) show two different simulation studies. The

two simulation studies are used to compare the three different estimators to each other.

2.1 One exposure

Let L, A and Y be observed. Let Y denote the continuous outcome variable. Let A denote a

binary exposure (A = 1 is exposed and A = 0 is un-exposed). Let Y a be the potential outcome

that would have been observed if A is set to a (Rubin (1978)). The variable Y a=1 defines the

outcome Y that would have been observed if the subject had been exposed. The variable Y a=0

defines the outcome Y that would have been observed if the subject had been un-exposed. The

exposure A has a causal effect on the subject if Y a=1 �= Y a=0. The average causal effect for the

exposed is not null if E(Y a=1) �= E(Y a=0). The assumptions to identifying the causal effect

are: exchangeability, positivity and consistency. The assumption exchangeability states that:

Y a ⊥⊥ A for all a ∈ A. We assume that some will be exposed and some will be un-exposed with

the positivity assumption given by P (A = a) > 0 for all a ∈ A. The consistency assumption is

given by

if A = a then Y
a = Y

A = Y. (2.1)

We assume with the assumption that the observed outcome Y is equal to the potential outcome

Y a when the observed exposure A is equal to a. Let L be a potential confounder. Let the

exposure A and the outcome Y share a cause L. The conditional exchangeability is given by

Y
a ⊥⊥ A | L (2.2)

for all a ∈ A. The assumption states that the potential outcome is independent of the observed

exposure given the measured confounder. The assumption is not equal to Y ⊥⊥ A | L. Unmea-

sured confounding between the exposure and the outcome may bias the estimation of the true

5



Chapter 2. The causal effect

causal effect (Ding and VanderWeele (2015)). The assumption for positivity is given by

0 < P (A = a | L = l) < 1. (2.3)

for all l ∈ L with P (L = l) > 0. Unfortunately, the two assumptions (2.1) and (2.2) are

untestable on the observed data (Robins et al. (2000); Cole and Hernán (2008); Cole and

Frangakis (2009); VanderWeele (2009c); Pearl (2009, 2010)).

The marginal structural model (MSM) with one binary exposure A may be given by E(Y a) =

βI + β1a. The coefficient βI denotes the average causal effect for the un-exposed and the sum

of the two coefficients βI and β1 denotes the average causal effect for the exposed (Hernán and

Robins (2017)). The g-formula (Robins (1986)) with one exposure is given by

E (Y a) =

∫
L

E(Y a | L = l)fL(l)dl (2.4)

=

∫
L

E(Y a | A = a, L = l)fL(l)dl (2.5)

=

∫
L

E(Y | A = a, L = l)fL(l)dl. (2.6)

We use the conditional exchangeability assumption (2.2) to obtain the equation at (2.5) from

(2.4) and we use the consistency assumption (2.1) to obtain the equation at (2.6) from (2.5).

The inverse probability weight (IPW) with one binary exposure is given by

E (Y a) =

∫
L

E(Y | A = a, L = l)fL(l)dl

=

∫
L

∫
Y

yfY |L,A(y | l, a)dyfL(l)dl

=

∫
Y×L

y
I(A = a)

fA|L(a | l)
fY,L,A(y, l, a)d(y, l)

where fA|L(a | l) is the probability for receiving the exposure A given L (Robins et al. (2000)).

The last equality is only true if assumption (2.3) holds.

Studies may have repeated measurements. It applies for both observational studies and

interventional studies. The next Section considers the g-formula for estimating the causal

effect of a time-varying exposure in the presence of time-dependent confounding in longitudinal

studies with repeated measurements.

2.2 Time-varying exposure

Suppose that our data comprises of n independent and identically distributed (iid) realization,

Z1, . . . , Zn. Let Zi denote an ordered sequence (L0,i, A0,i, . . . , LT,i, AT,i, Yi). We suppress the

6



2.2. Time-varying exposure

index i to simplify the notation. Let Y denote the continuous outcome variable and the variable

is measured at time T + 1. Let At denote the exposure at time t ∈ {0, . . . , T}. Let Lt denote

the measured potential confounders at time t ∈ {0, . . . , T}. Let AT denote the vector of all

exposures up to time T , AT = (A0, . . . , AT ). Let LT denote the vector of all measured potential

confounders up to time T , LT = (L0, . . . , LT ). Let aT denote the vector (a0, . . . , aT ) and let

lT denote the vector (l0, . . . , lT ). See Manuscript I for further information. Let the potential

outcome Y aT be the outcome that would have been observed if the vector AT is set to aT . The

outcome Y may be causally influenced by the whole history of AT and LT . See the DAG in

Figure 2.1. See a similar DAG in Daniel et al. (2013). If the potential confounders LT are

ignored in the analysis then may the effect of AT on Y be confounded (Robins et al. (2007);

Lok and DeGruttola (2012); Robins and Wasserman (2013); Daniel et al. (2013); Vansteelandt

and Sjolander (2016); Keogh et al. (2018)).

L0 L1 L2 L3
. . . LT

A0 A1 A2 A3
. . . AT

Y

Figure 2.1: Let At denote the exposure at time t, let Lt denote the measured potential con-
founders at time t and let Y denote the continuous outcome variable.

The consistency assumption for T + 1 exposures is given by

Y aT = Y if AT = aT ;L
at−1

t = Lt if At−1 = at−1 (2.7)

for time t ∈ {0, . . . , T}. The conditional exchangeability for a time-varying exposure in the

presence of time-dependent confounding is given by

Y aT ⊥⊥ At | Lt, At−1 (2.8)

for all aT ∈ AT for all t ∈ {0, . . . , T}. The positivity assumption for a time-varying exposure

in the presence of time-dependent confounding is given by

0 < fAt|Lt,At−1
(at | lt, at−1) < 1 (2.9)

for all lt, at−1 ∈ Lt, At−1 with 0 < fLt,At−1
(lt, at−1) for t = 0, . . . , T with probability one.

The g-formula (Robins (1986)) for a time-varying exposure in the presence of time-dependent

confounding is given by

E
(

Y aT
)

=

∫

L

E(Y | AT = aT , LT = lT )
T
∏

t=0

fLt|Lt−1,At−1
(lt | lt−1, at−1)dlt (2.10)

7



Chapter 2. The causal effect

with the set (L−1, A−1) as the empty set. The inverse probability weights for a time-varying

exposure in the presence of time-dependent confounding is obtained by rewriting (2.10) to

E
(

Y aT
)

=

∫

Y×L

y

T
∏

t=0

{

I(At = at)

fAt|Lt−1,At−1
(at | lt−1, at−1)

}

fY,LT ,AT
(y, lT , aT )d(y, lT ). (2.11)

The weight for receiving the exposure At given Lt−1 and At−1 will become large if the probability

fAt|Lt−1,At−1
(at | lt−1, at−1) in the denominator is close to zero while the assumption (2.9) holds.

This can lead to a biased estimate. Stabilized inverse probability weights are sometimes used

instead to avoid the possibility that the weights explode. See Daniel et al. (2013) for further

information. The MSM may be given by E (Y aT ) = βa⋆T with β as the row vector of causal

parameter values and the vector has the same length as the column vector a⋆T . The column

vector a⋆T contains the value 1 for the intercept βI , all the exposures and all the possible

interactions between the different exposures. It is exemplified in Section 2.4.

2.3 Three estimators for estimating the causal effect

We show three estimators for estimating E(Y aT ). Let Vt denote the vector (Lt, At) and vt =

(lt, at). Manuscript I defines an estimator Ê(Y aT ) for E(Y aT ) (at (2.10)) to be given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

µ{V0,i, γ̂} (2.12)

with m{vT , ξ} = E(Y | LT = lT , AT = aT ), µ{vT−1,γ} = E(m{VT , ξ} | LT−1 = lT−1, AT−1 =

aT−1) and µ{vt,γ} = E(µ{Vt+1,γ} | Lt = lt, At = at). The last model is given by µ{v0,γ} =

E(µ{V1,γ} | L0 = l0, A0 = a0). We refer to the m{vT , ξ}-model and all the µ{vt,γ}-models

for t ∈ {0, . . . , T} as the µ-models. All the µ-models in (2.12) have hats to indicate predicted

values from the specified µ-models that have been used for the estimation and the predicted

values are plugged into the estimator. Let m̂(VT ) denote the m{VT , ξ̂}-model and let µ̂(Vt)

denote the µ{Vt, γ̂}-model for t ∈ {0, . . . , T} to simplify the notation. Let m(vT , ξ0) denote the

true model with the vector of true parameter values ξ0 and let µ{vt,γ0} denote the true model

with the vector of true parameter values γ0 for t ∈ {0, . . . , T}. We show in the Appendix in

Manuscript I that the estimator (2.12) is asymptotically normally distributed in the situation

when T is equal to 1. The estimator Ê(Y aT ) solves the estimating equation 0 =
∑n

i=1
U(Zi)

with

U(Zi) = µ{V0,i,γ0} − E
(

Y aT
)

. (2.13)

The µ{Vt,γ}-model can be extended if the confounder Lt is multivariate. Section 2.4 shows

an example where the confounder is multivariate consisting of two variables. The estimator

(2.12) is unbiased if the µ-models are correctly specified. The estimator (2.12) is obtained by

a series of iterated conditional expectations (Kreif et al. (2017)). See Manuscript I for further

information.
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2.3. Three estimators for estimating the causal effect

The IPW estimator: The inverse probability weighted (IPW) estimator Ê(Y aT ) for E(Y aT )

(at (2.11)) is given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

Yi

T
∏

t=0

I(at)

π{Vt,i, α̂}
(2.14)

with π{vt,α} = π(At = at | Lt = lt, At−1 = at−1) which denotes the probability for the

exposure At is equal to at given Lt and At−1 for t ∈ {0, . . . , T}. The indicator I(At = at) is

denoted by I(at) for t ∈ {0, . . . , T}. We refer to all the π{vt,α}-models for t ∈ {0, . . . , T} as

the π-models. All the hats in (2.14) indicate predicted values from the specified π-models that

have been used for the estimation and the predicted values are plugged into the estimator. Let

π{vt,α0} denote the true model with the vector of true parameter values α0 for t ∈ {0, . . . , T}.

The estimator (2.14) is unbiased if the π-models are correctly specified. The estimator (2.14)

solves the estimating equation 0 =
∑n

i=1
UIPW (Zi) with

UIPW (Zi) = Yi

T
∏

t=0

I(at)

π{Vt,i,α0}
− E

(

Y aT
)

. (2.15)

The doubly robust estimator: Bang and Robins (2005) show an augmented inverse prob-

ability weighted estimator of the g-formula with a time-varying exposure in the presence of

time-dependent confounding. The doubly robust estimator Ê(Y aT ) for E(Y aT ) is given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

[

Yi

T
∏

t=0

I(at)

π{Vt,i, α̂}
+

T
∑

t=0

t−1
∏

k=0

I(ak)

π{Vk,i, α̂}

(

1−
I(at)

π{Vt,i, α̂}

)

µ{Vt,i, γ̂}

]

(2.16)

with µ{vt,γ} = E(m{Vt+1, ξ} | Lt = lt, At = at) and π{vt,α} = π(At = at | Lt = lt, At−1 =

at−1). See the estimator (2.12) for further information about the µ{vt,γ}-models and see the

estimator (2.14) for further information about the π{vt,α}-models. The indicator I(At = at) is

denoted by I(at) for t ∈ {0, . . . , T}. Let I(a
−1)π{V−1,α}−1 = 1. All the hats in (2.16) indicate

predicted values from the specified µ-models and the specified π-models that have been used for

the estimation and the predicted values are plugged into the estimator. The estimator (2.16)

is unbiased if either the µ-models or the π-models are correctly specified. Table 2.1 shows

the different combinations of the µ-models and the π-models to obtain an unbiased estimator.

Let m(VT ) denote the true m{VT , ξ0}-model with the vector of true parameter values ξ0 and

let µ(Vt) denote the true µ{Vt,γ0}-model with the vector of true parameter values γ0 for

t ∈ {0, . . . , T} to simplify the notation. Let π(Vt) denote the true π{Vt,α0}-model with the

vector of true parameter values α0 for t ∈ {0, . . . , T} to simplify the notation. The estimator

(2.16) solves the estimating equation 0 =
∑n

i=1
UAIPW (Zi) with

UAIPW (Zi) = Yi

T
∏

t=0

I(at)

π(Vt,i)
+

T
∑

t=0

t−1
∏

k=0

I(ak)

π(Vk,i)

(

1−
I(at)

π(Vt,i)

)

µ(Vt,i)− E
(

Y aT
)

. (2.17)

9



Chapter 2. The causal effect

Let ΥT (Zi) be given by

ΥT (Zi) =
T
∑

t=0

t−1
∏

k=0

I(ak)

π(Vk,i)

(

1−
I(at)

π(Vt,i)

)

µ(Vt,i).

We show in Appendix A that E(ΥT (Z)) is equal to zero. We also show in Appendix A that the

estimator (2.16) is unbiased when either the µ-models or the π-models are correctly specified.

µ Correct Wrong
π Correct Wrong Correct Wrong

Unbiased ✔ ✔ ✔ ✗

Table 2.1: The combinations of the µ-models and the π-models for the estimator (2.16). The
Unbiased row shows if the estimator is unbiased or biased. The estimator is unbiased with the
combination of the models denoted by ✔. The estimator is biased with the combination of the
models denoted by ✗. The Correct column and the Wrong column indicate if the µ-models and
the π-models are correctly specified or misspecified.

We notice that the first part of the estimator (2.16) is the inverse probability weighted

estimator. The estimator (2.16) has the advantage that some of the included models are

allowed to be misspecified compared to the estimator (2.12) and the IPW estimator (2.14).

However, the estimator (2.16) may also inherit the unstable weights from the IPW estimator.

2.4 Simulation study

The marginal structural model (MSM) is given by

E(SDS
(pdqb,pdq2)
2 ) = βI + β1pdqb + β2pdq2 + β3pdqbpdq2. (2.18)

Let Zb denote the vector (Wb,W2) whereWt is defined in Chapter 1. The sample size of the data

is 2000 and the data are replicated 3000 times. The simulated data correspond to the first two

time points in the DAG in Figure 1.1. Data are simulated as follows: PHQb ∼ Normal(0, 1.12),

PDQb ∼ Bernoulli(κpdqb), SDSb ∼ Normal(ηsdsb , 1.1
2), PHQ2 ∼ Normal(ηphq2 , 1.1

2), PDQ2 ∼

Bernoulli(κpdq2) and SDS2 ∼ Normal(ηsds2 , 1.1
2) where the means are given by

ηsdsb :=0.2PHQb − PDQb,

ηphq2 :=0.4PHQb + 0.4PDQb − SDSb and

ηsds2 :=15− 1.5PHQb + 1.7PDQb − 0.5SDSb − PHQ2 − 3PDQ2 + PDQ2PHQ2

− 2PDQbPHQ2 − 3.4PDQbPDQ2 − 2PDQbPHQb − 0.3PDQ2PHQb

10



2.4. Simulation study

and the two probabilities are given by

logit(κpdqb) :=1− 1.6PDQb and

logit(κpdq2) :=− 0.8 + 0.6PHQb + 0.9PDQb + 0.5SDSb + 0.4PHQ2

− 0.8PHQbPDQb − 0.7PDQbSDSb − 0.5PDQbPHQ2

where logit(x) = log(x) − log(1 − x). The true causal effects β = (βI , β1, β2, β3) are shown

in Table 2.2. We use the seed 3 in R (set.seed(3)) to make it possible to replicate all the

simulation studies. This applies for all the simulation studies in the three manuscripts and all

the simulation studies in this thesis.

We let the µ-models in the estimator (2.12) be correctly specified. We let the π-models in the

IPW estimator (2.14) be correctly specified. We specify the µ-models and the π-models in the

estimator (2.16) according to Table 2.1. The estimation of the causal effects β are evaluated by

the mean and the standard error. Table 2.2 shows the mean and the standard error of the 3000

estimates of β = (βI , β1, β2, β3). We denote the estimator (2.12) with the letters SG (Simple

G-formula) and we denote the estimator (2.16) with the letters DR (Doubly Robust).

SG IPW DR
µ Correct Wrong
π Correct Wrong Correct Wrong

Mean

βI 8.999 8.991 8.997 9.002 8.997 8.844
β1 1.003 1.017 1.004 0.998 1.003 1.094
β2 2.002 2.004 2.003 1.997 2.004 2.330
β3 0.994 0.988 0.994 1.003 0.995 0.871

SE

βI 0.061 0.350 0.083 0.089 0.188 0.231
β1 0.096 0.506 0.126 0.150 0.213 0.268
β2 0.106 1.825 0.176 0.143 0.298 0.268
β3 0.155 1.880 0.229 0.214 0.399 0.342

Table 2.2: The Mean row shows the mean of the 3000 estimates of β and the SE row shows
the standard error of the 3000 estimates of β. The SG column shows the estimation using the
estimator (2.12). The IPW column shows the estimation using the estimator (2.14). The DR

column shows the estimation using the estimator (2.16). See Table 2.1 for the description of
the Correct and Wrong columns. The true causal effects are β = (βI , β1, β2, β3) = (9, 1, 2, 1).

Table 2.2 shows that the SG estimator (2.12) has the smallest standard errors. The higher

standard errors obtained using the DR estimator (2.16) may be caused by the π-models that

are included in the estimator since the standard errors obtained using the IPW estimator

(2.14) are the highest. It appears that the price for using the doubly robust estimator is larger

standard errors when we compare the DR estimator (2.16) to the SG estimator (2.12). The

IPW estimator (2.14) may also be unstable and this can lead to biased estimates even though

the π-models are correctly specified. This happens in the next Section.
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Chapter 2. The causal effect

2.5 Simulation study based on the PERFORM study

The MSM is given by (2.18). The simulation study in this Section is from Manuscript I but

all the vectors are fully observed. See Chapter 4 for further information about fully observed

vectors. The simulation study is based on the two vectors (Wb,W2) from the PERFORM study.

The sample size of the data is 1000 and the data are replicated 5000 times. See Manuscript I for

further information about the simulation study. The three estimators: SG (2.12), IPW (2.14)

and DR (2.16) are used for estimating the four expected potential outcomes: E(SDS
(1,1)
2 ),

E(SDS
(0,1)
2 ), E(SDS

(1,0)
2 ) and E(SDS

(0,0)
2 ). The µ-models in the SG estimator (2.12) are

correctly specified. The π-models in the IPW estimator (2.14) are correctly specified. We

specify the µ-models and the π-models in the DR estimator (2.16) according to Table 2.1. Table

2.3 shows the mean, the standard error and the absolute value of bias (the difference between

the mean and the true value) of the 5000 estimates of the expected potential outcomes. We

use the function Bias because the expected potential outcomes are real numbers and it is hard

to determine by the function Mean if the estimates are biased or unbiased.

SG IPW DR
µ Correct Wrong
π Correct Wrong Correct Wrong

Mean

E(SDS
(1,1)
2 ) 15.394 15.396 15.393 15.394 15.393 15.398

E(SDS
(0,1)
2 ) 13.401 11.850 13.446 13.404 13.167 12.690

E(SDS
(1,0)
2 ) 13.577 13.554 13.585 13.574 13.592 13.825

E(SDS
(0,0)
2 ) 9.823 9.563 9.834 9.783 9.862 9.306

SE

E(SDS
(1,1)
2 ) 0.253 0.276 0.270 0.267 0.270 0.267

E(SDS
(0,1)
2 ) 1.343 17.485 6.096 1.759 6.655 1.573

E(SDS
(1,0)
2 ) 0.703 6.266 1.266 1.657 1.275 1.571

E(SDS
(0,0)
2 ) 0.909 7.807 2.146 4.278 1.997 4.154

Bias

E(SDS
(1,1)
2 ) 0.005 0.002 0.005 0.005 0.005 0.000

E(SDS
(0,1)
2 ) 0.017 1.568 0.028 0.014 0.251 0.728

E(SDS
(1,0)
2 ) 0.008 0.032 0.001 0.012 0.006 0.239

E(SDS
(0,0)
2 ) 0.006 0.254 0.017 0.034 0.045 0.511

Table 2.3: The Mean row shows the mean of the 5000 estimates of the expected potential
outcomes. The SE row shows the standard error of the 5000 estimates of the expected potential
outcomes. The Bias row shows the absolute value of the difference between the mean and the
true value. See Table 2.2 for the description of the five columns: SG, IPW, DR, Correct and
Wrong. See Table 3 in Manuscript I for the true values of the expected potential outcomes.
A numerical problem occurred for the estimation when the π-models were correctly specified.
This means that the Mean, the SE and the Bias are based on 4999 estimates instead of 5000
estimates.

Table 2.3 shows that all the estimates of E(SDS
(1,1)
2 ) are unbiased even when the µ-models

and the π-models are misspecified. It may be a coincidence. The SG estimator did not show
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2.5. Simulation study based on the PERFORM study

any problems of estimating the different effects and all the estimates are also unbiased. We

obtained biased estimates using the IPW estimator even though the π-models were correctly

specified. This is a good example of the problem concerning the weights in the IPW estimator.

The DR estimator shows that one of the estimates is biased when the µ-models are misspecified

and the π-models are correctly specified. The estimator with this specific combination of the

µ-models and the π-models should provide an unbiased estimate according to Table 2.1. The

standard error of the estimate of E(SDS
(0,1)
2 ) is also the largest one. The π-models may cause

the biased estimate. The DR estimator may inherit the downside of the IPW estimator that

the weights may explode even if the π-models are correctly specified. The π-models may also

cause the standard errors to be large. The numerical problem was a convergence problem for

the π-models.

We will return to the U(Z)-function (2.13) and the UAIPW (Z)-function (2.17) again in Chap-

ter 4. We will not consider the UIPW (Z)-function (2.15) in the rest of this thesis because we

obtained biased estimates using the IPW estimator when the π-models were correctly specified.

We will not discard the UAIPW (Z)-function (2.17) despite that one of the estimates was biased.

The number of the specific combination of the two exposures (0, 1) is sparse in the simulated

data. This may cause the estimate to be biased but the simulation study shows some concern

about the estimator (2.16).

13



Chapter 2. The causal effect

14



3 | Mediation

Mediation analysis lies in the interest of the direct effect of the exposure on the outcome as

well as the transmitted effect via one or more intermediate measurements. The investigation

of the transmitted effect is interesting even if the (total) causal effect is almost zero. It may

happen that the direct effect may cancel out with the transmitted effect via the intermediated

measurements. Section 3.1 revisits briefly the different assumptions that we need to assume to

identify the different direct and indirect effects. Section 3.2 considers the causal estimands from

Manuscript II. Section 3.3 and Section 3.4 (based on the PERFORM study) are two mediation

analysis of the two simulation studies from Chapter 2.

3.1 Direct and indirect effects

Let A denote the exposure and let M denote the mediator. Let Y denote the continuous

outcome variable. Let C denote some baseline measurements not affected by the exposure. See

the DAG in Figure 3.1a. Let Y a be the value that would have been observed if the exposure

A is set to a. Let Ma be the value that would have been observed if the exposure A is set to

a. Let Y am be the value that would have been observed if the exposure A is set to a and the

mediator M is set to m.

Pearl (2001) defined the controlled direct effect by E(Y am) − E(Y a∗m). It is the difference

between two expected potential outcomes with two different values of the exposure, a and

a∗, when the mediator is kept fixed at level m. Robins and Greenland (1992) and Pearl

(2001) defined the natural direct effect by E(Y aMa
∗

)−E(Y a∗Ma
∗

). It is the difference between

two expected potential outcomes with two different values of the exposure, a and a∗, but the

mediator is set to its natural level had A been set to a∗. Robins and Greenland (1992) and Pearl

(2001) defined the natural indirect effect by E(Y aMa

)−E(Y aMa
∗

). It is the effect of the exposure

on the outcome via the mediator. The total causal effect is defined by E(Y aMa

)− E(Y a∗Ma
∗

)

(Pearl (2001)). The sum of the natural direct effect and the natural indirect effect has the

property that the sum is equal to the total causal effect. VanderWeele et al. (2014) defined

the interventional direct effect and the interventional indirect effect. Let Ga|C denote a random

drawn from the distribution of the mediator among those with exposure status a conditional

on C (VanderWeele et al. (2014)). The interventional direct effect E(Y aGa
∗|C

)−E(Y a∗Ga
∗|C

) is
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Chapter 3. Mediation

defined by

∫
(E(Y am | C = c)− E(Y a∗m | C = c))fM |A,C(m | a∗, c)fC(c)d(m, c).

and the interventional indirect effect E(Y aGa|C
)− E(Y aGa

∗|C
) is defined by

∫
E(Y am | C = c)(fM |A,C(m | a, c)− fM |A,C(m | a∗, c))fC(c)d(m, c).

The sum of the interventional direct effect and the interventional indirect effect is defined by

E(Y aGa|C
) − E(Y a∗Ga

∗|C
). However, the sum of the interventional effects may necessarily not

be equal to the total causal effect. It will instead be called ”the overall effect”.

C

M

Y

A

(a) One mediator

C

M2

M1 Y

A

(b) Two mediators

Figure 3.1: Let Y denote the continuous outcome variable. Let A denote the exposure and
let C be some baseline measurements not affected by the exposure. This applies for the two
DAGs. Figure 3.1a shows a DAG with one mediator M and Figure 3.1b shows a DAG with
two mediators M1 and M2. The measurement M1 is a mediator-outcome confounder.

The assumptions for the identification of the five effects are: (i) Y am ⊥⊥ A | C = c for all

(a,m, c) ∈ A,M,C, (ii) Y am ⊥⊥ M | A = a, C = c for all (a,m, c) ∈ A,M,C, (iii) Ma ⊥⊥ A |

C = c for all (a,m, c) ∈ A,M,C and (iv) Y am ⊥⊥ Ma∗ | C = c for all (a, a∗,m, c) ∈ A,M,C.

The controlled direct effect is identified if we assume the two assumptions: (i) and (ii). The

interventional direct effect and the interventional indirect effect are identified if we assume the

three assumptions: (i), (ii) and (iii). The natural direct effect and the natural indirect effect are

identified if we assume all four assumptions: (i), (ii), (iii) and (iv). Assumption (iv) is the cross-

world assumption (VanderWeele (2009a,b, 2011, 2016); Tchetgen Tchetgen and VanderWeele

(2014)). See also Goetgeluk and Vansteelandt (2008) and VanderWeele and Tchetgen Tchetgen

(2016). The interventional direct and indirect effects have the advantage of being meaningful

even though the exposure is not manipulable (VanderWeele and Robinson (2014); Vansteelandt

and Daniel (2017)). It is exemplified in Chapter 5 and the three manuscripts.
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3.2 Multiple mediators

We consider two mediators for pedagogic purpose and the causal estimands can be extended

to K mediators. Let M1 and M2 denote two ordered mediators, see the DAG in Figure 3.1b

(Daniel et al. (2015); Vansteelandt and Daniel (2017)). We propose a definition of sequential

mediation for multiple mediators in Manuscript II. The measurementM1 is a mediator-outcome

confounder and it violates the cross-world assumption (Avin et al. (2005)). Manuscript II

defines the causal estimand for the interventional direct effect of the exposure on the outcome

to be given by

∫

(

E(Y am1m2 | c)− E(Y a∗m1m2 | c)
)

fMa∗

2
|Ma∗

1
,C(m2 | m1, c)fMa∗

1
|C(m1 | c)fC(c)d(m2, c)

and it corresponds to the causal path: A → Y . Let dir denote the interventional direct effect.

The causal estimand for the interventional indirect effect of the exposure on the outcome via

M1 is given by

∫

E(Y am1m2 | c)fMa∗

2
|Ma∗

1
,C(m2 | m1, c)

{

fMa

1
|C(m1 | c)− fMa∗

1
|C(m1 | c)

}

fC(c)d(m2, c)

and the causal estimand corresponds to the sum of the two causal paths: A → M1 → Y and

A → M1 → M2 → Y . Let indirM1
denote the interventional indirect effect of the exposure on

the outcome via M1. The causal estimand for the interventional indirect effect of the exposure

on the outcome via M2 is given by

∫

E(Y am1m2 | c)
{

fMa

2
|Ma

1
,C(m2 | m1, c)− fMa∗

2
|Ma∗

1
,C(m2 | m1, c)

}

fMa

1
|C(m1 | c)fC(c)d(m2, c)

and the causal estimand corresponds to the causal path: A → M2 → Y . Let indirM2
denote

the interventional indirect effect of the exposure on the outcome via M2. Manuscript II shows

that the sum of the three causal estimands is equal to the total causal effect. The assumptions

for identification of the causal estimands above (with two mediators) are (i’) Y am2 ⊥⊥ A | C =

c ∀(a,m2, c) ∈ A,M2, C, (ii’) Y am2 ⊥⊥ (M1,M2) | A = a, C = c ∀(a,m2, c) ∈ A,M2, C and

(iii’) (Ma
2
,Ma

1
) ⊥⊥ A | C = c ∀(a, c) ∈ A,C. See Manuscript II for further information about

the statistical estimands that are identified under the assumptions (i’), (ii’) and (iii’).

Estimator

Manuscript III rewrites the causal estimand for the interventional direct effect to be given by

Γ(a, a∗, a∗)− Γ(a∗, a∗, a∗) with

Γ(j, k, l) =

∫

E(Y jm1m2 | c)fMk

2
|Mk

1
,C(m2 | m1, c)fM l

1
|C(m1 | c)fC(c)d(m2, c) (3.1)
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for different j, k, l ∈ {a, a∗}. The causal estimand for the interventional indirect effect via M1

is given by Γ(a, a∗, a) − Γ(a, a∗, a∗) using (3.1). The causal estimand for the interventional

indirect effect via M2 is given by Γ(a, a, a)− Γ(a, a∗, a) using (3.1). Manuscript III shows that

the estimator Γ̂(j, k, l) for Γ(j, k, l) is given by

Γ̂(j, k, l) =
1

n

n∑

i=1

µj,k,l{V0,i, γ̂} (3.2)

with mj{v2, ξ} = E(Y | M2 = m2,M1 = m1, A = j, C = c), µj,k{v1,γ} = E(mj{V2, ξ} | M1 =

m1, A = k, C = c) and µj,k,l{v0,γ} = E(µj,k{V1,γ} | A = l, C = c). The estimator Γ̂(j, k, l)

solves the estimating equation 0 =
∑n

i=1
Uj,k,l(Zi) with

Uj,k,l(Zi) = µj,k,l{V0,i,γ0
} − Γ(j, k, l). (3.3)

Let the mj{V2, ξ0}-model denote the true model with the vector of true parameter values

ξ
0
. Let the µj,k{V1,γ0

}-model and let the µj,k,l{V0,γ0
}-model denote the true models with

the vector of true parameter values γ
0
. Let m̂j(V2) denote the mj{V2, ξ̂}-model, let µ̂j,k(V1)

denote the µj,k{V1, γ̂}-model and let µ̂j,k,l(V0) denote the µj,k,l{V0, γ̂}-model to simplify the

notation. All the hats indicate predicted values from the specified models that have been used

for the estimation and the predicted values are plugged into the estimator. We will refer to

the mj{v2, ξ}-model, the µj,k{v1,γ}-model and the µj,k,l{v0,γ}-model as the µj,k,l-models. See

Manuscript III for further information. The estimator d̂ir for the interventional direct effect,

Γ(a, a∗, a∗)− Γ(a∗, a∗, a∗), is given by

d̂ir :=
1

n

n∑

i=1

(µ̂a,a∗,a∗(V0,i)− µ̂a∗,a∗,a∗(V0,i)).

The estimator îndirM1
for the interventional indirect effect via M1, Γ(a, a

∗, a)− Γ(a, a∗, a∗), is

given by

îndirM1
:=

1

n

n∑

i=1

(µ̂a,a∗,a(V0,i)− µ̂a,a∗,a∗(V0,i))

and the estimator îndirM2
for the interventional indirect effect via M2, Γ(a, a, a)− Γ(a, a∗, a),

is given by

îndirM2
:=

1

n

n∑

i=1

(µ̂a,a,a(V0,i)− µ̂a,a∗,a(V0,i)).

3.3 Simulation study

We conduct a mediation analysis of the simulated data from Section 2.4. We want to estimate

the interventional direct effect of PDQb on SDS2. We also want to estimate the interventional

indirect effect of PDQb on SDS2 via SDSb and the interventional indirect effect of PDQb on
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3.3. Simulation study

SDS2 via PHQ2. Let pdqb be equal to 1 and let pdq∗b be equal to 0 in the estimation of the

three different effects of PDQb on SDS2. Let pdq2 be equal to 0 and let pdq∗2 be equal to 0 in

the estimation of the three different effects of PDQb on SDS2. We use the marginal structural

model (2.18) to obtain the equality

E(SDS
(pdqb,0)
2 )− E(SDS

(pdq∗
b
,0)

2 ) = β1(pdqb − pdq∗b )

and we have plugged the values of pdq2 and pdq∗2 into the marginal structural model. We have

E
(

SDS
(pdqb,0)
2

)

= E

(

SDS
(pdqbSDS

pdqb
b

PHQ
pdqb
2

,0)
2

)

which means that the total causal effect for the exposure PDQb is given by

E

(

SDS
(pdqbSDS

pdqb
b

PHQ
pdqb
2

,0)
2

)

− E

(

SDS
(pdq∗

b
SDS

pdq∗
b

b
PHQ

pdq∗
b

2
,0)

2

)

= β1(pdqb − pdq∗b ).

We compare the overall effect from Table 3.1 with the coefficient β1 from the SG column from

Table 2.2 when we compare the overall effect to the total causal effect. We use the estimator

(3.2) to estimate the interventional direct and indirect effects and we only use the true µj,k,l-

models with respect to the data for estimating the interventional direct and indirect effects.

We denote the estimator (3.2) with the letters SSM (Simple Sequential Mediation formula).

The estimation is evaluated by the mean and the standard error of the 3000 estimates of

η = (dirb, indirSDSb
, indirPHQ2

, Overall). Table 3.1 shows the results of the estimation of η.

dirb indirSDSb
indirPHQ2

Overall

Mean 0.504 0.300 0.200 1.003
SE 0.110 0.039 0.034 0.096

Table 3.1: Let η = (dirb, indirSDSb
, indirPHQ2

, Overall). The Mean row shows the mean of
the 3000 estimates of η and the SE row shows the standard error of the 3000 estimates of η.
The dirb column is the interventional direct effect of PDQb on SDS2. The indirSDSb

column
is the interventional indirect effect of PDQb on SDS2 via SDSb. The indirPHQ2

column is the
interventional indirect effect of PDQb on SDS2 via PHQ2. The Overall column shows the
sum of the three interventional effects (the overall effect). See the estimate of the coefficient β1

in the SG column in Table 2.2 to see the total causal effect. The true direct effect is 0.5. The
true mediated effect via SDSb is 0.3 and the true mediated effect via PHQ2 is 0.2.

Table 3.1 shows that we are able to obtain the true direct and indirect effects with our

definition and we are also able to obtain the overall effect to be equal to the total causal effect

with our definition. The results are in line with Manuscript II.
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Chapter 3. Mediation

3.4 Simulation study based on the PERFORM study

We also conduct an analysis of the simulated data from Section 2.5 (based on the PERFORM

study). Table 3.2 shows the estimates of the causal effects β of the MSM (2.18) and the

estimates from the mediation analysis. We compare the overall effect to the coefficient β1 when

we compare the overall effect to the total causal effect. We use the same arguments from

Section 3.3 for the comparison between the overall effect and the coefficient β1. We use the

SG estimator (2.12) and we only use the true µ-models with respect to the data for estimating

the causal effects. We use the SSM estimator (3.2) and we only use the true µj,k,l-models with

respect to the data for estimating the interventional direct and indirect effects. Table 3.2 shows

the mean of the 5000 estimates of η = (dirb, indirSDSb
, indirPHQ2

, Overall), the standard error

of the 5000 estimates of η and the absolute value of bias (the difference between the mean and

the true value).

SG SSM
βI β1 β2 β3 dirb indirSDSb

indirPHQ2
Overall

Mean 9.823 3.754 3.578 -1.762 1.392 2.468 -0.106 3.754
SE 0.909 1.123 1.359 1.571 0.996 0.360 0.540 1.123
Bias 0.006 0.014 0.023 0.026 0.010 0.005 0.001 0.014

Table 3.2: Let η = (dirb, indirSDSb
, indirPHQ2

, Overall). The SG column shows the estimates
of the causal effects β obtained using the SG estimator (2.12). The SSM column shows the
estimates of the mediated effects obtained using the SSM estimator (3.2). The Mean row shows
the mean of the 5000 estimates of η, the SE row shows the standard error of the 5000 estimates
of η and the Bias row shows the absolute value of the difference between the mean and the
true value. See Table 3.1 for the description of the four columns: dirb, indirSDSb

, indirPHQ2

and Overall. The true causal effects are β = (βI , β1, β2, β3) = (9.8, 3.8, 3.6,−1.8). The true
direct effect is 1.4. The true mediated effect via SDSb is 2.5 and the true mediated effect via
PHQ2 is −0.1. The true effects are rounded.

Table 3.2 shows that we are able to obtain the true direct and indirect effects with our

definition and we are also able to obtain the overall effect to be equal to the total causal effect

with our definition. The results are in line with Manuscript II.
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4 | Missing observations

Data may contain vectors/individuals/patients with missing observations. Section 4.1 intro-

duces data with missing observations. Section 4.2 introduces the adaptive estimator to analyse

longitudinal data containing missing observations that follow a monotone pattern. An estima-

tor for mediation analysis with data containing missing observations that follow a monotone

pattern is also introduced. Section 4.3 and Section 4.4 finish the two simulation studies from

Chapter 2. In Section 4.5, we argue for the choice of the U(Z)-function that has been used

in the three manuscripts. In Section 4.6, we sketch an estimator with data containing missing

observations that follow a nonmonotone pattern.

4.1 Missing observations in data

Let full data denote data that would have been collected on all the vectors in the sample. Let

observed data denote the actually observed data containing vectors with missing observations.

Let complete data denote a subset of the observed data with no missing observations. If the

missingness mechanism is missing completely at random (MCAR) then the probability of being

observed is independent of the data. If the missingness mechanism is missing at random (MAR)

then the probability of missingness depends only on the observed data. If the missingness

mechanism is missing not at random (MNAR) then the probability of missingness may also

depend on the unobserved data (Tsiatis (2006)). Multiple imputation is one solution for data

containing missing observations (Bartlett et al. (2015)). Reducing data to complete data is

another solution but we may obtain biased estimates. However, if the missingness mechanism

is missing completely at random then using only complete data will not cause biased estimates.

Coarsened data

Let Z be defined in Section 2.2. Let C ∈ {1, . . . , c} ∪ {∞} denote a random variable. If C is

equal to 1 then L0 is the only observed variable in the ordered sequence. If C is equal to 2 then

L0 and A0 are the only two observed variables in the ordered sequence. If C is equal to c then it

is only the outcome that is missing from Z. Note that c is an integer and it is not equal to c. If
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Chapter 4. Missing observations

the variable C is equal to ∞ then Z is fully observed. See Manuscript I for further information.

Tsiatis (2006) defines a map Gr and it maps a vector from the full data to the observed data.

The map is given by Gr : Z → gr where gr denote the observed vector in the data with r

observed variables for r = 1, . . . , c. Coarsening completely at random (CCAR) corresponds

to C is independent of the data like MCAR. Coarsening at random (CAR) corresponds to C

depends on the observed data like MAR. Coarsening not at random (CNAR) is a function

that may depend on the not observed data like MNAR. We also need to distinguish between

monotone and nonmonotone missingness.

Monotone missingness

The vectors in the observed data are denoted by the iid random quantities given by

{GC1(Z1), C1}, . . . , {GCn(Zn), Cn}

where {GCi
(Zi), Ci} denote the i-th vector in the observed data. A complete case is a vector

denoted by {G∞(Z),∞}. Complete data contains only complete cases ({G∞(Z),∞}). The

pattern of missingness in the data can be described by the following vectors: G1(Z) = (L0),

G2(Z) = (L0, A0), G3(Z) = (L0, A0, L1), . . ., Gc(Z) = (L0, A0, . . . , LT , AT ) and G∞(Z) =

Z. In the pattern described above, if Lt is observed then Lt−1 and At−1 are necessarily also

observed. This pattern is known as monotone missingness (Tsiatis (2006)). See Manuscript I

for further information about monotone missingness. The pattern of nonmonotone missingness

allows a variable between two observed variables in an ordered sequence to be missing. As

an example, L0 and L1 are the only two observed variables in the ordered sequence Z =

(L0, A0, L1, . . . , LT , AT , Y ) and the exposure A0 is missing. The vector in the data is given by

G2(Z) = (L0, L1) and the variable C is equal to 2. We will not look further into nonmonotone

missingness but Section 4.6 sketches an estimator for nonmonotone missingness. We refer

to monotone coarsening or monotone missingness. We assume the conditional probability of

observing a complete vector given Z is strictly greater than zero, i.e. that:

̟{∞, Z,ψ
0
} = P (C = ∞ | Z) > 0.

The probability ̟{∞, Z,ψ
0
} denotes the true model with the vector of true parameter values.

We sometimes refer to the probability ̟{∞, Z,ψ
0
} as the ̟-model. Let λr{Gr(Z),ψ0

} =

P (C = r | C ≥ r, Z) for r �= ∞ denote the probability of stopping the observing of addi-

tional observations given r observed. Let ψ
0
denote the true model with the vector of true

parameter values. We refer to the λr{Gr(Z),ψ}-models as the λ-models. Let Kr{Gr(Z),ψ}

be equal to the product
∏r

j=1
(1−λj{Gj(Z),ψ}) and Kc{Gc(Z),ψ} is equal to the probability

̟{∞, Z,ψ} (Tsiatis (2006)). We assume the missingness mechanism is CAR which means that

the coarsening probabilities only depend on the data as a function of the observed data. The

coarsening probabilities are given by ̟{r,Gr(Z),ψ} = λr{Gr(Z),ψ}Kr−1{Gr−1(Z),ψ} (see

Tsiatis (2006) for further information). The ̟-model is correctly specified if all the λ-models

are correctly specified. The ̟-model is misspecified if one of the λ-models is misspecified. We
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4.2. Adaptive estimator

assume the probability λr{Gr(Z),ψ} is given by

λr{Gr(Z),ψ} =
exp (ψI,r +Gr(Z)ψr)

1 + exp (ψI,r +Gr(Z)ψr)
,

where the column vector ψr has the same dimension as the row vector Gr(Z) (Tsiatis (2006)).

Let the vector of parameter values be given by ψ = (ψI,r,ψ
′

r) where the coefficient ψI,r denotes

the intercept and ψ′

r is the transpose row vector of ψr.

The IPW estimator for missing observations: The inverse probability weighted (IPW)

estimator (e.g. with the U(Z)-function (2.13)) is a suitable estimator to solve the issue of

missing observations (Seaman and White (2013); Li et al. (2013)). We assume that the pattern

of the missing observations is monotone and the missingness mechanism is CAR. We also assume

that the µ-models in the U(Z)-function (2.13) are correctly specified. The IPW estimator with

the U(Z)-function (2.13) is given by

1

n

n
∑

i=1

I(Ci = ∞)

̟{∞, Zi, ψ̂}
µ̂(V0,i) → E

(

I(C = ∞)

̟{∞, Z,ψ}
µ(V0)

)

.

The estimator is unbiased if the probability ̟{∞, Z, ψ̂} is correctly specified. Unfortunately,

the ̟{∞, Z,ψ}-model is most likely unknown and we may specify the ̟{∞, Z,ψ}-model

wrong. The next Section shows how we can handle the issue of the misspecification of the

̟{∞, Z,ψ}-model.

4.2 Adaptive estimator

Let U(Zi) be written in the form U(Zi) = h(Zi) − E(Y aT ) for the estimating equation 0 =
∑n

i=1
U(Zi) and fulfilling at the same time E(U(Z)) = 0. Let h(Zi) be a function of the data

and let E(Y aT ) denote a constant. The estimator Ê(Y aT ) for E(Y aT ) is given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

(

I(Ci = ∞)

̟{∞, Zi, ψ̂}
ĥ(Zi)

+
c

∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E(h(Z) | Gr(Zi), ζ̂)

) (4.1)

for data containing missing observations that follow a monotone pattern and the missingness

mechanism is CAR. We show in the Appendix of Manuscript I how we have derived the es-

timator at (4.1). All the hats indicate predicted values from the specified models that have

been used for the estimation and the predicted values are plugged into the estimator. The

estimator (4.1) is a doubly robust estimator. Let h(Z) be correctly specified with respect to

the distribution of Z. The estimator (4.1) is unbiased if either the conditional expectations
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Chapter 4. Missing observations

E(h(Z) | Gr(Z), ζ) are correctly specified with respect to the distribution of Z or the λ-models

relating to the missingness mechanism are correctly specified. The estimator (4.1) solves the

estimating equation

0 =
n

∑

i=1

(

I(Ci = ∞)

̟{∞, Zi, ψ̂}
U(Zi) +

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E(U(Z) | Gr(Zi), ζ̂)

)

.

Let ˆ̟ (∞, Z) denote the probability ̟{∞, Z, ψ̂} to simplify the notation, let λ̂r(Gr(Z)) denote

the probability λr{Gr(Z), ψ̂} to simplify the notation and let K̂r(Gr(Z)) denote the probability

Kr{Gr(Z), ψ̂} to simplify the notation.

The causal effect with data containing missing observations

Returning to the U(Z)-function (2.13) and the UAIPW (Z)-function (2.17) from Chapter 2 and

the Uj,k,l(Z)-function (3.3) from Chapter 3. Pick r′ ∈ {1, . . . , c}. Manuscript I shows that

the conditional expectation of the U(Z)-function (2.13) is given by E (U(Z) | Gr′(Z), ζ0
) =

E (µ{V0,γ} | Gr′(Z), ζ0
) − E (Y aT ) with the set Gr′(Z). The vector ζ

0
of true parameter

values denotes the true model with respect to the distribution of Z. The estimator (4.1) with

the U(Z)-function (2.13) for estimating E(Y aT ) is given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

[

I(Ci = ∞)

ˆ̟ (∞, Zi)
µ̂(V0,i)

+
c

∑

r=1

I(Ci = r)− λ̂r(Gr(Zi))I(Ci ≥ r)

K̂r(Gr(Zi))
E
(

µ(V0) | Gr(Zi), ζ̂
)

]

.

(4.2)

Manuscript I denotes the estimator (4.2) with the letters DRMGf (Doubly Robust estimator

for Monotone missingness for the G-formula). See Manuscript I for further information about

the estimator. The difference between the SG estimator (2.12) and the DRMGf estimator (4.2)

will become small if the included covariates are poor at predicting drop-out. We also show in

the Appendix in Manuscript I that the estimator (4.2) is asymptotically normally distributed

in the situation when T is equal to 1.

The conditional expectation of the UAIPW (Z)-function (2.17) is given by

E(UAIPW (Z) | Gr′(Z), ζ0
) = E(Θ(Z)|Gr′(Z), ζ0

)− E
(

Y aT
)

with

Θ(Z) = Y

T
∏

t=0

I(at)

πt(Vt)
+

T
∑

t=0

t−1
∏

k=0

I(ak)

πk(Vk)

(

1−
I(at)

πt(Vt)

)

µ(Vt)

with the set Gr′(Z). The estimator (4.1) with the UAIPW (Z)-function (2.17) for estimating
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E(Y aT ) is given by

Ê
(

Y aT
)

=
1

n

n
∑

i=1

[

I(Ci = ∞)

ˆ̟ (∞, Zi)

(

Yi

T
∏

t=0

I(at)

π̂t(Vt,i)
+

T
∑

t=0

t−1
∏

k=0

I(ak)

π̂k(Vk,i)

(

1−
I(at)

π̂t(Vt,i)

)

µ̂(Vt,i)

)

+
c

∑

r=1

I(Ci = r)− λ̂r(Gr(Zi))I(Ci ≥ r)

K̂r(Gr(Zi))
E
(

Θ(Z) | Gr(Zi), ζ̂
)

]

.

(4.3)

All the hats indicate predicted values from the specified models that have been used for the

estimation and the predicted values are plugged into the estimator (4.3). The estimator is

unbiased if the µ-models are correctly specified. The estimator is also unbiased if both the

π-models and the λ-models are correctly specified simultaneously. We denote the estimator

(4.3) by the name Bang and Robins for data with Monotone Missingness (BRMM). Table 4.1

shows the combinations of the µ-, the π- and the λ-models to obtain an unbiased estimator. We

show in Appendix A that the BRMM estimator (4.3) is unbiased with a specific combination

of the µ-, the π- and the λ-models (Table 4.1).

µ Correct Wrong
π Correct Wrong Correct Wrong
λ Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Unbiased ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✗

Table 4.1: The combination of the µ-, the π- and the λ-models to obtain an unbiased BRMM
estimator (4.3). See Table 2.1 for the description of the Unbiased row, the two symbols ✔ and
✗ and the Correct and Wrong columns.

Mediation analysis with data containing missing observations

Pick r′ ∈ {1, . . . , c} again. Manuscript III shows that the conditional expectation of the

Uj,k,l(Z)-function (3.3) is given by E (Uj,k,l(Z) | Gr′(Z)) = E (µj,k,l{V0,γ} | Gr′(Z), ξ)−Γ(j, k, l)

with the set Gr′(Z). The estimator Γ̂(j, k, l) for Γ(j, k, l) is given by

Γ̂(j, k, l) =
1

n

n
∑

i=1

[

I(Ci = ∞)

ˆ̟ (∞, Zi)
µj,k,l{V0,i, γ̂}

+
c

∑

r=1

I(Ci = r)− λ̂r(Gr(Zi))I(Ci ≥ r)

K̂r(Gr(Zi))
E
(

µj,k,l{V0,i,γ} | Gr(Zi), ζ̂
)

] (4.4)

for data containing missing observations that follow a monotone pattern. All the hats indicate

predicted values from the specified models that have been used for the estimation and the

predicted values are plugged into the estimator (4.4). Manuscript III denotes the estimator (4.4)

with the letters DRMSM (Doubly Robust estimator for Monotone missingness for Sequential

Mediation). See Manuscript III for further information about the estimator.

25



Chapter 4. Missing observations

4.3 Simulation study

We simulate missing observations to the data from Section 2.4 and the pattern is mono-

tone missingness. The monotone missingness is simulated with the probabilities as follows:

logit(λ1(G1(Zb))) = −2.5 + 0.4PHQb, logit(λ2(G2(Zb))) = −1.9 + 0.9PHQb − 0.9PDQb,

logit(λ3(G3(Zb))) = −1.9+0.9PHQb−0.9PDQb−0.8SDSb+1.6SDSbPDQb, logit(λ4(G4(Zb))) =

−1.9+ 0.9PHQb − 0.9PDQb − 0.9SDSb +0.5PHQ2 +0.6SDSbPDQb and logit(λ5(G5(Zb))) =

−2.0 + 0.9PHQb − 0.9PDQb − 0.6SDSb + 0.3PHQ2 + 0.9PDQ2. To analyse the simulated

data, we only use the estimator for the simpler g-formula (SG) and our DRMGf estimator for

estimating the causal effects β . Both estimators are using the true µ-models with respect

to the data. The SG estimator uses only complete data. We use the mean and the standard

error to evaluate the estimation with the two estimators. Table 4.2 shows the results of the

two estimators. We also use the BRMM estimator (4.3) for the estimation with the different

combinations of the µ-, the π- and the λ-models. We also use the mean and the standard error

to evaluate the estimation using the BRMM estimator (4.3) and Table 4.3 shows the results.

SG DRMGf
βI β1 β2 β3 βI β1 β2 β3

Mean 9.443 0.786 1.708 1.253 8.998 1.006 2.003 0.991
SE 0.095 0.133 0.167 0.220 0.090 0.129 0.154 0.216

Table 4.2: See Table 2.2 for the description of the two rows: Mean and SE and the true causal
effects β = (βI , β1, β2, β3). The SG column shows the estimation with the SG estimator (2.12).
The DRMGf column shows the estimation with our DRMGf estimator (4.2).

Table 4.2 shows that the estimates obtained using the SG estimator (2.12) are biased. The

estimator shows weakness in estimating the parameters of interest when data contains missing

observations that follow a monotone pattern. However, the DRMGf estimator (4.2) is able to

estimate all four causal effects and the estimates are unbiased.

µ Correct Wrong
π Correct Wrong Correct Wrong
λ Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Mean

βI 8.998 8.998 8.997 8.997 9.021 9.322 8.782 9.121
β1 1.003 1.003 1.003 1.002 0.980 0.664 1.210 0.858
β2 2.003 2.003 2.001 2.002 1.985 1.766 2.479 2.180
β3 0.994 0.994 0.997 0.997 1.015 1.413 0.609 1.067

SE

βI 0.144 0.114 0.161 0.124 0.549 0.305 0.685 0.387
β1 0.203 0.183 0.245 0.214 0.566 0.339 0.710 0.428
β2 0.330 0.242 0.257 0.198 0.822 0.475 0.776 0.433
β3 0.399 0.338 0.353 0.315 0.916 0.625 0.839 0.551

Table 4.3: See Table 2.2 for the description of the two rows: Mean and SE and the true causal
effects β = (βI , β1, β2, β3). See Table 4.1 for the description of µ, π, λ, Correct and Wrong.
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Table 4.3 shows the expected performance of the BRMM estimator (4.3) since the estimates

in the first five columns are unbiased and it is in line with Table 4.1. All the standard errors are

higher compared to the standard errors in Table 4.2 (our DRMGf estimator). The π-models

may cause the standard errors to be higher.

The mediation analysis of the simulation study.

We use the estimator for the simpler sequential mediation formula (SSM) and our DRMSM

estimator (4.4). The SSM estimator (3.2) uses only complete data. Both estimators are using

the true µj,k,l-models with respect to the simulated data. Table 4.4 shows the results of the

estimation of the interventional direct and indirect effects for both estimators. We use the

mean and the standard error to evaluate the two estimators.

SSM DRMSM
dirb indirSDSb

indirPHQ2
Overall dirb indirSDSb

indirPHQ2
Overall

Mean 0.211 0.332 0.332 0.786 0.507 0.300 0.200 1.006
SE 0.162 0.068 0.068 0.133 0.148 0.056 0.046 0.129

Table 4.4: The SSM column shows the estimates obtained using the estimator for the simpler
sequential mediation formula (SSM) and the DRMSM column shows the estimates obtained
using our DRMSM estimator. See Table 2.2 for the description of the two rows: Mean and SE.
See Table 3.1 for the true direct effect of PDQb on SDS2, the true indirect effect of PDQb on
SDS2 via SDSb and the true indirect effect of PDQb on SDS2 via PHQ2. See also Table 3.1
for the description of the four columns: dirb, indirSDSb

, indirPHQ2
and Overall.

Table 4.4 shows that our DRMSM estimator provides unbiased estimates and the SSM es-

timator shows weakness in estimating the parameters of interest when data contains missing

observations that follow a monotone pattern. The results are in line with Manuscript III.

4.4 Simulation study based on the PERFORM study

We simulate missing observations to the data from Section 2.5 and the pattern is monotone

missingness. The probabilities generating the missing observations are shown in Manuscript I.

The simulated data are identical to the simulated data used in Manuscript I and Manuscript

III. We use the BRMM estimator (4.3) for estimating the four expected potential outcomes:

E(SDS
(1,1)
2 ), E(SDS

(0,1)
2 ), E(SDS

(1,0)
2 ) and E(SDS

(0,0)
2 ). The ̟-model is only correctly speci-

fied. It is not possible to specify the λ-models wrong because the predictors for the probabilities

are only linear. Table 4.5 shows the results of the estimation using the BRMM estimator (4.3).

The estimation with the BRMM estimator is evaluated by the mean, the standard error (SE)

and the absolute value of bias.

27



Chapter 4. Missing observations

µ Correct Wrong
π Correct Wrong Correct Wrong

Mean

E(SDS
(1,1)
2 ) 15.422 15.420 15.405 15.411

E(SDS
(0,1)
2 ) 13.623 13.628 12.895 12.874

E(SDS
(1,0)
2 ) 13.671 13.650 13.610 13.701

E(SDS
(0,0)
2 ) 9.721 9.243 10.206 9.411

SE

E(SDS
(1,1)
2 ) 3.748 3.756 3.657 3.685

E(SDS
(0,1)
2 ) 32.705 24.537 25.138 19.366

E(SDS
(1,0)
2 ) 6.878 6.333 8.030 6.899

E(SDS
(0,0)
2 ) 19.600 45.947 26.838 67.539

Bias

E(SDS
(1,1)
2 ) 0.024 0.021 0.006 0.012

E(SDS
(0,1)
2 ) 0.205 0.210 0.523 0.544

E(SDS
(1,0)
2 ) 0.085 0.064 0.024 0.115

E(SDS
(0,0)
2 ) 0.096 0.574 0.389 0.406

Table 4.5: The estimates are obtained using the BRMM estimator (4.3) with the true ̟-model.
See Table 2.3 for the description of the three rows: Mean, SE and Bias, the two columns:
Correct and Wrong and the true effects. Numerical problems occurred for the estimation when
the π-models were correctly specified. It caused a reduction of 80 estimates. It means that the
Mean, the SE and the Bias are based on 4920 estimates instead of 5000 estimates.

Table 4.5 shows that the estimates obtained using the BRMM estimator (4.3) are biased

even though the µ-models and the π-models are correctly specified. The standard errors ob-

tained using the BRMM estimator are also bigger compared to the standard errors (Table 3 in

Manuscript I) obtained using our DRMGf estimator. The numerical problems were convergence

problems for the π-models.

4.5 The choice of the U-function

We use the U(Z)-function (2.13) in the three manuscripts because we want the possibility of

letting the λ-models be misspecified and still obtain an unbiased estimator. We will not use the

UAIPW (Z)-function (2.17) because it is possible to obtain biased estimates even though the µ-,

the π- and the λ-models are correctly specified. The simulation study from Section 4.4 is a good

example of biased estimates even when the µ-, the π- and the λ-models are correctly specified.

The π-models and the λ-models need to be correctly specified simultaneously in the BRMM

estimator (4.3) to obtain an unbiased estimator which means that we lose the opportunity for

letting the λ-models be misspecified. We also obtain smaller standard errors with the U(Z)-

function (2.13) compared to the UAIPW (Z)-function (2.17). The UIPW (Z)-function was already

discarded in Chapter 2 because the IPW estimator (2.14) showed weakness in estimating the

parameters of interest in the simulation study from Section 2.5. The estimates obtained using

the IPW estimator were biased even though the π-models were correctly specified.

28



4.6. Nonmonotone missingness

4.6 Nonmonotone missingness

We sketch an estimator to analyse data containing missing observations that follow a non-

monotone pattern. Let the missing observations be CAR. We will use Hilbert H spaces but

we will not go into details about Hilbert H spaces. See Tsiatis (2006) for further information

about Hilbert H spaces. Let HF denote the full-data Hilbert space. Let UF (Z) denote the

U(Z)-function on the full-data. Tsiatis (2006) defines a linear operator L that maps from the

full-data Hilbert space to the observed-data Hilbert space and the linear operator L is defined

by

L{UF (Z), ζ} =
∞
∑

r=1

I(C = r)E
(

UF (Z) | Gr(Z), ζ
)

.

Tsiatis (2006) defines furthermore a linear operator M that maps from the full-data Hilbert

space to the full-data Hilbert space. The linear operator M{UF (Z),ψ, ζ} is defined by

E(L{UF (Z), ζ} | Z) and the operator is given by

M{UF (Z),ψ, ζ} =
∞
∑

r=1

̟{r,Gr(Z),ψ}E
(

UF (Z) | Gr(Z), ζ
)

.

Tsiatis (2006) shows that the inverse operatorM−1{U(Z),ψ, ζ} exists and the inverse operator

is defined by dF (Z,ψ, ζ) = M−1{U(Z),ψ, ζ}.

We need to solve the estimating equation

0 =
n

∑

i=1

(

I(Ci = ∞)

̟{∞, Zi, ψ̂}
U(Zi) + L∗

2{Ci, GCi(Zi), ψ̂, ξ̂}

)

(4.5)

with

L∗
2{Ci, GCi(Zi), ψ̂, ζ̂} =−

I(Ci = ∞)

̟{∞, Zi, ψ̂}

∑

r �=∞

̟{r,Gr(Zi), ψ̂}E
(

dF (Z,ψ, ζ) | Gr(Zi), ζ̂
)

+
∑

r �=∞

I(Ci = r)E
(

dF (Z,ψ, ζ) | Gr(Zi), ζ̂
)

.

Unfortunately, it may be difficult to compute the inverse operator M−1 for nonmonotone

missingness. An iterative approach is to approximate the inverse operator M−1 by the approx-

imation dF(j)(Z,ψ, ζ) after (j) iterations. Tsiatis (2006) defines

L∗
2(j){Ci, GCi(Zi), ψ̂, ζ̂} =−

I(Ci = ∞)

̟{∞, Zi, ψ̂}

∑

r �=∞

̟{r,Gr(Zi), ψ̂}E
(

dF(j)(Z,ψ, ζ) | Gr(Zi), ζ̂
)

+
∑

r �=∞

I(Ci = r)E
(

dF(j)(Z,ψ, ζ) | Gr(Zi), ζ̂
)
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Chapter 4. Missing observations

and we replace L∗
2{Ci, GCi(Zi), ψ̂, ζ̂} with L∗

2(j){Ci, GCi(Zi), ψ̂, ζ̂} in the estimating equation

(4.5). We need to solve the following estimating equation

0 =
n

∑

i=1

(

I(Ci = ∞)

̟{∞, Zi, ψ̂}
U(Zi) + L∗

2(j){Ci, GCi(Zi), ψ̂, ξ̂}

)

. (4.6)

The element L∗
2(j){Ci, GCi(Zi), ψ̂, ζ̂} lies in the Augmentation space even though the approxi-

mation dF(j)(Z,ψ, ζ) is not equal to M−1{U(Z),ψ, ζ} (Tsiatis (2006)). See Tsiatis (2006) for

further information about the Augmentation space. The estimating equation (4.6) is doubly

robust if the conditional expectations E(dF (Z,ψ, ζ) | Gr(Z), ζ) are misspecified with respect

to the distribution of Z or the models relating to the missingness mechanism are misspecified.

The inverse operator M−1 for monotone missingness

Tsiatis (2006) shows that the inverse operator M−1 for monotone missingness is given by

M−1{U(Z),ψ, ζ} = U(Z) +
∑

r �=∞

λ{Gr(Z),ψ}

Kr{Gr(Z),ψ}
(U(Z)− E (U(Z) | Gr(Z), ζ)) .

The conditional expectation of the inverse operator E(dF (Z,ψ, ζ) | Gr(Z), ζ) is equal to

E(U(Z) | Gr(Z), ζ) because the sum is equal to zero. The sum is equal to zero because

λr{Gr(Z),ψ}, Kr{Gr(Z),ψ} and E(U(Z) | Gr(Z), ζ) are measurable with respect to the set

Gr(Z). The element L∗
2{C, GC(Z),ψ, ζ} is given by

L∗
2{C, GC(Z),ψ, ζ} =−

I(C = ∞)

̟{∞, Z,ψ}

∑

r �=∞

̟{r,Gr(Z),ψ}E (U(Z) | Gr(Z), ζ)

+
∑

r �=∞

I(C = r)E (U(Z) | Gr(Z), ζ)

=
∑

r �=∞

(

I(C = r)−
I(C = ∞)̟{r,Gr(Z),ψ}

̟{∞, Z,ψ}

)

E (U(Z) | Gr(Z), ζ)

=
∑

r �=∞

I(C = r)− λ{Gr(Z),ψ}I(C ≥ r)

Kr{Gr(Z),ψ}
E (U(Z) | Gr(Z), ζ) .

The estimating equation (4.5) is equal to the estimating equation that was used to obtain the

estimator at (4.1). Tsiatis (2006) shows the equality

∑

r �=∞

(

I(C = r)−
I(C = ∞)̟{r,Gr(Z),ψ}

̟{∞, Z,ψ}

)

=
∑

r �=∞

I(C = r)− λ{Gr(Z),ψ}I(C ≥ r)

Kr{Gr(Z),ψ}
.
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5 | Analysing the PERFORM study

Section 5.1 sketches the statistical analysis of the PERFORM study from Manuscript I and

Manuscript III. Section 5.2 summaries briefly the results from Manuscript I and Manuscript

III. An analysis of the three middle time points (t = 2, t = 6 and t = 12) of the PERFORM

study is also conducted with the same methods that were introduced and used in Manuscript

I and Manuscript III to analyse the two time points t = b and t = 18. The results of the

new analysis of the PERFORM study are then compared to the results from Manuscript I and

Manuscript III. The reason for the additional analysis is caused by the clinical interest of the

course of the disease over the two years. Analysing the three middle time points will connect

the dots between the two separate analysis for the early (t = b) and the later (t = 18) time

points and the course of the acute phase and the maintenance phase of the disease for patients

with MDD may be revealed.

5.1 Statistical analysis

Patients are included in the analysis if depression severity at the prior time point before time t

(PHQpt) is observed for t ∈ {2, 6, 12}. If the pattern of the missing observations is nonmonotone

then the missing observations are forced to follow a monotone pattern. The missing observations

are forced to follow a monotone pattern by setting the subsequent measurements to be missing

in the ordered sequence. We use the dichotomized version of PDQt. If the original global

score of PDQt is less than or equal to 5 then it corresponds to having no or minimal cognitive

symptoms at time t ∈ {2, 6, 12, 18}. If the original global score of PDQt is strictly greater than

5 then it corresponds to having cognitive symptoms at time t ∈ {2, 6, 12, 18}. Let PDQt be

equal to 0 if the patient has no or minimal cognitive symptoms and let PDQt be equal to 1 if

the patient has cognitive symptoms at time t ∈ {2, 6, 12, 18}. We assume that the sequential

conditional exchangeability is given by

SDS
(pdqt,pdqst)
st ⊥⊥ PDQt | PHQt, SDSpt, PDQpt, PHQpt

and

SDS
(pdqt,pdqst)
st ⊥⊥ PDQst | PHQst, SDSt, PDQt, PHQt
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Chapter 5. Analysing the PERFORM study

for t ∈ {2, 6, 12} (Manuscript I). The marginal structural model is given by

E
(

SDS
(pdqt,pdqst)
st

)

= βI,t + β1,tpdqt + β2,tpdqst + β3,tpdqtpdqst

and let βt = (βI,t, β1,t, β2,t, β3,t) denote the vector of causal effects at time t ∈ {2, 6, 12}. See

Manuscript I for further information. Let Z2,i = (Wb,i,W2,i,W6,i), let Z6,i = (W2,i,W6,i,W12,i)

and let Z12,i = (W6,i,W12,i,W18,i) withWt,i = (PHQt,i, PDQt,i, SDSt,i). Our DRMGf estimator

is compared to the näıve estimator, the LSmeans (SAS Institute Inc (2012)) estimator and the

estimator for the simpler g-formula (SG) (Robins (1986)). We use all four estimators that were

used in Manuscript I. See Manuscript I for the description of the näıve estimator, the LSmeans

estimator, the estimator for the simpler g-formula (SG) and our DRMGf estimator. We also

compare our DRMSM estimator to the estimator for the simpler sequential mediation formula

(SSM) for the mediation analysis of Zt,i for t ∈ {2, 6, 12}. We use all four estimators that were

used in Manuscript III (the two estimators for the mediation analysis and the two estimators

that were used to estimate the causal effects βt = (βI,t, β1,t, β2,t, β3,t)). See Manuscript III for

the description of the four estimators. All the patients with the pattern G4(Zt) and G7(Zt) for

t ∈ {2, 6, 12} are removed from the data. The vector G4(Zt) is the four measurements given

by (PHQpt, PDQpt, SDSpt, PHQt) and the vector G7(Zt) is the seven measurements given

by (Wpt, PHQt, PDQt, SDSt, PHQst) with Wpt = (PHQpt, PDQpt, SDSpt). The patients are

removed from the data because we want to avoid numerical problems for the estimation using the

µ-models and the λ-models. The two λ-models for G4(Zt) and G7(Zt) are given by λ4(G4(Zt)) =

λ7(G7(Zt)) = 0 for t ∈ {2, 6, 12}. The confidence intervals are obtained using 1000 bootstraps.

However, the analysis for t = 2 had some numerical problems. These numerical problems

were caused by the bootstrap sample was not large enough to estimate the parameter of the

interaction between PDQt and PDQst. The confidence intervals in Figure 5.1a (the analysis

for t = 2) are obtained using 927 bootstraps. All four estimators failed in 73 bootstraps. The

confidence intervals in Table 5.2 and Table B.4 for t = 2 are obtained using 954 bootstraps

because all four estimators failed in 46 bootstraps.

5.2 Result

Manuscript I shows the results of the expected value of the four different counterfactual levels

for both the early (t = b) and the later (t = 18) time points of the PERFORM study with

four different estimators (the näıve estimator, the LSmeans estimator, the estimator for the

simpler g-formula (SG) and our DRMGf estimator). The analysis for both time points (t = b

and t = 18) shows that patients with cognitive symptoms at both visits have worse functioning

than patients with no or with minimal cognitive symptoms at both visits. It applies for all four

estimators. The differences in the expected outcomes between the four groups of exposures

shrink when the estimators adjust for confounding. The pattern is most pronounced for the

näıve estimator compared to the other three estimators. The analysis also shows that the

difference between the estimator for the simpler g-formula (SG) and our DRMGf estimator is
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5.2. Result

surprisingly small. The included covariates are poor at predicting drop-out. This is causing the

estimates to be almost similar for the two estimators. See Manuscript I for further information.

Manuscript III shows the results of the mediation analysis of the PERFORM study using

the estimator for the simpler sequential mediation formula (SSM) and our DRMSM estimator.

The results show that the estimates are almost similar for the two estimators. The similarities

of the estimates for the two estimators may be caused by the included covariates are poor at

predicting drop-out. The direct effect of cognitive symptoms on functional impairment at a

later time is positive for t = b. This applies for both estimators (SSM and DRMSM). The

direct effect of cognitive symptoms on functional impairment at a later time is negative for

t = 18. This applies for both estimators (SSM and DRMSM). The negative direct effect for the

later time point (t = 18) may be caused by many patients are doing very well after 18 months

and we see the effect that patients with cognitive symptoms are the only ones who can improve

their functioning. The scales do not allow for further improvement among the patients if the

patients already have the lowest score on the scale. See Manuscript III for further information.

The results of expected score of functional impairment

Figure 5.1 shows the results of the estimates of the expected value of the four different counter-

factual levels for the three time points, t ∈ {2, 6, 12}. Each plot shows the estimates with the

confidence intervals. See Manuscript I for further information. The actual numbers are shown

in Table B.1, Table B.2 and Table B.3 in Appendix B.
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Naïve LSmeans G−formula DRMGf

(a) Analysis for t = 2.
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(b) Analysis for t = 6.
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(c) Analysis for t = 12.

Figure 5.1: The horizontal lines are the estimates. The verticals lines are the 95% confidence
intervals. The confidence intervals are obtained using 1000 bootstraps. The confidence inter-

vals for the analysis for t = 2 are obtained using 927 bootstraps since all four estimators had

numerical problems. The actual numbers are shown in Appendix B. See Figure 2 in Manuscript
I for further information.

The results of the analysis of the three time points t ∈ {2, 6, 12} are almost similar to the

results of the analysis for t equal to b and 18. The large variations in the expected outcomes
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Chapter 5. Analysing the PERFORM study

between the four combinations of cognitive deficits for the näıve estimator are similar to the

results in Manuscript I. The differences in the expected outcomes between the four groups of ex-

posures shrink when the estimators adjust for confounding similar to the analysis in Manuscript

I. All four estimators suggest that patients with cognitive symptoms at both visits have worse

functioning than patients with no or with minimal cognitive symptoms at both visits. How-

ever, this does not apply for the analysis for t equal to 12. The three estimators: LSmeans,

g-formula (SG) and DRMGf show (the analysis t = 12) that patients having no or minimal

cognitive symptoms at visit 12 and having cognitive symptoms at the subsequent visit have

worse functioning than patients having cognitive symptoms at both visits. The results show

that the impact of cognition on functioning is worse for the patient if the patient experiences a

relapse of cognitive symptoms compared to have stable cognitive symptoms over the two years.

The analysis shows that the presence of cognitive symptoms will cause poor functioning and

the pattern is most pronounced for the näıve estimator. The results are not surprising since

the analysis from Manuscript I shows similar results.

The results from the estimator for the simpler g-formula (SG) and our DRMGf estimator are

also not surprising. We know from the analysis in Manuscript I that the included covariates are

poor at predicting drop-out and this is causing the small difference between the two estimators.

Table 5.1 shows the minimum and maximum of the predicted values of each λr{Gr(Z), ψ̂} for

the three time points t ∈ {2, 6, 12}.

Analysis Range λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 ̟

t = 2
Minimum 0.200 0.219 0.171 0 0.060 0.042 0 0.041 0.112
Maximum 0.225 0.253 0.314 0 0.290 0.533 0 0.385 0.391

t = 6
Minimum 0.158 0.207 0.199 0 0.065 0.068 0 0.039 0.112
Maximum 0.173 0.330 0.347 0 0.378 0.369 0 0.533 0.352

t = 12
Minimum 0.159 0.171 0.155 0 0.064 0.086 0 0.036 0.135
Maximum 0.227 0.354 0.361 0 0.481 0.413 0 0.334 0.386

Table 5.1: The minimum and maximum of the predicted values of each λr{Gr(Z), ψ̂} for the
three time points t ∈ {2, 6, 12}. See Table 2 in Manuscript I for further information.

Table 5.1 shows almost similar ranges of the minimum and maximum of the predicted values

of λr{Gr(Zt),ψ} as Table 2 in Manuscript I. The narrow ranges cause the estimator for the

simpler g-formula (SG) and our DRMGf estimator to provide almost the same estimates. The

similarity of the two estimators have been explored with simulation studies. The results of the

analysis with the three time points are in line with Manuscript I.

The results of the mediation analysis

Table 5.2 shows the estimates of the interventional direct effect and the interventional indirect

effects of cognitive symptoms on functional impairment at a later time with the confidence

intervals for the three time points (t ∈ {2, 6, 12}). The estimate of the causal effect β1,t with
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5.2. Result

the confidence interval is also shown in the Table for the three time points (t ∈ {2, 6, 12}). The

coefficient β1,t is the causal effect of cognitive symptoms on functional impairment at a later

time for the time point t ∈ {2, 6, 12}. We use the same arguments from Section 3.3 when we

compare the overall effect to β1,t for the comparison between the overall effect and the total

causal effect. We have only shown the estimate of the coefficient β1,t in Table 5.2 because we

only need β1,t for the comparison between the overall effect and the total causal effect. Table

B.4 (in Appendix B) shows the estimates of the causal effects βt = (βI,t, β1,t, β2,t, β3,t) with the

confidence intervals.

SSM/SG DRMSM/DRMGf
Analysis Effect SE 95%-CI Effect SE 95%-CI

Z2

dir2 1.006 1.383 (-1.704 ; 3.715) 1.197 1.447 (-1.639 ; 4.033)
indirSDS2

0.271 0.608 (-0.920 ; 1.462) 0.910 0.492 (-0.054 ; 1.873)
indirPHQ6

0.658 0.595 (-0.507 ; 1.824) 0.491 0.590 (-0.666 ; 1.648)
Overall 1.935 1.573 (-1.148 ; 5.018) 2.598 1.601 (-0.541 ; 5.736)
β1,2 1.935 1.573 (-1.148 ; 5.018) 2.598 1.601 (-0.541 ; 5.736)

Z6

dir6 -0.571 1.414 (-3.343 ; 2.202) -0.769 1.487 (-3.683 ; 2.145)
indirSDS6

0.637 0.438 (-0.221 ; 1.495) 0.706 0.365 (-0.009 ; 1.422)
indirPHQ12

0.762 0.694 (-0.599 ; 2.123) 0.736 0.655 (-0.548 ; 2.020)
Overall 0.828 1.692 (-2.489 ; 4.145) 0.673 1.698 (-2.654 ; 4.001)
β1,6 0.828 1.692 (-2.489 ; 4.145) 0.673 1.698 (-2.654 ; 4.001)

Z12

dir12 -2.437 1.651 (-5.674 ; 0.800) -2.447 1.877 (-6.127 ; 1.232)
indirSDS12

0.442 0.227 (-0.003 ; 0.887) 0.377 0.214 (-0.043 ; 0.796)
indirPHQ18

-0.464 0.556 (-1.553 ; 0.625) -0.154 0.516 (-1.165 ; 0.857)
Overall -2.459 1.651 (-5.694 ; 0.777) -2.225 1.885 (-5.919 ; 1.470)
β1,12 -2.459 1.651 (-5.694 ; 0.777) -2.225 1.885 (-5.919 ; 1.470)

Table 5.2: The SSM/SG column shows the estimates obtained using the estimator for the
simpler sequential mediation formula (SSM) and the estimator for the simpler g-formula (SG).
The DRMSM/DRMGf column shows the estimates obtained using our two estimators DRMSM
and DRMGf. The Effect column shows the estimated effects. The SE column shows the
standard error for each estimate. See Table 3.2 for further information about the five rows:
dirt, indirSDSt

, indirPHQst
, Overall and β1,t for t ∈ {2, 6, 12}. The standard errors are obtained

using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals. The confidence
intervals for the analysis for t = 2 are obtained using 954 bootstraps because the estimators had
numerical problems.

Table 5.2 shows that the estimates for the two estimators (the estimator for the simpler

sequential mediation formula (SSM) and our DRMSM estimator) are almost similar. The

difference between the two estimators is not surprising since the included covariates are poor at

predicting drop-out. This causes the estimates for the two estimators to be almost similar. We

notice that the overall effect is equal to the total causal effect for all six analysis. The results

are similar to the results in Manuscript III. At first sight, the negative effects can be surprising

since a negative effect indicates that patients with cognitive symptoms at time t (equal to 2, 6

and 12) are more likely to improve directly their functioning in contrast to patients with no or

with minimal cognitive symptoms. We had expected positive estimates. However, the negative
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effects may indicate the ceiling and floor effect that more patients become better over time and

it becomes more difficult for patients with no or with minimal cognitive symptoms to further

improve if the patients already have the lowest score on the scale. The results are in line with

Manuscript III.
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6 | Discussion

This thesis contributes to the statistical methodology of causal inference to analyse longitudinal

data with repeated measurements and missing observations.

The aim of this thesis was to develop an estimator to analyse longitudinal data with time-

dependent confounding and missing observations that follow a monotone pattern. An estimator

for mediation analysis for multiple mediators and missing observations that follow a monotone

pattern was also needed. The aim was to utilize data better instead of using only complete

cases and reducing bias of the estimates when data contains missing observations that follow a

monotone pattern. The work in this thesis was motivated by the PERFORM study since the

study has substantial many missing observations. We were interested in the effect of cognitive

symptoms on functional impairment at a later time. An analysis using only complete cases was

not a satisfactory analysis of the PERFORM study. We have therefore proposed a doubly robust

estimator (DRMGf) in Manuscript I to estimate the causal effect of a time-varying exposure

in the presence of time-dependent confounding when data contains missing observations that

follow a monotone pattern. We have also proposed a doubly robust estimator for sequential

mediation (DRMSM) in Manuscript III when data contains missing observations that follow a

monotone pattern. The overall effect obtained using the DRMSM estimator is equal to the total

causal effect. The estimator is based on the new definition of sequential mediation proposed

in Manuscript II. The two estimators and the new definition were applied to the observational

cohort study PERFORM consisting of patients with depression.

Our DRMGf estimator and three existing estimators from the literature were applied to the

PERFORM study. The difference of the expected outcomes between the four exposure groups

became smaller as the confounders were included in the models. Our DRMGf estimator was

compared to the estimator for the simpler g-formula (SG). The results of our DRMGf estimator

and the estimator for the simpler g-formula (SG) were surprisingly similar. The similarities of

the two estimators were caused by the included covariates were poor at predicting drop-out. The

robustness of our estimator was not revealed in the analysis of the PERFORM study. We also

did a mediation analysis of the PERFORM study. The doubly robust estimator (DRMSM) for

sequential mediation was used to analyse the PERFORM study. Our DRMSM estimator was

compared to the estimator for the simpler sequential mediation formula (SSM) in the analysis

of the PERFORM study. The robustness of our two estimators DRMGf and DRMSM were

not revealed in the analysis of the PERFORM study. However, the simulation studies revealed
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Chapter 6. Discussion

the robustness of our two estimators (DRMGf and DRMSM). We must remember that we have

only considered a simplified version of the PERFORM study. We might have seen a bigger

difference between our DRMGf estimator and the SG estimator or our DRMSM estimator and

the SSM estimator if we had included age, gender, disease history and other relevant predictors.

The results from the analysis for all t ∈ {b, 2, 6, 12, 18} reflect that the treatment goal in the

first months of treatment (the acute phase) is to relieve the depressive symptoms while the goal

later in treatment (the maintenance phase) shifts towards stabilisation and relapse prevention.

It appears from the analysis of the expected value of the four different counterfactual levels

that the impact of cognition on functioning is worse for a patient if the patient experiences a

relapse of cognitive symptoms compared to having stable cognitive symptoms. The mediation

analysis may indicate that the ceiling and floor effect occur in the PERFORM study since the

study is scale based and each scale has a finite range. It may happen that almost all patients

have the highest score in the beginning of the study which cause the ceiling effect and then

some months later almost all patients have the lowest score which cause the floor effect. It is

easier to see an improvement among the patients if almost all/many patients have a high score

and it becomes more difficult to detect any improvement if almost all/many patients have a low

score. We are not able to see any improvement of the patient if the patient’s score is already on

the lower boundary of the scale compared to a patient with a higher score. The scales do not

leave any room for further improvement if the patient is already doing well because the scales

have a lower finite limit. It is a limitation for scales based studies.

It is now tempting to only use the estimator for the simpler g-formula (SG) instead of our

DRMGf estimator when data contains missing observations. There was almost no difference

between the two estimators in the analysis of the PERFORM study. The estimator for the

simpler g-formula (SG) is also easier to use compared to our DRMGf estimator. However, the

simulation studies (this thesis, Manuscript I and Manuscript III) have shown that we obtain

biased estimates using only complete cases if the included covariates are strong at predicting

drop-out. The simulation studies with the missing observations have revealed the robustness of

our DRMGf estimator. The estimates obtained using the estimator for the simpler g-formula

(SG) were biased when the included covariates were strong at predicting drop-out. The overall

interpretation of the simulation studies is that our DRMGf estimator is better of estimating

the parameters of interest than the estimator for the simpler g-formula (SG). The simulation

studies with the missing observations have also revealed that our DRMGf estimator is better

of estimating the parameters of interest than the BRMM estimator (4.3) (the extended version

of the doubly robust estimator introduced by Bang and Robins (2005) when data contains

missing observations). The estimates obtained using the BRMM estimator (4.3) were biased

even though the µ-, the π- and the λ-models were correctly specified. This is not surprising

because the doubly robust estimator (2.16) showed already a bit of weakness compared to the

estimator for the simpler g-formula (SG) with full data in Section 2.5. The conclusion is that the

BRMM estimator (4.3) should be avoided because it is possible to obtain biased estimates even

when the µ-models and the π-models are correctly specified. The simulation studies with the

missing observations have also revealed the robustness of our DRMSM estimator. The estimates

obtained using the estimator for the simpler sequential mediation formula (SSM) were biased
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when the included covariates were strong at predicting drop-out. The overall interpretation of

the simulation studies is that our DRMSM estimator is better of estimating the parameters of

interest than the estimator for the simpler sequential mediation formula (SSM).

We are able to obtain the overall effect to be equal to the total causal effect using our new

definition of sequential mediation. The simulation studies have revealed that our definition is

able to obtain the true effects (Manuscript II). Our definition is able to obtain the interventional

direct effect and the interventional indirect effects for multiple mediators so that the overall

effect is equal to the total causal effect. Our definition allows the included models to have

interactions between the different measurements/variables. Our definition was compared to an

already existing definition by VanderWeele and Vansteelandt (2013) in three simulation studies

and our definition was better of estimating the parameters of interest compared to the existing

definition.

The conclusion is that our two estimators DRMGf and DRMSM protect against biased

estimates compared to the two simpler estimators (the estimator for the simpler g-formula (SG)

and the estimator for the simpler sequential mediation formula (SSM)). Our two estimators

(DRMGf and DRMSM) also utilize data better compared to the two simpler estimators (SG

and SSM). The assumption about the missingness is weaker for our two estimators (DRMGf and

DRMSM) compared to the two simpler estimators. Our two estimators (DRMGf and DRMSM)

hinge on the assumption missing at random which is less strict than the assumption missing

completely at random (the two estimators SG and SSM hinge on the assumption missing

completely at random). The two estimators SG and SSM show weakness in estimating the

parameters of interest when data contains missing observations that follow a monotone pattern.

The cost that we may have to pay with our two estimators is larger standard errors. Our two

estimators DRMGf and DRMSM share the same advantages, disadvantages and limitations.

6.1 Perspectives and limitations

The consistency assumption and the conditional exchangeability assumption for no unmeasured

confounding are a limitation for the two estimators and the definition. These two assumptions

are untestable. Another limitation for the two estimators (DRMGf and DRMSM) and the

definition of sequential mediation is the ordering of the variables because it may be a natural

assumption for some studies. However, the order of the different domains in the PERFORM

study is partially clear because the three domains were measured simultaneously for each pa-

tient. The causal ordering between the different time points is introduced by time itself but

the causal ordering between the different domains within the same time point is less clear. The

causal ordering between the different domains within the same time point is based on clinical

insight (a change in depression severity causes a change in cognitive performance, which in

turn causing a change in functioning). The assumption of monotone missingness is a realistic

assumption since patients tend to drop-out of studies but it does not allow for intermittent

missing data. It may be unrealistic to assume that the missing observations in the PERFORM
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study follow a monotone pattern and the missing observations are missing at random. However,

to analyse a subset of the PERFORM study with only fully observed patients is not less critical

because an analysis using only complete cases depends on the assumption missing completely

at random.

The interpretation of the results hinges on our assumptions but they are not guaranteed and

the data will not provide us with any information whether the assumptions are correct or not.

The assumption of monotone missingness leaves room for further research for extending the two

estimators for data containing missing observations that follow a nonmonotone pattern. Further

research is to obtain the influence function of the g-formula instead of the U(Z)-function (2.13)

that has been used in this thesis. The influence function of the g-formula will make it possible

to obtain the asymptotic variance instead of estimating the variance by bootstrapping.
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7 | Summary of manuscripts

7.1 Summary of Manuscript I

A doubly robust estimator for monotone missing data in the presence of time-

dependent confounding

This manuscript presents a doubly robust estimator for estimating the causal effect in the pres-

ence of time-dependent confounding while data contains missing observations. The estimator

allows the models relating to the missingness mechanism in the data to be misspecified and the

estimator will still be unbiased. The estimator is an extension of the g-formula. Our estimator

utilizes data better compared to an estimator using only complete data since our estimator

allows partially observed vectors to be included in the analysis without reducing data to a

subset of complete cases. The observational study Prospective Epidemiological Research on

Functioning Outcomes Related to Major depressive disorder (PERFORM) was the motivation

to develop the estimator. Our doubly robust estimator was used to estimate the causal effect

of cognitive symptoms on functional impairment at a later time while data contains missing

observations. However, the analysis of the PERFORM study did not reveal the robustness of

our estimator.

Manuscript I is submittable.

7.2 Summary of Manuscript II

Sequential mediation analysis with multiple mediators

This manuscript proposes a new definition of sequential mediation to obtain the interventional

direct effect and the interventional indirect effects for multiple mediators. The overall effect

with our definition is equal to the total causal effect. The definition is inspired by Vansteelandt

and Daniel (2017) for decomposing the total causal effect into the interventional direct and
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indirect effects for multiple mediators. The observational study Prospective Epidemiological

Research on Functioning Outcomes Related to Major depressive disorder (PERFORM) was

the motivation to develop the definition since we are interested in the direct effect of cognitive

symptoms on functional impairment at a later time, and we prefer that the overall effect is

equal to the total causal effect for the sake of the interpretation.

Manuscript II is submittable.

7.3 Summary of Manuscript III

Sequential mediation analysis with multiple mediators for data with missing

observations

This manuscript presents a doubly robust estimator for estimating the interventional direct

effect and the interventional indirect effects for multiple mediators while data contains missing

observations. We have developed an estimator that allows the models relating to the missing-

ness mechanism in the data to be misspecified and the estimator will still be unbiased. The

estimator is an extension of the definition of sequential mediation from Manuscript II. Our

estimator utilizes data better compared to an estimator using only complete data since our

estimator allows partially observed vectors to be included in the analysis. The observational

study Prospective Epidemiological Research on Functioning Outcomes Related to Major de-

pressive disorder (PERFORM) was the motivation to develop the estimator. Our doubly robust

estimator was used for estimating the direct effect of cognitive symptoms on functional impair-

ment at a later time and the mediated effects. The analysis of the PERFORM study did not

reveal the robustness of our estimator.

Manuscript III is submittable.
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A | The doubly robust estimator

The estimator (2.16) by Bang and Robins (Part of Chapter 2): We show that the

estimator (2.16) is a doubly robust estimator but we begin the Appendix by showing that the

mean E(ΥT (Z)) is equal to zero. We assume that the µ-models and the π-models are correctly

specified. We also assume conditional exchangeability and consistency. We have the equality

E

(

(

1−
I(aT )

πT (VT )

)

m{VT , ξ}

∣

∣

∣

∣

∣

LT , AT−1

)

= E

(

(

1−
I(aT )

πT (VT )

)

E(Y aT |LT , AT−1)

∣

∣

∣

∣

∣

LT , AT−1

)

because we have assumed conditional exchangeability and consistency. We notice the following

equalities

E

(

I(aT )

πT (VT )
E(Y aT |LT , AT−1)

∣

∣

∣

∣

∣

LT , AT−1

)

=
E(I(aT ) | LT , AT−1)

πT (VT )
E(Y aT |LT , AT−1)

=
πT (VT )

πT (VT )
E(Y aT |LT , AT−1)

where the conditional expectation E(I(aT ) | LT , AT−1) is equal to πT (VT ) such that

E
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I(aT )

πT (VT )

)

m{VT , ξ}

∣

∣

∣

∣

∣

LT , AT−1

)

= 0.

Now, we can show that the mean E(ΥT (Z)) is equal to zero by the following calculations

E (ΥT (Z)) = E

(

E

(

T−1
∏

t=0

I(at)

πt(Vt)

(

1−
I(aT )

πT (VT )
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m(VT ) + ΥT−1(Z)
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∣

∣

∣

∣

∣

LT , AT−1

)

+ΥT−1(Z)

)

= E (ΥT−1(Z)) .

The mean E(ΥT (Z)) is equal to zero because we have shown that the mean E(ΥT (Z)) is

equal to E(ΥT−1(Z)) and it is possible to show the equality T − 1 times more and the last

mean E(Υ0(Z)) is equal to zero. To show that the estimator (2.16) is doubly robust then
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Appendix A. The doubly robust estimator

we need to show that the estimator is unbiased when either the µ-models or the π-models

are correctly specified. We assume that the π-models are correctly specified and we let the

µ-models be misspecified denoted by µ∗. We let Υµ∗

T (Z) denote the Υ-term when the µ-models

are misspecified. The mean E(UAIPW (Z)) is given by

E(UAIPW (Z)) = E

(

Y

T
∏

t=0

I(at)

πt(Vt)
+

T
∑

t=0

t−1
∏

k=0

I(ak)

πk(Vk)

(

1−
I(at)

πt(Vt)

)

µ∗(Vt)

)

− E
(

Y aT
)

= E(Υµ∗

T (Z))

which is zero because the expectation E(Υµ∗

T (Z)) is equal to zero since the π-models are correctly

specified. Showing that the mean E(Υµ∗

T (Z)) is equal to zero are almost the same as showing

that the mean E(ΥT (Z)) is equal to zero (replace µ with µ∗ in the calculations above). We

assume that the µ-models are correctly specified and we let the π-models be misspecified denoted

by π∗. The mean E(UAIPW (Z)) is given by

E(UAIPW (Z)) = E

(

Y

T
∏

t=0

I(at)

π∗

t (Vt)
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which is zero using the law of iterated conditional expectations.

The BRMM estimator (Part of Chapter 4): We show that the BRMM estimator (4.3)

is robust in case of misspecification of the included models (the µ-, the π- and the λ-models)

according to Table 4.1. We assume that the µ-models or the π-models are correctly specified

for now. We need to show that the expectation

E
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Y

T
∏

t=0

I(at)

πt{Vt,α}
+ΥT (Z)−E
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Y aT
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)

(A.1)

is equal to zero for a specific combination of the included models (the µ-, the π- and the

λ-models) with

ΞT (Z) = E
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)

.

44



It is possible to rewrite the ΞT (Z)-term to the expression E(UAIPW (Z) | Gr(Z), ζ)−UAIPW (Z).

The expectation of the part before the sum
∑

c

r=1
(. . .) in (A.1) is equal to zero by construction

because the µ-models or the π-models are correctly specified. We need to show that the

expectation of the sum
∑

c

r=1
(. . .) in (A.1) is equal to zero. We define the set Fr = σ(I(C =

1), . . . , I(C = r − 1), Z) and we obtain the equality E(I(C = r) | Fr) = λr{Gr(Z),ψ}I(C ≥ r)

(Tsiatis (2006)). We obtain by conditioning on the set Fr the following equality

E

(

I(C = r)− λr{Gr(Z),ψ
∗}I(C ≥ r)

Kr{Gr(Z),ψ
∗}

ΞT (Z)

)

= E (S (Gr(Z)) I(C ≥ r)ΞT (Z))

with

S (Gr(Z)) =
λr{Gr(Z),ψ0

} − λr{Gr(Z),ψ
∗}

Kr{Gr(Z),ψ
∗}

.

If the models relating to the missingness mechanism are correctly specified ψ∗ = ψ
0
then the

S(Gr(Z)) is equal to zero for r = 1, . . . , c which means that the sum
∑

c

r=1
(. . .) in (A.1) is

equal to zero. If the models relating to the missingness mechanism are misspecified ψ∗ �= ψ
0

then the S(Gr(Z)) is not equal to zero for r = 1, . . . , c which means that the sum
∑

c

r=1
(. . .)

in (A.1) is not equal to zero. Now, we assume that the µ-models are correctly specified and we

are allowing the π-models to be either correctly specified or misspecified. Pick r ∈ {1, . . . , c}.

We have the conditional expectation

E (ΞT (Z) | I(C ≥ r), Gr(Z)) = E (UAIPW (Z) | Gr(Z), ζ)− E (UAIPW (Z) | I(C ≥ r), Gr(Z))

and the conditional expectation E (UAIPW (Z) | ·) is rewritten to

E

(

T
∏

t=0

I(at)

πt{Vt,α}
(Y − µ{VT ,γ}) +

T
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(µ{Vj,γ} − µ{Vj−1,γ})

∣

∣

∣

∣

∣

·

)

− E
(

Y aT
)

and all the parts with the µ-models are equal to zero because the µ-models are correctly

specified. This means that the conditional expectation E(ΞT (Z) | I(C ≥ r), Gr(Z)) is equal

to zero because the conditional expectation E (UAIPW (Z) | Gr(Z), ζ) is equal to E (Y aT ) and

the conditional expectation E (UAIPW (Z) | I(C ≥ r), Gr(Z)) is equal to E (Y aT ). We have the

equality

E {S (Gr(Z)) I(C ≥ r)ΞT (Z)} = 0

because

E {S (Gr(Z)) I(C ≥ r)ΞT (Z)} = E {S (Gr(Z)) I(C ≥ r)E (ΞT (Z) | I(C ≥ r), Gr(Z))}

and the conditional expectation E(ΞT (Z) | I(C ≥ r), Gr(Z)) is equal to zero. This implies

that the expectation of the sum
∑

c

r=1
(. . .) in (A.1) is equal to zero because the µ-models are

correctly specified. We must recall that the µ{VT ,γ}-model is equal to the m{VT , ξ}-model.
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B | Tables from the analysis of the PER-

FORM study

Tables with the actual numbers for Figure 5.1: Table B.1 shows the estimates with the

confidence intervals for Figure 5.1a (the analysis for t = 2). Table B.2 shows the estimates with

the confidence intervals for Figure 5.1b (the analysis for t = 6). Table B.3 shows the estimates

with the confidence intervals for Figure 5.1c (the analysis for t = 12).

Estimator Estimate SE 95%-CI Width of CI

Näıve

(1, 1) 14.397 0.610 (13.202 ; 15.593) 2.392
(0, 1) 8.500 2.401 (3.795 ; 13.205) 9.411
(1, 0) 7.387 1.096 (5.240 ; 9.535) 4.295
(0, 0) 4.225 0.836 (2.586 ; 5.864) 3.278

LSmeans

(1, 1) 11.869 0.590 (10.712 ; 13.026) 2.314
(0, 1) 6.901 2.091 (2.802 ; 10.999) 8.198
(1, 0) 10.034 0.923 (8.225 ; 11.843) 3.618
(0, 0) 9.177 1.260 (6.709 ; 11.646) 4.937

G-formula

E(SDS
(1,1)
6 ) 12.094 0.627 (10.864 ; 13.323) 2.459

E(SDS
(0,1)
6 ) 5.822 2.450 (1.020 ; 10.624) 9.605

E(SDS
(1,0)
6 ) 10.215 0.978 (8.299 ; 12.131) 3.832

E(SDS
(0,0)
6 ) 8.280 1.250 (5.830 ; 10.729) 4.899

DRMGf

E(SDS
(1,1)
6 ) 12.8060 0.552 (11.724 ; 13.889) 2.165

E(SDS
(0,1)
6 ) 5.9400 2.417 (1.203 ; 10.676) 9.473

E(SDS
(1,0)
6 ) 11.0140 0.930 (9.191 ; 12.837) 3.646

E(SDS
(0,0)
6 ) 8.4160 1.307 (5.853 ; 10.979) 5.125

Table B.1: Figure 5.1a is based on the actual numbers. The analysis for t = 2. The Estimator

column shows the estimator that was used to obtain the estimates. The Estimate column shows
the estimates obtained using the different estimators. The SE column shows the standard errors
obtained using 927 bootstraps. The 95%-CI column shows the 95% confidence intervals. The
Width of CI column shows the width of the confidence intervals.
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Estimator Estimate SE 95%-CI Width of CI

Näıve

(1, 1) 12.858 0.608 (11.666 ; 14.051) 2.385
(0, 1) 10.462 2.231 (6.089 ; 14.834) 8.745
(1, 0) 5.208 0.876 (3.492 ; 6.925) 3.433
(0, 0) 3.813 0.771 (2.302 ; 5.323) 3.020

LSmeans

(1, 1) 10.207 0.598 (9.036 ; 11.379) 2.343
(0, 1) 9.936 1.307 (7.375 ; 12.497) 5.122
(1, 0) 8.104 1.046 (6.053 ; 10.155) 4.102
(0, 0) 8.811 1.429 (6.010 ; 11.612) 5.603

G-formula

E(SDS
(1,1)
12 ) 10.643 0.646 (9.378 ; 11.909) 2.531

E(SDS
(0,1)
12 ) 8.771 1.394 (6.039 ; 11.504) 5.465

E(SDS
(1,0)
12 ) 8.520 1.053 (6.456 ; 10.584) 4.127

E(SDS
(0,0)
12 ) 7.692 1.536 (4.682 ; 10.701) 6.019

DRMGf

E(SDS
(1,1)
12 ) 11.404 0.544 (10.338 ; 12.471) 2.133

E(SDS
(0,1)
12 ) 9.691 1.385 (6.975 ; 12.406) 5.430

E(SDS
(1,0)
12 ) 9.059 1.157 (6.792 ; 11.326) 4.535

E(SDS
(0,0)
12 ) 8.386 1.521 (5.405 ; 11.366) 5.961

Table B.2: Figure 5.1b is based on the actual numbers. The analysis for t = 6. The Estimator

column shows the estimator that was used to obtain the estimates. The Estimate column shows
the estimates obtained using the different estimators. The SE column shows the standard errors
obtained using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals. The
Width of CI column shows the width of the confidence intervals.

Estimator Estimate SE 95%-CI Width of CI

Näıve

(1, 1) 13.010 0.839 (11.367 ; 14.654) 3.287
(0, 1) 12.937 2.097 (8.827 ; 17.048) 8.222
(1, 0) 5.000 1.276 (2.500 ; 7.500) 5.000
(0, 0) 3.579 0.554 (2.493 ; 4.665) 2.172

LSmeans

(1, 1) 9.097 0.698 (7.729 ; 10.466) 2.737
(0, 1) 9.439 1.412 (6.672 ; 12.206) 5.534
(1, 0) 6.921 1.223 (4.524 ; 9.317) 4.793
(0, 0) 9.168 1.339 (6.545 ; 11.792) 5.247

G-formula

E(SDS
(1,1)
18 ) 8.889 0.771 (7.378 ; 10.400) 3.022

E(SDS
(0,1)
18 ) 9.979 1.597 (6.849 ; 13.109) 6.260

E(SDS
(1,0)
18 ) 6.913 1.301 (4.363 ; 9.462) 5.100

E(SDS
(0,0)
18 ) 9.371 1.417 (6.593 ; 12.149) 5.556

DRMGf

E(SDS
(1,1)
18 ) 10.324 0.670 (9.010 ; 11.637) 2.626

E(SDS
(0,1)
18 ) 10.856 1.675 (7.573 ; 14.138) 6.565

E(SDS
(1,0)
18 ) 8.042 1.313 (5.468 ; 10.616) 5.148

E(SDS
(0,0)
18 ) 10.267 1.528 (7.272 ; 13.262) 5.989

Table B.3: Figure 5.1c is based on the actual numbers. The analysis for t = 12. See Table B.2
for the description of the five columns: Estimator, Estimate, SE, 95%-CI and Width of CI.
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Table with the results of the causal effects: Table B.4 shows all the estimates and the

confidence intervals from the analysis of the causal effects βt = (βI,t, β1,t, β2,t, β3,t) for t equal

to 2, 6 and 12.

SG DRMGf
Analysis Effect SE 95%-CI Effect SE 95%-CI

Z2

βI,2 8.280 1.291 (5.750 ; 10.810) 8.416 1.313 (5.842 ; 10.990)
β1,2 1.935 1.573 (-1.148 ; 5.018) 2.598 1.601 (-0.541 ; 5.736)
β2,2 -2.457 2.591 (-7.536 ; 2.621) -2.476 2.445 (-7.269 ; 2.316)
β3,2 4.336 2.881 (-1.310 ; 9.982) 4.269 2.733 (-1.088 ; 9.626)

Z6

βI,6 7.692 1.501 (4.749 ; 10.634) 8.386 1.513 (5.421 ; 11.351)
β1,6 0.828 1.692 (-2.489 ; 4.145) 0.673 1.698 (-2.654 ; 4.001)
β2,6 1.079 1.530 (-1.920 ; 4.079) 1.305 1.661 (-1.951 ; 4.560)
β3,6 1.044 1.543 (-1.981 ; 4.068) 1.040 1.588 (-2.072 ; 4.153)

Z12

βI,12 9.371 1.478 (6.475 ; 12.267) 10.267 1.617 (7.098 ; 13.435)
β1,12 -2.459 1.651 (-5.694 ; 0.777) -2.225 1.885 (-5.919 ; 1.470)
β2,12 0.608 1.715 (-2.754 ; 3.970) 0.589 1.836 (-3.010 ; 4.188)
β3,12 1.369 1.946 (-2.445 ; 5.182) 1.693 2.047 (-2.319 ; 5.704)

Table B.4: The estimation of the causal effects βt = (βI,t, β1,t, β2,t, β3,t) for t equal to 2, 6
and 12. The SG column shows the estimates obtained using the estimator for the simpler g-
formula (SG). The DRMGf column shows the estimates obtained using our DRMGf estimator.
The Effect column shows the estimated effects. The SE column shows the standard errors.
The standard errors are obtained using 1000 bootstraps. The 95%-CI column shows the 95%
confidence intervals. The standard errors are obtained using 954 bootstraps for t = 2 because

the estimators had numerical problems. See Table 1 in Manuscript III for further information.
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A doubly robust estimator for monotone missing
data in the presence of time-dependent
confounding

Thomas Maltesenab*, Torben Martinussenb, Klaus Groes Larsenc and Lene

Hammer-Helmichd

Patients in observational and interventional studies tend to drop-out, which leads to data with missing observations.

Missing observations may complicate the analysis of a longitudinal study with repeated measures over time with

time-dependent confounding. Standard methods fail in the presence of time-dependent confounding and reducing

the data to fully observed vectors can cause biased estimates. We propose an augmented inverse probability

weighted (AIPW) estimator to estimate the causal effect of a binary time-varying exposure in the presence of

time-dependent confounding with a continuous outcome subject to missingness. The estimator is robust regarding

misspecification of the parametric model for the monotone missingness in the data under the assumption that the

missingness is missing at random (MAR). Our estimator requires only partially observed vectors to be included

in the analysis. We use the proposed estimator on the observational study Prospective Epidemiological Research

on Functioning Outcomes Related to Major depressive disorder (PERFORM), which is a longitudinal study with

time-dependent confounding and missing observations. Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, g-formula, time-dependent confounding, doubly robust estimator, monotone

missingness

1. Introduction

Major depressive disorder (MDD) is a multidimensional disease characterized by emotional, physical and cognitive

symptoms. Treatment of cognitive symptoms may hold the key to achieving functional recovery in MDD, but the

relationship between cognitive symptoms and functional impairment is not well understood [1]. The observational study

Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive disorder (PERFORM)

(NCT01427439) is an observational cohort study undertaken to better understand the course of a depressive episode and

its impact on patient functioning over two years in outpatients with MDD [2]. Functional impairment, cognitive symptoms

and depression severity have been measured for each patient in the PERFORM study. The measurements were based on

self-reported scales. Data were collected at different time points: at baseline and after 2, 6, 12, 18 and 24 months [2]. A

naı̈ve regression analysis of functional impairment on cognitive symptoms may lead to a biased estimate since depression

severity may impose time-dependent confounding [3]. The data contains a substantial number of patients with missing

observations. Reducing data with missing observations to a subset of fully observed vectors may also result in biased

estimates.

Methods have been proposed to handle data with missing observations e.g. inverse probability weighting (IPW) where

fully observed vectors are up-weighted to represent full data. Multiple imputation (MI) is another popular method to
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handle data with missing observations. MI has two main advantages over IPW. First, (unless it is monotone missing or a

more complicated MI-model is used) the IPW uses only the fully observed data. Second, the MI is more efficient than IPW,

but IPW is less technical, easier to understand and easier to explain to collaborators [4, 5]. Robins, J. M. and Rotnitzky,

A., among others, have considered methods of semiparametric models with inverse probability weighted estimators when

data contains missing observations [6, 7, 8]. Bang, H. and Robins, J. M., for binary exposure, introduced a doubly robust

estimator for data with missing outcomes and an augmented inverse probability weighted (AIPW) estimator for causal

inference models with time-dependent confounding [9]. Williamson, E. J., Forbes, A., and Wolfe, R. introduced a doubly

robust estimator in case of the (causal) exposure of interest, the confounder or the outcome being missing. Confounding

and missingness in the data may occur simultaneously and the model for the missingness mechanism in the data is typically

uncertain. A doubly robust estimator is desirable to overcome the issue of the missingness in the data [10]. The properties

of these methods are appealing; however, these methods are mainly attractive if only one variable is missing at a time or

data do not have any time-dependent confounding while data contains missing observations. Missingness in the data can

occur for outcome, exposure and time-dependent confounding at the same time.

The PERFORM study is the motivation to develop an estimator for longitudinal data with missing observations while

adjusting for time-dependent confounding at the same time. The previously mentioned methods cannot be used for our data

since more than one measurement is missing at a time and we also have time-dependent confounding. Therefore, we need

an estimator for a time-varying exposure that is robust of misspecification of the parametric model for the missingness

mechanism and at the same time can adjust for time-dependent confounding. We will first consider the estimator derived

from the g-formula for estimating the effect of the time-varying exposure in the presence of time-dependent confounding.

Then, we will extend the estimator to handle partially observed vectors using the techniques developed in Tsiatis [11].

The estimator includes as many vectors as possible and the estimator is not restricted to only one missing variable at

a time. The article is organized as follows. Section 2 revisits the estimator of the g-formula for continuous outcome

and binary exposure. Section 3 considers data containing missing observations and then extends the g-formula to handle

missing observations using the techniques developed in Tsiatis [11]. We denote our estimator by DRMGf (Doubly Robust

estimator for Monotone missingness for the G-formula). In Section 4, we apply our DRMGf estimator from Section 3 to

analyse the PERFORM study. Section 5 shows a simulation study with data simulated with parameters obtained from the

PERFORM study to show the performance of the DRMGf estimator. Section 6 is a discussion of our findings.

2. The estimator for estimating the causal effects in full data

Suppose that our data comprises n identical and independent distributed realizations of random variables Z1, . . . , Zn with

Zi denoting the i-th vector in the data (we suppress the index i for simplicity). The vector Z defines an ordered sequence

of variables (L0, A0, L1, A1, . . . , LT , AT , Y ). The outcome variable Y is assumed to be continuous and we let At denote

the binary exposure at time t ∈ {0, . . . , T}. Define At to be a vector of exposures up to time t (A0, . . . , At). Let AT

denote (A0, . . . , AT ). Let Y aT be the potential outcome that would have been observed if AT had been set to aT . Let Lt

be a set of measured potential confounders at time t ∈ {0, . . . , T} [3]. Let LT denote the vector (L0, . . . , LT ) and let lT
denote the vector (l0, . . . , lT ). The outcome Y may be causally influenced by the whole history of AT and LT . We define

Vt = (Lt, At) and vt = (lt, at). We assume sequential conditional exchangeability

Y aT ⊥⊥ At | Lt, At−1 ∀aT ∈ AT , ∀t ∈ {0, . . . , T}.

The g-formula [12] is given by

E
(

Y aT

)

=

∫

E(Y | LT = lT , AT = aT )

T
∏

t=0

fLt|At−1,Lt−1
(lt | at−1, lt−1)dlt (1)

and can be rewritten as a series of iterated conditional expectations given by

E
(

Y aT

)

= E(· · ·E(E(Y | LT , AT = aT ) | LT−1, AT−1 = aT−1) · · · | L0, A0 = a0)

[13]. From the series of iterated conditional expectations we may then estimate E(Y aT ) with full data by the estimator

Ê
(

Y aT

)

=
1

n

n
∑

i=1

µ{V0,i; γ̂} (2)

with the first model m{vT , ξ} = E(Y | LT = lT , AT = aT ). The next models are given by µ{vT−1,γ} = E(m{VT , ξ} |
LT−1 = lT−1, AT−1 = aT−1) and µ{vt,γ} = E(µ{Vt+1,γ} | Lt = lt, At = at). The last model is given by µ{v0,γ} =
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E(µ{V1,γ} | L0 = l0, A0 = a0). We refer to the m{vT , ξ}-model and all the µ{vt,γ}-models as the µ-models. Let

m{vT , ξ0} denote the true model with the vector of true parameter values ξ
0

and let µ{vt,γ0
} denote the true models

with the vector of true parameter values γ
0
. All the µ-models in (2) contain hats to indicate that we have plugged in the

predicted values from the specified µ-models that have been used for the estimation. The estimator (2) is unbiased if the

µ-models are correctly specified with respect to the underlying process that has generated the data. See Kreif et al. [13]

for the steps of the estimation. The estimator (2) solves the estimating equation

n
∑

i=1

U(Zi) = 0

with

U(Zi) = µ{V0,i,γ0
} − E

(

Y aT
)

. (3)

The µ{Vt,γ}-model can be extended if the confounder Lt = (Lt1 , . . . , Ltq ) is q-dimensional at time t ∈ {0, . . . T}. See

Daniel et al. [3] for further information. Section 4 shows an example where the time-dependent confounder is multivariate

(q = 2). The estimator (2) is asymptotically normally distributed with the mean E(Y aT ) and a variance. We show in

Appendix B that the estimator (2) is asymptotically normally distributed in the situation when T is equal to 1.

3. Vectors with missing observations

Define C to be a random variable and it takes positive integers or infinity C ∈ {1, . . . , c} ∪ {∞}. Let GC(Z) ⊆ Z denote a

vector and let {GCi
(Zi), Ci} denote the i-th vector in the observed data. If C is equal to 1 then it corresponds to have only

observed L0 in Z and the vector is denoted by G1(Z) = (L0). If C = 2 then L0 and A0 are the only two observed variables

in Z and G2(Z) = (L0, A0). We mean by C equal to c that only the outcome is missing from Z. Note that c is an integer

and it is equal to 2(T + 1). If C is equal to infinity then a vector is complete and G∞(Z) = (Z). In the pattern described

above, if Lt is observed then Lt−1 and At−1 are also necessarily observed, and if At is observed then Lt and At−1 are

also necessarily observed. Such a pattern is known as monotone missingness [11]. Complete cases (CC) are a subset of

the observed data. Complete cases contain only vectors of the form G∞(Z). We assume the conditional probability of

observing a complete vector given Z is strictly greater than zero, i.e. that:

P (C = ∞ | Z) > 0

and ̟{∞, Z,ψ} denotes the probability P (C = ∞ | Z) [11]. Let

λr{Gr(Z),ψ} = P (C = r | C ≥ r, Z)

for r �= ∞ denote the probability of stopping the observing additional observations given r observed. Tsiatis defines

Kr{Gr(Z),ψ} =

r
∏

j=1

(1− λj{Gj(Z),ψ})

where Kc{Gc(Z),ψ} is the probability ̟{∞, Z,ψ} [11]. We assume that data are coarsened at random (CAR) which

means the coarsening probabilities only depend on the data as a function of the observed data and the coarsening

probabilities are given by ̟{r,Gr(Z),ψ} = λr{Gr(Z),ψ}Kr−1{Gr−1(Z),ψ}. We assume λr{Gr(Z),ψ} is given by

λr{Gr(Z),ψ} =
exp (ψI,r +Gr(Z)ψr)

1 + exp (ψI,r +Gr(Z)ψr)
, (4)

where the column vector ψr has the same dimension as the row vector Gr(Z). Let ψ = (ψI,r,ψ
′

r) where the coefficient

ψI,r denotes the intercept and ψ′

r is the transposed row vector of ψr. We refer to the λr{Gr(Z),ψ}-models as the λ-

models. To distinguish between the models we let ̟{∞, Z,ψ
0
} denote the true function of the missing mechanism with

the true parameter values ψ
0
. Tsiatis [11] shows that the augmented inverse probability weighted (AIPW) estimator for

E(Y aT ) is obtained by solving the estimating equation given by

0 =

n
∑

i=1

(

I(Ci = ∞)U(Zi)

̟{∞, Zi, ψ̂}
+

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

U(Z) | Gr(Zi), ζ̂
)

)
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where the probabilities of the models relating to the missingness mechanism are given by Kr{Gr(Z), ψ̂} =
∏r

j=1
(1−

λj{Gj(Z), ψ̂}) and the probability of observing a complete vector is given by ̟{∞, Z, ψ̂} = Kc(Gc(Z), ψ̂). The

estimates ψ̂ are obtained using maximum likelihood estimation according to the specific model of λr{Gr(Z),ψ}. The

hat indicates that we have chosen a model to estimate and we have afterwards used the model to predict the values with

respect to the set Gr(Z) for r = 1, . . . , c. The conditional expectation E(U(Z) | Gr(Z), ζ̂) of (3) is given by

E
(

U(Z) | Gr(Z), ζ̂
)

= E
(

µ{V0,γ0
} | Gr(Z), ζ̂

)

− E(Y aT ).

We need to evaluate the conditional expectation for every set of Gr(Z) for r = 1, . . . , c; this is exemplified in Section

4. We use ζ̂ to denote that we have modelled the conditional expectation of U(Z) with respect to the set Gr(Z). The

estimator for E(Y aT ) is given by

Ê
(

Y aT

)

=
1

n

n
∑

i=1

[

I(Ci = ∞)µ{V0,i, γ̂}

̟{∞, Zi, ψ̂}
+

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

µ{V0,γ} | Gr(Zi), ζ̂
)

]

(5)

and it is doubly robust of misspecification. Let the µ-models be correctly specified. The estimator (5) is unbiased if the

E(µ{V0,γ} | Gr(Z), ζ̂)-models are correctly specified with respect to the distribution of Z and the λ-models relating

to the missingness mechanism may be misspecified. The estimator (5) is also unbiased if the λ-models relating to the

missingness mechanism are correctly specified and the E(µ{V0,γ} | Gr(Z), ζ̂)-models may be misspecified with respect

to the distribution of Z. Let the estimator (5) be denoted by DRMGf (Doubly Robust estimator for Monotone missingness

for the G-formula). In the estimator (5) we have plugged in the predicted values using all the µ-models and the λ-models.

All the conditional expectations are evaluated and afterwards used to predict the values with respect to the set Gr(Z). We

show in Appendix A how the estimator (5) is derived. In the next Section we refer to a vector in the data as a patient. The

estimator (5) is asymptotically normally distributed with the mean E(Y aT ) and a variance. We show in Appendix B that

the estimator (5) is asymptotically normally distributed in the situation when T is equal to 1.

4. Application to the PERFORM study

4.1. Study design and variables

We apply our DRMGf estimator to the PERFORM study consisting of 1090 patients. We are interested in the causal effect

of cognitive symptoms on functional impairment at a later time. The functional impairment was measured by the Sheehan

Disability Scale (SDS) consisting of 3 items with each item ranging from 0 to 10 with a global score ranging from 0
to 30. The Scale describes patients’ work/school, social life/leisure activities and family life/home duties. The cognitive

symptoms (memory, concentration and executive function) were measured by the Perceived Deficit Questionnaire (PDQ-

5). The scale consists of 5 items with each item ranging from 0 to 4 with a global score ranging from 0 to 20 (we suppress

the ’-5’ in the name PDQ-5 to simplify the notation). The depression severity of the patient was measured by the Patient

Health Questionnaire (PHQ-9) and the scale consists of 9 items with each item ranging from 0 to 3 with a global score

ranging from 0 to 27 (we suppress the ’-9’ in the name PHQ-9 to simplify the notation). A greater score for all three

scales correspond to being more constrained, suffering greater severity of their cognitive symptoms and more severe

depression. All three scales were measured over two years repeatedly. We assume that depression severity affects both

cognitive symptoms and functional impairment and that cognitive symptoms affect functional impairment. We further

assume that the present measurements affect all the future measurements at the next time point. We also assume that the

present measurements do not affect the past measurements [14]. The process is indicated by the directed acyclic graph

(DAG) in Figure 1 for all six time points over the two years.

If the global score of PDQ is less than or equal to 5, then it corresponds to patients having no or minimal cognitive

symptoms and if the score is strictly greater than 5 then it corresponds to patients having cognitive symptoms. For

simplicity, and since this analysis is mainly for illustration, we therefore dichotomized PDQ to be 0 if the original global

score of PDQ is less than or equal to 5 and 1 otherwise. Let SDSt denote SDS at time t to simplify the notation. Let

PDQt denote PDQ at time t to simplify the notation. Let PHQt denote PHQ at time t to simplify the notation. Let

t = b denote the baseline, and let t be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points

since baseline. We use b to denote the time point for baseline instead of 0 because we want to avoid any confusion when

we refer to the time point and the true parameter values. Let Wt denote the vector of all three measurements at time

t ∈ {b, 2, 6, 12, 18, 24}, Wt = (PHQt, PDQt, SDSt). We define pt to denote the prior time point before t, t denotes the

present time point and st denotes the subsequent time point after t in the subscript of PHQ, PDQ and SDS. Hence, if t

is equal to 6 (month 6) then pt is equal to 2 (month 2) and st is equal to 12 (month 12). We assume the subsequent effect
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SDSb SDS2

PDQb PDQ2

PHQb PHQ2 PHQ6

PDQ6

SDS6 SDS12 SDS18

PDQ12 PDQ18

PHQ12 PHQ18 PHQ24

PDQ24

SDS24

Figure 1. The DAG displays the measurements of the three scales over the two years. The node SDSt denotes the Sheehan Disability Scale (SDS) at time t, the node PDQt

denotes the Perceived Deficit Questionnaire (PDQ) at time t and the node PHQt denotes the Patient Health Questionnaire (PHQ) at time t. We let t = b denote the baseline and

let t be equal to 2, 6, 12, 18 and 24 (months) which denotes the measurement time points since baseline.

of depression severity, cognitive symptoms and functional impairment are conditionally independent of the prior effect

of depression severity, cognitive symptoms and functional impairment given the present effect of depression severity,

cognitive symptoms and functional impairment. It means we have assumed that the effect of (PHQpt, PDQpt, SDSpt)
does not affect (PHQst, PDQst, SDSst) directly but only via (PHQt, PDQt, SDSt).

Let PDQt denote the exposure of cognitive symptoms at time t ∈ {b, 2, 6, 12, 18, 24}. Let SDSst denote the outcome

of functional impairment at time st ∈ {2, 6, 12, 18, 24}. We assume according to the DAG the sequential conditional

exchangeability and it is generalized to

SDS
(pdqt,pdqst)
st ⊥⊥ PDQt | PHQt, SDSpt, PDQpt, PHQpt

and

SDS
(pdqt,pdqst)
st ⊥⊥ PDQst | PHQst, SDSt, PDQt, PHQt

for t ∈ {b, 2, 6, 12, 18}. We assume the confounder Lt at time t is defined by (PHQpt, PDQpt, SDSpt, PHQt)
for t ∈ {b, 2, 6, 12, 18}. We also assume that the confounder Lst at time st is defined by Lst = (SDSt, PHQst).
The set Vt is given by the confounder and the exposure at time t, Vt = (Lt, PDQt) and the set Vst is

defined by the confounders and the exposures up to time st, Vst = (Lst, PDQst) where Lst = (Lt, Lst) and

PDQst = (PDQt, PDQst). A Table in the Supplementary material displays the two confounders Lt and Lst

and the outcome SDSst for different t. We define Zt,i to be the set (Wpt,i,Wt,i,Wst,i) in the analysis for

i = 1, . . . , 1090 and t ∈ {b, 2, 6, 12, 18} with Wpb being the empty set since it corresponds to the vector of the

measurements before baseline. It means that Zb,i denotes (PHQb,i, PDQb,i, SDSb,i, PHQ2,i, PDQ2,i, SDS2,i),
Z2,i denotes (PHQb,i, PDQb,i, SDSb,i, PHQ2,i, PDQ2,i, SDS2,i, PHQ6,i, PDQ6,i, SDS6,i) and Z6,i denotes

(PHQ2,i, PDQ2,i, SDS2,i, PHQ6,i, PDQ6,i, SDS6,i, PHQ12,i, PDQ12,i, SDS12,i), etc. for i = 1, . . . , 1090. See the

Supplementary material for further information about the different vectors Zt,i for i = 1, . . . , 1090 and t ∈ {b, 2, 6, 12, 18}.

4.2. Statistical methods

We use the following marginal structural model (MSM)

E

(

SDS
(pdqt,pdqst)
st

)

= βI,t + β1,tpdqt + β2,tpdqst + β3,tpdqtpdqst (6)

for t ∈ {b, 2, 6, 12, 18}. The t index of the coefficients βt = (βI,t, β1,t, β2,t, β3,t) indicates which period of t ∈
{b, 2, 6, 12, 18} we analyse. Let β0,t denote the true vector of the causal parameters. We are interested in what could

be achieved if an effective therapy was developed that could relieve cognitive symptoms. Model (6) presents four

combinations: (pdqt, pdqst) = (1, 1) corresponds to having cognitive symptoms at visit t and st, (pdqt, pdqst) = (0, 1)
corresponds to having no or minimal cognitive symptoms at visit t and having cognitive symptoms at visit st,

(pdqt, pdqst) = (1, 0) corresponds to having cognitive symptoms at visit t and having no or minimal cognitive symptoms

at visit st and (pdqt, pdqst) = (0, 0) corresponds to having no or minimal cognitive symptoms at visit t and st. The score

of functional impairment at 0 corresponds to being unimpaired and 30 corresponds to being impaired. The E(SDS
(1,1)
st )

is the expected score of functional impairment that would be seen if the patient had cognitive symptoms at the two time

points t and st. The E(SDS
(0,1)
st ) is the expected score of functional impairment that would be seen if the patient had no

or minimal cognitive symptoms at the time point t and had cognitive symptoms at the time point st. The E(SDS
(1,0)
st ) is

the expected score of functional impairment that would be seen if the patient had cognitive symptoms at the time point

t and had no or minimal cognitive symptoms at the time point st. The E(SDS
(0,0)
st ) is the expected score of functional
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impairment that would be seen if the patient had no or minimal cognitive symptoms at the two time points t and st. We

define the m{Vst, ξt}-model and the µ{Vt,γt}-model for t ∈ {b, 2, 6, 12, 18} with the main effects and let the interactions

between depression severity and cognitive symptoms be included in the m{Vst, ξt}-model. The m{Vst, ξt}-model is given

by

m{Vst, ξt} =E(SDSst | PDQst, PHQst, SDSt, PDQt, PHQt)

=ξI,t + ξ1,tPHQt + ξ2,tPDQt + ξ3,tSDSt + ξ4,tPHQst + ξ5,tPDQst + ξ6,tPDQtPHQt+

ξ7,tPDQstPHQt + ξ8,tPDQtPHQst + ξ9,tPDQstPHQst + ξ10,tPDQtPDQst

(7)

where the t index of the coefficients ξ·,t indicate which time point t ∈ {b, 2, 6, 12, 18} is considered. Let ξI,t denote the

intercept. We must recall that the main effects of depression severity (PHQ), cognitive symptoms (PDQ) and functional

impairment (SDS) at time pt are not included in the m{Vst, ξt}-model because we assume that functional impairment

(SDS) at time st is conditionally independent of Wpt given by depression severity (PHQ), cognitive symptoms (PDQ) and

functional impairment (SDS) at time t, (SDSst ⊥⊥ Wpt | Wt). The confounder Lst at time st has two measurements on

the causal path which means that the following µ{Vt,γt}-model is given by:

µt2{Vt,γt2
} =E(m{Vst, ξt} | SDSt, PDQt, PHQt)

=γI,t2 + γ1,t2PHQt + γ2,t2PDQt + γ3,t2SDSt

(8)

and
µt1{Vt,γt1

} =E(µt2(Vt,γt2
) | PDQt, PHQt, SDSpt, PDQpt, PHQpt)

=γI,t1 + γ1,t1PHQpt + γ2,t1PDQpt + γ3,t1SDSpt + γ4,t1PHQt + γ5,t1PDQt

(9)

for t ∈ {b, 2, 6, 12, 18}. Let γI,t2 and γI,t1 denote the intercepts. The two subscripts of t (t1 and t2) indicate the order of

the two mediators of the causal path between the exposure PDQt and the outcome SDSst. The model at (8) is obtained

from the equality between the two following equations

E(m{Vst, ξt} | SDSt, PDQt, PHQt, SDSpt, PDQpt, PHQpt) = E(m{Vst, ξt} | SDSt, PDQt, PHQt)

since we are assuming that the future is conditional independent of the past given the present m{Vst, ξt} ⊥⊥ Wpt | Wt.

The U(Zi) at (3) for the analysis of the PERFORM study is given by

U(Zt,i) = µt1{Vt,i,γt1
} − E

(

SDS
(pdqt,pdqst)
st

)

with respect to either Zb,i, Z2,i, Z6,i, Z12,i or Z18,i for i = 1, . . . , 1090 patients. In the analysis for t = b or t = 2 we use

all the patients in the data who have observed depression severity at baseline (PHQb). In the analysis for t = 6 we use

all the patients who have observed depression severity at month 2 (PHQ2), and so on. If the patient has a nonmonotone

pattern (see Tsiatis [11] for further information) then the patient is modified to follow a monotone pattern by setting the

subsequent variables to be missing as well as in the ordered sequence.

t G1(Zt) G2(Zt) G3(Zt) G4(Zt) G5(Zt) G6(Zt) G7(Zt) G8(Zt) G∞(Zt) nt

b 200 176 126 11 86 341 940
2 200 176 126 11 86 76 1 38 226 940
6 132 199 115 4 58 56 5 31 205 805
12 135 147 105 5 64 60 3 25 196 740
18 89 162 105 4 52 39 1 34 215 701

Table 1. The number of patients in the data fulfilling the monotone pattern. The number of complete cases for a specific

analysis are displayed by the G∞(Zt) column and the Total (nt) column displays the number of patients who follow the

monotone pattern for a specific t.

We define the conditional probabilities λr{Gr(Zt),ψ} by the hazard function at (4) to model the mechanism

relating to the missingness in the data. The λ-models include only the main effects without any interactions or

quadratic terms. We need to model the hazard function λr{Gr(Zb),ψ} five times for t = b because a patient at

time t = b has five possible sets of ordered measurements without including the outcome, see Table 1. The different

patients in the data for the analysis with t = b are given by G1(Zb) = (PHQb), G2(Zb) = (PHQb, PDQb), G3(Zb) =
(PHQb, PDQb, SDSb), G4(Zb) = (PHQb, PDQb, SDSb, PHQ2), G5(Zb) = (PHQb, PDQb, SDSb, PHQ2, PDQ2)
and G∞(Zb) = (Zb). We have, according to Table 1 for t = b, 200 patients in the data who only have the first measurement
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observed (G1(Zb) = (PHQb)). An additional 176 patients in the data contain only the first two observed measurements

(G2(Zb) = (PHQb, PDQb)). Table 1 shows that the analysis for t = b only includes 341 patients in the data who are

complete cases. We need to model the hazard function λr{Gr(Zt),ψ} eight times for each t ∈ {2, 6, 12, 18} because it is

possible to have eight different sets of ordered measurements without including the outcome, see Table 1. The different

patients in the data for t ∈ {2, 6, 12, 18} are given by G1(Zt) = (PHQpt), G2(Zt) = (PHQpt, PDQpt), G3(Zt) =
(Wpt), G4(Zt) = (Wpt, PHQt), G5(Zt) = (Wpt, PHQt, PDQt), G6(Zt) = (Wpt,Wt), G7(Zt) = (Wpt,Wt, PHQst),
G8(Zt) = (Wpt,Wt, PHQst, PDQst) and G∞(Zt) = (Zt). We must recall that Wpt denotes the vector before time t

and Wt denotes the vector at time t. We have, according to Table 1 e.g. for t = 18, 89 patients in the data who only

have PHQ12 observed (G1(Z18) = (PHQ12)). An additional 162 patients in the data contain only the two observed

measurements PHQ12 and PDQ12 (G2(Z18) = (PHQ12, PDQ12)). Table 1 shows that the analysis for t = 18 only

includes 215 patients in the data who are complete cases. Let nt denote the sample size for a specific t, see Table 1.

The estimator for the analysis of the PERFORM study is given by

Ê
(

SDS
(pdqt,pdqst)
st

)

=
1

nt

nt
∑

i=1

[

I(Ci = ∞)µt1{Vt,i, γ̂t1
}

̟{∞, Zt,i, ψ̂}

+

c
∑

r=1

I(Ci = r)− λr{Gr(Zt,i), ψ̂}I(Ci ≥ r)

Kr{Gr(Zt,i), ψ̂}
E
(

µt1{Vt,γt1
} | Gr(Zt,i), ζ̂t

)

] (10)

when c is equal to 5 for t = b and c is equal to 8 for t ∈ {2, 6, 12, 18}. Furthermore, we need to model the conditional

expectations in (10) and afterwards use the model for predicting values according to the different sets of Gr(Zt,i) for

r = 1, . . . , c, i = 1, . . . , nt and t ∈ {b, 2, 6, 12, 18}. The conditional expectations E(µb1{Vb,γb1
} | Gr(Zb), ζ̂b) for t = b

are modelled according to
{

E(µb1{Vb,γb1
} | Gr(Zb), ζ̂b) for r = 1

µb1{Vb,γb1
} for r ∈ {2, 3, 4, 5}

and we model the conditional expectation E(µb1(Vb) | G1(Zb), ζ̂b) with the main effect only without any quadratic terms

and it is afterwards used to predict values. The conditional expectations E(µt1{Vt,γt1
} | Gr(Zt), ζ̂t) for t ∈ {2, 6, 12, 18}

are modelled according to
{

E(µt1{Vt,γt1
} | Gr(Zt), ζ̂t) for r ∈ {1, 2, 3, 4}

µt1{Vt,γt1
} for r ∈ {5, 6, 7, 8}

and we model the conditional expectations E(µt1(Vt) | Gr(Zt), ζ̂t) with the main effects only without any interactions or

quadratic terms and they are afterwards used to predict values. We compare our DRMGf estimator to the naı̈ve estimator

(described below), LSmeans [15] estimator and the estimator for the the g-formula [12] (described below). We only use

complete cases for the analysis with the naı̈ve estimator, LSmeans estimator and the estimator for the simpler g-formula.

We will sometimes refer to the g-formula as the simpler g-formula since our DRMGf estimator is an extended g-formula.

The m{vst, ξt}-model at (7) that is used in our DRMGf estimator is also used for the LSmeans estimator and the estimator

for the simpler g-formula. The naı̈ve estimator is a regression of the outcome, SDSst on both exposures PDQt and PDQst

and the interaction between the two exposures PDQtPDQst to estimate the coefficients ξ̃t = (ξ̃I,t, ξ̃1,t, ξ̃2,t, ξ̃3,t). Let ξ̃I,t

denote the intercept. The estimated coefficients
ˆ̃
ξt are used to predict four pseudo outcomes with the model

ˆ̃
ξI,t +

ˆ̃
ξ1,tpdqt +

ˆ̃
ξ2,tpdqst +

ˆ̃
ξ3,tpdqtpdqst

with respect to the four pairs (pdqt, pdqst) = (1, 1), (pdqt, pdqst) = (0, 1), (pdqt, pdqst) = (1, 0) and (pdqt, pdqst) =
(0, 0). The naı̈ve estimator has causal interpretation if there are no confounding at all. The LSmeans works in the following

way: Estimate all the coefficients from the m{vst, ξt}-model and then the estimated coefficients (that are indicated by hats)

are multiplied to the average of the different measurements in the model and it is given by

ξ̂I,t + ξ̂1,tavg(PHQt) + ξ̂2,tpdqt + ξ̂3,tavg(SDSt) + ξ̂4,tavg(PHQst) + ξ̂5,tpdqst + ξ̂6,tavg(pdqtPHQt)

+ ξ̂7,tavg(pdqstPHQt) + ξ̂8,tavg(pdqtPHQst) + ξ̂9,tavg(pdqstPHQst) + ξ̂10,tpdqtpdqst.
(11)

It is used to predict four pseudo outcomes with respect to either (pdqt, pdqst) = (1, 1), (pdqt, pdqst) = (0, 1),
(pdqt, pdqst) = (1, 0) or (pdqt, pdqst) = (0, 0) and avg(·) denotes the average of a specific measurement. The estimator

for the simpler g-formula with the estimator (2) is given by

Ê
(

SDS
(pdqt,pdqst)
st

)

=
1

ñt

ñt
∑

i=1

µt1{Vt,i,γt1
}
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where the m{vst, ξt}-model at (7) and the two µ-models that are given by (8) and (9) are used for the estimation

and prediction to obtain the estimates of the four expected potential outcomes given by E(SDS
(1,1)
st ), E(SDS

(0,1)
st ),

E(SDS
(1,0)
st ) and E(SDS

(0,0)
st ). The ñt denotes the number of complete cases. The confidence intervals for all four

estimators are obtained by using 1000 bootstraps. Table 1 shows the number of patients who fulfil the monotone

missingness pattern. The G∞(Zt) column in Table 1 shows the number of complete cases. If the analysis is based on

complete cases then it only utilizes about 18% to 31% of the sample size. We have removed some of the patients from

the data to avoid numerical problems for the estimation with the µ-models and the λ-models used for the analysis with

t = b and t = 18. It applies for all the patients with the partially observed vector G4(Zt) for t ∈ {b, 18} and all the patients

with the partially observed vector G7(Z18). The λ4-model is given by λ4(G4(Zt)) = 0 for t ∈ {b, 18} and the λ7-model

is given by λ7(G7(Z18)) = 0. The sample size nb is reduced from 940 to 929. The sample size n18 is reduced from 701 to

696. We utilize about 64% to 85% of the sample size when we use patients with monotone missingness.

4.3. Results

Here, we present the results for all four estimators for t = b and t = 18. The MSM at (6) for t = b is given by

E
(

SDS
(pdqb,pdq2)
2

)

= βI,b + β1,bpdqb + β2,bpdq2 + β3,bpdqbpdq2

and for t = 18 it is given by

E
(

SDS
(pdq18,pdq24)
24

)

= βI,18 + β1,18pdq18 + β2,18pdq24 + β3,18pdq18pdq24.

This means that the expected value at the four different counterfactual levels are modelled freely without restrictions. The

estimates of the four means are shown in Figure 2 for an early (t = b) and a later (t = 18) time point with confidence

intervals. The actual numbers are in two Tables in the Supplementary material.

5
1
0

1
5

2
0

(1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0)

Naïve LSmeans G−formula DRMGf

5
1
0

1
5

2
0

(1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0)

Naïve LSmeans G−formula DRMGf

Figure 2. The plot on the left hand side is the estimation for t = b with the two exposures PDQb and PDQ2. The plot on the right hand side is the estimation for t = 18

with the two exposures PDQ18 and PDQ24. The y-axis/range in the two plots show the score of the functional impairment. The x-axis/domain in the two plots show the

four different estimators and the different pairs (pdqt, pdqst) for each estimator. The combinations of visits are given by (pdqt, pdqst) = (1, 1), (pdqt, pdqst) = (0, 1),

(pdqt, pdqst) = (1, 0) and (pdqt, pdqst) = (0, 0). The horizontal lines are the estimates. The vertical lines are the corresponding 95%-confidence intervals. The 95%-

confidence intervals are obtained using 1000 bootstraps.

For the analysis at both the earlier and the later time points, the naı̈ve estimator shows a larger variation in the expected

outcome between the four combinations of cognitive deficits at the two visits than the other three estimators. All four

estimators suggest that patients with cognitive symptoms at both visits have worse functioning than patients with no or

with minimal cognitive symptoms at both visits. In the analysis of the early time point, the expected outcome, if patients

present cognitive symptoms at one of the visits but not the other, lies between the other two, while for the late time point
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Prepared using simauth.cls



T. Maltesen et al

Statistics
in Medicine

patients with cognitive symptoms at one but not the other of the two visits have similar expected outcome to those with

no or with minimal cognitive symptoms at both visits. Note that the length of the confidence interval reflects the actual

proportion of patients with the combination of cognitive symptoms observed in the data, as expected.

The general pattern of differences in the expected outcome between the ”exposure” groups as defined by the presentation

of cognitive symptoms at the two latest visits are really to be expected: presence of more cognitive symptoms is a precursor

for poor functioning. The pattern is most pronounced for the naı̈ve estimator. This is also not surprising, because the naive

estimator fails to account for any confounders, such as depression severity at both visits and functioning at the earlier

visit. The estimators based on counterfactuals, the g-formula and the DRMGf estimators, both allow for taking observed

confounders into account through standardization, and thereby key confounding variables may be accounted for. Doing so,

the trend across the groups stays intact, though differences between ”exposure” groups markedly shrink, when compared

to the naı̈ve estimator. Table 2 shows the minimum and maximum of the predicted values of each λr{Gr(Zt), ψ̂} for both

analysis of t ∈ {b, 18}.

Analysis Range λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 ̟

t = b
Minimum 0.200 0.219 0.171 0 0.059 0.319

Maximum 0.224 0.252 0.313 0 0.291 0.447

t = 18
Minimum 0.086 0.188 0.192 0 0.065 0.065 0 0.023 0.172

Maximum 0.224 0.415 0.261 0 0.375 0.239 0 0.464 0.413

Table 2. Displays the minimum and maximum of the predicted values of λr{Gr(Zt),ψ}. We let λr denote the probabilities

λr{Gr(Zt),ψ} for r = 1, . . . , 8 for both analysis of t ∈ {b, 18}. We let ̟ denote the probabilities for observing a complete

vector for both analysis of t ∈ {b, 18}.

The estimator for the simpler g-formula and the DRMGf estimator yield surprisingly similar estimates. This is likely

because the included covariates are poor at predicting drop-out, which seems to be the case. The weights in the estimator

(10) have a low contribution to the estimation because the values of probabilities λr{Gr(Zt),ψ} displayed in Table 2 are

low. While the naı̈ve estimator ignores confounding altogether and thereby supposedly overestimates differences between

exposure groups, the LSmeans estimator adjusts for confounders. Although the estimates are formally predicted values at

average values of the covariates, these are closer to the standardization-based estimates of the g-formula and the DRMGf

than to the naı̈ve estimates. Some differences between the LSmeans and the two latter estimators should be noted: at

the early time point, LSmeans estimates indicate smaller differences between groups, and - as the only case - patients

presenting cognitive problems at both visits prior are not predicted to have the worst functioning subsequently, which

would be difficult to explain from a clinical point of view; at the later time point, the ordering of the four cognition

combinations is different for the LSmeans estimates compared with the other two, which are in mutual agreement.

The similarity of the g-formula and DRMGf estimates prompts for a further exploration of scenarios, where a correct

handling of missing data due to drop-out would be crucial for the interpretation of the data and whether the DRMGf

estimator better recovers the parameters of interest in that setting. This is explored further in the simulation study in

Section 5. The simulation study shows how the probabilities regarding the missingness mechanism have an impact on the

estimates. It will cause the difference between the simpler g-formula and our DRMGf estimator.

5. Simulation study

The purpose of the simulation study is to investigate the proposed DRMGf estimator within a situation that is similar

to the PERFORM study with a substantial amount of drop-out, but - contrary to the PERFORM data - where the

ranges of the predicted values of λr{Gr(Zb),ψ} are broader than the ones we obtained in the PERFORM study.

The simulation study is based on the estimated coefficients from the first two vectors (Wb,W2) that we observed

in the PERFORM study. The sample size for each data is 1000 and the data are replicated 5000 times. Data

are simulated as follows: PHQb ∼ Normal(ηphqb , 5.314
2), PDQb ∼ Bernoulli(κpdqb), SDSb ∼ Normal(ηsdsb , 5.058

2),
PHQ2 ∼ Normal(ηphq2 , 5.215

2), PDQ2 ∼ Bernoulli(κpdq2) and SDS2 ∼ Normal(ηsds2 , 4.663
2) where the means are
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given by

ηphqb :=17.615,

ηsdsb :=3.349 + 0.693PHQb + 4.373PDQb,

ηphd2
:=2.475 + 0.471PHQb − 0.113PDQb + 0.086SDSb and

ηsds2 :=0.144− 0.387PHQb + 1.179PDQb + 0.484SDSb + 0.74PHQ2 + 0.67PDQ2 − 0.131PDQbPHQb

+ 0.308PDQ2PHQb + 0.209PDQbPHQ2 − 0.206PDQ2PHQ2 − 1.734PDQbPDQ2

and the probabilities are given by

logit(κpdqb) :=− 2.512 + 0.298PHQb and

logit(κpdq2) :=− 3.092− 0.441PHQb + 2.144PDQb + 0.198SDSb + 0.445PHQ2 + 0.42PDQbPHQb

− 0.176PDQbSDSb − 0.161PDQbPHQ2

where logit(x) = log(x)− log(1− x). We have included all the main effects in the logit(κpdq2)-model and the interactions

between PDQb and the two measurements for depression severity at the two time points are also included. We want

to include the effect of the interactions between depression severity and cognitive symptoms. The interaction between

PDQb and SDSb is also included. We have chosen more extreme values of ψ for the models relating to the missing

mechanism to make the robustness of our DRMGf estimator more clear. The probabilities to simulate the monotone

missingness in the data are given by logit(λ1(G1(Zb))) := −12.3 + 0.5PHQb, logit(λ2(G2(Zb))) := −9.2 + 0.5PHQb −
0.8PDQb, logit(λ3(G3(Zb))) := −3.6 + 0.7PHQb − 0.6PDQb − 0.6SDSb, logit(λ4(G4(Zb))) := −3.2 + 0.5PHQb −
0.6PDQb − 0.6SDSb + 0.4PHQ2 and logit(λ5(G5(Zb))) := −2.5 + 0.4PHQb + 0.6PDQb − 0.6SDSb + 0.4PHQ2 +
0.5PDQ2 where λr(Gr(Zb)) is P (C = r | C ≥ r, Zb). We have used all four estimators from the previous Section on the

simulated data. The four estimators are: the naı̈ve estimator, the LSmeans estimator, the estimator for the simpler the

g-formula and our DRMGf estimator for the estimation. We use the same models given in Subsection 4.2 for t = b to

analyse the simulated data. We have the results of the estimation in Table 3. The simulation study is evaluated by the mean

of the 5000 estimates obtained across the replicated data, the empirical standard error (SE) of the 5000 estimates obtained

across the replicated data, the absolute value of bias (the difference between the empirical mean and the true value), the

ratio between the absolute value of bias and the empirical standard error scaled 100 times and the mean squared error

(MSE) is also displayed [10].

Estimator True Mean SE Bias Bias
SE

100 MSE

Naı̈ve

(1, 1) 15.398 15.317 0.424 0.081 19.196 0.186

(0, 1) 13.418 13.540 1.731 0.122 7.062 3.013

(1, 0) 13.586 7.732 0.872 5.854 671.577 35.030

(0, 0) 9.817 6.046 1.023 3.771 368.655 15.266

LSmeans

(1, 1) 15.398 13.582 0.432 1.817 420.380 3.488

(0, 1) 13.418 14.079 1.991 0.661 33.214 4.401

(1, 0) 13.586 12.112 0.897 1.473 164.171 2.976

(0, 0) 9.817 10.874 1.244 1.057 84.999 2.664

G-formula

E(SDS
(1,1)
2 ) 15.398 13.858 0.437 1.540 352.193 2.564

E(SDS
(0,1)
2 ) 13.418 12.515 2.142 0.903 42.137 5.405

E(SDS
(1,0)
2 ) 13.586 12.415 0.917 1.171 127.734 2.211

E(SDS
(0,0)
2 ) 9.817 9.149 1.364 0.668 49.007 2.306

DRMGf

E(SDS
(1,1)
2 ) 15.398 15.399 0.511 0.000 0.040 0.261

E(SDS
(0,1)
2 ) 13.418 13.390 2.452 0.028 1.135 6.014

E(SDS
(1,0)
2 ) 13.586 13.608 1.239 0.022 1.793 1.536

E(SDS
(0,0)
2 ) 9.817 9.810 1.907 0.007 0.359 3.635

Table 3. The True column displays the true values. The Mean column displays the mean of the 5000 estimates obtained

across the replicated data. The SE column displays the standard error of the 5000 estimates obtained across the replicated

data. The Bias column displays the absolute value of the difference between the empirical mean and the true value. The
Bias
SE

100 column displays the ratio between the absolute value of bias and the standard error scaled 100 times. The MSE

column is the mean square error obtained by Bias2 + SE2.
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Table 3 shows that the naı̈ve estimator as well as the LSmeans estimator are biased and should be avoided. The estimates

from the simulation study have similar sizes as the estimates from the analysis of the PERFORM study for t = b for both

the naı̈ve estimator and the LSmeans estimator. Table 3 shows that the simpler g-formula does not perform very well

compared to our DRMGf estimator when the parameter values of ψ for probabilities relating to the missing mechanism

in the data are more extreme than the ones in the PERFORM study. The g-formula sometimes shows an even poorer

performance of estimating the effects compared to the naı̈ve and LSmeans estimator. Our DRMGf estimator shows that

the bias of the estimates are low compared to the three other estimators. The simulation study has also shown that our

DRMGf estimator will protect against biased estimates compared to the estimator for the simpler g-formula and our

DRMGf estimator should be used for analysing data containing missing observations. The price we pay for unbiased

estimates is potentially larger standard errors.

6. Discussion

Motivated by the PERFORM study, this manuscript proposed a robust estimator (the DRMGf estimator) for the estimation

of the effect of a time-varying exposure in the presence of time-dependent confounding and missing data. The proposed

estimator was applied to data from an observational study (PERFORM) on patients with depression. The example showed

that accounting for the time-varying confounders shrunk the difference between the exposure groups, which was to be

expected from a clinical point of view, as disease severity accounted for some of the differences in exposure levels while

at the same time influenced the level of functioning among the patients. This property was shared with the estimator

for the simpler g-formula, which does not take the missing data into account. The similarities in the estimates were

because there were no strong predictors of patients dropping out in the example. Thereby, the presumed robustness of

the DRMGf did not show. Contrary to what was seen in the data example, the simulation study revealed that if variables

predicting drop-out were present, then the estimator for the simpler g-formula was biased, while the DRMGf was not.

Another advantage of the proposed estimator is that it allows for a better use of the data as it utilizes all data points

and not only so-called complete cases. In the PERFORM example, this means 2.5 to 4 times as many patients in the

sample. This comes at the price of specific model assumptions that need to be addressed, but a complete case analysis

hinges on assumptions that are not less critical and even less plausible (such as missing completely at random). One

limitation of the DRMGf estimator is that the model framework assumes monotone missing data, and does not in itself

allow for intermittent missing data. Consequently, outcome variables need to be ordered. While this may often be a

natural assumption, in the PERFORM study such ordering was only partly clear. This is because several patient relevant

domains were measured simultaneously. In this example, disease severity, cognitive performance and functioning were

measured at the same time points up to six occasions throughout two years. While time itself induced a causal ordering of

measurements at different time points, the ordering between domains within time points were less clear, and assumptions

had to be made based on clinical insights (change in disease severity causing change in cognitive performance, which in

turn causes change in functioning). Obviously, any interpretation of results hinge on these assumptions, which cannot be

verified in the data. Based on a missing at random argumentation, intermittent missing data is often considered less of

a problem than monotone missing data in indications such as depression (PERFORM), as it may be overcome, e.g. by

multiple imputation methods. However, in other disease areas this may not be the case, and new methodology would be

needed for such situations.
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A. Monotone missingness

The estimating equation for monotone missingness is given by

0 =

n
∑

i=1

(

I(Ci = ∞)U(Zi)

̟{∞, Zi, ψ̂}
+

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

U(Z) | Gr(Zi), ζ̂
)

)

=

n
∑

i=1

(

I(Ci = ∞)
(

µ{V0,i,γ0} − E
(

Y aT

))

̟{∞, Zi, ψ̂}

+

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}

(

E
(

µ{V0,γ0} | Gr(Zi), ζ̂
)

− E
(

Y aT

)

)

)

=

n
∑

i=1

(

I(Ci = ∞)µ{V0,i,γ0}
̟{∞, Zi, ψ̂}

+

c
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

µ{V0,γ0} | Gr(Zi), ζ̂
)

− E
(

Y aT

)

)

and the estimator Ê(Y aT ) at (5) solves the equation above.

B. The asymptotic properties of the estimators

B.1. The estimator with full data

We show that the estimator (2) is asymptotically normally distributed in the situation when T is equal to 1. The two

µ-models in (2) are given by m{v1, ξ} = E(Y | A1 = a1, L1 = l1) and µ{v0,γ} = E(m{V1, ξ} | A0 = a0, L0 = l0). The

Z vector defines an ordered sequence of the variables (L0, A0, L1, A1, Y ). The outcome variable Y is assumed to be

continuous and we let At denote the binary exposure at time t ∈ {0, 1}. Define A1 to be the vector of the two exposures

(A0, A1) and let a1 be the vector (a0, a1). Let Y (a0,a1) be the potential outcome that would have been observed if (A0, A1)
had been set to (a0, a1). Let Lt be a potential confounder at time t ∈ {0, 1} and let L1 denote the vector of (L0, L1). The

outcome Y may be causally influenced by the whole history of A1 and L1. We define the function

Ψ(Z, ξ,γ) = Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0)− E(Y (a0,a1))

according to Stefanski and Boos [16]. The function Ψ(Z, ξ,γ) fulfills

EF (Ψ(Z, ξ0,γ0)) =

∫

Ψ(z, ξ0,γ0)dF (z) = 0.

Define a Gn function to be given by

Gn(Z, ξ̂, γ̂) =
1

n

n
∑

i=1

Eγ̂(Eξ̂
(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)− E(Y (a0,a1))

so that

Gn(Z, ξ0,γ0) =
1

n

n
∑

i=1

Eγ
0
(Eξ

0
(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)− E(Y (a0,a1)).

Let Ê(Y (a0,a1)) denote the estimator given by

Ê(Y (a0,a1)) =
1

n

n
∑

i=1

Eγ̂(Eξ̂
(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i).

The Taylor expansion of Gn(Z, ξ̂, γ̂) is given by

√
nGn(Z, ξ̂, γ̂) =

√
nGn(Z, ξ0,γ0) + Ġξ,n(Z, ξ0,γ0)

√
n(ξ̂ − ξ0) + Ġγ,n(Z, ξ0,γ0)

√
n(γ̂ − γ0) +

√
nRn (12)

where Ġξ,n(Z, ξ0,γ0) and Ġγ,n(Z, ξ0,γ0) denote

Ġξ,n(Z, ξ0,γ0) =
∂Gn(Z, ξ,γ)

∂ξT

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

and Ġγ,n(Z, ξ0,γ0) =
∂Gn(Z, ξ,γ)

∂γT

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0
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respectively. The two partial derivatives Ġξ,n(Z, ξ0,γ0) and Ġγ,n(Z, ξ0,γ0) are given by

Ġξ,n(Z, ξ0,γ0) =
1

n

n
∑

i=1

[

∂

∂ξT
Eγ(Eξ(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)

]

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

and

Ġγ,n(Z, ξ0,γ0) =
1

n

n
∑

i=1

[

∂

∂γT
Eγ(Eξ(Y | A1,i = a1, Li) | A0,i = a0, L0,i)

]

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

respectively. The two partial derivatives Ġξ,n(Z, ξ0,γ0) and Ġγ,n(Z, ξ0,γ0) are two row vectors. If the two row vectors

Aξ(ξ0,γ0) and Aγ(ξ0,γ0) exist then we have by the weak law of large numbers (WLLN)

Ġξ,n(Z, ξ0,γ0)
p−→ Aξ(ξ0,γ0) and Ġγ,n(Z, ξ0,γ0)

p−→ Aγ(ξ0,γ0)

where Aξ(ξ0,γ0) is equal to E(Ψ̇ξ(Z, ξ0,γ0)) with

Ψ̇ξ(Z, ξ0,γ0) =

[

∂

∂ξT
Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0)

]

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

and Aγ(γ0,γ0) being equal to E(Ψ̇γ(Z, ξ0,γ0)) with

Ψ̇γ(Z, ξ0,γ0) =

[

∂

∂γT
Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0)

]

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

.

We have that
√
nGn(Z, ξ̂, γ̂) in (12) converges in distribution to a normal distribution with the mean zero and a variance

[16]. This implies that the estimator Ê(Y (a0,a1)) is asymptotically normally distributed with the mean E(Y (a0,a1)) and a

variance. The empirical variance is obtained using the estimator given by

s(a0, a1) =

√

√

√

√

1
n

∑n

i=1

{

Ψ̂(Zi, ξ̂, γ̂) + Ġξ,n(Z, ξ̂, γ̂)m(Zi, ξ̂) + Ġγ,n(Z, ξ̂, γ̂)k(Zi, γ̂)
}2

n

with

Ψ̂(Zi, ξ̂, γ̂) = Eγ̂(Eξ̂
(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)− Ê(Y (a0,a1)).

We have that m(Zi, ξ̂) denotes the influence function with the estimated parameter ξ̂ obtained using the influence function

m(Zi, ξ)

√
n(ξ̂ − ξ0) =

1√
n

n
∑

i=1

m(Zi, ξ)

and k(Zi, γ̂) denotes the influence function with the estimated parameter γ̂ obtained using the influence function k(Zi,γ)

√
n(γ̂ − γ0) =

1√
n

n
∑

i=1

k(Zi,γ).

B.2. The estimator with data with monotone missingness

We continue with the example being T is equal to 1 and the two µ-models are given by m{v1, ξ} = E(Y | A1 = a1, L1 =
l1) and µ{v0,γ} = E(m{V1, ξ} | A0 = a0, L0 = l0). The value of c is equal to 4. The G1(Z) vector contains only the first

variable L0 and the G2(Z) vector contains the first two variables L0 and A0. The G3(Z) vector contains the three variables

L0, A0 and L1 and the G4(Z) vector contains the four variables L0, A0, L1 and A1. Define a Mn function to be given by

Mn(Z, ξ̂, γ̂) =
1

n

n
∑

i=1

I(Ci = ∞)

̟{∞, Zi, ψ̂}
Eγ̂(Eξ̂

(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)

+

4
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0) | Gr(Zi), ζ̂
)

− E(Y (a0,a1)).
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Let Ê(Y (a0,a1)) denote the estimator to be given by

Ê(Y (a0,a1)) =
1

n

n
∑

i=1

I(Ci = ∞)

̟{∞, Zi, ψ̂}
Eγ̂(Eξ̂

(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)

+

4
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(

Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0) | Gr(Zi), ζ̂
)

.

The Taylor expansion of Mn(Z, ξ̂, γ̂) is given by

√
nMn(Z, ξ̂, γ̂) =

√
nMn(Z, ξ0,γ0) + Ṁξ,n(Z, ξ0,γ0)

√
n(ξ̂ − ξ0) + Ṁγ,n(Z, ξ0,γ0)

√
n(γ̂ − γ0) +

√
nRn (13)

where Ṁξ,n(Z, ξ0,γ0) and Ṁγ,n(Z, ξ0,γ0) denote

Ṁξ,n(Z, ξ0,γ0) =
∂Mn(Z, ξ,γ)

∂ξT

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

and Ṁγ,n(Z, ξ0,γ0) =
∂Mn(Z, ξ,γ)

∂γT

∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

respectively. The two partial derivatives Ṁξ,n(Z, ξ0,γ0) and Ṁγ,n(Z, ξ0,γ0) are given by

Ṁξ,n(Z, ξ0,γ0) =
1

n

n
∑

i=1

[

I(Ci = ∞)

̟{∞, Zi, ψ̂}
∂

∂ξT
Eγ(Eξ(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)+

4
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
×

E

(

∂

∂ξT
Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0) | Gr(Zi), ζ̂

)

]∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

and

Ṁγ,n(Z, ξ0,γ0) =
1

n

n
∑

i=1

[

I(Ci = ∞)

̟{∞, Zi, ψ̂}
∂

∂γT
Eγ(Eξ(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)+

4
∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
×

E

(

∂

∂γT
Eγ(Eξ(Y | A1 = a1, L1) | A0 = a0, L0) | Gr(Zi), ζ̂

)

]∣

∣

∣

∣

∣

ξ=ξ
0
,γ=γ

0

respectively. The two partial derivatives Ṁξ,n(Z, ξ0,γ0) and Ṁγ,n(Z, ξ0,γ0) are two row vectors.

Let the λr{Gr(Z),ψ∗}-models relating to the missingness mechanism be correctly specified (such as ψ∗ = ψ0) or

let the E(Eγ(Eξ(Y | A = a, L) | A0 = a0, L0) | Gr(Z), ζ∗)-models with respect to the distribution of Z be correctly

specified (such as ζ∗ = ζ0) so that we then have

E

[

4
∑

r=1

I(C = r)− λr{Gr(Z),ψ∗}I(C ≥ r)

Kr{Gr(Z),ψ∗}
(

Ψ̇ξ(Z, ξ0,γ0)− E
(

Ψ̇ξ(Z, ξ0,γ0) | Gr(Z), ζ∗
))

]

= 0 (14)

and

E

[

4
∑

r=1

I(C = r)− λr{Gr(Z),ψ∗}I(C ≥ r)

Kr{Gr(Z),ψ∗}
(

Ψ̇γ(Z, ξ0,γ0)− E
(

Ψ̇γ(Z, ξ0,γ0) | Gr(Z), ζ∗
))

]

= 0. (15)

The expectation (14) implies that

E

[

Ψ̇ξ(Z, ξ0,γ0)−
4

∑

r=1

I(C = r)− λr{Gr(Z),ψ∗}I(C ≥ r)

Kr{Gr(Z),ψ∗}
(

Ψ̇ξ(Z, ξ0,γ0)− E
(

Ψ̇ξ(Z, ξ0,γ0) | Gr(Z), ζ∗
))

]

= E
[

Ψ̇ξ(Z, ξ0,γ0)
]
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and the expectation (15) implies that

E

[

Ψ̇γ(Z, ξ0,γ0)−
4

∑

r=1

I(C = r)− λr{Gr(Z),ψ∗}I(C ≥ r)

Kr{Gr(Z),ψ∗}
(

Ψ̇γ(Z, ξ0,γ0)− E
(

Ψ̇γ(Z, ξ0,γ0) | Gr(Z), ζ∗
))

]

= E
[

Ψ̇γ(Z, ξ0,γ0)
]

.

If the two row vectors Aξ(ξ0,γ0) and Aγ(ξ0,γ0) exist then we have by the WLLN

Ṁξ,n(Z, ξ0,γ0)
p−→ Aξ(ξ0,γ0) and Ṁγ,n(Z, ξ0,γ0)

p−→ Aγ(ξ0,γ0)

where Aξ(ξ0,γ0) is given by E(Ψ̇ξ(Z, ξ0,γ0)) and Aγ(γ0,γ0) is given by E(Ψ̇γ(Z, ξ0,γ0)). We have that√
nMn(Z, ξ̂, γ̂) in (13) converges in distribution to a normal distribution with the mean zero and a variance [16]. This

implies that the estimator Ê(Y (a0,a1)) is asymptotically normally distributed with the mean E(Y (a0,a1)) and a variance.

The empirical variance is obtained using the estimator given by

s(a0, a1) =

√

√

√

√

1
n

∑n

i=1

{

Ψ̂(Zi, ξ̂, γ̂) + Ṁξ,n(Z, ξ̂, γ̂)m(Zi, ξ̂) + Ṁγ,n(Z, ξ̂, γ̂)k(Zi, γ̂)
}2

n

with

Ψ̂(Zi, ξ̂, γ̂) = Eγ̂(Eξ̂
(Y | A1,i = a1, L1,i) | A0,i = a0, L0,i)− Ê(Y (a0,a1)).

We have that m(Zi, ξ̂) denotes the influence function with the estimated parameter ξ̂ obtained using the influence function

m(Zi, ξ) such that

√
n(ξ̂ − ξ0) =

1√
n

n
∑

i=1

m(Zi, ξ)

and k(Zi, γ̂) denotes the influence function with the estimated parameter γ̂ obtained using the influence function k(Zi,γ)
such that

√
n(γ̂ − γ0) =

1√
n

n
∑

i=1

k(Zi,γ).

We have now shown that the estimator (2) and the estimator (5) are asymptotically normally distributed when T is equal

to 1 but this can also be shown for a larger T . The Taylor expansion at (12) and (13) will contain more parameters for a

larger T . We conduct a simulation study in the next Subsection.

B.3. Simulation study

We consider only full data as an illustrative example. All the models are correctly specified in the simulation study.

We consider data with a sample size of 1000 and the data are replicated 2000 times. The data are simulated as follows:

L0 ∼ Normal(ηl0 , 1
2), A0 ∼ Bernoulli(κa0

), L1 ∼ Normal(ηl1 , 1
2), A1 ∼ Bernoulli(κa1

) and Y ∼ Normal(ηy, 1
2) where

the means and the probabilities are given by ηl0 := 0, logit(κa0
) := −0.2L0, ηl1 := 1.5 + 0.4L0 +A0, logit(κa1

) :=
−0.2L1 − L0 +A0 and ηy := 0.4L0 + 2.7A0 + L1 +A1.

We consider the coverage of the estimator with full data given by

E(Y (a0,a1)) ∈
(

Ê(Y (a0,a1))− z0.975s(a0, a1), Ê(Y (a0,a1)) + z0.975s(a0, a1)
)

where z0.975 is equal to the value of the 97.5 percentile point of the standard normal distribution. We count the number of

times when the expected potential outcome is included in their confidence interval.

Table 4 shows the percentage of the 2000 times of the coverage using the estimator with full data, the average of the 2000
estimates of the empirical standard deviation and the empirical standard deviation of the 2000 estimates of Ê(Y (a0,a1)).

Table 4 shows that the coverages of the estimator are close to 95% and the average of the empirical standard deviations

are almost equal to the empirical standard deviations of Ê(Y (a0,a1)). The simulation study shows and supports the theory

that the estimator with full data is asymptotically normally distributed.
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a0 = 0, a1 = 0 a0 = 1, a1 = 0 a0 = 0, a1 = 1 a0 = 1, a1 = 1

Coverage 95.40% 94.60% 94.90% 94.95%
s(a0, a1) 0.075 0.081 0.079 0.074

sd(Ê(Y (a0,a1))) 0.074 0.079 0.079 0.073

Table 4. The estimator with full data. The Coverage row shows the percentage of the coverage. The s(a0, a1) row shows

the average of the 2000 estimates of the empirical standard deviation when (a0, a1) is set to (0, 0), (1, 0), (0, 1) or (1, 1).
The sd(Ê(Y (a0,a1))) row shows the empirical standard deviation of the 2000 estimates of Ê(Y (a0,a1)).
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1. Analysis of the PERFORM study

Table 1 displays the different vectors that contribute to a specific Zt for t ∈ {b, 2, 6, 12, 18}.

t Zt Wpt Wt Wst

b Zb (PHQb, PDQb, SDSb) (PHQ2, PDQ2, SDS2)
2 Z2 (PHQb, PDQb, SDSb) (PHQ2, PDQ2, SDS2) (PHQ6, PDQ6, SDS6)
6 Z6 (PHQ2, PDQ2, SDS2) (PHQ6, PDQ6, SDS6) (PHQ12, PDQ12, SDS12)
12 Z12 (PHQ6, PDQ6, SDS6) (PHQ12, PDQ12, SDS12) (PHQ18, PDQ18, SDS18)
18 Z18 (PHQ12, PDQ12, SDS12) (PHQ18, PDQ18, SDS18) (PHQ24, PDQ24, SDS24)

Table 1. The t column displays the five periods and Zt displays the five different possible combinations of vectors. The

Wpt, Wt and Wst columns indicate which vectors that contribute to a specific Zt.

Table 2 displays the time-varying exposure, the time-dependent confounding and the outcome for all five periods.

t Lt PDQt Lst PDQst SDSst

b (PHQb) PDQb (SDSb, PHQ2) PDQ2 SDS2

2 (PHQb, PDQb, SDSb, PHQ2) PDQ2 (SDS2, PHQ6) PDQ6 SDS6

6 (PHQ2, PDQ2, SDS2, PHQ6) PDQ6 (SDS6, PHQ12) PDQ12 SDS12

12 (PHQ6, PDQ6, SDS6, PHQ12) PDQ12 (SDS12, PHQ18) PDQ18 SDS18

18 (PHQ12, PDQ12, SDS12, PHQ18) PDQ18 (SDS18, PHQ24) PDQ24 SDS24

Table 2. The t column displays the five periods and Lt displays the confounder at time t. The PDQt column displays the

exposure at time t. The Lst column displays the confounder at time st. The PDQst column displays the exposure at time

st. The SDSst column displays the outcome at time st.
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Table 3 displays the estimates and the confidence intervals of the four estimators for t = b and Table 4 displays the

estimates and the confidence intervals of the four estimators for t = 18.

Estimator Estimate SE 95%-CI Width of CI

Naı̈ve

(1, 1) 16.724 0.455 (15.833 ; 17.616) 1.784

(0, 1) 13.583 1.892 (9.876 ; 17.291) 7.415

(1, 0) 9.108 1.147 (6.860 ; 11.356) 4.495

(0, 0) 5.737 0.794 (4.181 ; 7.293) 3.112

LSmeans

(1, 1) 15.080 0.437 (14.223 ; 15.937) 1.713

(0, 1) 15.330 1.900 (11.607 ; 19.054) 7.447

(1, 0) 13.345 1.688 (10.037 ; 16.654) 6.616

(0, 0) 11.862 1.061 (9.782 ; 13.941) 4.159

G-formula

E(SDS
(1,1)
2 ) 15.471 0.453 (14.583 ; 16.358) 1.775

E(SDS
(0,1)
2 ) 13.154 2.063 (9.110 ; 17.198) 8.088

E(SDS
(1,0)
2 ) 13.753 1.606 (10.606 ; 16.900) 6.293

E(SDS
(0,0)
2 ) 9.588 1.204 (7.229 ; 11.948) 4.720

DRMGf

E(SDS
(1,1)
2 ) 15.477 0.419 (14.656 ; 16.299) 1.643

E(SDS
(0,1)
2 ) 13.491 2.063 (9.447 ; 17.535) 8.088

E(SDS
(1,0)
2 ) 13.672 1.734 (10.273 ; 17.071) 6.798

E(SDS
(0,0)
2 ) 9.880 1.211 (7.507 ; 12.253) 4.746

Table 3. The plot on the left hand side in Figure 2 is based on the actual numbers. The Estimator column displays the

estimator that has been used to obtain the estimates. The Estimate column displays the estimates from the different

estimators. The SE column displays the standard errors obtained using 1000 bootstraps. The 95%-CI column displays

the confidence intervals for the estimates. The Width of CI column displays the width of the confidence intervals.

Estimator Estimate SE 95%-CI Width of CI

Naı̈ve

(1, 1) 14.423 0.728 (12.997 ; 15.850) 2.853

(0, 1) 7.148 1.267 (4.665 ; 9.631) 4.966

(1, 0) 4.565 0.812 (2.973 ; 6.158) 3.185

(0, 0) 3.953 0.648 (2.680 ; 5.222) 2.542

LSmeans

(1, 1) 10.554 0.660 (9.262 ; 11.847) 2.585

(0, 1) 8.806 1.268 (6.321 ; 11.291) 4.970

(1, 0) 7.642 1.177 (5.336 ; 9.949) 4.613

(0, 0) 9.485 1.188 (7.156 ; 11.814) 4.658

G-formula

E(SDS
(1,1)
24 ) 11.100 0.707 (9.715 ; 12.485) 2.770

E(SDS
(0,1)
24 ) 7.916 1.192 (5.580 ; 10.252) 4.672

E(SDS
(1,0)
24 ) 8.436 1.369 (5.752 ; 11.120) 5.367

E(SDS
(0,0)
24 ) 8.238 1.230 (5.827 ; 10.649) 4.822

DRMGf

E(SDS
(1,1)
24 ) 12.069 0.623 (10.847 ; 13.291) 2.444

E(SDS
(0,1)
24 ) 8.618 1.293 (6.083 ; 11.153) 5.070

E(SDS
(1,0)
24 ) 9.458 1.402 (6.709 ; 12.207) 5.498

E(SDS
(0,0)
24 ) 9.031 1.338 (6.410 ; 11.653) 5.243

Table 4. The plot on the right hand side in Figure 2 is based on the actual numbers. See Table 3 for the description of the

columns.
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,

consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant

morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras

viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu

tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci

eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit

amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non

justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed

accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et

nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis

natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt

urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tris-

tique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus

adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae,

placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec,

suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed

lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec

et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.

Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean

placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit
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purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor

vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo

velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque,

augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Mae-

cenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu

lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui,

et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue.

Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc.

Nam feugiat lacus vel est. Curabitur consectetuer.
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Sequential mediation analysis with multiple
mediators

Thomas Maltesenab*, Klaus Groes Larsenc and Lene Hammer-Helmichd

The natural direct effect and the natural indirect effect from causal inference are attractive since the sum of the

two effects are equal to the total causal effect. Unfortunately, identification of these effects relies on the cross-world

assumption which is violated if there exists a mediator-outcome relationship. The interventional direct effect and

the interventional indirect effect avoid the cross-world assumption but the overall effect is not necessarily equal

to the total causal effect. We suggest a new definition for mediation analysis where the overall effect is equal to

the total causal effect. We use different simulation scenarios to show that our definition can include models with

interactions with the overall effect equal to the total causal effect. We use our definition to analyse the observational

cohort study Prospective Epidemiological Research on Functioning Outcomes Related to Major depressive disorder

(PERFORM). The (PERFORM) study includes two mediators on the causal path between exposure and outcome.

Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, direct and indirect effects, longitudinal data, marginal structural model,

sequential mediation

1. Introduction

Causal mediation analysis is applied in different scientific disciplines e.g. epidemiology, political science, psychology and

sociology, whenever interest lies in investigating the extent to which the effect of exposure on the outcome is transmitted

via one or more intermediate variables [1]. Methods in social sciences have used structural equation modelling (SEM) to

perform such analysis. The structural equation modelling (SEM) consists of a series of multivariate linear models that are

combined in a single analysis. The model allows the scales at the same time point to be correlated, however, these methods

do not allow for interactions in the models. The indirect effect of the exposure on the outcome may also be obtained by

subtracting the direct effect from the total effect but the strategy will fail if an interaction between the mediator and the

exposure on the outcome exists [2]. The direct and indirect effects can be defined and the total effect can also be dismantled

into direct and indirect effects involving interactions in the models [3].

Robins, Greenland [4] and Pearl [5] proposed the natural direct and indirect effects. These effects are used to obtain

the direct effect of the exposure on the outcome and the transmitted effect via one or more intermediate measurements

between the exposure on the outcome. The natural direct and indirect effects have the attractive property to sum the total

causal effect but it relies on the cross-world assumption. The assumption does not necessarily hold in experimental data

[6, 7]. VanderWeele, Vansteelandt and Robins [8] define the interventional direct and indirect effects between the exposure

and the outcome. The identifications of the interventional effects avoid the cross-world assumption, but one drawback of

the interventional direct and indirect effects is that the sum may not be equal to the total causal effect. Therefore it is called

the overall effect instead.

An observational cohort study, Prospective Epidemiological Research on Functioning Outcomes Related to Major

depressive disorder (PERFORM), was conducted to better understand the course of a depressive episode and its impact
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on patient functioning over 2 years in outpatients with major depressive disorder (MDD). Depression severity, cognitive

symptoms and functional impairment were measured for each patient at six time points. The measurements at the first

two time points (baseline and after 2 months) are used as an example for our definition. The measurement of functional

impairment at baseline and depression severity at month 2 are the two mediators on the causal path between the exposure

(cognitive symptoms at baseline) and the outcome (functional impairment at month 2). See Hammer-Helmich et al. [9]

for further information about the PERFORM study. The treatment of cognitive symptoms may hold the key to achieving

functional recovery in MDD [10]. Unfortunately, using the g-formula in the presence of time-dependent confounding will

only give the (total) causal effect of the cognitive symptoms and it does not facilitate understanding of how cognition may

act on functionality via mediators. We are interested in the direct effect of the exposure (cognitive symptoms at baseline)

on the outcome (functional impairment at month 2) and for the sake of the interpretation we would prefer if the overall

effect is equal to the total causal effect.

In this paper, we are considering the definition proposed by Vansteelandt and Daniel [11] for defining the interventional

direct and indirect effects for multiple mediators. The overall effect is equal to the total causal effect by introducing a

mediated dependence term. Their definition does not require that the variables are in an ordered sequence. Section 2

revisits briefly the setup with only one mediator and the interpretation of the effects under different assumptions. Section

3 reviews the definition proposed by Vansteelandt and Daniel [11] to obtain the interventional direct and indirect effects

for multiple mediators. Section 4 compares our definition of sequential mediation to a definition by VanderWeele and

Vansteelandt [12] using three different simulation studies. Section 5 contains the analysis of the PERFORM study with

our definition. Section 6 concludes with a discussion of our findings.

2. Mediation and the corresponding effects

Let Y denote the outcome, which we assume to be continuous, and let A and M denote the exposure and the mediator

respectively. Let C be some baseline measurements not affected by the exposure, see the directed acyclic graph (DAG)

denoted by (a) in Figure 1. Let Y a and Ma be the values that Y and M would be if the exposure A is set to a respectively.

Let Y am be the value that Y would be if the exposure A is set to a and the mediator M is set to m. Pearl [5] defined

the controlled direct effect as the difference between the two expected potential outcomes E(Y am) and E(Y a∗m) for two

different values of the exposure, a and a∗, when the mediator is kept fixed at level m. Robins, Greenland [4] and Pearl

[5] define the natural direct effect by E(Y aMa
∗

)− E(Y a∗Ma
∗

) for two different values of the exposure a and a∗, but the

mediator set to its natural level of A had been set to a∗. Robins, Greenland [4] and Pearl [5] define the natural indirect

effect by E(Y aMa

)− E(Y aMa
∗

) which defines the effect of the exposure A on Y mediated via the mediator M . The total

causal effect is defined by E(Y aMa

)− E(Y a∗Ma
∗

).
VanderWeele el al. [8] define the random variable Ga|C . The random Ga|C denotes a random drawn mediator from the

distribution among those with exposure status a conditional on C. VanderWeele el al. [8] define the interventional direct

effect by

E

(

Y aGa
∗|C

− Y a∗Ga
∗|C

)

=

∫

(

E(Y am | C = c)− E(Y a∗m | C = c)
)

fM |A,C(m | a∗, c)fC(c)d(m, c) (1)

and VanderWeele el al. [8] define the interventional indirect effect by

E

(

Y aGa|C

− Y aGa
∗|C

)

=

∫

E(Y am | C = c)
(

fM |A,C(m | a, c)− fM |A,C(m | a∗, c)
)

fC(c)d(m, c). (2)

The disadvantage of the interventional effects is that the sum of (1) and (2) will not necessarily be equal to the total

causal effect. The sum is (sometimes) called the overall effect instead. The overall effect is defined by E(Y aGa|C

)−

E(Y a∗Ga
∗|C

).
The assumptions for the identification of these five effects (the controlled effect, the interventional direct and indirect

effects and the natural direct and indirect effects) with only one mediator are listed below:

The controlled effect is identified if we assume these two assumptions:

(i) Y am ⊥⊥ A | C = c ∀(a,m, c) ∈ A,M,C

(ii) Y am ⊥⊥ M | A = a, C = c ∀(a,m, c) ∈ A,M,C.

The interventional direct and indirect effects are identified if we assume the two assumptions (i) and (ii) and we also

assume the following assumption:

2 www.sim.org Copyright c© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–10
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(iii) Ma ⊥⊥ A | C = c ∀(a,m, c) ∈ A,M,C.

The natural direct and indirect effects are identified if we assume the previous three assumptions (i), (ii) and (iii) and we

also assume the following assumption:

(iv) Y am ⊥⊥ Ma∗

| C = c ∀(a, a∗,m, c) ∈ A,M,C.

The last assumption is the cross-world assumption.

3. Interventional direct and indirect effects

We assume 2 mediators for simplicity. We also assume that the two mediators are ordered meaning that M1 may affect M2

but not the other way around. The two mediators may thus result in 4 causal paths: the direct effect of A on Y (A → Y ),

the indirect effect of A on Y via M1 only (A → M1 → Y ), via M2 only (A → M2 → Y ), and the indirect effect of A on

Y via both M1 and M2 (A → M1 → M2 → Y ) [13]. See the DAG denoted by (b) in Figure 1. Let M2 define the vector

(M1,M2) and let M
a

2 denote the vector (Ma
1 ,M

a
2 ).

C

M

Y

A

(a)

C

M2

M1 Y

A

(b)

Figure 1. Let Y denote the outcome, which we assume to be continuous. Let A denote the exposure and let C be some baseline measurements that are not affected by the exposure.

DAG (a) shows the causal paths with one mediator M . DAG (b) shows the causal paths with two mediators M1 and M2 (M2 = (M1,M2)).

3.1. The interventional effects for multiple mediators by Vansteelandt and Daniel

Vansteelandt and Daniel [11] do not require that the mediator variables are ordered in a sequence. Vansteelandt and Daniel

define the interventional direct effect by the causal estimand

∫

(

E(Y am1m2 | c)− E(Y a∗m1m2 | c)
)

f
M

a
∗

2
|C
(m2 | c)fC(c)d(m2, c). (3)

Vansteelandt and Daniel define the causal estimand for the interventional indirect effect via M1 to be given by

∫

E(Y am1m2 | c)
(

fMa

1
|C(m1 | c)− fMa

∗

1
|C(m1 | c)

)

fMa
∗

2
|C(m2 | c)fC(c)d(m2, c) (4)

and define the causal estimand for the interventional indirect effect via M2 to be given by

∫

E(Y am1m2 | c)
(

fMa

2
|C(m2 | c)− fMa

∗

2
|C(m2 | c)

)

fMa

1
|C(m1 | c)fC(c)d(m2, c). (5)

Vansteelandt and Daniel define the additional term by

∫

E(Y am1m2 | c)
(

fMa

2
|C(m2 | c)− fMa

2
|C(m2 | c)fMa

1
|C(m1 | c)+

fMa
∗

2
|C(m2 | c)fMa

∗

1
|C(m1 | c)− f

M
a
∗

2
|C
(m2 | c)

)

f(c)d(m2, c)

(6)

that captures the indirect effect of A on Y mediated via the dependence of M2 on M1. The effects (3) to (6) sum to the

total causal effect [11]. The assumptions used to identify the estimands above (for two mediators) are

Statist. Med. 0000, 00 1–10 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 3
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(i’) Y am2 ⊥⊥ A | C = c ∀(a,m2, c) ∈ A,M2, C

(ii’) Y am2 ⊥⊥ (M1,M2) | A = a, C = c ∀(a,m2, c) ∈ A,M2, C

(iii’) (Ma
2
,Ma

1
) ⊥⊥ A | C = c ∀(a, c) ∈ A,C.

The interventional direct and indirect effects have the advantage of being meaningful even when the variable is not

manipulable [14, 11]. See the example in Section 5. The interpretation of these three assumptions (i’), (ii’) and (iii’)

are given by: We have with the assumption (i’) that the effect of the exposure A on the outcome Y is unconfounded

conditional on C. With the assumption (ii’) we have that the effect of the two mediators M1 and M2 on the outcome

Y is unconfounded conditional on the exposure A and C. Finally, we have with the assumption (iii’) that the effect of

the exposure A on the two mediators is unconfounded conditional on C [11]. Recall that C represents some baseline

measurements.

3.2. A new definition of the interventional indirect effects of sequential mediation

We suggest a new definition of sequential mediation for the path-specific effects with multiple mediators such that the

overall effect is equal to the total causal effect. We assume the three assumptions (i’), (ii’) and (iii’) to identify the

effects. Our definition is inspired by the definition proposed by Vansteelandt and Daniel [11]. The causal estimand for the

interventional direct effect of the exposure on the outcome is defined by
∫

(

E(Y am1m2 | c)− E(Y a∗m1m2 | c)
)

fMa
∗

2
|Ma

∗

1
,C(m2 | m2, c)fMa

∗

1
|C(m1 | c)fC(c)d(m2, c) (7)

and the causal estimand at (7) is identified by
∫

(

E(Y | M2 = m2, A = a, C = c)− E(Y | M2 = m2, A = a∗, C = c)
)

fM2|A,C(m2 | a∗, c)fC(c)d(m2, c) (8)

where f(M2 | A = a∗, C) denotes the product of the two densities f(M2 | M1, A = a∗, C)f(M1 | A = a∗, C). The causal

estimand at (7) is the same one as the causal estimand at (3).

The next two causal estimands are the interventional indirect effects of the exposure mediated via the two ordered

mediators and the two causal estimands are defined by
∫

E(Y am1m2 | c)fMa
∗

2
|Ma

∗

1
,C(m2 | m1, c)

{

fMa

1
|C(m1 | c)− fMa

∗

1
|C(m1 | c)

}

fC(c)d(m2, c) (9)

and
∫

E(Y am1m2 | c)
{

fMa

2
|Ma

1
,C(m2 | m1, c)− fMa

∗

2
|Ma

∗

1
,C(m2 | m1, c)

}

fMa

1
|C(m1 | c)fC(c)d(m2, c). (10)

They are identified by
∫

E(Y | M2 = m2, A = a, C = c)fM2|M1,A,C(m2 | m1, a
∗, c)

{

fM1|A,C(m1 | a, c)− fM1|A,C(m1 | a∗, c)
}

fC(c)d(m2, c)

(11)

and
∫

E(Y | M2 = m2, A = a, C = c)
{

fM2|M1,A,C(m2 | m1, a, c)− fM2|M1,A,C(m2 | m1, a
∗, c)

}

fM1|A,C(m1 | a, c)fC(c)d(m2, c),

(12)

respectively. The causal estimand at (9) is the interventional indirect effect via M1 and it corresponds to the sum of the two

causal paths A → M1 → Y and A → M1 → M2 → Y . The causal estimand at (10) is the interventional indirect effect via

M2 and it corresponds to the path A → M2 → Y . We assume the three assumptions (i’), (ii’) and (iii’) to identify the three

statistical estimands (8), (11) and (12) from the three causal estimands (7), (9) and (10), respectively. The sum of the three

causal estimands (7), (9) and (10) is given by

(7) + (9) + (10) =

∫

E(Y am1m2 | c)fMa

2
|Ma

1
,C(m2 | m1, c)fMa

1
|C(m1 | c)fC(c)d(m2, c)

−

∫

E(Y a∗m1m2 | c)fMa
∗

2
|Ma

∗

1
,C(m2 | m1, c)fMa

∗

1
|C(m1 | c)fC(c)d(m2, c)

=

∫

E(Y am1m2 | c)fMa

2
|C(m2 | c)fC(c)d(m2, c)−

∫

E(Y a∗m1m2 | c)f
M

a
∗

2
|C
(m2 | c)fC(c)d(m2, c)

=

∫

E(Y aMa

1
Ma

2 | c)f(c)d(c)−

∫

E(Y a∗Ma
∗

1
Ma

∗

2 | c)f(c)d(c)
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and it is equal to the total causal effect of the exposure A on the outcome Y .

3.3. A definition of sequential mediation by VanderWeele and Vansteelandt

We are using a definition for sequential mediation analysis from VanderWeele and Vansteelandt [12]. The natural direct

effect is E(Y aMa
∗

1 − Y a∗Ma
∗

1 | C) and it is possible to rewrite it to

E

(

Y aMa
∗

1 − Y aMa
∗

1
Ma

∗

2 | C

)

+ E

(

Y aMa
∗

1
Ma

∗

2 − Y a∗Ma
∗

1
Ma

∗

2 | C

)

.

The first term in the sum is the mediated effect via M2 (A → M2 → Y ) and it is identified by the statistical estimand at

(14). The statistical estimand at (14) is identified from the causal estimand under the assumptions (i’), (ii’) and (iii’). The

last term in the sum is the direct effect and it is obtained by the causal estimand at (7). The statistical estimand at (8) is

identified from the causal estimand at (7) under the assumptions (i’), (ii’) and (iii’). The mediated effect of A on Y via M1

and the additional effect via M2 (A → M1 → Y and A → M1 → M2 → Y ) is defined by E(Y aMa

1 − Y aMa
∗

1 | C) which

is identified by the statistical estimand at (13). The statistical estimand at (13) is identified from the causal estimand under

the assumptions (i’), (ii’) and (iii’). The statistical estimand for the interventional indirect effect via M1 is given by

∫

E(Y | M1 = m1, A = a, C = c)
{

fM1|A,C(m1 | a, c)− fM1|A,C(m1 | a∗, c)
}

fC(c)d(m1, c) (13)

and the statistical estimand for the interventional indirect effect via M2 is given by

∫

{

E(Y | M1 = m1, A = a, C = c)− E(Y | M2 = m2, A = a, C = c)fM2|M1,A,C(m2 | m1, a
∗, c)

}

fM1|A,C(m1 | a∗, c)fC(c)d(m2, c).
(14)

We are comparing our definition to the definition by VanderWeele and Vansteelandt [12] bacause our causal estimands and

the causal estimands by VanderWeele and Vansteelandt [12] use the same three assumptions (i’), (ii’) and (iii’) to identify

the effects.

4. Simulations

We consider three simulation studies with different models (simulation A, B and C). The sample size is 500 and

the data are replicated 2000 times. Let C follow a standard normal distribution. Let A be drawn with the probability

logit(P (A = 1 | C = c)) = κI + κ1c where logit(x) = log(x)− log(1− x).

Simulation A: Let the following three models be given by

E (Y | M2 = m2,M1 = m1, A = a, C = c) = ξI + ξ1c+ ξ2a+ ξ3m1 + ξ4m2, (15)

E (M2 | M1 = m1, A = a, C = c) = αI + α1c+ α2a+ α3m1 (16)

and

E (M1 | A = a, C = c) = ζI + ζ1c+ ζ2a (17)

to simulate the data. The data are simulated as follows: C ∼ Normal(0, 12), A ∼ Bernoulli(κa), M1 ∼ Normal(ηm1
, 12),

M2 ∼ Normal(ηm2
, 12) and Y ∼ Normal(ηy, 1

2) where logit(κa) := −0.5C and the means are given by ηm1
:= −4C −

2A, ηm2
:= −C + 2A− 2M1 and ηy := 3C + 3A−M1 − 2M2.

Simulation B: We assume that one interaction between the exposure and the first mediator will simulate the second

mediator and it is given by

E (M2 | M1 = m1, A = a, C = c) = αI + α1c+ α2a+ α3m1 + α4am1. (18)

We also assume the two models defined at (15) and (17) to simulate the data. The data are simulated as follows:

C ∼ Normal(0, 12), A ∼ Bernoulli(κa), M1 ∼ Normal(ηm1
, 12), M2 ∼ Normal(ηm2

, 12) and Y ∼ Normal(ηy, 1
2) where

logit(κa) := −0.5C and the means are given by ηm1
:= −4C − 2A, ηm2

:= −C + 2A− 2M1 + 4AM1 and ηy := 3C +
3A−M1 − 2M2.
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Simulation C: We assume three interactions between the exposure and the two mediators to simulate the outcome and

it is given by

E (Y | M2 = m2,M1 = m1, A = a, C = c) = ξI + ξ1c+ ξ2a+ ξ3m1 + ξ4m2 + ξ5am1 + ξ6am2 + ξ7m1m2, (19)

and we also assume the two models defined at (16) and (17) to simulate the data. The data are simulated as follows:

C ∼ Normal(0, 12), A ∼ Bernoulli(κa), M1 ∼ Normal(ηm1
, 12), M2 ∼ Normal(ηm2

, 12) and Y ∼ Normal(ηy, 1
2) where

logit(κa) := −0.5C and the means are given by ηm1
:= −4C − 2A, ηm2

:= −C + 2A− 2M1 and ηy := 3C + 3A−
M1 − 2M2 + 2AM1 −AM2 − 3M1M2.

The marginal structural model (MSM) for simulation A, B and C is given by E(Y a) = βI + β1a. Let a be equal to 1
and let a∗ be equal to 0. The simulation studies are evaluated by the mean of the 2000 estimates of β1 from the MSM, the

empirical standard error (SE) of the 2000 estimates of β1 and the mean squared error (MSE). Table 1 shows the evaluation

of the estimates of the causal effects from the three simulation studies. Table 2 shows the evaluation of the estimates of

the interventional direct and indirect effects with both definitions.

Simulation True Mean SE MSE

A -7 -6.999 0.354 0.125

B 9 9.003 1.512 2.285

C 19 19.009 4.745 22.515

Table 1. The Simulation column shows the three different simulation studies. The True column shows the true causal

effect. The Mean column shows the mean of the 2000 estimates of β1. The SE column shows the standard error of the

2000 estimates of β1. The MSE column shows the mean squared error. The estimation of βI is not shown for the simulation

studies.

Table 1 shows the estimates of the causal effect of A on Y for simulation A, B and C. We will use the estimation of

the causal effects for comparison with the overall effects that we obtain using the two definitions (our definition and the

definition by VanderWeele and Vansteelandt [12]).

Simulation A Simulation B Simulation C

Effect Mean SE MSE Mean SE MSE Mean SE MSE

Dir. eff. 3.000 0.161 0.026 2.999 0.134 0.018 2.997 0.751 0.564

Via M1, (11) -6.001 0.351 0.123 -6.001 0.356 0.127 10.018 4.280 18.322

Via M2, (12) -3.998 0.274 0.075 12.006 1.570 2.464 5.994 1.224 1.499

The overall eff. w. Our Def. -6.999 0.354 0.125 9.003 1.512 2.285 19.009 4.745 22.515

Via M1, (13) -6.001 0.351 0.123 1.960 1.509 65.634 24.846 13.893 413.426

Via M2, (14) -3.998 0.274 0.075 0.258 2.206 142.733 71.249 14.307 4462.107

The overall eff. w. V and V -6.999 0.354 0.125 5.217 1.653 17.048 99.092 9.643 6507.761

Table 2. Simulation A: The true direct effect is 3, the true indirect effect via M1 is −6 and the true indirect effect via M2

is −4. Simulation B: The true direct effect is 3, the true indirect effect via M1 is −6 and the true indirect effect via M2 is

12. Simulation C: The true direct effect is 3, the true indirect effect via M1 is 10 and the true indirect effect via M2 is 6.

See Table 1 for the true total causal effect of β1 and the description of the different columns: Mean, SE and MSE. Dir. eff.

is an abbreviation for the interventional direct effect using the statistical estimand at (8). Via M1 (·) is an abbreviation for

the interventional indirect effect via M1 using the statistical estimand at either (11) or (13). Via M2 (·) is an abbreviation

for the interventional indirect effect via M2 using the statistical estimand at either (12) or (14). The overall eff. w. Our Def.

is an abbreviation for the overall effect with our definition. The overall eff. w. V and V is an abbreviation for the overall

effect with the definition by VanderWeele and Vansteelandt [12].

Table 2 shows that our definition is able to estimate the interventional direct effect and the interventional indirect effects

in all three simulation studies (simulation A, B and C). Table 2 shows that the overall effect is equal to the total causal

effect (Table 1) in all three simulation studies (simulation A, B and C) with our definition. Table 2 shows that the definition

by VanderWeele and Vansteelandt [12] shows weakness when the models have interactions between the measurements.

Their definition is not able to estimate the interventional indirect effects for the last two simulation studies (simulation B

and C) and the overall effects are not equal to the total causal effects for the last two simulation studies.
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5. PERFORM

The PERFORM study was collected over 2 years. For each patient a baseline measurement was taken and they were

measured again after 2, 6, 12, 18 and 24 months. The patients were measured on 3 self-reported scales. Functional

impairment was measured by the Sheehan Disability Scale (SDS) consisting of 3 items. Each item ranges from 0 to 10 with

a global score ranging from 0 to 30. Cognitive symptoms were measured by the Perceived Deficit Questionnaire (PDQ-5)

consisting of 5 items. Each item ranges from 0 to 4 with a global score ranging from 0 to 20 (we suppress ’-5’ in the name

PDQ-5 for simplicity). Depression severity was measured by the Patient Health Questionnaire (PHQ-9) consisting of 9
items. Each item ranges from 0 to 3 with a global score ranging from 0 to 27 (we suppress ’-9’ in the name PHQ-9 for

simplicity). A higher score corresponds to the patient being more constrained, suffering greater severity of their cognitive

symptoms and more severe depression. We assume that depression severity affects both cognitive symptoms and functional

impairment and that cognitive symptoms affect functional impairment. We further assume that all the measurements at

baseline affect all the measurements at month 2 [15]. See the DAG in Figure 2. We dichotomize the variable PDQ. Let

PDQ be equal to 0 if the original global score is less than or equal to 5 and 1 otherwise. If PDQ is equal to 0 then it

corresponds to the patient having no or minimal cognitive symptoms, and if PDQ is equal to 1 then it corresponds to the

patient having cognitive symptoms. See Hammer-Helmich et al. [9] for further information about the PERFORM study.

We focused only on the measurements at the first two time points (baseline and month 2) as an example for our definition.

We considered only the subset of data with fully observed vectors (all six variables, see Figure 2). The number of fully

observed vectors in the data is 341.

SDSb SDS2

PDQb PDQ2

PHQb PHQ2

Figure 2. The nodes with the index b and 2 are the measurements at baseline and after 2 months respectively. The nodes PHQt, PDQt and SDSt for t ∈ {b, 2} represent

the scales PHQ, PDQ and SDS respectively.

The MSM is given by

E
(

SDS
(pdqb,pdq2)
2

)

= βI + β1pdqb + β2pdq2 + β3pdqbpdq2 (20)

where β = (βI , β1, β2, β3) denotes the vector of causal effects. First, the aim is to estimate the (total) causal effect of

the time-varying exposure on the outcome. The two measurements M2 = (SDSb, PHQ2) are the two mediators for the

exposure, PDQb (cognitive symptoms at baseline). We consider the g-formula [16] in the presence of time-dependent

confounding. It is given by

E
(

SDS
(pdqb,pdq2)
2

)

=

∫

m{v2, ξ}fPHQ2|SDSb,PDQb,PHQb
(phq2 | sdsb, pdqb, phqb)

fSDSb|PDQb,PHQb
(sdsb | pdqb, phqb)fPDQb

(pdqb)d(phq2, sdsb, phqb),

where
m{V2, ξ} = E(SDS2 | PDQ2, PHQ2, SDSb, PDQb, PHQb)

= ξI + ξ1PHQb + ξ2PDQb + ξ3SDSb + ξ4PHQ2 + ξ5PDQ2 + ξ6PDQbPHQb+

ξ7PDQ2PHQb + ξ8PDQbPHQ2 + ξ9PDQ2PHQ2 + ξ10PDQbPDQ2

and V2 denotes the set (PDQ2, PHQ2, SDSb, PDQb, PHQb). We include the interactions between depression severity

and cognitive symptoms in the m{Vst, ξt}-model with all the main effects. We assume that the conditional measures

corresponding to the two densities fPHQ2|PHQb,PDQb,SDSb
(phq2 | phqb, pdqb, sdsb) and fSDSb|PHQb,PDQb

(sdsb |
phqb, pdqb) are linear models without any interactions or quadratic terms. We use the three statistical estimands at (8),

(11) and (12) with the model m{v2, ξ}. Let pdqb be equal to 1 and let pdq∗b be equal to 0 in the three statistical estimands

of the interventional direct and indirect effects. Let pdq2 be equal to 0 and let pdq∗2 be equal to 0 for the estimation of the
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interventional direct and indirect effects of PDQb on SDS2. See Kreif et al. [17] for further information about the series

of iterated conditional expectations. Let β1,dir denote the interventional direct effect of PDQb on SDS2. Let β1,indirSDSb

and β1,indirPHQ2
denote the two interventional indirect effects via SDSb and PHQ2 respectively. The confidence intervals

are obtained using 1000 bootstraps.

5.1. Results

The results of the (total) causal effects β = (βI , β1, β2, β3), the interventional direct effect and the two interventional

indirect effects are shown in Table 3.

Effect Estimate SE 95%-CI

βI 9.588 1.243 (7.152 ; 12.025)

β1 4.165 2.021 (0.204 ; 8.126)

β2 3.566 2.026 (-0.404 ; 7.536)

β3 -1.848 2.613 (-6.969 ; 3.272)

β1,dir, Interventional direct of PDQb 1.385 1.711 (-1.968 ; 4.739)

β1,indirSDSb
, Interventional indirect of PDQb via SDSb 2.490 0.705 (1.109 ; 3.870)

β1,indirPHQ2
, Interventional indirect of PDQb via PHQ2 0.290 0.870 (-1.416 ; 1.995)

β1,dir + β1,indirSDSb
+ β1,indirPHQ2

, The overall effect 4.165 2.021 (0.204 ; 8.126)

Table 3. The Effect column shows the causal effects β, the interventional direct effect of PDQb on SDS2, the two

interventional indirect effects of PDQb on SDS2 and the overall effect. The SE column shows the standard errors. The

standard error (SE) is obtained using 1000 bootstraps. The 95%-CI column shows the 95% confidence intervals.

Table 3 shows that β1 is the only estimated coefficient of the (total) causal effects that is significant. The coefficient

βI corresponds to the expected score of functional impairment for patients having no or minimal cognitive symptoms at

both visits. The coefficient βI is E(SDS
(0,0)
2 ). The coefficient β1 is the causal effect of cognitive symptoms at baseline

on functional impairment at month 2. The coefficient β1 corresponds to the additional effect we have to add to βI for the

expected score of functional impairment for patients having cognitive symptoms at baseline and having no or minimal

cognitive symptoms at month 2. The sum of the two coefficients βI and β1 is E(SDS
(1,0)
2 ). The coefficient β2 is the

causal effect of cognitive symptoms at month 2 on functional impairment at month 2. The coefficient β2 corresponds

to the additional effect we have to add to βI for the expected score of functional impairment for patients having no or

minimal cognitive symptoms at baseline and having cognitive symptoms at month 2. The sum of the two coefficients βI

and β2 is E(SDS
(0,1)
2 ). The coefficient β3 is the causal effect of the interaction between cognitive symptoms at baseline

and cognitive symptoms at month 2 on functional impairment at month 2. The sum of all four coefficients corresponds

to the expected score of functional impairment for patients with cognitive symptoms at both visits. The sum of all four

coefficients is E(SDS
(1,1)
2 ).

The estimates of the mediated effects are plausible from a clinical perspective since patients with cognitive symptoms

at baseline will be more functionally impaired compared to patients with no or with minimal cognitive symptoms. The

positive sign of the mediated effects do not conflict with the clinical expectation. The mediated effects indicate that patients

with cognitive symptoms at baseline will not improve their functional impairment via one of the mediated effects, in

contrast to patients with no or with minimal cognitive symptoms. More than half of the effect of the cognitive symptoms

at baseline is transmitted via functional impairment at the same time point on functional impairment at a later time

(the interventional indirect effect via SDSb). It appears plausible that the interventional indirect effect via functional

impairment at baseline has a certain proportion of the total causal effect since patients with cognitive symptoms will also

be more functionally impaired at the same time point. It appears from the analysis that if the cognitive symptoms are

relieved and the functioning improved at the same time point, then the patient functioning is more likely to improve at a

later time.

6. Discussion

The motivation for this manuscript was to develop a definition so that the overall effect is equal to the total causal effect

while at the same time avoiding the additional mediated dependence term. Our proposed definition has been worked

through theoretically, and it has been applied on simulated data and real-world data on patients with MDD with the

purpose to facilitate a better understanding of the role of cognition in reaching better functionality for the patients. We
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have compared our definition to an already existing one with different simulation studies. We concluded that the simulation

studies have revealed that our definition is better at obtaining the true effects of interest and the overall effect is equal to

the total causal effect. Our proposed approach also encompasses models that have interactions between the different

measurements. This is in contrast to the definition by VanderWeele and Vansteelandt [12], which shows weakness in the

simulation studies for estimating the true effects. Their definition was not capable of including the interactions in the

models between the different measurements that caused the overall effect not to be equal to the total causal effect.

Finally, the definition was applied to the observational cohort study PERFORM with patients having depression. The

results from the analysis of the PERFORM study were in line with the expectations from a clinical perspective since the

analysis indicates that patients with cognitive symptoms at baseline have worse functioning compared to patients with no

or with minimal cognitive symptoms. A limitation for our definition is that we need the measurements to be ordered in a

sequence. The causal ordering between the two time points in the PERFORM study is introduced by time itself. However,

the causal ordering of the three measurements within the same time point is a limitation since all three measurements are

measured at the same time point and the order is based on clinical insight. The interpretation of the results hinges on these

assumptions. The assumptions are a limitation since we cannot verify them from the data. We have used the PERFORM

study in this manuscript as an example and we have only used fully observed vectors from the data, therefore further

research could focus on extending our definition to include vectors that are not fully observed.
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Sequential mediation analysis with multiple mediators for data with missing ob-

servations

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat

ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget,

consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant

morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras

viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu

tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci

eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit

amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non

justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed

accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et

nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis

natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt

urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tris-

tique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus

adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae,

placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec,

suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed

lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec

et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.

Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean
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placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit

purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor

vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo

velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque,

augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Mae-

cenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu

lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui,

et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue.

Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc.

Nam feugiat lacus vel est. Curabitur consectetuer.
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Sequential mediation analysis with multiple
mediators for data with missing observations

Thomas Maltesenab*

Causal mediation in both observational studies and interventional studies may be complicated by missing

observations. Mediation analysis for multiple mediators with a mediator-outcome relationship will violate the

cross-world assumption. This means that the identification of the natural direct effect and the natural indirect

effect is not possible. I propose an augmented inverse probability weighted (AIPW) estimator to estimate both the

interventional direct effect and the interventional indirect effects for multiple mediators with a continuous outcome,

including partially observed vectors in the estimation. The estimator is robust regarding misspecification of the

parametric model for the monotone missingness in the data, under the assumption that the missing observations

are missing at random (MAR). The estimator is used on the observational study Prospective Epidemiological

Research on Functioning Outcomes Related to Major depressive disorder (PERFORM), which is a longitudinal

study with time-dependent confounding and missing observations. The causal paths between the exposure and

the outcome contain multiple mediators and the causal paths also contain a mediator-outcome relationship. My

estimator utilizes data better and it reduces bias when data contains missing observations compared to an estimator

using only complete cases. Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: causal inference, sequential mediation, multiple mediators, doubly robust estimator, monotone

missingness, mediation with monotone missingness

1. Introduction

Causal mediation in longitudinal studies may be complicated by missing observations. The study Prospective

Epidemiological Research on Functioning Outcomes Related to Major depressive disorder (PERFORM) (NCT01427439)

is a good example as the study is longitudinal with a need to adjust for time-dependent confounding and a rich opportunity

to study mediation. Missing observations across variables and drop-outs lead to a substantial reduction in observations

when statistical analysis are based on complete cases. This may result in biased estimates. The study was conducted to

better understand the course of a depressive episode and its impact on patient functioning over two years in outpatients

with major depressive disorder (MDD). The treatment of cognitive symptoms may hold the key to achieving functional

recovery in MDD [1]. See Hammer-Helmich et al. [2] for further information about the PERFORM study.

The natural direct and indirect effects [3, 4] are attractive to estimate since the sum of the effects is equal to the total

causal effect. However, the natural direct and indirect effects are not possible to identify if there exists a mediator-outcome

relationship [5]. Identification of the interventional direct and indirect effects avoids the cross-world assumption [6]. The

interventional direct and indirect effects have the advantage of being meaningful even though the exposure variable is

not manipulable [7, 8]. Vansteelandt and Daniel [8] have proposed a definition of causal estimands for the interventional

direct effect and the interventional indirect effects for multiple mediators. The overall effect of the definition is equal to the

total causal effect by introducing an additional mediated dependence term. The definition does not require the mediators

to be ordered. VanderWeele and Vansteelandt [9] have a definition for sequential mediation, however the definition has

issues by including models with interactions between the measurements. It may cause the overall effect not to be equal
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to the total causal effect (Maltesen et al. [10]). Maltesen et al. [10] introduced a definition of sequential mediation for

the interventional direct effect and the interventional indirect effects for multiple mediators. This definition avoids the

additional mediated dependence term and the overall effect is equal to the total causal effect. This definition does however

require the mediators to be ordered. The three definitions apply only to fully observed vectors. Li and Zhou [11] consider

mediation analysis for data containing missing observations with one mediator and with the outcome possibly being

missing. However, the PERFORM study has multiple mediators on the paths between the exposure and the outcome and

the outcome variable is not the only variable missing. The effect of cognitive symptoms is also transmitted via a mediator-

outcome relationship and violates the cross-world assumption. Maltesen et al. [12] consider an estimator to obtain the

causal effect in longitudinal studies with time-dependent confounding while data contains missing observations. However,

the estimator will not provide us with the direct effect if the causal path between the exposure and the outcome contains

mediators.

The PERFORM study is the motivation to develop an estimator for sequential mediation when data contains missing

observations since the before mentioned methods cannot be used in this analysis of the PERFORM study. The causal paths

between the exposure and the outcome contain two mediators resulting in one direct causal path and three indirect causal

paths. The estimation using the g-formula results only in the causal effect. The main interest is the direct effect of cognitive

symptoms on functional impairment at a later time. However, the three indirect causal paths are also of interest because

it may happen that the causal effect is almost zero. The indirect effects will provide us with the information if some

of the effects cancel each other out. The manuscript is organized as follows: Section 2 revisits the causal estimands for

multiple mediators from Maltesen et al. [10]. Section 3 considers data containing missing observations [13] and establishes

an estimator for multiple mediators for data containing missing observations. Section 4 considers the PERFORM study.

Section 5 considers a simulation study based on the PERFORM study. Section 6 finalizes with a discussion of the findings.

2. The estimator for the mediated effects

Suppose that our data comprises of n independent and identically distributed realizations of random variables Z1, . . . , Zn

where Zi denotes the i-th vector (the i index is suppressed to simplify the notation) [13]. I assume two mediators on the

causal paths between the exposure and the outcome for simplicity. Let C denote some baseline measurements not affected

by the exposure. Let A denote the binary exposure and let Y denote the outcome, which assumes to be continuous. Let M1

and M2 denote the two mediators. The mediator M2 may be affected by the mediator M1 but not the other way around.

Let M2 denote the vector (M1,M2) and let M
a

2
= (Ma

1
,Ma

2
). Let Y a and M

a

2
be the values that Y and M2 would be if

the exposure A is set to a respectively. Let Y am2 be the value that Y would be if the exposure A is set to a and the vector

of the two mediators M2 is set to m2. Let Z be defined by the ordered sequence (C,A,M1,M2, Y ). Let V0 denote the

set (C,A) and let V1 denote the set (C,A,M1). Let V2 denote the set (C,A,M1,M2). The outcome Y may be causally

influenced by the whole history of (C,A,M1,M2). Maltesen et al. [10] define the causal estimand for the interventional

direct effect with two mediators to be given by

∫

{

E(Y am1m2 | c)− E(Y a∗m1m2 | c)
}

fMa∗

2
|Ma∗

1
,C(m2 | m1, c)fMa∗

1
|C(m1 | c)fC(c)d(m2, c).

The causal estimand for the interventional indirect effect via M1 is given by

∫

E(Y am1m2 | c)fMa∗

2
|Ma∗

1
,C(m2 | m1, c)

{

fMa

1
|C(m1 | c)− fMa∗

1
|C(m1 | c)

}

fC(c)d(m2, c)

and the causal estimand for the interventional indirect effect via M2 is given by

∫

E(Y am1m2 | c)
{

fMa

2
|Ma

1
,C(m2 | m1, c)− fMa∗

2
|Ma∗

1
,C(m2 | m1, c)

}

fMa

1
|C(m1 | c)fC(c)d(m2, c).

The assumptions needed to identify the three causal estimands above (for two mediators) are given by:

(i) Y am2 ⊥⊥ A | C = c ∀(a,m2, c) ∈ A,M2, C,

(ii) Y am2 ⊥⊥ (M1,M2) | A = a, C = c ∀(a,m2, c) ∈ A,M2, C and

(iii) (Ma
2
,Ma

1
) ⊥⊥ A | C = c ∀(a, c) ∈ A,C.

It is possible to rewrite the interventional direct effect to be given by Γ(a, a∗, a∗)− Γ(a∗, a∗, a∗) where Γ is given by

Γ(j, k, l) =

∫

E(Y jm1m2 | c)fMk

2
|Mk

1
,C(m2 | m1, c)fM l

1
|C(m1 | c)fC(c)d(m2, c) (1)
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for different j, k, l ∈ {a, a∗}. The two causal estimands for the interventional indirect effects via M1 and M2 can be written

in a similar way. The interventional indirect effect via M1 is given by Γ(a, a∗, a)− Γ(a, a∗, a∗) and the interventional

indirect effect via M2 is given by Γ(a, a, a)− Γ(a, a∗, a). The causal estimand Γ(j, k, l) (1) is identified by the statistical

estimand given by

∫
E(Y | M2 = m2, A = j, C = c)fM2|M1,A,C(m2 | m1, k, c)fM1|A,C(m1 | l, c)fC(c)d(M2, C)

and the statistical estimand is identified by the estimator given by

Γ̂(j, k, l) =
1

n

n∑

i=1

µj,k,l{V0,i, γ̂} (2)

with the models mj{v2, ξ} = E(Y | M2 = m2,M1 = m1, A = j, C = c), µj,k{v1,γ} = E(mj{V2, ξ} | M1 = m1, A =
k, C = c) and µj,k,l{v0,γ} = E(µj,k{V1,γ} | A = l, C = c). I will refer to the mj{v2, ξ}-model, the µj,k{v1,γ}-model

and the µj,k,l{v0,γ}-model as the µj,k,l-models. The µj,k,l-models have hats to indicate predicted values from the specified

models that have been used for the estimation and the predicted values are plugged into the estimator. The estimator is

unbiased if the µj,k,l-models are correctly specified with respect to the data. The estimator (2) is obtained by solving the

estimating equation 0 =
∑n

i=1
Uj,k,l(Zi) with

Uj,k,l(Zi) = µj,k,l{V0,i,γ0
} −

∫
E(Y jm1m2 | c)fMk

2
|Mk

1
,C(m2 | m1, c)fM l

1
|C(m1 | c)fC(c)d(m2, c). (3)

The estimator for the interventional direct effect (dir) is given by d̂ir := Γ̂(a, a∗, a∗)− Γ̂(a∗, a∗, a∗) using the estimator

(2). The estimator for the interventional indirect effect via M1 (indirM1
) is given by îndirM1

:= Γ̂(a, a∗, a)− Γ̂(a, a∗, a∗)

using the estimator (2) and the estimator for the interventional indirect effect via M2 (indirM2
) is given by îndirM2

:=
Γ̂(a, a, a)− Γ̂(a, a∗, a) using the estimator (2).

3. Vectors with missing observations in the data

Let C be a random variable that takes positive integers or infinity C ∈ {1, . . . , c} ∪ {∞}. Let {GCi
(Zi), Ci} denote the i-th

vector in the observed data. If C is equal to 1 then it corresponds to only observe C in Z (G1(Z) = (C)). If C is equal

to 2 then C and A are the only two observed variables in Z (G2(Z) = (C,A)). If C is equal to c (= 4) then it is only

the outcome that is missing from Z. If C is equal to infinity then the vector is complete (G∞(Z) = (Z)). This pattern

of missing observations is called monotone missingness. Complete cases (CC) are a subset of vectors containing only

G∞(Z) [12]. Note the distinction between the two letters c and c to avoid any confusion. I assume the probability for

observing a complete vector is strictly greater than zero (P (C = ∞ | Z) > 0). Let ̟{∞, Z,ψ
0
} denote the probability for

observing a complete vector with the vector of true parameter values ψ
0

[13]. Let

λr{Gr(Z),ψ} = P (C = r | C ≥ r, Z)

denote the probability of stopping the observing of additional observations given r observed. I assume that λr{Gr(Z),ψ}
is given by

λr{Gr(Z),ψ} =
exp (ψI,r +Gr(Z)ψr)

1 + exp (ψI,r +Gr(Z)ψr)
, (4)

where the column vector ψr has the same dimension as the row vector Gr(Z). Let ψ denote the vector (ψI,r,ψ
′
r) where

the coefficient ψI,r denotes the intercept [12, 13]. I assume that the missingness in the data are coarsened at random (CAR)

which means that the coarsening probabilities only depend on the data as a function of the observed data. The coarsening

probabilities are given by

̟{r,Gr(Z),ψ} = λr{Gr(Z),ψ}Kr−1{Gr−1(Z),ψ}

where Tsiatis [13] defines

Kr{Gr(Z),ψ} =

r∏

j=1

(1− λj{Gj(Z),ψ}).

I refer to the λr{Gr(Z),ψ}-models as the λ-models and Kc{Gc(Z),ψ} is equal to the probability ̟{∞, Z,ψ}. See

Tsiatis [13] for further information about the CAR assumption and monotone missingness.
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Tsiatis [13] shows that the adaptive doubly robust estimator is obtained by solving the estimating equation given by

0 =

n∑

i=1

(
I(Ci = ∞)Uj,k,l(Zi)

̟{∞, Zi, ψ̂}
+

c∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Zi), ψ̂}
E
(
Uj,k,l(Z) | Gr(Zi), ζ̂

))

with the probabilities for monotone missingness under the CAR assumption. The conditional expectation of Uj,k,l(Z) (3)

is given by

E (Uj,k,l(Z) | Gr(Z)) = E (µj,k,l{V0,γ0
} | Gr(Z), ζ

0
)− Γ(j, k, l).

The vector ζ
0

indicates the true model with the vector of true parameter values. I need to model the conditional expectation

for every set of Gr(Z) for r = 1, . . . , c. It is exemplified in Section 4. The estimator Γ̂(j, k, l) for Γ(j, k, l) is given by

Γ̂(j, k, l) =
1

n

n∑

i=1

[
I(Ci = ∞)µj,k,l{V0, γ̂}

̟{∞, Zi, ψ̂}

+

c∑

r=1

I(Ci = r)− λr{Gr(Zi), ψ̂}I(Ci ≥ r)

Kr{Gr(Z), ψ̂}
E
(
µj,k,l{V0,γ} | Gr(Zi), ζ̂

)] (5)

for data with monotone missingness following the CAR assumption. Now, assume that the µj,k,l-models are correctly

specified. The estimator (5) is unbiased if the models of the conditional expectations E(µj,k,l{V0,γ0
} | Gr(Z), ζ̂)

are correctly specified with respect to the distribution of Z and the λ-models relating to the missingness mechanism

may be misspecified. The estimator (5) is also unbiased if the λ-models relating to the missingness mechanism are

correctly specified and the models for the conditional expectations E(µj,k,l{V0,γ0
} | Gr(Z), ζ̂) may be misspecified

with respect to the distribution of Z. I denote the estimator (5) by the name Doubly Robust estimator for Monotone

missingness for Sequential Mediation (DRMSM). All the hats in the estimator (5) indicate predicted values that are

plugged into the estimator. All the conditional expectations are evaluated and afterwards used to predict values with

respect to the set Gr(Z). We must recall that the probabilities regarding the models for the missingness are given by

Kr{Gr(Z), ψ̂} =
∏r

j=1
(1− λj{Gj(Z), ψ̂}) and ̟{∞, Z, ψ̂} = Kc{Gc(Z), ψ̂}. The estimates ψ̂ are obtained using

maximum likelihood estimation according to the specific model for λr{Gr(Z),ψ}. The interventional direct effect is

estimated by d̂ir := Γ̂(a, a∗, a∗)− Γ̂(a∗, a∗, a∗) using the estimator (5). The interventional indirect effect via M1 is

estimated by îndirM1
:= Γ̂(a, a∗, a)− Γ̂(a, a∗, a∗) using the estimator (5) and the interventional indirect effect via M2

is estimated by îndirM2
:= Γ̂(a, a, a)− Γ̂(a, a∗, a) using the estimator (5).

4. Analysing the PERFORM study

4.1. Study design and variables

The DRMSM estimator for mediation analysis is applied on the PERFORM study. Patients’ functional impairment were

measured by the Sheehan Disability Scale (SDS) consisting of 3 items with a global score ranging from 0 to 30. A score at

0 corresponds to being unimpaired and 30 corresponds to being impaired. The Scale describes the patients’ work/school,

social life/leisure activities and family life/home duties. Cognitive symptoms were measured by the Perceived Deficit

Questionnaire (PDQ-5) consisting of 5 items with a global score ranging from 0 to 20 focusing on memory, concentration

and executive function (the ’-5’ in the name PDQ-5 is suppressed to simplify the notation). The PDQ scale is dichotomized

meaning that PDQ is 0 if the original global score of PDQ is less than or equal to 5 and 1 otherwise. If PDQ is equal to

0 then it corresponds to having no or minimal cognitive symptoms and 1 corresponds to having cognitive symptoms. The

depression severity was measured by the Patient Health Questionnaire (PHQ-9) consisting of 9 items with a global score

ranging from 0 to 27. The greater the score on the scale the more severe the depression (the ’-9’ in the name PHQ-9 is

suppressed to simplify the notation). The sample size of the data is 1090. All three scales were measured over two years

repeatedly. I assume that depression severity affects both cognitive symptoms and functional impairment and that cognitive

symptoms affect functional impairment. I assume that the present measurements affect all the future measurements at the

next time point. I also assume that the present measurements do not affect the past measurements. The process is indicated

by a directed acyclic graph in Maltesen et al. [12]. Let SDSt denote SDS at time t ∈ {b, 2, 6, 12, 18, 24}. Let PDQt

denote PDQ at time t ∈ {b, 2, 6, 12, 18, 24}. Let PHQt denote PHQ at time t ∈ {b, 2, 6, 12, 18, 24}. Let Wt denote the

vector Wt = (PHQt, PDQt, SDSt) for t ∈ {b, 2, 6, 12, 18, 24}. Let pt denote the prior time point before t, let t denote

the present time point and let st denote the subsequent time point after t in the subscript of PHQ, PDQ and SDS. See
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Maltesen et al. [12] for further information. I assume that Wpt ⊥⊥ Wst | Wt and the sequential conditional exchangeability

for t ∈ {b, 2, 6, 12, 18} is given by

SDS
(pdqt,pdqst)
st ⊥⊥ PDQt | PHQt, SDSpt, PDQpt, PHQpt

and

SDS
(pdqt,pdqst)
st ⊥⊥ PDQst | PHQst, SDSt, PDQt, PHQt.

Let Zb,i = (Wb,i,W2,i) and let Z18,i = (W12,i,W18,i,W24,i) for i = 1, . . . , 1090. Maltesen et al. [12] define the set

(PHQpt, PDQpt, SDSpt, PHQt) to be the confounder Lt at time t ∈ {b, 18} and the set (SDSt, PHQst) to be the

confounder Lst at time st. We must recall that the set (PHQpt, PDQpt, SDSpt, ) is empty for t = b. Let PDQt denote

the exposure, cognitive symptoms at time t ∈ {b, 2, 18, 24}. The set Vt is given by the confounder and the exposure at time

t, Vt = (Lt, PDQt) and the set Vst is defined by the confounders and the exposures up to time st, Vst = (Lst, PDQst)
where Lst = (Lt, Lst) and PDQst = (PDQt, PDQst).

4.2. Statistical methods

The marginal structural model (MSM) is given by

E
(

SDS
(pdqt,pdqst)
st

)

= βI,t + β1,tpdqt + β2,tpdqst + β3,tpdqtpdqst

with the vector βt = (βI,t, β1,t, β2,t, β3,t) for t ∈ {b, 18}. Let β0,t denote the true vector of causal parameter values.

Maltesen et al. [12] define the U(Zt,i)-function to be given by U(Zt,i) = µt1{Vt,γt1
} − E(SDS

(pdqt,pdqst)
st ) for the

analysis with respect to either Zb,i or Z18,i for i = 1, . . . , nt and t ∈ {b, 18}. See the estimator (10) below. Maltesen

et al. [12] define the m{vst, ξt}-model to be given by

m{Vst, ξt} =E(SDSst | PDQst, PHQst, SDSt, PDQt, PHQt)

=ξI,t + ξ1,tPHQt + ξ2,tPDQt + ξ3,tSDSt + ξ4,tPHQst + ξ5,tPDQst + ξ6,tPDQtPHQt+

ξ7,tPDQstPHQt + ξ8,tPDQtPHQst + ξ9,tPDQstPHQst + ξ10,tPDQtPDQst

(6)

and define the two µ-models to be given by

µt2{Vt,γt2
} =E(m{Vst, ξt} | SDSt, PDQt, PHQt)

=γI,t2 + γ1,t2PHQt + γ2,t2PDQt + γ3,t2SDSt

(7)

and
µt1{Vt,γt1

} =E(µt2(Vt,γt2
) | PDQt, PHQt, SDSpt, PDQpt, PHQpt)

=γI,t1 + γ1,t1PHQpt + γ2,t1PDQpt + γ3,t1SDSpt + γ4,t1PHQt + γ5,t1PDQt

(8)

since the confounder Lst consists of two measurements. All the observed patients having depression severity at baseline

(PHQb) are used for the analysis with t = b and all the observed patients having depression severity at month 12
(PHQ12) are used for the analysis with t = 18. For example, if the missingness of the patient follows a nonmonotone

pattern (see Tsiatis [13] for further information about nonmonotone pattern) then the missingness is forced to follow a

monotone pattern. Maltesen et al. [12] define all the λ-models to include only the main effects without any interactions or

quadratic terms. The hazard function λr(Gr(Zb)) needs to be modelled five times for r = 1, . . . , 5 and the hazard function

λr(Gr(Z18)) needs to be modelled eight times for r = 1, . . . , 8. The probability λ4(G4(Zb)) is set to 0 and all the vectors of

G4(Zb) are removed from the data because there are too few patients for the estimation. The two probabilities λ4(G4(Z18))
and λ7(G7(Z18)) are also set to 0 and all the vectors of G4(Z18) and G7(Z18) are removed from the data because there are

too few patients for the estimation. See Maltesen et al. [12] for further information about how the pattern of missingness

is forced to be monotone and the number of patients with the different vectors of {GC(Zb), C} or {GC(Z18), C} in the

observed data. Let nb denote the sample size for t = b and that nb is equal to 929. Let n18 denote the sample size for

t = 18 and that n18 is equal to 696.

Let M2,t = (SDSt, PHQst) denote the two mediators for t ∈ {b, 18}. Let pdqt be equal to 1 and let pdq∗t be

equal to 0 for obtaining the interventional direct and indirect effects of PDQt on SDSst. Let pdqst be equal

to 0 and let pdq∗st also be equal to 0 for obtaining the interventional direct and indirect effects of PDQt on

SDSst. Let mj{vst, ξt} = E(SDSst | PDQst = pdqst, PHQst = phqst, SDSt = sdst, PDQt = j, PHQt = phqt) be

defined by the m{vst, ξt}-model at (6). Let µj,kt2
{vt,γt2

} = E(mj{Vst, ξt} | SDSt = sdst, PDQt = k, PHQt = phqt)
be defined by the model at (7) and let µj,k,lt1

{vt,γt1
} = E(µj,kt2

{Vt,γt2
} | PDQt = l, PHQt = phqt, SDSpt =
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sdspt, PDQpt = pdqpt, PHQpt = phqpt) be defined by the model at (8). The estimator for analysing the data of the

PERFORM study is given by

Γ̂(j, k, l) =
1

nt

nt∑

i=1

[
I(Ci = ∞)µj,k,lt1

{Vt, γ̂t1
}

̟{∞, Zt,i, ψ̂}

+

c∑

r=1

I(Ci = r)− λr{Gr(Zt,i, ψ̂)}I(Ci ≥ r)

Kr{Gr(Zt,i), ψ̂}
E
(
µj,k,lt1

{Vt,γt1
} | Gr(Zt,i), ζ̂t

)] (9)

and it is used to obtain the interventional direct effect of PDQt on SDSst for t ∈ {b, 18} with the estimator d̂irt :=
Γ̂(pdqt, pdq

∗

t , pdq
∗

t )− Γ̂(pdq∗t , pdq
∗

t , pdq
∗

t ). The interventional indirect effect of PDQt on SDSst via SDSt for t ∈ {b, 18}

is obtained with the estimator îndirSDSt
:= Γ̂(pdqt, pdq

∗

t , pdqt)− Γ̂(pdqt, pdq
∗

t , pdq
∗

t ) and the interventional indirect

effect of PDQt on SDSst via PHQst for t ∈ {b, 18} is obtained with the estimator îndirPHQst
:= Γ̂(pdqt, pdqt, pdqt)−

Γ̂(pdqt, pdq
∗

t , pdqt). The c is either 5 or 8 depending on the value of t ∈ {b, 18}. The conditional expectations at (9) are

modelled and afterwards used to predict values according to the different sets of Gr(Zt,i) for r = 1, . . . , c and i = 1, . . . , nt

for t ∈ {b, 18}. The conditional expectations E(µj,k,lb1
{Vb,γb1

} | Gr(Zb), ζ̂b) for t = b are modelled according to

{
E(µj,k,lb1

{Vb,γb1
} | Gr(Zb), ζ̂b) for r = 1

µj,k,lb1
{Vb,γb1

} for r ∈ {2, 3, 4, 5}

and the conditional expectation E(µj,k,lb1
{Vb,γb1

} | G1(Zb), ζ̂b) is only modelled with the main effect without any

quadratic terms. The model is afterwards used to predict values. The conditional expectations E(µj,k,l181
{V18,γ181

} |

Gr(Z18), ζ̂18
) for t = 18 are modelled according to

{
E(µj,k,l181

{V18,γ181
} | Gr(Z18), ζ̂18

) for r ∈ {1, 2, 3, 4}

µj,k,l181
{V18,γ181

} for r ∈ {5, 6, 7, 8}

and the conditional expectations E(µj,k,l181
{V18,γ181

} | Gr(Z18), ζ̂18
) for r ∈ {1, 2, 3, 4} are only modelled with the

main effects without any interactions or quadratic terms. All the models are afterwards used to predict values. The

DRMSM estimator is compared to the estimator for the simpler sequential mediation formula using complete cases.

The estimator for the simpler sequential mediation formula for the interventional direct effect with two mediators is given

by

d̂irt :=
1

ñt

ñt∑

i=1

(
µpdqt,pdq

∗

t
,pdq∗

t
{Vt,i, γ̂} − µpdq∗

t
,pdq∗

t
,pdq∗

t
{Vt,i, γ̂}

)

and the two estimators for the simpler sequential mediation formula for the interventional indirect effects via SDSt and

PHQst are given by

îndirSDSt
:=

1

ñt

ñt∑

i=1

(
µpdqt,pdq

∗

t
,pdqt{Vt,i, γ̂} − µpdqt,pdq

∗

t
,pdq∗

t
{Vt,i, γ̂}

)

and

îndirPHQst
:=

1

ñt

ñt∑

i=1

(
µpdqt,pdqt,pdqt{Vt,i, γ̂} − µpdqt,pdq

∗

t
,pdqt{Vt,i, γ̂}

)

respectively. Let mj{vst, ξt} = E(SDSst | PDQst = pdqst, PHQst = phqst, SDSt = sdst, PDQt = j, PHQt = phqt)
be defined by the m{vst, ξt}-model at (6). Let µj,kt2

{vt,γt2
} = E(mj{Vst, ξt} | SDSt = sdst, PDQt = k, PHQt =

phqt) be defined by the model at (7) and let µj,k,lt1
{vt,γt1

} = E(µj,kt2
{Vt,γt2

} | PDQt = l, PHQt = phqt, SDSpt =
sdspt, PDQpt = pdqpt, PHQpt = phqpt) be defined by the model at (8). The number ñt denotes the number of complete

cases. The number of complete cases for t = b is equal to (ñb =)341 and the number of complete cases for t = 18 is equal

to (ñ18 =)215. The confidence intervals for both estimators are obtained using 1000 bootstraps.
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4.2.1. Causal effect Maltesen et al. [12] show that the doubly robust DRMGf estimator (Doubly Robust estimator for

Monotone missingness for the G-formula) of the g-formula for analysing the PERFORM study with missing observations

is given by

Ê
(

SDS
(pdqt,pdqst)
st

)

=
1

nt

nt
∑

i=1

[

I(Ci = ∞)µt1{Vt,i, γ̂}

̟{∞, Zt,i, ψ̂}

+

c
∑

r=1

I(Ci = r)− λr{Gr(Zt,i, ψ̂}I(Ci ≥ r)

Kr{Gr(Zt,i), ψ̂}
E
(

µt1{Vt,γ} | Gr(Zt,i), ζ̂t

)

] (10)

when c equal to 5 for t = b and c equal to 8 for t = 18. It is also shown that both the estimator (10) and the estimator for

the simpler g-formula below are asymptotically normally distributed in the situation when T is equal to 1 but this can also

be shown for a larger T . The estimator uses the three models defined at (6), (7) and (8). The conditional expectations at

(10) have to be modelled and afterwards used to predict values according to the different sets of Gr(Zt,i) for r = 1, . . . , c
and i = 1, . . . , nt for t ∈ {b, 18}. The DRMGf estimator is compared to the estimator for the simper g-formula and it is

given by

Ê
(

SDS
(pdqt,pdqst)
st

)

=
1

ñt

ñt
∑

i=1

µt1{Vt,i, γ̂t1
}

with the three models given at (6), (7) and (8). These three models are used for the estimation and the prediction. The

number ñt denotes the number of complete cases (ñb = 341 and ñ18 = 215). The confidence intervals for both estimators

are obtained using 1000 bootstraps.

4.3. Results

The results of the causal effects are presented first followed by the results of the mediated effects. Table 1 shows

the estimates of the causal effects βt = (βI,t, β1,t, β2,t, β3,t) for t ∈ {b, 18} and Table 2 shows the estimates of the

interventional direct effect and the interventional indirect effects with the two mediators. The coefficient βI,t corresponds

to the expected score of functional impairment for patients having no or minimal cognitive symptoms at both visits for

t ∈ {b, 18}. The coefficient β1,t corresponds to the causal effect of cognitive symptoms on functional impairment at a

later time for time t ∈ {b, 18}. The coefficient β2,t corresponds to the causal effect of cognitive symptoms on functional

impairment at the same time. The coefficient β3,t corresponds to the causal effect of the interaction between the two

cognitive symptoms at the two time points for t ∈ {b, 18}. The estimated effect of β1,t for t ∈ {b, 18} is the main interest

because the causal paths between PDQt and SDSst for t ∈ {b, 18} are the only causal paths containing mediators. The

two mediators are SDSt and PHQst. Both Tables show the results for the early (t=b) and the later (t=18) time points with

the standard errors and the confidence intervals.

G-formula DRMGf

Analysis Effect SE 95%-CI Effect SE 95%-CI

Zb

βI,b 9.588 1.243 (7.152 ; 12.025) 9.880 1.233 (7.463 ; 12.297)

β1,b 4.165 2.021 (0.204 ; 8.126) 3.791 1.892 (0.083 ; 7.500)

β2,b 3.566 2.026 (-0.404 ; 7.536) 3.611 2.076 (-0.458 ; 7.679)

β3,b -1.848 2.613 (-6.969 ; 3.272) -1.805 2.539 (-6.781 ; 3.171)

Z18

βI,18 8.238 1.225 (5.837 ; 10.638) 9.031 1.290 ( 6.504 ; 11.559)

β1,18 0.198 1.537 (-2.815 ; 3.212) 0.427 1.603 (-2.714 ; 3.568)

β2,18 -0.322 1.422 (-3.108 ; 2.465) -0.413 1.595 (-3.540 ; 2.714)

β3,18 2.986 1.490 (0.066 ; 5.906) 3.024 1.502 (0.080 ; 5.969)

Table 1. The G-formula column shows the estimates obtained using the estimator for the simpler g-formula and the

DRMGf column shows the estimates obtained using the DRMGf estimator. The Analysis column shows the analysis of

the data with respect to either Zb or Z18. The Effect column shows the estimated effects. The SE column shows the

standard errors for the estimates. The standard error is obtained using 1000 bootstraps. The 95%-CI column shows the

confidence intervals for the estimates.

Both estimators provide almost the same estimates for the early and the later time points. The two estimators suggest that

patients with cognitive symptoms at both visits have worse functioning than patients with no or with minimal cognitive

symptoms at both visits. Maltesen et al. [12] have shown that the estimator for the simpler g-formula and the DRMGf

Statist. Med. 0000, 00 1–10 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 7
Prepared using simauth.cls



Statistics
in Medicine T. Maltesen

estimator will provide similar results. It is most likely caused by the included covariates that are poor at predicting drop-out

that generate the pattern of monotone missingness in the data.

Seq. mediation formula DRMSM

Analysis Interventional Effect SE 95%-CI Effect SE 95%-CI

Zb

dirb 1.385 1.711 (-1.968 ; 4.739) 1.392 1.762 (-2.062 ; 4.846)

indirSDSb
2.490 0.705 (1.109 ; 3.870) 2.461 0.610 (1.266 ; 3.657)

indirPHQ2
0.290 0.870 (-1.416 ; 1.995) -0.062 0.777 (-1.584 ; 1.461)

The overall effect 4.165 2.021 (0.204 ; 8.126) 3.791 1.892 (0.083 ; 7.500)

Z18

dir18 -1.741 1.180 (-4.054 ; 0.573) -1.771 1.309 (-4.338 ; 0.795)

indirSDS18
0.318 0.370 (-0.408 ; 1.043) 0.680 0.404 (-0.112 ; 1.472)

indirPHQ24
1.621 0.942 (-0.224 ; 3.467) 1.518 0.897 (-0.240 ; 3.277)

The overall effect 0.198 1.537 (-2.815 ; 3.212) 0.427 1.603 (-2.714 ; 3.568)

Table 2. The Seq. mediation formula column shows the estimates obtained using the estimator for the simpler sequential

mediation formula and the DRMSM column shows the estimates obtained using the DRMSM estimator. The dirt row is

the direct effect for t ∈ {b, 18}. The indirSDSt
row is the indirect effect via SDSt for t ∈ {b, 18}. The indirPHQst

row is

the indirect effect via PHQst for t ∈ {b, 18}. The Interventional column shows the direct effect, indirect effects and the

overall effect. See Table 1 for the description of the Analysis, Effect, SE and 95%-CI columns.

The results from the mediation analysis do not show a large difference between the two estimators. This is not surprising

that the two estimators provide almost similar results since it is most likely caused by the included covariates that are

poor at predicting drop-out. Despite the similar results with the two estimators, the results from the mediation analysis

are slightly more surprising than the results from the estimation of the causal effects in Table 1. The results show a

small difference between the two estimators in estimating the interventional indirect effects. The difference between the

estimator for the simpler sequential mediation formula and the DRMSM estimator is more pronounced compared to the

difference between the estimator for the simpler g-formula and the DRMGf estimator.

The negative sign of the coefficient of the direct effect appears counter-intuitive. It indicates that patients with cognitive

symptoms are more likely to directly improve their functional impairment at a later time compared to patients with no

or with minimal cognitive symptoms. I would have expected the opposite. However, the negative sign of the analysis

with t = 18 may be caused by many patients after 18 months who are doing well. The room for improvement among

the patients is smaller, and we then see the effect that patients with cognitive symptoms are more likely to improve their

functioning compared to patients with no or with minimal cognitive symptoms since the scales have a lower finite limit.

I know from the simulation study in Maltesen et al. [12] that stronger predictors for the missing mechanism will create

a larger difference between the two estimators. A simulation study will also be conducted here for further exploration of

handling missing data due to drop-out and the interpretation of the data. This is explored in the simulation study in the

next Section.

5. Simulation study

The purpose of the simulation study is to investigate the DRMSM estimator with similar data as the PERFORM study

but the probabilities of the missingness mechanism will be more extreme compared to the missingness mechanism in the

PERFORM study. The simulation study is the same one used in Maltesen et al. [12]. It is based on the first two vectors of

the PERFORM study (Wb,W2). The sample size of the data is 1000 and the data are replicated 5000 times. See Maltesen

et al. [12] for further information about the simulation study. Table 3 shows the results of the estimation with respect to the

estimator for the simpler sequential mediation formula and the DRMSM estimator. The models in Section 4.2 for t = b

are used for the estimation of the interventional direct and indirect effects of the simulated data. The simulation study is

evaluated by the mean of the 5000 estimates of η = (dirb, indirSDSb
, indirPHQ2

, Overall), the empirical standard error

(SE) of the 5000 estimates of η, the absolute value of bias (the difference between the empirical mean and the true value),

the ratio between the absolute value of bias and SE scaled 100 times and the mean squared error (MSE) [12].

Table 3 shows the expected discrepancy between the estimator for the simpler sequential mediation formula and my

DRMSM estimator. It is clear that my DRMSM estimator protects against biased estimates compared to the estimator for

the simpler sequential mediation formula. The estimator for the simpler sequential mediation formula shows weakness

in estimating the mediated effects. My DRMSM estimator should be used for estimating the mediated effects when data

contains missing observations that follow a monotone pattern. The price for using my estimator may result in larger
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Estimator Interventional True Mean SE Bias Bias
SE

100 MSE

Seq. mediation formula

dirb 1.402 1.076 1.386 0.326 23.521 2.029

indirSDSb
2.473 2.391 0.655 0.083 12.642 0.436

indirPHQ2
-0.107 -0.201 0.740 0.094 12.652 0.557

Overall 3.769 3.266 1.622 0.503 30.977 2.885

DRMSM

dirb 1.402 1.436 1.991 0.034 1.695 3.999

indirSDSb
2.473 2.478 0.497 0.004 0.862 0.251

indirPHQ2
-0.107 -0.116 0.683 0.009 1.315 0.476

Overall 3.769 3.798 2.096 0.029 1.386 4.422

Table 3. Let η denote the vector (dirb, indirSDSb
, indirPHQ2

, Overall). The Seq. mediation formula row shows the

estimates obtained using the estimator for the simpler sequential mediation formula. The DRMSM row shows the estimates

obtained using the DRMSM estimator. The Interventional column shows the direct effect (dirb), the indirect effects

(indirSDSb
and indirPHQ2

) and the overall effect (Overall). The True column shows the true effects. The Mean column

is the mean of the 5000 estimates of η. The SE column is the standard error of the 5000 estimates of η. The Bias column

shows the absolute value of the difference between the empirical mean and the true value. The Bias
SE

100 column is the ratio

between the absolute value of bias and the standard error scaled 100 times. The MSE column is the mean square error

obtained by Bias2 + SE2.

standard errors in order to obtain unbiased estimates. The interpretation of Table 3 is that the missing observations in the

data need to be addressed in mediation analysis otherwise mistakes may happen.

6. Discussion

This manuscript was motivated by the PERFORM study to develop a doubly robust estimator (DRMSM) for estimating

the mediated effects of the exposure on the outcome while data contains missing observations that follow a monotone

pattern. The proposed estimator was applied to the PERFORM study with patients suffering depression. My DRMSM

estimator was compared to the estimator for the simpler sequential mediation formula, which did not take the missing

data into account. The similarities in the estimates in the example are most likely caused by the included covariates

that are poor at predicting drop-out. Thereby, the robustness of my DRMSM estimator was not shown in the results

of the PERFORM study. However, the simulation study revealed that if the included covariates are strong at predicting

drop-out, then the estimator for the simpler sequential mediation formula is biased, while my DRMSM estimator is not.

My DRMSM estimator shares the same advantages, disadvantages and limitations as the DRMGf estimator. This means

that my DRMSM estimator utilizes data better than an estimator using only complete cases. The missing at random

assumption needs to be addressed, but an analysis only with complete cases relies on the assumption that the missingness

is missing completely at random. This is less plausible than missing at random. The assumption regarding monotone

missingness also needs to be addressed because the assumption does not allow data to have intermittent missing values.

The assumption regarding an ordered sequence of variables is sometimes a natural assumption. The causal ordering of

variables in the PERFORM study is only partially clear, as the causal ordering of the variables between the different time

points is introduced by time itself. However, the assumption of the order between the three different domains within the

same time point is not clear because the three domains were measured at the same time points at six occasions over two

years. The assumption of the causal ordering between the three different domains within the same time points had to be

made based on clinical insight such as a change in depression severity causing a change in cognitive performance, which in

turn causes a change in functioning. The interpretation of the results hinges on these assumptions and yet the assumptions

cannot be verified in the data [12]. Further research could be to extend the DRMSM estimator to also include vectors in

the data that follow a nonmonotone pattern.
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