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Summary

The aim of this thesis is to contribute to the advancement of statistically rigorous methods
that enable the utilization of data-adaptive estimators based on continuous-time observa-
tions that may be right-censored. Right-censoring often occurs when subjects are observed
over a period of time, which is a typical situation in biostatistics. Conventional statistical
methods for handling this type of data are based on (semi-)parametric models or simple
non-parametric models. Importantly, for these approaches to provide valid statistical infer-
ence, the models have to be pre-speci�ed. An appealing alternative is to use data-adaptive
methods like machine learning, which provide more �exible models and tools for adapting
the models to the observed data. For instance, cross-validation or super learning uses the
observed data to select a model from a collection of candidate models.

The challenge with machine learning-based estimation strategies is to conduct valid statis-
tical inference. Targeted learning addresses this challenge using semi-parametric e�ciency
theory. Although extensively studied for causal inference, the adaptation of targeted learning
to right-censored problems in continuous-time data is less mature.

The thesis is comprised of a synopsis with eight chapters and three manuscripts. The
synopsis gives an introduction to the central theoretical concepts that underpin the topics
covered by the manuscripts. We �rst give an overview of the steps or `road map' of targeted
learning and introduce some concepts from semi-parametric e�ciency theory. We then
discuss identi�ability conditions for right-censored data. We also provide some background
on super learning and the highly-adaptive lasso, which are two data-adaptive estimation
techniques commonly used in targeted learning.

The three manuscripts extend the framework and tools of targeted learning to settings with
right-censored data in three di�erent directions. The �rst manuscript applies the general
framework of targeted learning to the illness-death model. We construct a class of estimators
of the state occupation probabilities that can leverage data-adaptive estimators of the state
transitions in the model. The second manuscript discusses the challenges facing the statisti-
cian who wants to construct a super learner from right-censored data. In this manuscript we
also propose a new super learner and compare it to existing methods. The third manuscript
formally extends the highly-adaptive lasso to settings that include conditional density and
hazard function estimation.
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Resumé

Målet med denne afhandling er at bidrage til udviklingen af valide statistiske metoder,
der muliggør anvendelsen af data-adaptive estimatorer baseret på højrecensureret data ob-
serveret i kontinuert tid. Højrecensurering er et normalt fænomen, når data observeres over
tid, hvilket typisk er situationen i biostatistik. Konventionelle statistiske metoder designet
til denne type data bygger på (semi-)parametriske modeller eller simple ikke-parametriske
modeller. For at opnå valid statistisk inferens, er det nødvendigt at disse modeller pre-
speci�ceres. Et attraktivt alternativ er at anvende data-adaptive metoder som machine
learning, der giver mere �eksible modeller og værktøjer til at tilpasse modellerne til det
observerede data. For eksempel bruger krydsvalidering eller super learning det observerede
data til at vælge en model fra en samling af kandidatmodeller.

Udfordringen ved machine learning-baserede estimeringsstrategier er at opnå valid statis-
tisk inferens. Targeted learning håndterer denne udfordring ved hjælp af semi-parametrisk
e�ciensteori. Disse metoder er omfattende studeret for problemer i kausal inferens, men er
mindre udviklede for højrecensureringsproblemer i kontinuert tid.

Afhandlingen består af en oversigt med otte kapitler og tre manuskripter. Oversigten giver
en introduktion til de centrale teoretiske koncepter, der ligger til grund for de emner,
manuskripterne omhandler. Vi giver først et overblik over trinene i targeted learning og
introducerer nogle begreber fra semi-parametrisk e�ciensteori. Derefter drøfter vi identi-
�kationsbetingelser for højrecensureret data. Vi giver også en baggrund for manuskripterne,
der omhandler super learning og the highly-adaptive lasso, som er to data-adaptive estimer-
ingsteknikker, der ofte anvendes i targeted learning.

De tre manuskripter udvider metoder fra targeted learning til situationer med højrecen-
sureret data i tre forskellige retninger. Det første manuskript anvender den generelle tar-
geted learning-metodik på illness-death-modellen. Vi konstruerer en klasse af estimatorer
for tilstandssandsynlighederne, der tillader brugen af data-adaptive metoder til at estimere
overgangssandsynlighederne i modellen. Det andet manuskript drøfter de udfordringer, som
statistikeren står over for, når han eller hun ønsker at konstruere en super learner baseret
på højrecensureret data. I dette manuskript foreslår vi også en ny super learner og sam-
menligner den med eksisterende metoder. Det tredje manuskript udvider formelt the highly-
adaptive lasso til situationer, der inkluderer betinget tætheds- og hazardfunktionsestimering.
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Chapter 1

Objectives and overview

The overall objective of the thesis presented here is the development of statistically sound
methods that allow us to use data-adaptive estimators when the available data are observed
in continuous time and subject to right-censoring.

Many examples in biostatistics concern data recorded on subjects over time. Right-censoring
means that information about a subject is available only up to some (random) time point,
and is typically ubiquitous for time-dynamic data due to dropout or end of the study period.
Under suitable assumptions, it is possible to infer the underlying dynamics of the population
of interest, even though we only have access to a `corrupted' sample, where some subjects are
right-censored. To identify features of the uncensored population of interest we need to model
the dynamics of the system and the censoring mechanism. Traditional statistical approaches
use either (semi-)parametric models or non-parametric models where some components of
the available data are ignored. An attractive alternative is to use �exible, data-adaptive
methods such as machine learning. A challenge with this approach is that `naive' plug-
in estimates obtained using machine learning typically do not come with valid con�dence
intervals.

The development of targeted learning within the last decade or two has demonstrated how
we can use semi-parametric e�ciency theory to obtain valid statistical inference for estima-
tors that use machine learning. Targeted learning is also referred to as `debiased machine
learning' but we use the term `targeted learning' in this synopsis. While targeted learning
has been studied and developed extensively for causal inference problems, the theory is less
developed for right-censored problems when data are observed in continuous time.

The thesis consists of three manuscripts and a synopsis. The synopsis is organized as follows.
In Chapter 2 we give an overview of the components of targeted learning. Chapter 3 provides
a brief introduction to some of the central theoretical concepts underlying targeted learning.
These concepts are central for Manuscript I. Chapter 4 discusses coarsened data in general
and right-censored survival data in particular. Right-censoring plays a role in all three
manuscripts. In Chapter 5 we discuss super learning based on right-censored data, which
is the topic of Manuscript II. Chapter 6 introduces the highly-adaptive lasso, which is the
object of study in Manuscript III. Chapter 7 provides summaries of the three manuscripts,
and Chapter 8 discusses limitations and topics for future research. Appendix A contains
some technical results.

Throughout this synopsis, we give a high-level introduction without paying too much at-
tention to technicalities. We refer to Bickel et al. [1993], van der Vaart [2000], and van der
Vaart and Wellner [1996] for precise de�nitions and details.

9





Chapter 2

The modules of targeted learning

Targeted learning can be decomposed into di�erent steps. A visual summary is given in
Figure 2.1, and in this section we give a high-level description of each step.

Parameter of interest The philosophy of targeted learning is that a statistical analysis
should start with the de�nition of a scienti�cally meaningful parameter of interest [van der
Laan and Rose, 2011, Petersen and van der Laan, 2014]. Mathematically, this means that
we should �nd a map θ : Q → Θ de�ned on a collection of probability measures Q. Each
element Q ∈ Q denotes a distribution of some population of interest. The map θ is called
the target parameter. We illustrate the general idea with an example.

Example 2.1 (Illness-death model)
The PROVA trial investigated the e�ect of propanolol and sclerotherapy on variceal bleed-
ing and death among cirrhotic patients [PROVA Study Group, 1991]. A set of baseline
variables was measured once at randomization. A relevant question could be the follow-
ing. Among patients treated with sclerotherapy, what is the average risk of being alive
and having experienced variceal bleeding a year after receiving treatment? We can model
this as an illness-death model without recovery [Fix and Neyman, 1951, Sverdrup, 1965,
Andersen et al., 2012]. Let W ∈ Rd be a vector of baseline variables and X(t) ∈ {0, 1, 2}
a non-decreasing stochastic process for t ∈ [0, 1] with X(0) = 0. The states X can occupy
is interpreted as `healthy', `ill', and `dead', respectively. In our example, `ill' means that a
patient has experienced variceal bleeding. Let Q denote a collection of probability measures
where each element Q ∈ Q determines a distribution for (W, {X(t) : t ∈ [0, 1]}). Our target
parameter is the map θ : Q → [0, 1] de�ned as θ(Q) = Q(X(1) = 1). •

The choice of Q should ideally re�ect the assumptions we are willing to make about the
population of interest. For instance, if the hazard of death in Example 2.1 depends on
whether or not a patient has experienced bleeding but not on the time at which bleeding
occurred, the population can be modeled with a (semi-)Markov model [Andersen et al., 2012].
A common approach is to impose parametric assumptions such that Q can be indexed by
a Euclidean parameter set. Our main focus is on the non-parametric case where essentially
no assumptions are imposed on Q; we discuss the precise de�nition of a `non-parametric
model' in Section 3.3.

Identi�ability In many biostatistical examples, observations from the population of in-
terest are not available. For instance, in the PROVA trial (Example 2.1), not all patients
were observed for a whole year. Some dropped out of the study, and some were included

11
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Parameter of interest

Identi�ability

Canonical gradient

Targeted estimator

. . .η̂1 η̂L

Nuisance parameter

estimation

Super learner

Figure 2.1: The modules and dependencies of targeted learning. We discuss identi�ability
in Chapter 4, the canonical gradient in Chapter 3, an example of a nuisance parameter
estimator in Chapter 6, and super learning in Chapter 5.

later than a year before the study ended. These patients are right-censored, because we only
see what happens up to some time point but not what happens after that. Similarly, if we
want to identify a causal e�ect from observational data, the population of interest is a ran-
domized group of patients that we do not have data from [van der Laan and Robins, 2003,
Hernán and Robins, 2020]. In Chapter 4 we discuss how a distribution Q of interest can be
identi�ed from the observed data distribution P . When the distribution Q can be identi�ed
from P we can write Q(P ), and the target parameter θ : Q → Θ can then be identi�ed as
Ψ(P ) = θ(Q(P )) for some map Ψ: P → R, where P is a collection of probability measures
for the population we observe.

Canonical gradient The parameter Ψ: P → Θ can be estimated using an observed data
set {Oi}ni=1 of i.i.d. observations Oi ∼ P for some P ∈ P. When the parameter Ψ is smooth
enough it admits a (canonical) gradient ϕP ∈ L2

P at P ∈ P; the de�nitions of a `gradient'
and `smooth enough' are given in Section 3.1. Let P̂n be an estimator of P and de�ne the
one-step estimator [Pfanzagl and Wefelmeyer, 1982, Bickel et al., 1993, Kennedy, 2022]

Ψ̂∗n = Ψ(P̂n) + Pn[ϕP̂n ]. (2.1)

In Section 3.2 we provide some intuition for why the one-step estimator is a good idea.
The main attraction is that for many examples it holds that if P̂n = P + oP (n−1/4)† then√
n(Ψ̂∗n −Ψ(P )) N (0, P [ϕ2

P ]).

†As we have not de�ned a norm on the space that contains P and P̂n, the oP notation is used informally
here and in the remainder of the chapter. The intended meaning is that P is estimated by P̂n with an
estimation error that decreases with n at a rate faster than n−1/4.
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Nuisance parameter estimation To construct the one-step estimator we need an es-
timator of P . We can often characterize P by a vector of nuisance parameters which we
know how to estimate [van der Laan and Rose, 2011, Chernozhukov et al., 2018a]. For
instance, a one-step estimator of the average treatment e�ect [Hernán and Robins, 2020]
can be constructed using any estimator of a regression function [e.g., Kennedy, 2016], and
in Manuscript I we show that a one-step estimator for the state occupation probability con-
sidered in Example 2.1 can be constructed using estimators of the hazard functions for all
possible state transitions. We can then ensure that P̂n = P +oP (n−1/4) by using estimators
of each nuisance parameter that are consistent at rate n−1/4. The n−1/4-rate of convergence
is signi�cantly weaker than the parametric n−1/2-rate of convergence and allows nuisance
parameters to be estimated with data-adaptive methods. In addition, the high-level conver-
gence rate condition gives �exibility in the choice of estimator.

One possible choice of estimator for a nuisance parameter is the highly-adaptive lasso (HAL)
estimator which we describe in Chapter 6. Under the assumption that the nuisance param-
eter belongs to the space of multivariate càdlàg functions with uniformly bounded sectional
variation norm, the HAL estimator of the nuisance parameter will ful�ll the needed conver-
gence rate condition for any dimension of the covariate space. This observation was used
by van der Laan [2017b] to construct a general targeted estimator that is valid in a broad
range of settings.

Super learner While nuisance parameters can be estimated at rate n−1/4 without im-
posing parametric assumptions, the minimax framework teaches us that some assumptions
are generally needed to achieve this rate of convergence [Ibragimov and Has'Minskii, 1981,
Wainwright, 2019]. As stated above, the assumption of a bounded sectional variation norm
is one possibility, but smoothness, sparsity, or monotonicity assumptions could also be im-
posed. It is di�cult to know in advance which (if any) of these assumptions are true about
the unknown data-generating distribution. In addition, data-adaptive estimators typically
rely on one or more hyperparameters that are di�cult to pre-specify.

The super learner is one possible strategy for addressing this challenge. The super learner
is a meta-algorithm that combines a collection of candidate estimators into a new estimator
with performance guaranteed to be almost as good as the best performing estimator [van der
Laan and Dudoit, 2003, van der Vaart et al., 2006, van der Laan et al., 2007]. The super
learner �ts nicely into the targeted learning framework, as it provides a �exible and general
method for constructing estimators of nuisance parameters that converge at a su�ciently
fast rate. To see this, imagine that we have a collection of candidate estimators {η̂l}Ll=1 for
estimating the nuisance parameter η. For each l = 1, . . . , L, let Cl be a statement such that
if Cl is true then ηl = η + oP (n−1/4). For instance, if η̂1 is the HAL estimator, Cl is the
statement that η is a càdlàg function with sectional variation norm bounded by some �xed
constant. Letting η̂sl denote the super learner, it holds that η̂sl = η + oP (n−1/4) if just one
of Cl, l = 1, . . . , L is true. A simple example is when {η̂l}Ll=1 is a collection of parametric
models. In this case, η̂sl = η + oP (n−1/4) if just one of the models is correctly speci�ed.

Targeted estimator The one-step estimator de�ned in equation (2.1) is one example of
a targeted estimator. There are other ways of constructing a targeted estimator based on
the canonical gradient and estimators of relevant nuisance parameters. Targeted minimum-
loss estimation (TMLE) [van der Laan and Rubin, 2006, van der Laan and Rose, 2011]
uses a plug-in estimator Ψ(P̂ ∗n) where P̂ ∗n is constructed such that Pn[ϕP̂∗n

] = oP (n−1/2).
Debiased machine learning (DML) [Chernozhukov et al., 2018a] uses a Neyman-orthogonal
score function ψ(·; θ, η) indexed by a nuisance parameter η, such that the target parameter



14 2 Modules

solves P [ψ(·; θ, η(P ))] = 0 in θ. When the score function is linear in θ, the one-step estimator
is a DML estimator.‡

We emphasize the modularity of the targeted learning approach. Each gray box in Figure 2.1
is a separate module that can be analyzed independently of the other modules. For instance,
the formula for the asymptotic variance of a targeted estimator is the same for any choice of
estimators of the nuisance parameters, as long as they converge fast enough. Similarly, the
theoretical properties of the super learner holds for any collection of learners. In this way,
targeted learning is notably di�erent from `traditional' statistical approaches that rely on
the delta method and asymptotic linearity of P̂n to establish asymptotic linearity of Ψ(P̂n).
When we rely on the delta method, the choice of estimator for the nuisance parameter
determines the asymptotic distribution of Ψ(P̂n). As P̂n is typically not asymptotically
linear when P̂n is estimated using data-adaptive methods, it is di�cult to obtain valid
statistical inference using traditional methods.

We illustrate the importance of employing a targeting step when data-adaptive estimators
are used in Figure 2.2. The �gure is constructed from simulated data generated as described
in Appendix E of Manuscript I. To estimate the target parameter introduced in Example 2.1
we use a �exible penalized Poisson regression to estimate all transition hazard functions in
the illness-death model and cross-validation to select the penalty parameter. This gives an
estimator P̂n of P . From Figure 2.2 we see that the targeted estimator Ψ̂∗n has a lower bias
than the `naive' plug-in estimator Ψ(P̂n).

n = 500 n = 1000

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

0

50

100

Estimate

C
ou

nt

Method Naive plug−in estimator Targeted estimator

Figure 2.2: Results of 1000 simulations of a naive plug-in estimator and a targeted estimator
of the state occupation probability in an illness-death model strati�ed on number of samples
(n). The naive plug-in estimator refers to the estimator Ψ(P̂n), and the targeted estimator
refers to the one-step estimator Ψ̂∗n, see equation (2.1). The dashed vertical line is the state
occupation probability according to the data-generating distribution.

‡Technically, a DML estimator uses cross-�tting, which is not used in our de�nition of the one-step
estimator. Cross-�tting involves �tting some nuisance parameter estimators in separate parts of the data,
while the one-step, as de�ned in equation (2.1), relies on an additional Donsker class regularity condition.



Chapter 3

E�ciency and targeting

In this chapter, let Ψ: P → R be a real-valued target parameter. When we estimate the
unknown distribution P ∈ P from data, we expect to get closer to P as the sample size
increases. We might therefore hope to understand the asymptotic behavior of estimators
of Ψ by studying the local behavior of Ψ around P ∈ P � at least if Ψ is smooth enough.
The formal development of this idea has a long history [e.g., Stein, 1956, Koshevnik and
Levit, 1977, Beran, 1977, Levit, 1978, Begun et al., 1983, Pfanzagl and Wefelmeyer, 1982,
Newey, 1990, van der Vaart, 1991, Robins and Rotnitzky, 1992, Lu and Tsiatis, 2008] and led
to the development of a general theory of semi-parametric e�ciency, which is described in
several monographs [Bickel et al., 1993, van der Vaart, 2000, van der Laan and Robins, 2003,
Tsiatis, 2007, Kosorok, 2008]. We discuss some of the central concepts in Section 3.1. Several
authors have used tools from semi-parametric e�ciency theory to construct estimators of
low-dimensional target parameters when an in�nite-dimensional nuisance parameter has to
be estimated [e.g., Bickel and Ritov, 1988, Andrews, 1994, Newey, 1994, Birgé and Massart,
1995, Laurent et al., 1996, Newey et al., 1998]. More recently, focus has been on how semi-
parametric e�ciency theory allows the use of data-adaptive estimation methods [e.g., van der
Laan and Rubin, 2006, van der Laan and Rose, 2011, Kandasamy et al., 2014, van der Laan
and Rose, 2018, Chernozhukov et al., 2018a, Kennedy, 2022]. We provide some intuition for
this in Section 3.2. Section 3.3 brie�y discusses the meaning of `non-parametric models'.

3.1 Pathwise di�erentiability

We assume for simplicity that P � µ for some σ-�nite measure µ, and for P ∈ P we write
p = dP/ dµ. To study the local behavior of Ψ around P , we study how Ψ(Pt) behaves along
paths t 7→ Pt ∈ P, where t ∈ (−ε, ε) for some ε > 0 and P0 = P . We use the notation {Pt}
for any such path. Note that the path {Pt} is a one-dimensional parametric submodel of P
with parameter space t ∈ (−ε, ε). Thus we can de�ne the score function for {Pt} at P in
the usual manner as the derivative of log pt(o) at t = 0, for all o ∈ O.† The tangent space
for P at P is the closure in L2

P of the linear span of the collection of all score functions. A
useful result is that the tangent space can always be represented as a subspace of

HP = {f ∈ L2
P : P [f ] = 0}. (3.1)

We use ṖP ⊂ HP to denote (this representation of) the tangent space. We say that Ψ: P →
R is pathwise di�erentiable at P if there exists an element gP ∈ L2

P such that for all paths

†We here restrict attention to submodels for which a score function exists. Technically, a score function
is de�ned as a limit in L2P [van der Vaart, 2000, chapter 25.3].
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{Pt},
∂

∂t

∣∣∣
t=0

Ψ(Pt) = 〈gP , ˙̀〉P , where ˙̀ is the score function for {Pt} at P. (3.2)

Any element gP ∈ L2
P ful�lling equation (3.2) is called a gradient. There exists a unique

gradient ϕP such that ϕP ∈ ṖP , which can be found as the projection of any gradient onto
ṖP . We refer to ϕP as the canonical gradient.

An equivalent de�nition of pathwise di�erentiability is that Ψ is Hadamard (or compactly)
di�erentiable at P tangentially to ṖP when P is equipped with the Hellinger metric [Bickel
et al., 1993, Remark 2 in Appendix 5]. In general, there are more than one interesting ways
to de�ne di�erentiability of a map Ψ de�ned on an in�nite-dimensional space. That a map
is di�erentiable essentially means that it can be approximated locally by a linear map. As
described by Reeds [1976], di�erent concepts of di�erentiability varies in their requirements
to the validity of the linear approximation. For instance, Fréchet di�erentiability requires the
linear approximation to be valid uniformly, while Gâteaux di�erentiability only requires the
approximation to be valid along straight lines [Reeds, 1976, Ser�ing, 1980, Shapiro, 1990].
Hadamard di�erentiability is somewhere in between as it requires the linear approximation
to be valid along any path {Pt}. In addition to the various types of di�erentiability, an
in�nite-dimensional space admits several non-equivalent norms. Picking the right norm and
the right concept of di�erentiability is important for establishing a useful theory [Reeds,
1976, Gill et al., 1989]. Equipping P with the Hellinger metric is useful because the tangent
space inherits a Hilbert space structure. This allows us to use geometric arguments from
general Hilbert space theory.

The canonical gradient can be used to derive facts about estimation of Ψ under the model
P. One example is that the information bound for estimation of Ψ under P can be read o�
from the canonical gradient. For the �nite-dimensional model {Pt}, the information bound
for estimation of Ψ under {Pt} is de�ned as

IP (Ψ; {Pt}) =
P [ ˙̀2]

(
∂
∂t

∣∣
t=0

Ψ(Pt)
)2 , with ˙̀ the score function for {Pt} at P.

The information bound is motivated by the Cramér-Rao bound, which tells us that any
asymptotically unbiased estimator of Ψ under {Pt} will have asymptotic variance bounded
below by the inverse of IP (Ψ; {Pt}). As estimation of Ψ under the submodel {Pt} should be
easier than estimation of Ψ under the whole model P, the information bound for Ψ under
P is de�ned as

IP (Ψ;P) := inf
{Pt}
IP (Ψ; {Pt}).

By using the de�nition of the canonical gradient and the Cauchy-Schwarz inequality one can
show that IP (Ψ;P) = (P [ϕ2

P ])−1.

A related result is the following. An estimator Ψ̂n is asymptotically linear for Ψ under P
when Ψ̂n − Ψ(P ) = Pn[IP ] + oP (n−1/2), for some function IP ∈ L2

P with P [IP ] = 0 for all
P ∈ P. The function IP is called the estimators in�uence function. The estimator is called
regular at P if the weak limit of

√
n(Ψ̂n −Ψ(P )) is stable under small perturbations to the

data-generating distribution; see, e.g., [van der Vaart, 1991] for a precise de�nition. A regular
asymptotically linear estimator is called a RAL estimator. By Proposition 3.3.1 in [Bickel
et al., 1993], an asymptotically linear estimator is regular if and only if its in�uence function
is a gradient. As ϕP is the projection of any gradient onto ṖP , it immediately follows that if
IP is the in�uence function for a RAL estimator of Ψ under P, then P [I2

P ] ≥ P [ϕ2
P ]. Hence, if

a RAL estimator has ϕP as its in�uence function, it has lowest possible asymptotic variance
among all RAL estimators. Such an estimator is called asymptotically e�cient. For this
reason, the canonical gradient is also referred to as the e�cient in�uence function. Pathwise
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di�erentiability is necessary for a parameter to be estimable by a RAL estimator [van der
Vaart, 1991]. In particular, if Ψ can be estimated by a RAL estimator, IP (Ψ;P) is �nite.
The reverse statement does not hold, see for instance [Ritov and Bickel, 1990].

Bickel et al. [1993], Gerds [2002], Ichimura and Newey [2022], and Kennedy [2022] discuss a
practically useful way of �nding a candidate for the canonical gradient. The idea is to �nd
the Gâteaux derivative of Ψ at P in the direction of the Dirac measure δO with point-mass at
O ∈ O. The Gâteaux derivative is the ordinary derivative of the map t 7→ Ψ(P + t(δO−P ))
at t = 0. Note that this derivative can be calculated using basic mathematical tools, unlike
solving equation (3.2) which is an integral equation. To see why this works, let Kh be a
distribution indexed by h > 0 such that Kh � µ and Kh  δO for h → 0. Let kh be the
µ-density of Kh and note that the score function of the model {P + t(Kh − P )} at P is
(kh − p)/p. Hence, by de�nition of the canonical gradient ϕP ,

∂

∂t
Ψ(P + t(Kh − P )) = 〈ϕP , (kh − p)/p〉P = Kh[ϕP ]− P [ϕP ] = Kh[ϕP ].

Letting h ↓ 0 and assuming we can exchange limits, we obtain

∂

∂t
Ψ(P + t(δO − P )) = ϕP (O).

For this approach to be formally valid, the steps above would have to be established rigor-
ously. In addition, if the model P is restricted, we need to construct the paths such that
{P + t(Kh−P )} ⊂ P which is not automatically guaranteed. In any case, the approach out-
lined above can be used heuristically to motivate an estimators, which can then be analyzed
formally. We use this strategy in Manuscript I.

3.2 A targeted estimator

A `naive' plug-in estimator of a low-dimensional target parameter based on data-adaptive
estimators of nuisance parameters can perform poorly. This was illustrated in Figure 2.2 in
Chapter 2. The poor performance is due to a bias term that the plug-in estimator inherits
from the nuisance parameter estimation. The one-step estimator de�ned in equation (2.1)
uses the canonical gradient to remove the �rst order asymptotic bias of the plug-in estimator.
To see how this works, consider the expansion,

Ψ̂∗n −Ψ(P ) = Ψ(P̂n) + Pn[ϕP̂n ]−Ψ(P )

= Ψ(P̂n) + Pn[ϕP̂n ]−Ψ(P )± n−1/2Gn[ϕP̂n − ϕP ]

= Pn[ϕP ] + Ψ(P̂n) + P [ϕP̂n ]−Ψ(P )
︸ ︷︷ ︸

(∗)

+n−1/2Gn[ϕP̂n − ϕP ],
(3.3)

where we use P [ϕP ] = 0 for the last equality. For a �xed function f ∈ L2
P , Gn[f ]  

N (0, P [f2]), and so we might hope that if ‖fn‖P P−−→ 0 then Gn[fn]
P−−→ 0. This is not true

in general, but if the sequence of random functions belongs to a Donsker class, it is [van der
Vaart, 2000, Lemma 19.24]. The Donsker class assumption can be relaxed by using sample
splitting, but we do not discuss sample splitting in this synopsis. Letting fn = ϕP̂n − ϕP
it follows from equation (3.3) that if ϕP̂n − ϕP belongs to a Donsker class and converges to

zero in probability, then Ψ̂∗n −ΨP = Pn[ϕP ] + (∗) + oP (n−1/2). Hence if we can argue that
(∗) = oP (n−1/2), it follows that the one-step estimator is an e�cient RAL estimator.

We now claim that the condition (∗) = oP (n−1/2) is something we can in general expect
when ‖P −Pn‖ = oP (n−1/4), for some suitable norm ‖·‖. To see this, de�ne the path {P̂n,t}
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as P̂n,t = P̂n + t(P − P̂n) and consider the function t 7→ Ψ(P̂n,t). Assuming this function is
suitably smooth we can do a Taylor expansion at t = 0 to obtain

Ψ(P̂n,1) = Ψ(P̂n,0) +
∂

∂t

∣∣∣
t=0

Ψ(P̂n,t) + Rem(P̂n,1, P̂n,0), (3.4)

where Rem(P̂n,1, P̂n,0) is some lower order remainder term. Note that the score function
of {P̂n,t} at P̂n is (p − p̂n)p̂−1

n , so by the de�nition of the canonical gradient and the path
{P̂n,t}, equation (3.4) is equivalent to

Ψ(P ) = Ψ(P̂n) +

〈
ϕP̂n ,

p− p̂n
p̂n

〉

P̂n

+ Rem(P, P̂n)

= Ψ(P̂n) + 〈ϕP̂n , p− p̂n〉µ + Rem(P, P̂n)

= Ψ(P̂n) + P [ϕP̂n ]− P̂n[ϕP̂n ] + Rem(P, P̂n)

= Ψ(P̂n) + P [ϕP̂n ] + Rem(P, P̂n),

(3.5)

where we use that ϕP̂n is a zero-mean function under P̂n for the last equality. Rearranging
equation (3.5) we see that

(∗) = −Rem(P, P̂n), (3.6)

where (∗) was de�ned in equation (3.3). Thus P [ϕP̂n ] can be interpreted as a �rst order

approximation of Ψ(P ) − Ψ(P̂n), and (∗) as a second order error term when Ψ is suitably
smooth [Robins et al., 2008, 2009, Fisher and Kennedy, 2021, Kennedy, 2022]. More formally,
it can in many cases be established that

Rem(P, P̂n) =
∑

j,l

OP (‖νj − ν̂j,n‖P ‖νl − ν̂l,n‖P ), (3.7)

where {νl : l = 1, . . . , L} is a set of nuisance parameters taking values in L2
P [e.g., van der

Laan and Robins, 2003, Bang and Robins, 2005, Chernozhukov et al., 2018b, Rytgaard et al.,
2021, Rotnitzky et al., 2021, Kennedy, 2022]. For the illness-death model introduced in Ex-
ample 2.1 we show in Manuscript I that equation (3.7) holds (Proposition 1 in Appendix C).
Importantly, equation (3.7) implies that if ‖νl − ν̂l,n‖P = oP (n−1/4) for all l = 1, . . . , L,
then Rem(P, P̂n) = oP (n−1/2). By equations (3.3) and (3.6), this in turn implies that the
one-step estimator Ψ̂∗n is asymptotically linear when ϕP̂n belongs to a Donsker class. That
ϕP can be interpreted as a derivative of the map Ψ at P justi�es the Taylor expansion in
equation (3.5), which is the key to understand why the one-step estimator allows the use of
data-adaptive estimation of nuisance parameters.

While equation (3.5) provides a general heuristic argument for why Rem(P, P̂n) = oP (n−1/2)
when ‖νl − ν̂l,n‖P = oP (n−1/4) for all l = 1, . . . , L, the term needs to be analyzed for each
parameter Ψ to formally establish equation (3.7). Some general results for the form of the
remainder term exist [Robins et al., 2008, Chernozhukov et al., 2018b, Rotnitzky et al.,
2021]. In Section 4.3 we argue that formally bounding the remainder term posses some
additional challenges for right-censored survival data observed in continuous time.

3.3 Non-parametric models

It is common to consider estimation under a so-called `non-parametric model' [e.g., Kennedy,
2016, Benkeser et al., 2017, Carone et al., 2018, Colangelo and Lee, 2020, Rotnitzky et al.,
2021, Fisher and Kennedy, 2021]. In Manuscript I we use the term `fully non-parametric
model'. This term is not particularly precise because a model can be `not parametric' in
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many ways. What we in fact mean by `fully non-parametric' is that the tangent space is
saturated, which means that ṖP = HP for all P ∈ P, where HP is the space of all zero-mean
functions under P , as de�ned in equation (3.1). Data-adaptive methods are typically used
because we are not willing to make (strict) assumptions about the model P. Models with
a saturated tangent space are an important special case. For instance, when the tangent
space is saturated we see immediately from the de�nition of a gradient in equation (3.2) that
there can exist only one gradient which will automatically be the canonical gradient. Thus,
when P has a saturated tangent space all RAL estimators are asymptotically equivalent and
e�cient.

Many standard regularity assumptions lead to models with a saturated tangent space, as
formally shown in Proposition 3.1. A proof is given in Appendix A.1.

Proposition 3.1. Let O = [0, 1]d and P be the collection of all probability measures P on
O such that P = p · λ for some density p where λ is Lebesgue measure. De�ne the following
submodels of P,

− Pε = {P ∈ P : ε < ‖p‖∞ < 1/ε} for some ε ∈ (0, 1);

− Sk = {P ∈ Pε : p ∈ Ck}, where Ck denotes the space of k times continuously
di�erentiable functions;

− VM = {P ∈ Pε : p is càdlàg and ‖p‖v < M}, where ‖·‖v is the sectional variation
norm [van der Laan, 2017b, Manuscript III];

− M = {P ∈ Pε : p is non-decreasing}.

The models Pε, Sk, VM , andM all have saturated tangent spaces.

Proposition 3.1 demonstrates that boundedness constraints, smoothness constraints, and
even some shape constraints do not change the tangent space. This implies that the infor-
mation bounds for estimation of a target parameter Ψ under any of the models de�ned in
Proposition 3.1 are the same. It can also happen that the information bound is the same for
P ′ ⊂ P and P, even though Ṗ ′P is a proper subset of ṖP . This is the case for models based
on coarsened data [e.g., van der Vaart, 2000, Chapter 25.5.3]. The examples in this section
serve to emphasize the asymptotic nature of the e�ciency theory outlined in Section 3.1, as
also discussed by Robins and Ritov [1997]. We return to this point in Section 8.





Chapter 4

Censored data

When data are censored it means that some information is missing. Heitjan and Rubin
[1991] de�ned a general framework for missing and incomplete data using the concept of
`coarsened data'. To ensure that the distribution of the original data of interest can be
identi�ed from the distribution of the coarsened version of the data, we have to impose
assumptions on the how the data were coarsened. The right assumption is that data should
be coarsened at random (CAR). The original formulation of CAR given by Heitjan and
Rubin [1991] was made for discrete sample spaces, and was generalized by Jacobsen and
Keiding [1995] and Gill et al. [1997]. We discuss the general framework of coarsened data
and CAR in Section 4.1. Identi�ability conditions for right-censored data are well-studied
[e.g., Lagakos and Williams, 1978, Kalb�eisch and MacKay, 1979, Heitjan, 1993, Kalb�eisch
and Prentice, 2011, Andersen et al., 2012, Overgaard and Hansen, 2021, Røysland et al.,
2022], and in Section 4.2 we brie�y discuss right-censoring as a special case of coarsening. In
Section 4.3 we consider targeted learning under CAR with a focus on right-censored survival
data.

4.1 Coarsening at random

Let Z ∈ Z be a random variable of interest which is only partly observed. Heitjan and Rubin
[1991] formalize `partly observed' by saying that the data we observe no longer takes values in
the sample space Z but instead in the power set of the sample space. The observed variable
is a coarsened version of the original variable Z of interest, because the observed subset
includes Z, but potentially also many other points. In this way, only partial information
about Z is conserved.

Example 4.1 (Illness-death model)
Consider the illness-death model introduced in Example 2.1 but assume for simplicity that
no baseline variables are measured. De�ne T0 as the time at which a patient leaves state
0, and T as the time at which a patient enters state 2. If a patient drops out of the
study at a random time point, we only have partial information about T0 and T . Each
observation corresponds to knowing that (T0, T ) belongs to a subset of R2. We illustrate
this in Figure 4.1. Here Z = (T0, T ) is the full data while the gray subsets represent possible
coarsened observations of Z. •

A coarsened data model can be speci�ed by a model Q for the full data, together with a
model G for the conditional coarsening mechanism [Gill et al., 1997]. We follow Nielsen
[2000] and van der Laan and Robins [2003] and explicitly de�ne a coarsening variable C.

21
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(a)

T0

T

(b)

T0

T

(c)

T0

T

Figure 4.1: Visualization of coarsened data for the illness-death model. The cross represents
the full data Z = (T0, T ) and the gray areas the coarsened data determined by when a
patient leaves the study. Note that the dashed line corresponds to observations where a
patient dies without falling sick. In panel (a) the patient leaves the study before leaving the
healthy state. In panel (b) the patient is observed to fall sick but leaves the study before
dying. In panel (c) we observe the full data as the singleton {Z}.

What we observe is

X = Φ(Z,C) such that almost surely Z ∈ X , (4.1)

for some known function Φ, with Z ∼ Q for some Q ∈ Q and C | Z = z ∼ G(· | z) for some
G ∈ G. Given Φ, the observed data are completely determined by Q and G, and so we can
de�ne the observed data distribution as P = {PQ,G : Q ∈ Q, G ∈ G}, where PQ,G denotes
the distribution of the random variable X de�ned in equation (4.1).

If we assume nothing about the coarsening mechanism we cannot expect to identify Q
from an observed data distribution P . First of all, we need to assume that the conditional
probability of observing fully informative, uncoarsened data is positive � this is referred to as
positivity. When working with coarsened data, however, positivity is not enough. To ensure
identi�ability, we can make the additional assumption of CAR. Roughly speaking, CAR
states that for any A ⊂ Z and z ∈ A, knowing that Z = z provides no more information
about X than knowing that Z ∈ A. Intuitively, this means that the conditional censoring
mechanism is only a function of the observed data. Under CAR we can thus learn the
censoring mechanism from the data we get to observe � additional information about the
full data is unnecessary.

When CAR holds, the likelihood for the observed data factorizes into components indexed
by Q ∈ Q and G ∈ G, and when positivity holds, Q is identi�able from the observed
data distribution P [Robins and Rotnitzky, 1992, van de Laan, 1995, Gill et al., 1997].
Importantly, CAR can be said to be the minimal requirement for identi�ability, in the sense
that while CAR restricts the joint model for Z and C, the model P remains unrestricted
when Q is unrestricted. More precisely, when Q is unrestricted the tangent space for the
observed data model is saturated [Gill et al., 1997, van der Vaart, 2000].

4.2 Right-censored data

While the framework of set-valued random variables elegantly captures the idea that only
partial information is available in the observed data, it is often more natural to think of
the observed data in another manner. For instance, when a stochastic process is subject
to right-censoring, van der Vaart [2004] represents the coarsened data as a stopped process
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where the stopping time is the censoring time, and de�nes CAR directly with reference to
the conditional density for the stopped process. In Manuscript I we followed this approach
and exploited that all information about an illness-death process can be captured by the
random times at which the process changes state. In this way, CAR reduces to a requirement
concerning ordinary conditional probabilities for Euclidean random variables. We illustrate
how this works in a simple setting in the following.

A common formulation of a right-censored survival problem is to say that we observe O =
(T̃ ,∆,W ), where W ∈ Rd is a vector of baseline covariates, T̃ = T ∧C, and ∆ = 1{T ≤ C}
for some event time T ∈ R+ and censoring time C ∈ R+. The observations (T̃ ,∆) can be
bijectively mapped to subsets of R as follows,

R× {0, 1} 3 (t, 0) ⇐⇒ (t,∞) ⊂ R,
R× {0, 1} 3 (t, 1) ⇐⇒ {t} ⊂ R.

(4.2)

Formally, the coarsened data X de�ned in equation (4.1) are the subsets on the right-hand
side of equation (4.2), but the bijective correspondence means that we can express CAR as
an assumption about the conditional distribution of O given (T,W ). Writing P(T̃ ,∆)|(T,W )

for the conditional distribution of (T̃ ,∆) given (T,W ), CAR is the statement that for all
t′ ≤ t, P(T̃ ,∆)|(T,W )(dt

′, δ | t, w) does not depend on t. As T̃ = T when ∆ = 1 we can write

P(T̃ ,∆)|(T,W )(dt
′, δ | t, w)

= 1{1}(δ)P(T̃ ,∆)|(T,W )(dt
′, 1 | t′, w) + 1{0}(δ)P(T̃ ,∆)|(T,W )(dt

′, 0 | t, w)

= 1{1}(δ)PC|(T,W )(C ≥ t′ | t′, w) + 1{0}(δ)PC|(T,W )(C < t′ | t, w).

(4.3)

It is common to assume that T ⊥⊥ C |W , in which case PC|(T,W )(C < t′ | t, w) = PC|W (C <
t′ | w). Thus T ⊥⊥ C | W implies that the right-hand side in equation (4.3) does not
depend on t, which shows that conditional independence of the event and censoring time
implies CAR. On the other hand, conditional independence is stronger than CAR. For
instance, if C = ∆(T + 5) + (1 − ∆)C◦, for C◦ ⊥⊥ T | W , in general C 6⊥⊥ T | W , but
PC|(T,W )(C < t′ | t, w) = PC◦|(T,W )(C

◦ < t′ | t, w) = PC◦|W (C◦ < t′ | w) for t′ ≤ t, so CAR
still holds.

For right-censored data, the observed data distribution PQ,G is indexed by a modelQ ∈ Q for
the full data Z = (T,W ) and a conditional censoring mechanism G ∈ G. When we assume
that the observed data is generated by conditionally independent event and censoring times,
G can be taken to be a family of conditional survival functions governing the conditional
distribution of C given W .

In many biostatistical applications it is su�cient to identify the distribution of T only on
some interval [0, τ ], for some τ < ∞. For instance, we are often interested in survival
probabilities up to some �xed time point τ . When this is the case, we could argue that
an observation for which ∆ = 0 and T̃ > τ should not in fact be treated as a censored
observation because it contains full information about what happened on the interval [0, τ ].
We can accommodate this by, for example, de�ning the full data as Zτ = (Tτ ,W ), where

Tτ =

{
T if T ≤ τ
∞ if T > τ

,

and the observed, coarsened data as Oτ = (T̃τ ,∆τ ,W ), where

T̃τ = 1{C > τ}Tτ + 1{C ≤ τ}T̃ and ∆τ = ∆1{T̃ ≤ τ}+ 1{T̃ > τ}

Assuming CAR for Oτ (given Zτ ) is weaker than assuming CAR for O (given Z). Another
way to accommodate a time-horizon is to truncate all observed event times with values above
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τ to τ and treat them as censored, which again implies a weaker CAR assumption than what
is needed for CAR to hold for O. The latter strategy re�ects the common situation where
patients in a study will be subject to administrative censoring at the end of the study period.
In either case, we introduce (arti�cial) point-mass for the observed data at ∞ or τ , which
can be a bit annoying. We dealt explicitly with this in Manuscript III.

4.3 Targeted learning under coarsening at random

CAR �ts well into the general setting of semi-parametric e�ciency theory outlined in Sec-
tion 3.1 as demonstrated by Robins and Rotnitzky [1992], van de Laan [1995], Gill et al.
[1997], and van der Vaart [1991, 2000, 2004]. In particular, for the special case of censored
longitudinal data, the tangent space can be represented as a collection of martingale in-
tegrals, and projections onto the tangent space can be calculated as martingale integrals
of conditional expectations. This representation can be used to derive candidate in�uence
functions for an observed data model P when an in�uence function for the full data model
Q is known, and the projection formula provides a general recipe for �nding the canonical
gradient in such models. These results are expanded in detail in [van der Laan and Robins,
2003] and [Tsiatis, 2007] and speci�c attention to the case when observations are made in
continuous-time are given in [van der Vaart, 2004] and [Rytgaard et al., 2022].

Under CAR and positivity, we know that Q is identi�able from P which means that there is
a map υ : P → Q such that υ(PQ,G) = Q for all Q ∈ Q and G ∈ G. If θ is a target parameter
de�ned on Q, an alternative strategy for �nding the canonical gradient of Ψ = θ ◦ υ is to
start directly with this functional. When the parameter is θ : Q → R is linear, the derivation
of the canonical gradient under a model with a saturated tangent space is straightforward.
However, as υ : P → Q is typically not linear the derivation of the canonical gradient of
Ψ: P → R is more complicated.

We now highlight a particular challenge facing targeted learning based on right-censored
survival data observed in continuous time. To simplify the exposition we consider the setting
where no baseline covariates are measured. Recall from Section 3.2 that a central ingredient
of targeted learning was that the remainder term (∗) de�ned in equation (3.3) could be
interpreted as a second order error term. For right-censored data, the remainder is typically
composed of terms on the form

R̂n =

∫ τ

0

Ĥn(s)[Λ̂n − Λ](ds), (4.4)

where Λ is a cumulative hazard function and Λ̂n an estimator of Λ [e.g., van der Laan and
Robins [2003], Rytgaard et al. [2021, 2022], Manuscript I]. Here Ĥn is an estimation error,
for instance Ĥn = Ŝn−S, for a survival function S and an estimator Ŝn of S. If there exists
a �xed σ-�nite measure µ such that we can write

[Λ̂n − Λ] = [λ̂n − λ] · µ, for all n ∈ N, (4.5)

for some functions λ and λ̂n, we have

R̂n =

∫ τ

0

Ĥn(s)[λ̂n(s)− λ(s)]µ(ds).

When µ� P it follows from the Cauchy-Schwarz inequality that

|R̂n| ≤ ‖Ĥn‖P ‖λ̂n − λ‖P .
In this case, R̂n can be interpreted as a second order remainder term because if ‖Ĥn‖P =

oP (r−1
n ) and ‖λ̂n − λ‖P = oP (r−1

n ) for some rate rn →∞ then R̂n = oP (r−2
n ).
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Unfortunately, for many estimators used in survival analysis, equation (4.5) does not hold.
For instance, if Λ is estimated with the Nelson-Aalen estimator [Nelson, 1969, 1972] and ob-
servations are made in continuous time, there is no �xed measure µ such that equation (4.5)
holds. It appears challenging to provide useful general bounds on terms on the form given
in equation (4.4). Gill et al. [1995] provide bounds on the form

R̂n . ‖Ĥn‖∞‖Λ̂n − Λ‖v, (4.6)

where ‖·‖v is the total variation norm and ‖·‖∞ is the supremum norm for functions with
domain [0, τ ]. The total variation is however too strong a norm to be useful in this case.
Assume again that Λ̂n is the Nelson-Aalen estimator of Λ, and that Λ is absolutely contin-
uous. Considered as measures, Λ̂n and Λ are mutually singular, and hence it follows from,
e.g., Theorem 3 in [Aistleitner and Dick, 2014] and the Jordan-Hahn decomposition, that
‖Λ̂n−Λ‖v = Λ̂n(τ)+Λ(τ). Thus, while ‖Λ̂n−Λ‖∞ = OP (n−1/2) [Andersen et al., 2012], we
have ‖Λ̂n − Λ‖v → 2Λ(τ) > 0. This demonstrates that even when we can establish the fast
rates ‖Λ̂n −Λ‖∞ = OP (n−1/2) and ‖Ĥn‖∞ = OP (n−1/2), equation (4.6) might not provide
a better bound than R̂n = OP (n−1/2).

Without imposing some assumptions on the structure of Λ̂n we cannot in general improve the
bound in equation (4.6); for instance, in Appendix A.2 we exhibit functions Ĥn and Λ̂n−Λ
such that ‖Ĥn‖∞ → 0 and ‖Λ̂n−Λ‖∞ → 0, but R̂n →∞. In Appendix C.1 of Manuscript I
we use empirical process theory to bound terms of the form given in equation (4.4) for
the special case when Λ is estimated with the Nelson-Aalen estimator. We brie�y discuss
possible extensions of this approach in Section 8.





Chapter 5

Super learning with right-censored data

Most modern data-adaptive estimators depend on tuning hyperparameters. For example, the
lasso depends on the choice of L1 penalty [Tibshirani, 1996], a spline model on the number of
knot points [Wahba, 1990, Wood, 2017], and a neural network on the number of hidden layers
[Rosenblatt, 1958, Rumelhart et al., 1986]. The tuning of hyperparameters can be phrased
as a model selection problem, because each choice of hyperparameter provides a model. In
practice, it is di�cult to pre-specify a suitable model and the values for hyperparameters.

A common approach to this problem is cross-validation, where data are split in training and
test samples such that models are �tted and their performance evaluated in independent
data sets [Stone, 1974, Geisser, 1975]. More generally, the super learner [van der Laan et al.,
2007] is a meta-algorithm for combining a given set of algorithms or learners into a new
learner. In the language of super learning, models or algorithms are referred to as `learners',
and a family of models is referred to as a `library' of learners. A library can be a family of
models indexed by a hyperparameter, but it can also be a collection of unrelated parametric,
semi-, and non-parametric models. Another word for super learning is `stacked regression'
[Wolpert, 1992, Breiman, 1996], and ordinary cross-validation is equivalent to the so-called
discrete super learner which combines learners by simply picking the one that performs best.

Importantly, the super learner can be shown to behave almost as well as the best learner
in the library. This essentially means that the price we pay to use the data to select a
learner from the library is very small, at least in terms of convergence rates. For instance,
if a library contains a learner that is consistent at some rate, then the super learner will be
consistent at the same rate up to a potential factor of log(Mn), where Mn is the number of
learners in the library [van der Laan and Dudoit, 2003, van der Vaart et al., 2006].

Formally, a super learner for some parameter Ψ: P → Θ is de�ned using a loss function
L : Θ × O → R+ and a library of learners A. Each element a ∈ A is a deterministic† map
Pn 7→ a(Pn) ∈ Θ, for all n ∈ N. For some Kn ∈ {1, . . . , n−1}, consider a (random) partition
of the data set {Oi}ni=1 into Kn subsets, which are referred to as folds. De�ne Pkn as the
empirical measure of the k'th fold and P−kn as the empirical measure of all the data excluding
the k'th fold. For all a ∈ A and i ∈ {1, . . . , n}, de�ne

li(a) = L(a(P−kn ), Oi), for Oi ∈ Pkn, and k ∈ {1, . . . ,Kn}.

A super learner can be de�ned as the learner
∑
a∈A ûn(a)a, where the weights ûn(a) are

constructed using the holds-out losses {(li(a) : a ∈ A)}ni=1.

†For many algorithms, a might in fact not be deterministic for �xed Pn. For instance, random forests
use random splitting and can thus return di�erent estimates when applied twice to the same data set. For
simplicity, we ignore this in the following.
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Figure 5.1: The least false model in the family Q∗ according to the negative partial log-
likelihood depends on the whole data-generating distribution PQ,G.

We see that the super learner itself depends on several hyperparameters: The loss function
L, the library A, the number of folds Kn, the method used to split the data into folds, and
the method used to construct the weights ûn(a). We consider the case where K is �xed
and the random partition yields approximately equally sized folds. We focus on the discrete
super learner which uses the weights ûn(a) = 1{a = mina′∈A

∑n
i=1 li(a

′)}, assuming the
minimizer is unique. In this chapter we discuss the choice of loss function when data are
right-censored. Sections 5.1 and 5.2 discuss two of the most common choices, and Section 5.3
brie�y introduce our proposal for a new super learner given in Manuscript II. Throughout
this chapter we consider the data setting described in Section 4.2, i.e., we assume that the
available data O ∼ P are on the form O = (T̃ ,∆,W ) where T̃ = T ∧C and ∆ = 1{T ≤ C}
for some event and censoring times T and C such that T ⊥⊥ C | W . We recall that we
use Q ∈ Q to denote the distribution of Z = (T,W ) and G ∈ G to denote the conditional
survival function for the censoring distribution.

5.1 The negative partial log-likelihood loss

A commonly used loss function in survival analysis is the negative log of the partial likelihood
[Cox, 1975, Andersen et al., 2012, Liestbl et al., 1994, Li et al., 2016, Bender et al., 2020,
Kvamme and Borgan, 2021, Lee et al., 2021]. As discussed in Section 4.1, the likelihood for
the observed data factorizes into components indexed by Q ∈ Q and G ∈ G. This means
that the partial log-likelihood loss can be optimized for the parameter Q without specifying
or modeling the censoring distribution. The average loss, however, can still depend on
the censoring distribution, because the average is taken with respect to the observed data
distribution.

In is well-known that parameters estimated in survival analysis can depend on the censoring
distribution and the dependence has been studied in detail for the Cox model [Struthers and
Kalb�eisch, 1986, Hjort, 1992, Fine, 2002, Whitney et al., 2019]. The dependence on the
censoring distribution can be understood by relating the negative partial log-likelihood to
the Kullback-Leibler divergence. Maximum likelihood estimation is equivalent to minimizing
the Kullback-Leibler divergence, which is de�ned as

DKL(P1 ||P2) = P1

[
log

p1

p2

]
, where P1 = p1 · ν, and P2 = p2 · ν,

for some σ-�nite measure ν such that {P1, P2} � ν. For a sub-family P∗ ⊂ P it holds
under regularity conditions that the limit of the maximum likelihood estimator based on
independent samples from P0 is the minimizer of P 7→ DKL(P0 ||P ) over P∗ [e.g., van der
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Figure 5.2: Estimated conditional survival curves for two Cox models [Cox, 1972, Therneau,
2022], the Kaplan-Meier estimator [Kaplan and Meier, 1958, Gerds, 2019], and a random
survival forest [Ishwaran et al., 2008, Ishwaran and Kogalur, 2023] �tted in R [R Core Team,
2020]. All estimators assign probability only to the ticks at the x-axis, which denote observed
time points in the training sample where an event occurred. A new sample with event time
T̃new occurs with probability zero according to any of these four models.

Vaart, 2000, Wainwright, 2019]. This also holds when P0 6∈ P∗ and thus maximum like-
lihood estimation under a misspeci�ed family can be understood as estimating the model
that minimizes the Kullback-Leibler divergence to the data-generating distribution. The
minimizing model is referred to as the least false model.

Consider now a situation were the likelihood for P ∈ P factorizes into two terms, say `1(θ,O)
and `2(ν,O) for two variational independent parameters θ and ν determining the distribution
P = Pθ,ν . Using the de�nition of DKL we can write the expected loss under Pθ0,ν0 according
to the loss function − log `1 as

Pθ0,ν0 [− log `1(θ, ·)]
= Pθ0,ν0 [− log `1(θ, ·)]± Pθ0,ν0 [log `2(ν0, ·) + log `1(θ0, ·)]
= Pθ0,ν0 [log `2(ν0, ·) + log `1(θ0, ·)− {log `2(ν0, ·) + log `1(θ, ·)}]
− Pθ0,ν0 [log `1(θ0, ·)]

= DKL(Pθ0,ν0 ||Pθ,ν0)− Pθ0,ν0 [log `1(θ0, ·)].

(5.1)

As Pθ0,ν0 [log `1(θ0, ·)] does not depend on θ, we see from equation (5.1) that minimizing the
risk Pθ0,ν0 [− log `1(θ, ·)] with respect to θ is equivalent to minimizing the Kullback-Leibler
divergence DKL(Pθ0,ν0 ||Pθ,ν0) with respect to θ. Thus, loss-based estimation with respect
to a partial log-likelihood loss can still be interpreted as estimating a least false model, but
the distance with respect to which the least false model is de�ned depends on the whole
distribution Pθ0,ν0 and not only on θ0.

The argument above applies to any factorizing likelihood, and hence to any CAR model. For
the special case of right-censored data, we can use equation (5.1) with the parametrization
θ = Q and ν = G. It follows from properties of the Kullback-Leibler divergence that Q will
always have smallest risk according to the partial log-likelihood under PQ,G for all G ∈ G.
However, for a misspeci�ed model Q∗ ⊂ Q that does not contain Q, the least false model in
Q∗ depends on G. This point is illustrated in Figure 5.1.

From a practical perspective, a perhaps more pressing concern is that the partial likelihood
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Figure 5.3: To use an inverse probability of censoring weighted loss function for estimation
S we need the inverse probability of censoring weight ωĜ, which depends on an estimator of
G. To estimate G we need the inverse probability of event weight ωŜ , which in turn depends
on an estimator of S.

is useless for evaluating performance of the most commonly used survival estimators. Many
common estimators of the conditional survival function are piece-wise constant with jumps
at the event times observed in the training sample; some examples are given in Figure 5.2.
The likelihood according to a model with a piece-wise constant survival function is zero
for all time points at which the survival function does not jump. When data are recorded
in continuous time, we never observe the exact same event times in an independent test
sample. Thus any such estimator almost surely assigns zero likelihood to any independent
test sample, and so any such estimator will have in�nite loss in any test sample.

5.2 Inverse probability of censoring weighted loss functions

A theoretically elegant way of selecting a loss function for super learning is to �rst decide on a
loss function that is de�ned for the full data Z = (T,W ) ∼ Q. In this section we assume that
the parameter of interest is the conditional survival function S(t | w) = Q(T > t | W = w),
which we sometimes write as SQ to emphasize that S is associated with a particular measure
Q. A loss function for S with respect to the full data is a functional LF : S ×Z → R, where
S is the class of all conditional survival functions. Under CAR, the average loss under Q
according to LF can be identi�ed from censored data using inverse probability of censoring
weights [Graf et al., 1999, van der Laan and Dudoit, 2003, Hothorn et al., 2006, Gerds
and Schumacher, 2006]. The inverse probability of censoring weighted version of LF is the
functional L(·, ·, G) : S ×O → R indexed by G ∈ G, de�ned as

L(S,O;G) = LF (S, (T̃ ,W ))∆ωG(T̃ ,W ), where ωG(t, w) = G(t− | w)−1. (5.2)

Under regularity conditions and CAR it holds that

PQ,G[L(S, ·;G)] = Q[LF (S, ·)], for all S ∈ S, Q ∈ Q, and G ∈ G.

In most applications we are typically only able to estimate S(· | w) on some bounded
interval [0, τ ], and we discuss this in Appendix A.3. For simplicity of exposition we consider
the unbounded case in this section.

In practice, G is unknown and has to be estimated to construct the weights ωG. When little
is known about G, one strategy is to build a super learner for G. This can be done in much
the same way as above by noting that when G is the parameter of interest, observations
with ∆ = 0 are now fully informative, while ∆ = 1 can be interpreted as meaning that
information about the exact censoring time is missing; see Figures 5.4 (a) and (b) for an
illustration of this point. To construct a super learner for G we can reverse the roles of S
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Figure 5.4: Three di�erent interpretations of the same observed data. Each line represents
an observation. Panel (a) gives the standard interpretation of right-censored data, where
a black dot means that an event was observed, while a white dot means that the subject
was censored. When the censoring distribution is the parameter of interest, the censored
observations are interpreted as fully informative, which is illustrated in panel (b). In panel (c)
each observation is considered to be in one of three mutually exclusive states at each time
point.

and G and de�ne the S-indexed loss function

Lc(G,O;S) = LF (G, (T̃ ,W ))(1−∆)ωS(T̃ ,W ),

as then (under regularity conditions),

PQ,G[Lc(G
∗, ·;SQ)] = (Ḡ⊗HQ)[LF (G∗, ·)], for all G,G∗ ∈ G and Q ∈ Q,

where HQ denotes the marginal distribution of W and Ḡ = 1 − G. The problem with
this approach is that we make estimation of G dependent on an estimate of S, which was
the estimation problem we originally wanted to solve. If we are not willing to pre-specify
an estimator of the censoring distribution G, we enter a circular estimation problem as
illustrated in Figure 5.3.

To avoid the need to pre-specify an estimator of the censoring distribution, Han et al. [2021]
and Westling et al. [2021] recently suggested to enter the circle in Figure 5.3 with some
initial estimator Ĝ(0), follow the arrows, and wait for convergence. More formally, the idea
is to use two libraries A and B of learners for estimating S and G, respectively. We start by
picking an estimator of the censoring distribution, Ĝ(0)

n , and then �nd the estimator Ŝ(1)
n as

the learner in A with best performance according to the loss L(·, ·; Ĝ(0)
n ); we then �nd the

estimator Ĝ(1)
n as the learner in B with best performance according to the loss Lc(·, ·; Ŝ(1)

n );
and so on. It is an open question whether this algorithm will always converge, and whether
it will converge to the pair (SQ, G) corresponding to the data-generating distribution PQ,G
when the libraries A and B contain learners that are consistent for SQ and G, respectively.
We conjecture that convergence will in general be di�cult to guarantee. In Appendix A.4
we investigate a population version of this algorithm and provide an example where there
exist an in�nite number of points toward which the algorithm can converge.

5.3 The state learner

Except for the suggestion made by Han et al. [2021] and Westling et al. [2021] that we
discussed at the end of Section 5.2, most existing approaches for super learning with survival
data do not address the fundamental problems we have illustrated in Figures 5.2 and 5.3.
Polley and van der Laan [2011] considered super learning for right-censored data but assumed
that observations were made in discrete time. Verweij and van Houwelingen [1993] and
Golmakani and Polley [2020] constructed a super learner based on the partial likelihood for
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Cox models [Cox, 1972], which restricts the library to contain only learners on a special form.
Other approaches employ inverse propbability of censoring weights but (tacitly) assume that
we know how to model the censoring distribution [Molinaro et al., 2004, Keles et al., 2004,
Hothorn et al., 2006, Gonzalez Ginestet et al., 2021]. When an estimator of the censoring
distribution can be pre-speci�ed, it is also possible to use censoring unbiased transformations
[Fan and Gijbels, 1996, Steingrimsson et al., 2019] or pseudo-values [Andersen et al., 2003,
Mogensen and Gerds, 2013, Sachs et al., 2019] to construct a super learner. Finally, it has
been suggested to use Harrell's c-index [Brown et al., 1974, Harrell et al., 1982, 1996] to
evaluate performance in hold-out samples [Simon et al., 2011, Zhao and Feng, 2020] as this
can be calculated without estimating the censoring mechanism. Harrell's c-index, however,
is determined by the censoring distribution, so it would seem a better choice to use the c-
index that is de�ned for the full data and identi�ed through inverse probability of censoring
weights [Gerds et al., 2013]. This again requires estimation of the censoring mechanism.
Furthermore, the c-index is not necessarily maximized at the data-generating distribution
[Blanche et al., 2019], which means that the c-index is not a promising performance measure.
In particular, a super learner that includes a consistent learner in its library might not itself
be consistent when the c-index is used for evaluating performance.

In Manuscript II we propose an alternative approach that is based on viewing the observed
data as a simple multi-state system with two absorbing states. We refer to this super learner
as the state learner. The observed multi-state system is illustrated in Figure 5.4 (c). As all
states except the initial state are absorbing, the system can be described completely through
the state occupation probabilities. Letting η(t) = 1{T̃ ≤ t,∆ = 1}+ 21{T̃ ≤ t,∆ = 0}, the
conditional state occupation probability is

F (t, k, x) = P (η(t) = k | X = x), for t ∈ [0, τ ], k ∈ {0, 1, 2}, x ∈ Rd. (5.3)

We suggest to build a super learner for the function F . As described in Manuscript II, a
library for learning F can be constructed from libraries for learning S and G, and the state
learner can easily be extended to settings where a competing risk is present. To evaluate
the performance of learners of F , we suggest to use the integrated Brier score, but other
loss functions could be used. As F is a feature of the observed data distribution, a loss
function for F will not depend on unknown nuisance parameters. We provide a summary of
the results we have established for the state learner in Section 7.



Chapter 6

The highly-adaptive lasso

The highly-adaptive lasso (HAL) is an example of a non-parametric function-valued estima-
tor than can be used to estimate parameters Ψ: P → F , de�ned as

Ψ(P ) = argmin
f∈F

P [L(f, ·)], (6.1)

for some suitable loss function L and function space F . Examples include densities, re-
gression functions, and hazard functions. Replacing P with Pn leads to estimators known
as M -estimators, minimal contrast estimator, or empirical risk minimizers [Huber et al.,
1967, Pfanzagl, 1969, Reiss, 1978, Vapnik, 1991, van der Vaart and Wellner, 1996, van der
Vaart, 2000]. Sieve estimators use models F1,F2, . . . of increasing complexity to estimate Ψ
[Grenander, 1981, Geman, 1981, Geman and Hwang, 1982, Walter and Blum, 1984, Shen,
1997]. In Manuscript III we argue that the HAL estimator should be de�ned and interpreted
as a data-adaptive sieve estimator.

Several loss functions have been used to de�ne a HAL estimator, but all HAL estimators use
F = DdM for someM ∈ (0,∞), with DdM denoting the class of càdlàg functions f : [0, 1]d → R
with sectional variation norm bounded by M [van der Laan, 2017b, Benkeser and van der
Laan, 2016, Bibaut and van der Laan, 2019, Hejazi et al., 2020, Malenica et al., 2023,
Manuscript III]. Any element of DdM generates a signed measure with total variation bounded
by M . Perhaps surprisingly, this guarantees that Ψ can be estimated at a rate faster than
n−1/4 for any dimension d ∈ N. This essentially `dimension-free' rate of convergence is the
main reason for studying the HAL estimator.

Manuscript III provides a detailed description of the space of càdlàg functions and the
sectional variation norm. In this chapter we give a brief overview of the proof techniques used
to establish the rate of convergence for the HAL estimator, and we explain why some care
is needed when densities and hazard functions are the parameters of interest. In Section 6.1
we discuss metric entropies, which provide a classical way to derive convergence rates of
M -estimators [van de Geer, 1990, 1993, Birgé and Massart, 1993, Shen and Wong, 1994,
van der Vaart and Wellner, 1996]. In Section 6.2 we discuss the assumption of a bounded
sectional variation norm in the context of targeted learning and right-censored data.

6.1 Bracketing entropy

We consider data with values in O = [0, 1]d and let F denote a class of measurable real-
valued functions with domain [0, 1]d. In this section we use bold font to denote a (non-
random) point x ∈ [0, 1]d. For a loss function L : F × [0, 1]d → R, de�ne the function class
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L = {L(f, ·) : f ∈ F}. For all L ∈ L, Gn[L] is a random variable, which means that we
can think of Gn as a stochastic process indexed by L ∈ L. Letting LP = L(Ψ(P ), ·), the
modulus of continuity of this stochastic process is de�ned for δ > 0 and n ∈ N as†

Γn(δ) = sup
L∈Lδ(P )

|Gn[L− LP ]| , where Lδ(P ) = {L ∈ L : ‖L− LP ‖P < δ} .

By studying the behavior of the modulus of continuity for δ ↓ 0 and n→∞, we can derive
upper bounds for how fast an empirical risk minimizer converges to Ψ(P ), see for instance
[van der Vaart and Wellner, 1996, Theorem 3.4.1] or [Kosorok, 2008, Theorem 14.4].

The modulus of continuity can be bounded by bounding the complexity of the function class
F [van der Vaart and Wellner, 1996, 2011]. One way to measure the complexity of a function
class is through the bracketing entropy integral. For the L2

P norm, the bracketing entropy
integral is de�ned for δ > 0 as

J[ ](δ,F , ‖·‖P ) =

∫ δ

0

√
1 + logN[ ](ε,F , ‖·‖P ) dε,

where N[ ](ε,F , ‖·‖P ) denotes the number of brackets with ‖·‖P -norm smaller than ε needed
to cover F . A bracket is a pair of functions l and u such that l(x) ≤ u(x) for all x ∈ [0, 1]d,
and the norm of the bracket is ‖u − l‖P . That a collection B of brackets covers F means
that for every f ∈ F there exists a bracket (l, u) ∈ B such that that l(x) ≤ f(x) ≤ u(x) for
all x ∈ [0, 1]d.

For the sole purpose of illustration, consider a setting where F consists of univariate functions
that take values in [−1, 1] and are piece-wise constant on the equally spaced grid with mesh
size 1/K for some K < ∞. Brackets of size ε for this function class can be constructed by
chopping the co-domain [−1, 1] into a grid with mesh size ε and then constructing piece-
wise constant functions that take values only on this grid. We illustrate this construction
in Figure 6.1. If we impose no restrictions on the function class F , we need all possible
brackets to cover F . This means that the bracketing number is ε−K . By imposing `local
smoothness' conditions on elements of F , we can limit the number of brackets needed to
cover F ; for instance, we can limit F to consist of functions that make jumps of restricted
size. Figure 6.1 (b) gives an example of the type of brackets we can restrict attention to
under this assumption. We can also control the bracketing number by imposing a `global
smoothness' condition by, for instance, restricting the total sum of all jumps. Figure 6.1 (c)
gives an example of the type of brackets we need to consider under this assumption.

The original proof demonstrating that, for a suitable loss function, the empirical risk mini-
mizer over DdM converge to Ψ(P ) at some rate rn = o(n−1/4), only relied on the fact that DdM
is a Donsker class [van der Laan, 2017b]. Later, Bibaut and van der Laan [2019] used that
any element f ∈ DdM can be represented as a linear combination of multivariate cumulative
distribution functions [Bibaut and van der Laan, 2019, Proposition 1; Manuscript III, Propo-
sitions 2.3 and 2.4] to derive a tighter bound on the rate of convergence by using a bound on
the bracketing entropy for the class of multivariate cumulative distribution functions given
by Gao [2013].

As we discuss in Section 6.2, for some loss functions the empirical risk minimizer over the
whole space DdM is not well-de�ned [Manuscript III, Proposition 5.1]. Given a data set
{Xi}ni=1 ⊂ [0, 1]d, we can alleviate this by restricting the minimization problem to the data-

†The modulus of continuity is not exclusively de�ned for the ‖·‖P , but can be de�ned for any distance
measure. We are only interested in the special case where the distance is ‖·‖P , and so we use this distance
in the de�nition for notational convenience.
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(a) (b) (c)

Figure 6.1: Examples of brackets for a class F of piece-wise constant functions f : [0, 1] →
[−1, 1]. The upper and lower boundaries of the gray area correspond to a bracket (l, u).
Panels (a)-(c) provide examples of brackets. Brackets like the one in panel (b) can be used
to cover F when the functions in F can be assumed to not �uctuate much locally. Brackets
like the one in panel (c) can be used when the functions can be assumed to not �uctuate
much globally.

dependent function class

Fn =

{
fβ,n : [0, 1]d → R

∣∣∣∣∣ fβ,n(x) = β0 +

n∑

i=1

∑

s∈S
βsi 1{Xr,i ≤ xr, r ∈ s}

}
,

where we use the notation Xi = (X1,i, . . . , Xd,i), and S denotes all non-empty subsets of
{1, . . . , d}. We refer to the random points

Xs
i = (1{1 ∈ s}X1,i, . . . ,1{d ∈ s}Xd,i) ∈ [0, 1]d, for all s ∈ S, i ∈ {1, . . . , n}, (6.2)

as knot-points. In words, any fβ,n is a linear combination of basis functions, where the set of
basis functions consists of all indicator functions of boxes spanned by a knot-point and 1. In
Manuscript III we de�ne the HAL estimator as the empirical risk minimizer over Fn. From
this perspective, the HAL estimator is a sieve estimator where the sieve Fn is determined
completely by the observed data.

To derive convergence rates for the HAL estimator de�ned in this way, we construct an
auxiliary oracle function f∗n ∈ Fn, whose coe�cients {βsi } depend on the function Ψ(P ) to
be estimated. We then exploit that the knot-points {Xs

i } are distributed as random samples
from P and from the marginals of P , which means that the di�erence between f∗n and Ψ(P )
can be analyzed as a sum of empirical processes. The di�erence between the oracle function
f∗n and the HAL estimator is then analyzed separately using the bracketing number in
[Bibaut and van der Laan, 2019]. The construction of the auxiliary oracle function depends
on an additional smoothness assumption, which we believe is a necessary condition. Whether
this additional smoothness assumption is necessary essentially boils down to whether, for
any �xed z ∈ [0, 1]d, the function 1[z,1] can be approximated su�ciently fast in L2

P -norm
using functions from Fn, when P is dominated by Lebesgue measure.

6.2 A global smoothness condition

In Section 6.1 we discussed how the complexity of a function class can be controlled by
imposing local or global smoothness conditions. The HAL estimator works when the function
to be estimated has sectional variation norm bounded by a �xed constant. The sectional
variation norm measures the total �uctuation of a function and can be seen as a global
smoothness condition.
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(a) (b) (c)

Figure 6.2: Panel (b) and panel (c) are two warped versions of the function in panel (a) ob-
tained by transforming the domain [0, 1] with two di�erent monotone, boundary-preserving
functions. The three functions have di�erent L1

P - and Sobolev-norm, but the same total
variation norm. This follows because the total variation norm is the supremum over the
total sum of jumps a function makes between a �nite set of points. The black dots illustrate
that any �nite collection of points can be moved so that the total sum of jumps agree for
the original and the warped functions.

One can argue that the global smoothness assumption underlying the HAL estimator makes
it particularly attractive as an estimator of nuisance parameters in the setting of targeted
learning. It is well-known that estimators of nuisance parameters have to be undersmoothed
to give good performance for estimation of low-dimensional target parameters if a targeting
step is not employed [Laurent et al., 1996, Goldstein and Khasminskii, 1996, Newey et al.,
1998, Bickel et al., 2003, Paninski and Yajima, 2008]. Point-wise smoothness is not particu-
larly useful for an estimator of a nuisance parameter that is plugged into a smooth functional.
Intuitively, a smooth functional works much like an integral operator that smears out �uc-
tuations. Informally, one could say that the HAL estimator spends the complexity of the
function space in the right way, namely by ensuring enough structure such that n−1/4-rate
estimation is possible, but without imposing irrelevant point-wise smoothness conditions.
A theoretical understanding of the performance of the HAL estimator in the context of
targeted learning is ongoing research [van der Laan, 2017a, Ertefaie et al., 2020, Qiu et al.,
2021, van der Laan et al., 2022, van der Laan, 2023].

In some cases, a global smoothness condition can clash with a loss function that measures
performance in terms of an LrP -norm. Warping a function will typically change its L1

P - and
Sobolev-norm, but will always leave the sectional variation norm unchanged. We illustrate
this in Figure 6.2. This becomes a problem for right-censored survival data observed in
continuous time. In this setting, the partial log-likelihood loss for the conditional Lebesgue
hazard function h is ∫ T̃

0

h(s |W ) ds−∆ log h(T̃ |W )

where the data (T̃ ,∆,W ) are as described in Section 4.2. The presence of the L1
P -norm in

this loss implies that empirical risk minimization over the whole space DdM is an ill-de�ned
optimization problem. As discussed in Section 6.1, we solve this problem in Manuscript III
by de�ning the HAL estimator as a data-adaptive sieve estimator.



Chapter 7

Summary of manuscripts and contributions

We here give summaries of the three manuscripts that make up the main part of this thesis.

Manuscript I Targeted estimation of state occupation probabilities for the non-Markov
illness-death model

In this manuscript we derive a class of targeted estimators for the state occupation prob-
abilities in the irreversible illness-death model when observations are made in continuous
time. We allow all state transitions to depend non-parametrically on a vector of baseline
covariates as well on the history of the process. We make the minimal assumptions of coars-
ening at random and positivity to ensure identi�ability of the state occupation probabilities.
This allows for complex and realistic censoring dependencies. Our proposed class of esti-
mators allow data-adaptive estimation of the state transition probabilities, as long as the
conditional hazard functions (with respect to Lebesgue measure) are estimated. We derive
a computationally e�cient algorithm for calculating a general class of integrals constructed
from piece-wise constant functions. We expect that this can be of independent use for other
types of targeted estimators based on right-censored data. While general targeted estima-
tion methods exist for longitudinal data [van der Laan and Rose, 2011, Rytgaard et al.,
2022], our proposed class of estimators are, to the best of our knowledge, the �rst concrete
example of a data-adaptive method for estimation of state occupation probabilities.

We also pay some attention to the special case where no baseline variables are measured.
It is then natural to use the Nelson-Aalen estimator to estimate some of the cumulative
transition hazard functions. Our general result does not apply in this setting, but we use
empirical process theory to establish a similar result via a di�erent route. As far a we are
aware, this provides the �rst method that formally handles remainder terms for targeted
learning based on right-censored data, when estimators such as the Nelson-Aalen estimator
are used.

Manuscript II The state learner � a super learner for right-censored data

In this manuscript we propose a new super learner that can be used with right-censored data
and in the presence of competing events. We refer to this super learner as the state learner.
We establish theoretical guarantees in the form of a consistency result and a �nite sample
oracle inequality. We discuss the advantages of the state learner compared to existing
super learners for right-censored data, and conduct numerical studies to investigate the
performance of the state learner. Our proposal is a theoretically justi�ed super learner that
can include any type of learner in its library, and does not rely on a pre-speci�ed estimator
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of the censoring distribution. Such a super learner did not exist before, so the state learner is
an important contribution to the development of robust data-adaptive estimation methods
for right-censored data.

Manuscript III Estimating conditional hazard functions and densities with the highly-
adaptive lasso

This manuscript provides a detailed characterization of the space of multivariate càdlàg
functions, the sectional variation norm, and the highly-adaptive lasso (HAL) estimator. We
provide the �rst formal study of the HAL estimator in the context of conditional hazard
and density estimation. We demonstrate that the HAL estimator should be de�ned as a
data-adaptive sieve estimator, because empirical risk minimization over the space of càdlàg
functions with bounded sectional variation norm is not in general well-de�ned. We de-
rive a general result for the convergence rate of HAL estimators under some smoothness
assumptions on the loss function and the data-generating distribution. As an example we
demonstrate that this provides a formal justi�cation for using the HAL estimator to estimate
conditional hazard functions from right-censored data. We also demonstrate the usefulness
of our general result for conditional density estimation and non-parametric least squares
regression.



Chapter 8

Perspectives and topics for further research

Each of the three manuscripts included in this thesis attempted to solve a problem. In the
process, new problems appeared. We highlight some of the limitation of our proposals in
this chapter, and point to some interesting questions for future research which have not been
addressed in the thesis.

Finite sample inference The semi-parametric e�ciency theory outlined in Chapter 3
provides an elegant way of characterizing the asymptotic distribution of RAL estimators.
However, as we tried to highlight in Section 3.3, some aspects are lost from an asymptotic
viewpoint. Indeed, we might imagine that while many non-parametric models have the
same information bound, some non-parametric models can lead to estimators with dramat-
ically improved �nite sample performance. Similarly, in a non-parametric model, all RAL
estimators are asymptotically equivalent, but some speci�c RAL estimators might outper-
form others in �nite samples. These concerns have not been addressed in this thesis. In
Manuscript I we examined the �nite sample performance of our proposed estimator through
a small numerical study. Larger simulation studies in more general settings should be con-
ducted to investigate �nite sample performance systematically.

Except for a few recent results [van der Laan, 2017a, Chernozhukov et al., 2023, Singh,
2021], �nite sample inference for targeted estimators has not been studied theoretically. The
expansion in equation (3.3) in Section 3.2 suggests that �nite sample performance of the one-
step estimator could be investigated by studying the empirical process term Gn[ϕP̂n − ϕP ]
and the remainder term (∗). The empirical process term can be studied by using, for
instance, the bracketing entropy we discussed in Section 6.1. The remainder term might be
studied by considering higher-order von Mises expansions [von Mises, 1947, Ser�ing, 1980,
Robins et al., 2008, van der Laan et al., 2021]. We hope to investigate whether this is a
viable strategy for establishing �nite sample inference in future work.

In Manuscript III we derived asymptotic convergence rates for the HAL estimator. We did
not consider whether these rates could be improved to �nite sample bounds. In the context
of least squares regression with �xed design, Fang et al. [2021] provide �nite sample bounds
for the empirical risk minimizer over the class of càdlàg functions with bounded sectional
variation norm. It would be interesting to see if their method could be extended to provide
�nite sample bounds for the HAL estimator in the context of density and hazard function
estimation.

Bounding integral operator di�erences In Section 4.3 we argued that the remainder
term (∗) de�ned in equation (3.3) is in general more di�cult to handle when data is right-
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censored and observed in continuous time. This is due to the di�culty of bounding terms
that involve an integral operator di�erence as in equation (4.4). The technique we use in
Appendix C.1 of Manuscript I is essentially based on expressing the di�erence between a
cumulative hazard function and its Nelson-Aalen estimator as an empirical process term.
We expect that the same strategy can be applied when cumulative hazard functions are
estimated with Cox models.

In Appendix C of Manuscript II we show that we can obtain an estimator of the conditional
survival function S given an estimator of conditional state occupation probability function
F de�ned in equation (5.3). However, convergence rates for an estimator F̂n do not directly
translate into the same convergence rate for the derived estimator Ŝn. This is an important
drawback of the state learner. The problem here is essentially the same problem of bounding
terms that involve an integral operator di�erence. Devising methods that allows us to bound
such terms in decent generality is an interesting topic for future research. Overgaard et al.
[2017] used results for p-variation norms [Dudley et al., 2011] to establish a general theory
for estimation equations based on pseudo-observations. These norms could perhaps prove
useful in bounding remainder terms appearing in targeted learning.

Computationally feasible HAL estimator Our investigation in Manuscript III of the
HAL estimator did not consider any aspects of practical implementation. With the cur-
rent implementations of the HAL estimator it is di�cult to investigate its performance in
numerical studies that re�ect realistic data-generating mechanisms. Schuler et al. [2022]
provide a boosting framework to approximate the HAL estimator. Designing methods for
approximation the HAL estimator with computationally feasible algorithms is important if
the estimator is to be used in practice.

CAR and local independence In Chapter 4 we discussed identi�ability from the high-
level perspective of coarsened data. We expect that CAR can be expressed in a more concise
manner by focusing on multi-state models. In particular, the concept of local independence
provides an anti-symmetric way of talking about dependencies between stochastic process
[Schweder, 1970, Aalen, 1987, Didelez, 2008, Mogensen et al., 2020]. This might provide a
useful tool for expressing and visualizing various identi�ability assumptions such as CAR.
Røysland et al. [2022] provide some results in this direction.



Appendix A

Some technical arguments

We collect here some technical arguments that did not �t into the main text. Section A.1
contains a proof of Proposition 3.1. Section A.2 de�nes a �uctuating function and provides
an example where the supremum norm is not su�cient to bound terms on the form in
equation (4.4) that we discussed in Section 4.3. Section A.3 considers inverse probability
of censoring weighted loss functions when attention is restricted to a bounded interval.
Section A.4 discusses the iterative algorithm proposed by Westling et al. [2021] and Han
et al. [2021] that we mentioned in Section 5.2.

A.1 Saturated tangent spaces

Let in this subsection O = [0, 1]d and P be the collection of all probability measures on
[0, 1]d with a Lebesgue density. For P ∈ P we write p for the density of P with respect to
Lebesgue measure. Recall that HP is the collection of all functions h ∈ L2

P with P [h] = 0.
For any P ∈ P and h ∈ HP with ‖h‖∞ <∞, de�ne

Pht = exp
{
th− log

(
P [eth]

)}
· P. (A.1)

Lemma A.1. (i) For any h ∈ HP with ‖h‖∞ < ∞, the path {Pht : t ∈ R}, with Pht
de�ned in equation (A.1), is contained in P and has score function h at P .

(ii) The space {h ∈ HP : ‖h‖∞ <∞} is dense in HP .

(iii) Let C∞P denote the space of in�nitely continuously di�erentiable functions on [0, 1]d

with zero P -integral. For any P such that ‖p‖∞ <∞, C∞P is dense in HP .

Proof. Statements (i) and (ii) are restatements of Example 3.2.1 in [Bickel et al., 1993].
Statement (iii) follows from, e.g., Theorem 2.15 in [Grubb, 2008].

Proof of Proposition 3.1. We consider the four models in turn.

Pε: When h is uniformly bounded,
∥∥exp

{
th− log

(
P [eth]

)}∥∥
∞ −→ 1, for t −→ 0, (A.2)

so for small enough t, Pht ∈ Pε for any P ∈ Pε. Hence, by Lemma A.1 (i) and (ii),
ṖεP = HP for any P ∈ Pε.

Sk: By de�nition, pht ∈ Ck when h ∈ C∞P and P ∈ Sk, and as any h ∈ C∞P is uniformly
bounded it follows from equation (A.2) that Pht ∈ Sk for small enough t. Hence, by
Lemma A.1 (i) and (iii), ṠkP = HP at any P ∈ Sk.
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VM : When h ∈ C∞P and P ∈ VM , pht is càdlàg. By de�nition of the sectional variation norm
(see for instance Section 2 of Manuscript III), ‖hf‖v ≤ ‖h‖∞‖f‖v, and so it follows
from equation (A.2) that Pht ∈ VM for t small enough. As this holds for any h ∈ C∞P ,
V̇MP = HP by Lemma A.1 (i) and (iii).

M: For a bounded non-decreasing function f ∈ HP , the density of P ft must also be non-
decreasing for P ∈ M. Hence {P ft } ⊂ M and so f ∈ ṀP by Lemma A.1 (i). Take
now some h ∈ C∞P . It follows from Theorem 2 in [Aistleitner and Dick, 2014] that
we can write h = h+ − h− for some non-decreasing, bounded functions h+, h− ∈ HP .
As both h+ and h− are elements of the tangent space by the argument above, and
the tangent space is the closed linear span of all score functions, it follows that h is
in the tangent space. As h ∈ C∞P was arbitrary it follows from Lemma A.1 (iii) that
ṀP = HP .

A.2 A wildly �uctuating function

For all n ∈ N, de�ne the function fn : [0, 1]→ R as

fn(x) =

n∑

i=1

(−1)i

n1/4
1[ i−1

n , in

)(x).

Note that for any n ∈ N, fn is càdlàg and has bounded variation norm, so the (Lebesgue-
Stieltjes) integral

∫ 1

0
g dfn is well-de�ned for any Borel-measurable and bounded function

g.

Proposition A.2. It holds that ‖fn‖∞ → 0 and
∫ 1

0
fn dfn →∞ when n→∞.

Proof. The �rst statement follows because

sup
x∈[0,1]

∣∣∣∣
(−1)i

n1/4
1[ i−1

n , in

)(x)

∣∣∣∣ = n−1/4,

for all i = 1, . . . , n. The second statement follows because

∫ 1

0

fn dfn =

n∑

i=1

(−1)i

n1/4
fn

(
i− 1

n

)
=

n∑

i=1

(−1)i

n1/4

(−1)i

n1/4
=

n∑

i=1

1

n1/2
= n1/2.

A.3 Inverse probability of censoring weighted loss functions on

bounded intervals

Let Q denote the distribution of Z = (T,W ) ∈ Z = R+ × W, for some W ⊂ Rd, C a
censoring time such that C ⊥⊥ T | W , and G(· | w) the conditional survival function for C
given W = w. Let P τQ,G denote the distribution of Oτ = (T̃ ,∆τ ,W ), where

∆τ = ∆1{T̃ ≤ τ}+ 1{T̃ > τ}.

Let Θ denote the parameter space for a parameter θ de�ned on Q. Let LF : Θ×Z → R be
a loss function such that

LF (θ, (s, w)) = LF (θ, (τ+, w)) for all s > τ, θ ∈ Θ, w ∈ W. (A.3)
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De�ne the inverse probability of censoring weights ωτG(t, w) = G(t − ∧τ | w)−1, where
G(t− ∧τ | w) can be explicitly written as

lim
h↓0

G((t− h) ∧ τ | w) =

{
G(τ) if t > τ

G(t−) if t ≤ τ . (A.4)

De�ne the inverse probability of censoring weighted loss function

Lτ (θ,Oτ ;G) = LF (θ, (T̃ ,W ))∆τω
τ
G(T̃ ,W ). (A.5)

Note that the de�nition in equation (A.5) is identical to the de�nition given in equation (5.2)
when τ =∞ and T̃ <∞ a.s.

Proposition A.3. For some τ > 0, assume that equation (A.3) holds and that G(τ | w) > 0
for all w ∈ W. Then P τQ,G[Lτ (θ, ·;G)] = Q[LF (θ, ·)].

Proof. We have

P τQ,G[Lτ (θ, ·;G)]

= E[LF (θ, (T̃ ,W ))∆1{T̃ ≤ τ}ωτG(T̃ ,W )]

+ E[LF (θ, (T̃ ,W ))1{T̃ > τ}ωτG(T̃ ,W )].

(A.6)

Note that equations (A.4) and (A.3) imply

E[LF (θ, (T̃ ,W ))1{T̃ > τ}ωτG(T̃ ,W )]

= E[LF (θ, (T̃ ,W ))1{T̃ > τ}G(τ,W )−1]

= E[LF (θ, (τ+,W ))1{T̃ > τ}G(τ,W )−1]

=

∫

W
LF (θ, (τ+, w))G(τ, w)−1SQ(τ | w)G(τ | w)HQ(dw)

=

∫

W
LF (θ, (τ+, w))SQ(τ | w)HQ(dw),

(A.7)

where we let HQ denote the marginal distribution of W . Letting S̄Q = 1 − SQ we have by
equation (A.4),

E[LF (θ, (T̃ ,W ))∆1{T̃ ≤ τ}ωτG(T̃ ,W )]

E[LF (θ, (T̃ ,W ))∆1{T̃ ≤ τ}G−1(T̃−,W )]

=

∫

W

∫
1[0,τ ](s)L

F (θ, (s, w))G−1(s−, w)G(s− | w)S̄Q(ds | w)HQ(dw)

=

∫

W

∫
1[0,τ ](s)L

F (θ, (s, w))S̄Q(ds | w)HQ(dw)

(A.8)
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Hence equation (A.6)-(A.8) imply

P τQ,G[Lτ (θ, ·;G)] =

∫

W

∫
1[0,τ ](s)L

F (θ, (s, w))S̄Q(ds | w)HQ(dw)

+

∫

W
LF (θ, (τ+, w))SQ(τ | w)HQ(dw)

=

∫

W

∫
1[0,τ ](s)L

F (θ, (s, w))S̄Q(ds | w)HQ(dw)

+

∫

W
LF (θ, (τ+, w))

∫
1(τ,∞)(s)S̄Q(ds | w)HQ(dw)

=

∫

W

∫
1[0,τ ](s)L

F (θ, (s, w))S̄Q(ds | w)HQ(dw)

+

∫

W

∫
1(τ,∞)(s)L

F (θ, (s, w))S̄Q(ds | w)HQ(dw)

= Q[LF (θ, ·)],

where we used equation (A.3) for the second to last equality.

A.4 Iterative inverse probability of censoring weighted super

learner

We consider the algorithm proposed by Han et al. [2021] and Westling et al. [2021] described
at the end of Section 5.2. We assume in the following that A = B = S, with S being the
collection of all conditional survival functions. We also assume that performance is assessed
using an in�nite hold-out data set. Given an initial value G(0) we iteratively de�ne

S(k) = argmin
S∗∈S

PQ,G[L(S∗, ·;G(k−1))], and

G(k) = argmin
G∗∈G

PQ,G[Lc(G
∗, ·;S(k))],

(A.9)

for n ∈ N. Consider now some initial value G(0) such that G(0) 6= G. We may then write

PQ,G[L(S∗, ·;G(0))]

= EQ,G[LF (S∗, (T̃ ,W ))∆ωG(0)(T̃ ,W )]

= EQ,G

[
LF (S∗, (T̃ ,W ))∆

ωG(0)(T̃ ,W )

ωG(T̃ ,W )
ωG(T̃ ,W )

]

= HQ

[∫ ∞

0

LF (S∗, (u, ·))ωG(0)(u, ·)
ωG(u, ·) ωG(u, ·)G(u− | ·)S̄Q(du | ·)

]

= HQ

[∫ ∞

0

LF (S∗, (u, ·))ωG(0)(u, ·)
ωG(u, ·) S̄Q(du | ·)

]

= Q

[
LF (S∗, ·)ωG(0)

ωG

]
,

where S̄Q = 1− SQ. If Q[ωG(0)/ωG] is �nite, we can de�ne

Q̌ = q(1) ·Q with q(1) =
ωG(0)

ωG

(
Q

[
ωG(0)

ωG

])−1

. (A.10)

Then the measure Q̌ is a probability measure and we have

PQ,G[L(S∗, ·;G(0))] ∝ Q̌[LF (S∗, ·)]. (A.11)
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Now, when the loss function LF is a strictly proper scoring rule [Gneiting and Raftery,
2007], S∗ 7→ Q̌[LF (S∗, ·)] is uniquely minimized at SQ̌. Thus S

∗ 7→ PQ,G[L(S∗, ·;G(0))] is
also minimized at SQ̌ and so S(1) = SQ̌. As we assumed that G(0) 6= G, we have ωG(0) 6= ωG
and so S(1) 6= SQ. Now starting from S(1) we can obtain a learner G(1) in a similar way
by minimizing G∗ 7→ PQ,G[Lc(G

∗, ·, S(1))]. By the same line of arguments, G(1) 6= G. In
this way, we obtain a sequence of learners {G(k)}∞k=0 and {S(k)}∞k=1 such that G(k) 6= G and
S(k) 6= SQ for all k.

Example A.4 describes a simple situation where an in�nite number of pairs (G∗, S∗) are
�xed points for the algorithm de�ned in equation (A.9).

Example A.4

For α > 0, let Exp(α) be the survival function of the exponential distribution with rate
parameter α. Let Qα = Sα = Exp(α) and Gβ = Exp(β), and de�ne Pα,β as the distribution
of (T̃ ,∆) with T̃ = T ∧ C and ∆ = 1{T ≤ C} for (T,C) ∼ Qα ⊗ Gβ . Fix α, β ∈ R+. For
any β∗ ∈ R+,

ωGβ∗ (t)

ωGβ (t)
=

Gβ(t−)

Gβ∗(t−)
= e−(β−β∗)t,

and so

Qα

[
ωGβ∗

ωGβ

]
=

∫ ∞

0

αe−(β+α−β∗)t ds.

For any β∗ < β + α the integral above is �nite, so we may de�ne Q̌ as in equation (A.10),
and we see that Q̌ = Qβ+α−β∗ . Hence S(1) = Sβ+α−β∗ by equation (A.11) for any strictly
proper scoring rule LF . Similarly, we have

ωSβ+α−β∗ (t)

ωSα(t)
=

Sα(t−)

Sβ+α−β∗(t−)
= e−(α−(β+α−β∗))t = e(β−β∗)t,

and so

Gβ

[
ωQβ+α−β∗

ωQ0

]
=

∫ ∞

0

βe−β
∗t ds,

which implies G(1) = Gβ∗ . This shows that for any β∗ < β + α, the pair (Gβ∗ , Sβ+α−β∗) is
a �xed point for the iterative algorithm de�ned in equation (A.9). •
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Targeted estimation of state occupation probabilities

for the non-Markov illness-death model

Anders Munch, Marie Skov Breum, Torben Martinussen, and Thomas A. Gerds

Abstract

We use semi-parametric e�ciency theory to derive a class of estimators for the state

occupation probabilities of the continuous-time irreversible illness-death model. We

consider both the setting with and without additional baseline information available,

where we impose no speci�c functional form on the intensity functions of the model. We

show that any estimator in the class is asymptotically linear under suitable assumptions

about the estimators of the intensity functions. In particular, the assumptions are weak

enough to allow the use of data-adaptive methods, which is important for making the

identifying assumption of coarsening at random plausible in realistic settings.

We suggest a �exible method for estimating the transition intensity functions of the

illness-death model based on penalized Poisson regression. We apply this method to

estimate the nuisance parameters of an illness-death model in a simulation study and

a real world application.

1 Introduction

In epidemiology and medical research, illness-death models are used to analyze the time
to an absorbing state (death) when the subjects can change from an initial state (healthy)
to an intermediate state (illness) at some intermediate time point [Andersen et al., 2012].
We consider the irreversible illness-death model shown in Figure 1 where transitions from
the illness state back to the healthy state are not possible. The transition intensity from
illness to death can depend on the onset time of illness, which is a challenge for a non-
parametric approach. We consider right-censored observations of the illness-death process
under the coarsening at random assumption [Gill et al., 1997, van der Vaart, 2004] where the
current rate of censoring among subjects in the illness state can depend on the onset time of
illness. We also allow the transition intensities to depend on a set of covariates measured at
baseline. We use semi-parametric e�ciency theory to derive estimators for the (marginal)
state occupation probabilities based on the e�cient in�uence function.

Under the stronger assumption of independent censoring it has been shown that the Aalen-
Johansen estimator is consistent for the state occupation probabilities [Datta and Satten,
2001, Glidden, 2002], and non-parametric estimators have also been derived for the transition
probabilities [Meira-Machado et al., 2006, Allignol et al., 2014, de Uña-Álvarez and Meira-
Machado, 2015, Titman, 2015]. More recently landmark approaches have been discussed
[Putter and Spitoni, 2018, Maltzahn et al., 2021]. For the case where censoring among
subjects in the illness state is allowed to depend on the onset time of illness, several inverse
probability of censoring weighted (IPCW) estimators have been suggested [Datta et al.,
2000, Datta and Satten, 2002, Gunnes et al., 2007].

Our approach builds on the tools from semi- and non-parametric e�ciency theory [Bickel
et al., 1993, van der Vaart, 2000, 1991, van der Laan and Robins, 2003, Tsiatis, 2006]. This
allows us to combine data-adaptive methods with asymptotic inference [van der Laan and
Rubin, 2006, van der Laan and Rose, 2011, 2018, Chernozhukov et al., 2018]. We focus on the
estimation of the probability of being ill and alive at some �xed time horizon after baseline.

1
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However, our general approach can in principle be applied to other path-wise di�erentiable
functionals of the data-generating distribution. We describe a class of estimators motivated
by the e�cient in�uence function for the parameter of interest under a fully non-parametric
model. The estimators are asymptotically linear and normally distributed as long as the
estimators of the transition hazard functions converge to the hazard functions of the data-
generating distribution at a rate faster than n−1/4. Following van der Laan and Rose
[2011] and Chernozhukov et al. [2018] we refer to our proposed estimator as a `targeted'
or `debiased' estimator. The targeting/debiasing step is essential when using data-adaptive
methods, as demonstrated by our empirical study. Furthermore, an important feature of our
main result (Theorem 4.2) is that we do not need to know the exact asymptotic distribution
of the estimators of the nuisance parameters but only their rate of convergence. This is
particularly attractive when using data-adaptive model selection such as cross-validation.

We derive the details of the estimators for the state occupation probabilities also in the
setting without baseline covariates. The classical illness-death model without baseline co-
variates has a long history and has been studied intensively [Fix and Neyman, 1951, Sver-
drup, 1965, Andersen et al., 2012, Xu et al., 2010, de Uña-Álvarez and Meira-Machado,
2015, Allignol et al., 2014, Meira-Machado et al., 2006, Datta et al., 2000]. In this setting
our estimator simpli�es (Lemma 4.3) and can be seen as the result of applying the gen-
eral estimation strategy referred to as `targeted learning' [Petersen and van der Laan, 2014,
van der Laan and Rose, 2011] to this classical problem. The setting with baseline covariates
is important for applications, because covariates can help make the coarsening at random
assumption more plausible. As the functional relationship between the baseline covariates
and the transition intensities are unknown in real applications, the ability to use �exible
data-adaptive estimators is important in this context.

In Section 2 we introduce the setting and our notation, and in Section 3 we de�ne our
target parameter and its Gâteaux derivative. Section 4 contains our main result which
establishes the asymptotic distribution of a class of estimators under a set of conditions on
the estimators of the transition hazard functions of the illness-death model. In Section 5
we suggest a data-adaptive method to estimate these functions, and Section 6 contains an
empirical study demonstrating the importance of the targeting step. In Section 7 we apply
our method to estimate the e�ect of sclerotherapy on variceal bleeding and death among
cirrhotic patients. Section 8 contains a discussion of our results. More proofs, simulations,
and technical derivations are provided in the supplementary material (Appendices A-E).

2 Setting and notation

We consider an illness-death process {X(t)}t≥0 with state space {0, 1, 2} as shown in Figure
1 and assume that all subjects start in state 0, i.e., X(0) = 0. We de�ne respectively the time
at which the subject leaves state 0 and the time at which the subject enters the absorbing
state,

T0 = inf{t > 0 : X(t) 6= 0} and T = inf{t > 0 : X(t) = 2}.
Let variable η indicate the state of the process X at time T0, i.e., η = X(T0) = 1 + 1{T0 =
T}, and introduce the counting processes N0k(t) = 1{T0 ≤ t, η = k} for k ∈ {1, 2} and
N12(t) = 1{T ≤ t, η = 1}. Further, denote by W ∈ W ⊆ Rp a set of covariates measured
at baseline (t = 0). Note that while the process X can change over time we assume that
the covariates W are only measured once at baseline (see Section 8 for a discussion of this
assumption).

We assume that the intensity processes of the counting processes with respect to the �ltra-
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Healthy

Illness

Dead

Censored

h01(t)

h02(t)

γ0(t)

h12(s, t)

γ1(s, t)

Figure 1: The illness-death model without recovery. At any time the subjects are in one
of the three states `Healthy', `Illness', `Dead'. `Censored' means end of follow-up which can
happen when the subject is in state `0' or in state `1'.

tion Ft generated by (N01(t), N02(t), N12(t),W ) can be described by deterministic functions
h0k : R+ ×W → R+ for k ∈ {1, 2} and h12 : U ×W → R+, where U = {(t, s) ∈ R2 | s ≤ t}:

E(N0k(dt)|Ft−) = h0k(t,W )Y0(t)dt, where Y0(t) = 1{t ≤ T0},
E(N12(dt)|Ft−) = h12(t, T0,W )Y1(t)dt, where Y1(t) = 1{T0 < t ≤ T}.

We introduce a right-censoring time C at which the observation of the process X stops.
Instead of T0 and T , we only observe T̃0 = T0 ∧ C and T̃ = T ∧ C, and the censoring
indicators ∆0 = 1{T0 < C} and ∆ = 1{T < C}. The right-censored counting processes
are Ỹ0(t) = 1{t ≤ T̃0}, Ỹ1(t) = 1{T̃0 < t ≤ T̃}, Ñ0k(t) = 1{T̃0 ≤ t, η = k,∆0 = 1}, for
k ∈ {1, 2} and Ñ12(t) = 1{T̃ ≤ t,∆ = 1, η = 1} and the censoring process is given by
ÑC(t) = 1{T̃ ≤ t,∆ = 0}. The following de�nition of the coarsening at random (CAR)
assumption is based on van der Vaart [2004, section 2.1].

Assumption 2.1 (CAR). There is a measurable function r̃ which characterizes the density
of the conditional distribution r of C given (T0, T,W ) such that almost everywhere:

r(u|T0, T,W ) = r̃(u|T0 ∧ u, T ∧ u,W ).

We assume that the distribution Q of the uncensored random variables (T0, T,W ) belongs
to a family of probability measures Q and that the distribution P of the censored random
variables (T̃0, T̃ ,∆0,∆1,W ) belongs to a family of probability measures P. Under CAR,
without additional assumptions about Q the set P is not restricted and Q ∈ Q is identi�able
from P ∈ P under a positivity assumption [Gill et al., 1997, van der Vaart, 2004]. Positivity
means that the probability of observing the variables (T0, T ) is strictly positive given W .
For practical applications the positive assumption implies that we can only identify the
conditional distribution of the process X given W on a time interval where the probability
of censoring is strictly less than 100%. To achieve this, we assume in Corollary 3.1 that the
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cumulative hazard function for the censoring distribution is bounded by a �nite constant
on a bounded interval conditional on the covariates. Lemma 2.2 and Corollary 3.1 below
establish identi�ability results for our setting. Let γ0 : R+×W → R+ and γ1 : U ×W → R+

denote respectively the transition hazard functions for the censoring process for individuals
in state 0 and state 1 with respect to the �ltration Ft ∨ σ{NC(t)}, and denote by F̃t the
�ltration generated by (Ñ01(t), Ñ02(t), Ñ12(t), ÑC(t),W ).

Lemma 2.2. Under CAR the intensity processes of the observed counting processes and the
censoring process with respect to F̃t are given by

E(Ñ0k(dt)|F̃t−) = h0k(t,W )Ỹ0(t)dt, for k ∈ {1, 2},
E(Ñ12(dt)|F̃t−) = h12(t, T0,W )Ỹ1(t)dt,

and

E(ÑC(dt)|F̃t−) =
{
γ0(t,W )Ỹ0(t) + γ1(t, T0,W )Ỹ1(t)

}
dt.

Proof. The proof of the lemma is given in Appendix A.

3 Target and nuisance parameters

In the context of the illness death model, parameters of interest are transition probabilities
[e.g., Allignol et al., 2014] as well as state occupation probabilities [e.g., Datta and Satten,
2001]. Our methods require that the parameter is de�ned by a smooth functional of the
distribution Q ∈ Q and identi�able under CAR via Lemma 2.2 from the censored data
distribution P ∈ P. Here and in what follows we consider as parameter of interest the
probability of being in the illness state at time horizon t > 0, i.e., Q(T0 ≤ t, T > t). We
de�ne the cumulative hazard functions for the possible transitions as

H0k(t, w) =

∫ t

0

h0k(s, w) ds, H12(t, s, w) =

∫ t

s

h12(u, s, w) du,

for k ∈ {1, 2}, and similarly we de�ne the cumulative censoring hazard functions as

Γ0(t, w) =

∫ t

0

γ0(s, w) ds, Γ1(t, s, w) =

∫ t

s

γ1(u, s, w) du.

By µ we denote the marginal distribution of W , and we let ν = (H01, H02, H12,Γ0,Γ1, µ)
denote the set of all nuisance parameters characterizing the distribution Q and the censoring
mechanism. In the Appendix we show how Lemma 2.2 implies that H01, H02, and H12,
restricted to the interval [0, t], are identi�able from the observed data distribution P under
a positivity assumption and CAR, and how we can express the target parameter Q(T0 ≤
t, T > t) as a functional of these nuisance parameters and µ. This gives the following
identi�ability result.

Corollary 3.1. Assume CAR and that there is a �xed constant K <∞ such that Γ0(t, w) <
K and Γ1(t, u, w) < K for all w ∈ W and u ∈ [0, t]. Then we have that Q(T0 ≤ t, T > t) =
Ψt(P ) where Ψt : P → R is de�ned as

Ψt(P ) = Ψ̃t(ν) =

∫

W
ρ(t, 0, w; ν)µ(dw), (1)
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where

ρ(t, u, w; ν)

=

∫ t

u

exp

(
−
∫ s

u

{h01(z, w) + h02(z, w)}dz −
∫ t

s

h12(z, s, w) dz

)
H01(ds, w).

(2)

Proof. See Appendix A.

By the identi�ability result above we may now focus on estimating the parameter Ψt de�ned
on P from samples O = (T̃0, T̃ ,∆0,∆,W ) ∼ P ∈ P. The asymptotic distribution of any
regular asymptotically linear estimator is uniquely characterized by its in�uence function
[see e.g., van der Vaart, 2000]. The in�uence function IFt of an estimator Ψ̂t of the parameter
Ψt under the model P is a function of the data O and the probability measure P ∈ P such
that for all P ∈ P,

Ψ̂t −Ψt(P ) =
1

n

n∑

i=1

IFt(Oi;P ) + oP (n−1/2) and E[IFt(Oi;P )] = 0, (3)

when Oi ∼ P . For a fully non-parametric model, all regular asymptotically linear estimators
have the same in�uence function. In this case the in�uence function is closely related to the
Gâteaux derivative of Ψt and therefore we use the same notation for the in�uence function
and the Gâteaux derivative. For more details about the relation between the Gâteaux
derivative and the in�uence function see Bickel et al. [1993], Ichimura and Newey [2022],
Chernozhukov et al. [2018], Hampel [1974], Huber [2004]. For the parameter of interest
de�ned in equation (1) the Gâteaux derivative is given as follows.

Lemma 3.2. Under CAR, the Gâteaux derivative of Ψt at P ∈ P in direction of the Dirac
measure δO of an observation O = (T̃0, T̃ ,∆0,∆,W ) is given by

IFt(O; ν) = ρ(t, 0,W ; ν) + ϕt(O; ν)− Ψ̃t(ν)

where

ϕt(O; ν) =

∫ t

0

[
e−H12(t,u,W ) − ρ(t, u,W ; ν)

] Ñ01(du)− Ỹ0(u)H01(du,W )

e−Γ0(u,W )

−
∫ t

0

ρ(t, u,W ; ν)
Ñ02(du)− Ỹ0(u)H02(du,W )

e−Γ0(u,W )

− eΓ0(T̃0,W )

∫ t

0

e−[H12(t,T̃0,W )−H12(u,T̃0,W )] Ñ12(du)− Ỹ1(u)H12(du, T̃0,W )

e−Γ1(u,T̃0,W )
.

(4)

Proof. See Appendix B.

The Gâteaux derivative above depends on P ∈ P, and above we abuse notation slightly
by letting this dependence be implicit through ν which is uniquely determined by P . To
formally calculate the information bound for Ψt we would have to show that IFt is also the
path-wise (or Hadamard) derivative of Ψt, which is a stronger result than the above lemma
[Bickel et al., 1993, van der Vaart, 2000] and can be shown in several ways, see for instance
van der Vaart [1991], van der Laan and Robins [2003], Tsiatis [2006], Bickel et al. [1993],
Ichimura and Newey [2022]. Below we use the Gâteaux derivative IFt to motivate a class of
estimators and then directly show that these estimators are asymptotically linear. For this
purpose, Lemma 3.2 is su�cient.
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4 Targeted estimation

We construct a class of asymptotically linear estimators for the parameter Ψt(P ) that has IFt
as its in�uence function. Assume that {Oi}ni=1 are n independent draws from the distribution
P . Given estimators ν̂ = (Ĥ01, Ĥ02, Ĥ12, Γ̂0, Γ̂1, µ̂) of all the nuisance parameters, we de�ne
the plug-in estimator based on equation (1):

Ψ̂0
t =

∫
ρ(t, 0, w; ν̂)µ̂(dw). (5)

The superscript `0' is used to indicate that this is an initial estimator. Note that this
estimator does not use the estimators of the cumulative censoring hazard functions Γ̂0

and Γ̂1. Denoting by Pn the empirical measure corresponding to {Oi}ni=1 and writing
Pn[f(·; ν)] = n−1

∑n
i=1 f(Oi; ν), we de�ne the one-step estimator

Ψ̂t = Ψ̂0
t + Pn[IFt(·; ν̂)]. (6)

To motivate this estimator we provide two interpretations of the term Pn[IFt(·; ν̂)]: It can
be interpreted as an approximation of the �rst order asymptotic bias due to estimation of
the nuisance parameter ν. This interpretation motivates the general strategy of adjusting
the initial estimator Ψ̂0

t by adding Pn[IFt(O; ν̂)] and is referred to as one-step estimation
or debiasing [Kraft and van Eeden, 1972, Bickel, 1975, Pfanzagl and Wefelmeyer, 1982,
Fisher and Kennedy, 2021, Chernozhukov et al., 2018]. Alternatively, ν 7→ Pn[IFt(O; ν)]
can be interpreted as an empirical score function, which suggests that we should look for an
estimator ν̂ that solves Pn[IFt(O; ν)] = 0. This interpretation motivates targeted minimum
loss based estimation (TMLE) [van der Laan and Rubin, 2006, van der Laan and Rose,
2011], which substitutes an updated estimator ν̂∗ for the nuisance parameter estimator ν̂
such that Pn[IFt(O; ν̂∗)] = 0. The two approaches are asymptotically equivalent, and for
simplicity we focus on the one-step estimation approach in the following.

Theorem 4.2 below states that the one-step estimator in equation (6) is asymptotically linear
and normally distributed under a set of conditions concerning the estimator of the nuisance
parameter ν. To ensure these conditions, one approach is to specify (semi-)parametric
models for the conditional transition hazard. To decrease the risk of model misspeci�cation,
our strategy is to use data-adaptive methods and to use cross-validation to select the best
model from a class of candidate models. For example, in Section 5 we use a penalized Poisson
regression approach where the penalty parameter is selected based on cross-validation. The
asymptotic distribution of an estimator selected by cross-validation is di�cult to analyze,
and an important consequence of the following theorem is that we only need results on the
rate of convergence of these estimators to make asymptotically valid inference.

We now state the assumptions needed to prove our main theorem. In the following we use
the notation P [f ] =

∫
f(o)P (do), and we let ‖·‖L2

P (Z) denote the L2-norm of real-valued

functions de�ned on Z with respect to the measure P , i.e., ‖f‖L2
P (Z) = (P [f2])1/2. We

also de�ne Ut := U ∩ [0, t]2 for any t > 0. Recall from Section 2 that we assumed the
existence of intensities for N and NC . Below we use h01, h02, h12, γ0, and γ1 to denote the
transition hazard functions corresponding to a given P ∈ P under consideration. Notably,
we will assume that also the estimators of the cumulative hazard functions have densities
with respect to Lebesgue measure, i.e., we assume that we can write

Ĥ0k(t, w) =

∫ t

0

ĥ0k(s, w) ds, for k ∈ {1, 2}, Ĥ12(t, s, w) =

∫ t

s

ĥ12(u, s, w) du,

Γ̂0(t, w) =

∫ t

0

γ̂0(s, w) ds, and Γ̂1(t, s, w) =

∫ t

s

γ̂1(u, s, w) du.

(7)
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In Section 5 we propose to estimate the nuisance parameters by estimating the hazard
functions (h01, h02, h12, γ0, γ1) directly, and hence equation (7) will in that case be satis�ed.

Assumption 4.1. Let P be a family of probability measures specifying a distribution for
O = (T̃0, T̃ ,∆0,∆,W ). We assume the following for any P ∈ P.

(i) There exists a constant K ∈ (0,∞) such that

1

K
< h01(u,w), h02(u,w), γ0(u,w) < K, for all (u,w) ∈ [0, t]×W,

and
1

K
< h12(u, s, w), γ1(u, s, w) < K, for all (u, s, w) ∈ Ut ×W.

(ii) Let ν̂ = (Ĥ01, Ĥ02, Ĥ12, Γ̂0, Γ̂1, µ̂) denote the tuple of estimators of the nuisance pa-
rameter ν, where µ̂ denotes the empirical measure on W. There exist ĥ01, ĥ02, ĥ12,
γ̂0, and γ̂1 so that equation (7) holds, and we have

‖ĥ0k − h0k‖L2
m⊗µ([0,t]×W) = oP (n−1/4), for k ∈ {1, 2},

‖γ̂0 − γ0‖L2
m⊗µ([0,t]×W) = oP (n−1/4),

‖ĥ12 − h12‖L2
m⊗µ(Ut×W) = oP (n−1/4), and

‖γ̂1 − γ1‖L2
m⊗µ(Ut×W) = oP (n−1/4),

where m denotes Lebesgue measure. Furthermore, there exists a constant C <∞ such
that Ĥ01, Ĥ02, Ĥ12, Γ̂0, and Γ̂1 are uniformly bounded by C with probability tending
to one.

(iii) There exists a Donsker class of functions F = {f : Ut×W → R+} such that IFt(·; ν̂) ∈
F with probability tending to one.

Assumption (i) is a general assumption about the family P. Assumption (ii) is speci�c to
the choice of estimators of the nuisance parameters and states that we are able to estimate
the transition hazards at a speci�c rate. Assumption (iii) also concerns the estimators of the
cumulative transition hazards and will for instance hold if the estimators of the cumulative
transition hazards belong to a class of functions with uniformly bounded sectional variation
norm (see for instance [van der Vaart, 2000, van der Vaart and Wellner, 1996, Gill et al.,
1995, van der Laan and Benkeser, 2018]). In Section 5 we propose highly data-adaptive
estimators of the transition hazard functions and indicate how assumptions (ii) and (iii) can
be established for such estimators.

Theorem 4.2. Assume that Assumption 4.1 holds for the family P and the tuple of esti-
mators ν̂. Then for any P ∈ P and with Ψ̂t de�ned in equation (6), it holds that

Ψ̂t −Ψt = (Pn − P )[IFt(·; ν)] + oP (n−1/2), (8)

i.e., Ψ̂t is asymptotically linear with in�uence function IFt(·; ν).

Proof. We have the expansion

Ψ̂0
t −Ψt(P ) = Pn[ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)]

= Pn[ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)]± (Pn − P )[IFt(·; ν̂)]

= (Pn − P )[IFt(·; ν̂)]− Pn[IFt(·; ν̂)] + Rem(P, ν̂),

(9)

7
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where the remainder term is by de�nition

Rem(P, ν̂) = Pn[ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)] + P [IFt(·; ν̂)]. (10)

In Appendix C we show that Assumptions 4.1 (i) and (ii) imply that

Rem(P, ν̂) = oP (n−1/2), (11)

see in particular Proposition C.1. Assumptions 4.1 (i) and (ii) also imply that ‖ IFt(·; ν̂)−
IFt(·; ν)‖L2

P (Ut×W)
P−−→ 0, and thus Assumption 4.1 (iii) and lemma 19.24 in van der Vaart

[2000] states that

(Pn − P )[IFt(·; ν̂)] = (Pn − P )[IFt(·; ν)] + oP (n−1/2). (12)

Combining equations (9), (11), and (12) we obtain

Ψ̂0
t −Ψt(P ) = (Pn − P )[IFt(·; ν)]− Pn[IFt(·; ν̂)] + oP (n−1/2).

Adding Pn[IFt(·; ν̂)] to both sides of the equation above and using the de�nition of the one-
step estimator (equation (6)) gives the claimed asymptotic representation in equation (8).
The �nal claim follows by the de�nition of an in�uence function (equation (3)).

Before detailing our suggested estimation method for the conditional hazard functions (Sec-
tion 5), we consider the special case when no baseline information is available. In this
setting the most natural estimator of the transition rates from the healthy state to another
state is the Nelson-Aalen estimator [Andersen et al., 2012]. To estimate the cause-speci�c
cumulative hazard functions of the �rst transitions, H01, H02, and Γ0, the corresponding
Nelson-Aalen estimators are

Γ̂0(t) =

∫ t

0

1

{
n∑

i=1

Ỹ0,i(u) > 0

}∑n
i=1 ÑC,i(du)∑n
i=1 Ỹ0,i(u)

, and

Ĥ0k(t) =

∫ t

0

1

{
n∑

i=1

Ỹ0,i(u) > 0

}∑n
i=1 Ñ0k,i(du)∑n
i=1 Ỹ0,i(u)

,

(13)

for k ∈ {1, 2}. In the remainder of this section the nuisance parameter is ν =
(H01, H02, H12,Γ0,Γ1) and the estimators Ĥ01, Ĥ02, and Γ̂0 are now assumed to be Nelson-
Aalen estimators, while H12 and Γ1 can for instance be estimated as proposed in Section 5.
In this situation the one-step estimator given in equation (6) simpli�es as shown in the
following lemma.

Lemma 4.3. If Ĥ01 and Ĥ02 are Nelson-Aalen estimators as de�ned in equation (13) the
one-step estimator of equation (6) is given by:

Ψ̂t =

∫ t

0

e−Ĥ12(t,u)−Ĥ01(u)−Ĥ02(u)Ĥ01(du)

− 1

n

n∑

i=1

eΓ̂0(T̃0,i)

∫ t

0

e−[Ĥ12(t,T̃0,i)−Ĥ12(u,T̃0,i)]
Ñ12,i(du)− Ỹ1,i(u)Ĥ12(du, T̃0,i)

e−Γ̂1(u,T̃0,i)
.

(14)

Proof. First note that Pn[ρ(t, 0, ·; ν̂)] = Ψ̃(ν̂) = Pn[Ψ̃(ν̂)]. This also holds in the case
with covariates as long as we use the empirical measure to estimate µ. It follows that
Pn[IFt(·; ν)] = Pn[ϕt(·; ν)] with ϕt de�ned in equation (4). Here we abuse notation slightly

8
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because ϕt(·; ν) is not a function of W in the present setting. The one-step estimator is
given by

Ψ̂t = Ψ̃(ν̂) + Pn[ϕt(·; ν̂)]

=

∫ t

0

e−Ĥ12(t,u)−Ĥ01(u)−Ĥ02(u)Ĥ01(du)

+
1

n

n∑

i=1

∫ t

0

e−Ĥ12(t,u) − ρ(t, u; ν̂)

e−Γ̂0(u)

[
Ñ01,i(du)− Ỹ0,i(u)Ĥ01(du)

]

− 1

n

n∑

i=1

∫ t

0

ρ(t, u; ν̂)

e−Γ̂0(u)

[
Ñ02,i(du)− Ỹ0,i(u)Ĥ02(du)

]

− 1

n

n∑

i=1

eΓ̂0(T̃0,i)

∫ t

0

e−[Ĥ12(t,T̃0,i)−Ĥ12(u,T̃0,i)]

e−Γ̂1(u,T̃0,i)

[
Ñ12,i(du)− Ỹ1,i(u)Ĥ12(du)

]
,

where the second equality follows by de�nition. We claim that when Ĥ01 and Ĥ02 are
Nelson-Aalen estimators the two middle terms in the above display are zero. This follows
by a direct calculation as follows. For any function f , let f t(u) := f(u) ·1{u ≤ t}. We have

1

n

n∑

i=1

∫ t

0

f(u)Ỹ0,i(u)Ĥ0k(du) =
1

n

n∑

j=1

n∑

i=1

∫ T̃0,i

0

f t(u)
Ñ0k,j∑n
l=1 Ỹ0,l(u)

=
1

n

n∑

j=1

n∑

i=1

∆jf
t(T̃0,j)1{T̃0,j ≤ T̃0,i}∑n

l=1 Ỹ0,l(T̃0,j)

=
1

n

n∑

j=1

∆jf
t(T̃0,j)

n∑

i=1

1{T̃0,j ≤ T̃0,i}∑n
l=1 1{T̃0,j ≤ T̃0,l}

=
1

n

n∑

j=1

∆jf
t(T̃0,j)

=
1

n

n∑

i=1

∫ t

0

f(u)Ñ0k,i(du).

Using this with f(u) = [e−Ĥ12(t,u) − ρ(t, u; ν̂)]eΓ̂0(u) and f(u) = ρ(t, u; ν̂)eΓ̂0(u) gives the
result.

Using similar arguments as given in the proof of Theorem 4.2 we can establish asymptotic
normality of the estimator given in equation (14). Unfortunately, equation (7) does not hold
for the Nelson-Aalen estimator of the transition hazard functions, and hence this result is
not a direct corollary of Theorem 4.2. In Appendix C.1 we demonstrate how we can use
empirical process theory to prove an analogous version of Theorem 4.2 in a setting without
baseline covariates.

5 Nuisance parameter estimation

To apply Theorem 4.2 we need estimators of h01, h02, h12, γ0, and γ1. We suggest to use a
penalized Poisson regression approach to model each of the conditional hazard functions, sim-
ilar to the approach taken by Rytgaard et al. [2021]. A Poisson regression model is suitable
when the conditional hazard function can be approximated by a piece-wise constant function
of time and covariates. By letting the grid on which the hazard function is approximated be

9
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su�ciently �ne with increasing sample size we can approximate a large class of models. An-
other useful property is that when the nuisance parameter estimators (ĥ01, ĥ02, ĥ12, γ̂0, γ̂1)
are piece-wise constant, the estimated martingale integrals in equation (6) are straight-
forward to calculate analytically (see Appendix D). We focus on estimating a conditional
hazard function h de�ned on Ut×W. Here we have the nuisance parameter h12 in mind but
estimation of γ1 proceeds in exactly the same way. Estimation of h01, h02, and γ0 can be
done in a similar but simpler way as these functions only have one time-varying argument.
We approximate log h as a linear combination of basis functions indexed by some time grid
0 = t0 < t1 < · · · < tK = t, i.e.,

log h(u, s, w) =
K∑

k=1

k∑

l=1

1{tk−1 ≤ u < tk, tl−1 ≤ s < tl}hk,l(w),

where hk,l : W → R for all (k, l) with 1 ≤ l ≤ k ≤ K and K is the number of intervals
de�ning the grid. We then model each hk,l as a linear combination of p basis functions
fj : W → R, j = 1, . . . , p, so that

hk,l(w) =

p∑

j=1

βk,l,jfj(w), for some (βk,l,1, . . . , βk,l,p)
T ∈ Rp, with 1 ≤ l ≤ k ≤ K.

One option is to use a partition W1, . . . ,Wp of the covariate space W to construct the basis
functions fj(w) := 1{w ∈ Wj}, j = 1, . . . , p. With this choice of basis functions we can
index h by a collection of coe�cients β := { βk,l,j : 1 ≤ l ≤ k ≤ K, j ∈ {1, . . . , p}} and
de�ne hβ :

log hβ(u, s, w) =
K∑

k=1

k∑

l=1

p∑

j=1

βk,l,j · 1{tk−1 ≤ u < tk, tl−1 ≤ s < tl, w ∈ Wj}. (15)

Estimation of hβ then reduces to estimation of the pK(K + 1)/2 number of coe�cients.
When the covariate space W is discrete we can use the collection of all singletons as a
partition, which corresponds to considering interactions of all order between the covariates
and the time grid. We refer to this as the saturated model. When the number of covariates is
not too large we can use this approach to approximate a completely non-parametric model.
For a large number of baseline covariates this approach is not feasible, and we can instead
consider all interactions up to some order.

To be more speci�c, we now consider estimation of the transition hazard function h = h12

with a data set D = {O1, . . . , On} of observations Oi ∼ P ∈ P. Assuming h to be on the
form in equation (15) the negative log-likelihood for β is equal to

L (β;D)

= −
n∑

i=1

∆0,i1{ηi = 1}
(

∆i log hβ(T̃i, T0,i,Wi)−
∫ T̃i

T0,i

hβ(u, T0,i,Wi) du

)
+ C

= −
K∑

k=1

k∑

l=1

p∑

j=1

(Dk,l,j log hβ(tk−1, tl−1, wj)−Rk,l,jhβ(tk−1, tl−1, wj)) + C,

(16)

where C is a constant depending only on the data and the censoring distribution, wj ∈ Wj

for each j = 1, . . . , p,

Dk,l,j =

n∑

i=1

∆0,i1{ηi = 1}1
{
tk−1 ≤ T̃i < tk,∆i = 1, tl−1 ≤ T0,i < tl,Wi ∈ Wj

}
,

10



Manuscript I

and

Rk,l,j

=
n∑

i=1

∆0,i1{ηi = 1}1
{
tk−1 ≤ T̃i, tl−1 ≤ T0,i < tl,Wi ∈ Wj

}(
[tk ∧ T̃i]− [tk−1 ∨ T0,i]

)
.

The likelihood in equation (16) is then recognized as the likelihood of a Poisson model with
event counts Dk,l,j , mean values hβ(tk−1, tl−1, wj) and o�set given by logRk,l,j . When the
time grid and partition ofW are fairly coarse and we have a large data set, we can achieve a
substantial amount of dimension reduction by accumulating the data into counts Dk,l,j and
accumulated risk time Rk,l,j . However, for �ner grids and partitions the total number of
coe�cients to be estimated can easily be of the same or higher order than n. In these cases,
optimizing the likelihood in (16) with respect to β might either be an ill-posed problem or
highly unstable in practice. To alleviate this we suggest to penalize the coe�cients {βk,l,j}
and use e.g., the LASSO estimator β̂λ [Tibshirani, 1996],

β̂λ = argmin
β



L (β,D) + λ

∑

k,l,j

|βk,l,j |



 .

Besides making the optimization problem well-de�ned the penalization parameter λ intro-
duces a selection procedure. The solution will be attained at a value β where some βk,l,j
coe�cients are zero. To select a value for λ we use V -fold cross-validation with the loss func-
tion L given in equation (16). Letting λ̂ denote the value selected by the cross-validation
procedure and β̂ := β̂λ̂, we de�ne hβ̂ as our estimator of h.

By using theoretical results for cross-validated LASSO estimators [Chetverikov et al., 2021]
or general results for hyperparameter selection using cross-validation [van der Vaart et al.,
2006, van der Laan and Dudoit, 2003] it is possible to establish Assumption 4.1 (ii) even
when the number of grid points K and the partition size p increase with the sample size.
A rigorous derivation of the convergence rates of hβ̂ is beyond the scope of this paper. In
the next section we examine the �nite sample performance of the one-step estimator from
equation (6) when we use hβ̂ to estimate the conditional transition hazard functions.

6 Empirical study

To examine the �nite sample performance of the one-step estimator and to demonstrate the
importance of the debiasing step when using data-adaptive methods we conduct a simulation
study for the setting without baseline covariates. We simulate data from an irreversible
illness-death model observed on the interval from 0 to 10. All individuals who are still alive at
time t = 10 are administratively censored and we also introduce an additional right-censoring
scheme. The full data distribution is generated according to a piece-wise constant hazard
model. Healthy individuals have a constant hazard of illness and a (di�erent) constant
hazard of dying. For individuals in the illness state the conditional hazard of dying is also
constant, but depends on the time illness occurred. Speci�cally, the data are generated
according to

h01(u) = 0.3, h02(u) = 0.1, and h12(u, s) =

10∑

i=1

1{i− 1 ≤ s < i}βi,

for all u ∈ [0, 10] and all s ≤ u, where the βi's are chosen as the equally spaced grid of
10 decreasing numbers with β1 = 0.3 and β10 = 0.01. In addition to the administrative
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censoring we simulate a censoring time with constant hazard that depends on the state. We
use γ0(u) = 0.2 and γ1(u, s) = α, for α ∈ {0.02, 0.11, 0.20}, corresponding to three di�erent
censoring regimes with more or less state-dependent censoring.

We report results for estimation of the probability of being ill and alive at time t = 9, i.e.,
Ψ9 with Ψt de�ned in equation (1). In each simulated data set we �t three estimators:
The Aalen-Johansen estimator, the plug-in estimator Ψ̂0

t de�ned in equation (5), and the
one-step estimator Ψ̂t de�ned in equation (6). Recall from Lemma 4.3 that we only need to
estimate the transition hazard h12 and γ1 with the penalized Poisson regression approach
from Section 5 to obtain the one-step estimator. To estimate these nuisance parameters
we use the implementation of penalized Poisson regression available through the R-package
glmnet [Friedman et al., 2010]. We use the time grid 0, 1, . . . , 10, and we use 10-fold cross-
validation to select the penalization parameter. To calculate the Nelson-Aalen estimator we
use the R-package prodlim [Gerds, 2019], and to calculate the Aalen-Johansen estimator we
use the R-package etm [Allignol et al., 2011].

Bias SE MSE
Dependent censoring n Aa-J Ψ̂0

t Ψ̂t Aa-J Ψ̂0
t Ψ̂t Aa-J Ψ̂0

t Ψ̂t

High (α = 0.02) 200 -1.58 -3.59 -1.27 3.73 2.53 3.65 16.32 19.25 14.84
500 -1.34 -2.84 -0.48 2.44 1.90 2.43 7.73 11.66 6.11
1000 -1.46 -2.54 -0.43 1.70 1.54 1.81 5.00 8.81 3.43
1500 -1.43 -2.22 -0.27 1.32 1.33 1.42 3.77 6.69 2.09
5000 -1.39 -0.81 -0.10 0.76 0.85 0.81 2.50 1.37 0.67
10000 -1.41 -0.46 -0.09 0.58 0.62 0.62 2.32 0.59 0.39

Medium (α = 0.011) 200 -0.98 -2.77 -1.13 4.29 2.75 4.06 19.24 15.21 17.70
500 -0.74 -2.72 -0.55 2.79 1.97 2.76 8.31 11.23 7.87
1000 -0.87 -2.46 -0.46 1.96 1.68 1.95 4.58 8.85 4.01
1500 -0.64 -2.07 -0.13 1.50 1.37 1.49 2.63 6.13 2.24
5000 -0.65 -0.75 -0.02 0.91 0.94 0.93 1.25 1.44 0.86
10000 -0.77 -0.45 -0.10 0.65 0.65 0.66 1.01 0.62 0.45

None (α = 0.2) 200 -0.41 -1.62 -0.59 5.33 3.01 5.06 28.44 11.66 25.78
500 0.21 -2.44 -0.23 3.52 2.23 3.31 12.38 10.89 10.94
1000 -0.10 -2.30 -0.41 2.24 1.88 2.16 5.02 8.78 4.82
1500 -0.00 -2.07 -0.20 1.83 1.42 1.78 3.32 6.31 3.21
5000 0.01 -0.75 -0.06 1.10 1.04 1.09 1.20 1.64 1.18
10000 -0.10 -0.44 -0.15 0.75 0.70 0.74 0.58 0.68 0.56

Table 1: The results of 200 simulations of the three estimators for di�erent censoring regimes
(`High', `Medium', and `Low') and sample sizes (n ∈ {200, 500, 1000, 1500, 5000, 10000}).
The table shows the bias, standard error (SE), and mean squared error (MSE) of the
Aalen-Johansen estimator (Aa-J), the plug-in estimator Ψ̂0

t de�ned in equation (5), and
the debiased estimator Ψ̂t de�ned in equation (6).

For each of the three censoring mechanisms we simulated a data set with n number of
observations for n ∈ {200, 500, 1000, 1500, 5000, 10000} and calculated the three estimators.
This was repeated 200 times. The results are summarized in Table 1 in terms of bias,
standard errors (SE), and mean squared errors (MSE), and Figure 2 shows the MSE against
sample size. Figure 3 shows the distribution of the three estimators across the 200 simulated
data sets.

We see that the Aalen-Johansen estimator is biased when state-dependent censoring is
present and unbiased when the censoring is independent. In accordance with results of
Gunnes et al. [2007], also in our study the bias is seen to be fairly small even for a high
degree of state-dependent censoring. Furthermore, the bias does not vary much with n
when the sample size is bigger than 500. The plug-in estimator Ψ̂0

t is also biased, but its
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Figure 2: The mean squared error (MSE) estimated with 200 simulations of the three esti-
mators for di�erent censoring regimes (`High', `Medium', and `Low') plotted against sample
size. Note the log scale on both axis. The estimators are the Aalen-Johansen estimator
(Aa-J), the plug-in estimator Ψ̂0

t de�ned in equation (5), and the debiased estimator Ψ̂t

de�ned in equation (6).

bias decreases with n while it seems una�ected by the degree of state-dependent censoring.
Notably, in small samples the bias of the plug-in estimator is higher than the bias of the
Aalen-Johansen estimator even for a high degree of state-dependent censoring. The debiased
estimator Ψ̂t has the lowest bias for almost all sample sizes when there is a high or medium
degree of state-dependent censoring, and it has approximately the same bias as the Aalen-
Johansen estimator when censoring is independent. We also see that the standard errors of
all three estimators are comparable for each n, though the plug-in estimator tends to have
smaller standard errors for small sample sizes. This re�ects the fact that penalization trades
o� bias for a decrease in variance.

A central motivation for targeted or debiased learning is that a naive plug-in approach will
typically give poor performance for estimation of a low-dimensional target parameter when
machine learning is used to estimate one or several high-dimensional nuisance parameters,
see for instance Chernozhukov et al. [2018]. Our simulation results for the plug-in estimator
con�rm this phenomenon in the setting of the illness-death model. Our empirical studies
further indicate that the bias due to model misspeci�cation in �nite samples can be sub-
stantially smaller than the bias due to penalization and hyperparameter selection. We also
conclude that the debiased estimator is in this setting able to compensate for the bias caused
by penalization and hyperparameter selection, and that it provides good estimates across
all censoring regimes and sample sizes considered.

We also performed a simulation study when baseline covariates were present. The results
are shown in Appendix E.

7 Analysis of the PROVA trial

To illustrate our methods we consider data from the PROVA trial [PROVA Study Group,
1991]. This randomized clinical trial included 286 patients and was initiated to investigate
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Figure 3: The results of 200 simulations of the three estimators for di�erent censoring
regimes and increasing number of samples, n ∈ {500, 1500, 5000}. The gray boxplots show
the distribution of the Aalen-Johansen estimator, the blue boxplots show the distribution
of the plug-in estimator Ψ̂0

t de�ned in equation (5), and the orange boxplots show the
distribution of the debiased estimator Ψ̂t de�ned in equation (6). The results are strati�ed
according to both the number of samples n and the degree of state-dependent censoring.
For the state-dependent censoring, `High' is the regime with α = 0.02, `Medium' is α = 0.11
and `None' is α = 0.2. The black line is the state occupation probability Ψt at time t = 9
of the data-generating distribution.

the e�ect of propanolol and/or sclerotherapy on the incidence of the �rst variceal bleeding
among cirrhotic patients. We focus on the e�ect of receiving sclerotherapy compared to
not receiving sclerotherapy on both the risk of variceal bleeding and death. At the time
of randomization no patient had experienced variceal bleeding, and we consider this as the
healthy state (state 0 in Figure 1). After randomization a patient can experience variceal
bleeding, which we refer to as the illness state (state 1 in Figure 1). A patient can die both
with or without experiencing variceal bleeding, so death is the absorbing state (state 2 in
Figure 1). Patients in the study were censored either because they dropped out of the study
(20 patients) or because the study ended (191 patients), see Figure 4. In addition a set of
baseline variables was measured at the time of randomization: Age, prothrombin, bilirubin,
sex, size of variceal size (grade 1-3), and whether or not the patient also received propanolol.

In this study the cause of censoring was not exclusively administrative, and hence it makes
sense to use both the available baseline information as well as the time-dependent status of
bleeding to model the censoring distribution. However, since there is no good understanding
of how these variables would in�uence the censoring mechanism, (semi)-parametric models
of these transitions are di�cult to pre-specify. The risk of model misspeci�cation can be
avoided by using a data-adaptive model selection strategy that incorporates highly �exible
models, such as the penalized Poisson regression approach described in Section 5.

To use the penalized Poisson regression approach we categorize each of the continuous vari-
ables age, prothrombin, and bilirubin into three groups determined by the quantiles of the
empirical distribution at 33% and 66% probability. The time axis is discretized according
to the empirical quantiles of T̃0 at 10%, 20%, . . . , 90% probability. With this setup, the
saturated Poisson regression models (which include all interactions) for the transitions haz-
ards from state 0 contain 10 × 34 × 22 = 3240 parameters, and the saturated models for
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the transitions hazards from state 1 contain 55 × 34 × 22 = 17820 parameters. For each
transition hazard the penalty parameter λ is chosen by 10-fold cross-validation, which is
repeated 5 times. The penalty parameter used for the �nal model is chosen as the average
of the minimizer across these 5 repetitions, and the �nal model is estimated on the full data
set with this penalty parameter. With estimates of the nuisance parameters h01, h02, h12,
γ0, and γ1 in hand, the one-step estimator Ψt de�ned in equation (6) is calculated using
the algorithm given in Appendix D. The estimates of the nuisance parameters and the �nal
one-step estimates are calculated separately in the two treatment arms.

The asymptotic representation of the estimator given in Theorem 4.2 yields point-wise con-
�dence intervals for the state occupation probability. We can use this to conclude that the
probability of being alive and having experienced a variceal bleeding 6 months after ran-
domization is 2.11% lower for patients who received sclerotherapy, but that this di�erence
is not statistically signi�cant because the Wald-based con�dence interval is [−3.62%, 7.84%]
which includes zero.

To give a more complete description of the e�ects of the treatment we also estimate the
probability of being event-free, see Appendix B.1 for a brief outline of how an estimator
of this parameter can be obtained. This provides us with estimates of all state occupation
probabilities of the three possible states. The results are shown in Figure 5 as a function of
time after randomization. We see that while treatment with sclerotherapy does not seem to
have a signi�cant e�ect on bleeding it instead seems to increase mortality.

No treatment Treatment

0 12 24 36 48 0 12 24 36 48
Months after randomization

P
at

ie
nt

Figure 4: The data from the PROVA trial. Each line segment represents a patient. The gray
line segments indicate that the patient is in the healthy state, and the black line segments
indicate that the patient is in the illness state. The time of death was observed for the
patients in the red area, and for these patients the end of the line segments indicate the
time of death. The time of death was not observed for patients outside the red area, and for
these patients the end of the line segments indicate the end of follow-up. Treatment means
that sclerotherapy was given while no treatment means that no sclerotherapy was given.
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Figure 5: Estimated state occupation probabilities calculated from the PROVA trial data
using the one-step estimators described in Section 4 and Appendix B.1. For each time point
after randomization the dark-gray area indicates the probability of being dead, the light-gray
area indicates the probability of being alive and having experienced variceal bleeding, and the
white area indicates the probability of being alive and free of variceal bleeding. Treatment
means that sclerotherapy was given while no treatment means that no sclerotherapy was
given.

8 Discussion

In this paper we have derived a class of estimators of the state occupation probability in the
irreversible illness-death model. We have established asymptotic normality of these estima-
tors under a set of general conditions on the estimators of the transition hazards of the model,
and we have derived a �exible data-adaptive penalized Poisson regression approach to esti-
mate these hazard functions. Compared to inverse probability of censoring weighted (IPCW)
estimators our proposed estimators do not rely on correctly speci�ed (semi-)parametric mod-
els converging at the parametric rate n−1/2. Instead, the validity of our proposed estimators
relies on the convergence rate of the estimators of the transition hazards being oP (n−1/4). In
particular, we can use non-parametric estimators of the hazard functions and data-adaptive
model selection while still obtaining asymptotically valid con�dence intervals for our pa-
rameter of interest, even when we do not know the exact asymptotic distribution of these
hazard function estimators. Importantly, for an IPCW-based estimator to be valid we have
to either make more restrictive assumptions about the censoring distribution than when
using our class of estimators or use a suitably undersmoothed non-parametric estimator.

We have considered the setting where the covariates W was assumed to be measured only
once at baseline. The censoring process was allowed to depend on W and on the whole
history of the process X. We believe that this, together with the use of data-adaptive
methods, will make the identifying assumption about the censoring mechanism plausible in
many realistic settings. However, an even weaker assumption on the censoring mechanism
is to allows it to also depend on a time-dependent covariate process. A natural extension
of our work is thus to allow the transition hazards of the illness-death model to depend on
other time-dependent processes than the process X itself. This has been considered for other
models and in more generality, typically in discrete time [Murray and Tsiatis, 1996, Tsiatis,
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2006, van der Laan and Robins, 2003]. Recently, Rytgaard et al. [2022] derived results for
a class of targeted estimators for parameters of processes observed in continuous time. The
illness-death model can be considered as a special case of their setting, and so these results
will be useful to generalize our results to a setting with time-dependent covariates.

A Identi�ability under CAR

In this section we prove Lemma 2.2 and Corollary 3.1.

Proof of Lemma 2.2. The lemma describes the intensity processes of the observed counting
processes with respect to the �ltration generated by the observed data. We show that the
intensity process of Ñ01(t) with respect to the �ltration F̃t− is given by Ỹ0(t)h01(t,W ).
When T̃0 < t then Ñ01(dt) = 0, and when T̃0 ≥ t, i.e., Ỹ0(t) = 1, then the information in
F̃t− is equivalent to {T̃0 ≥ t,W}, hence

E
[
Ñ01(dt) | F̃t−

]
= Ỹ0(t)E

[
Ñ01(dt) | T̃0 ≥ t,W

]
=

Ỹ0(t)

E(Ỹ0(t) |W )
E
[
Ñ01(dt)

∣∣∣W
]
. (17)

Similarly, we have

E
[
Ỹ0(t)h01(t,W ) dt

∣∣∣ F̃t−
]

=
Ỹ0(t)

E[Ỹ0(t) |W ]
E
[
Ỹ0(t)h01(t,W ) dt

∣∣∣W
]
. (18)

To prove the statement of Lemma 2.2 for Ñ01 we have to show equality of equations (17)
and (18). Under CAR (Assumption 2.1) we have for all z ≥ t ≥ s and w,

E[1{C < s} | T = z, T0 = t,W = w] =

∫ s

0

r(c | z, t, w) dc =

∫ s

0

r̃(c | c, c, w) dc,

which implies

E[1{C < s} | T > t, T0 = t,W = w] = E[1{C < s} | T0 ≥ t,W = w]. (19)

Using the equality in equation (19) we have

E
[
Ñ01(dt)

∣∣∣W = w
]

= E[1{C ≥ t} | T > t, T0 = t,W = w]E[Y0(t) |W = w]h01(t, w) dt

= E[1{C ≥ t} | T0 ≥ t,W = w]E[Y0(t) |W = w]h01(t, w) dt

= E[Ỹ0(t) |W = w]h01(t, w) dt.

Substituting the previous display into equation (17) yields equality with equation (18).

For Ñ12 we should focus on the event T̃0 < t, in which case we can treat T̃0 as a baseline
covariate and use the same arguments as above. The result for ÑC follows from the de�nition
of the �ltrations.

Proof of Corollary 3.1. We need to show that the parameter Q(T0 ≤ t, T > t) is identi�able
from the observed data distribution P when we assume CAR and that Γ0 and Γ1 are
uniformly bounded on the interval before time t. First we write

Q(T0 ≤ t, T > t)

=

∫

W
Q(T0 ≤ t, T > t |W = w)µ(dw)

=

∫

W

∫ t

0

Q(T > t | η = 1, T0 = s,W = w)Q(T0 ∈ ds, η = 1 |W = w)µ(dw).
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The probability Q(T > t | η = 1, T0 = s,W = w) is a conditional survival function which
we can write as

Q(T > t | η = 1, T0 = s,W = w) = exp

(
−
∫ t

s

h12(z, s, w) dz

)
,

and by de�nition of a hazard we can write

Q(T0 ∈ ds, η = 1 |W = w) = exp

(
−
∫ s

0

{h01(z, w) + h02(z, w)}dz

)
H01(ds, w).

Combining the three previous displays we get

Q(T0 ≤ t, T > t)

=

∫

W

∫ t

0

exp

(
−
∫ t

s

h12(z, s, w) dz −
∫ s

0

{h01(z, w) + h02(z, w)} dz

)
H01(ds, w)µ(dw),

which is equation (1) of Corollary 3.1. Let H01|t and H02|t denote, respectively, H01 and
H02 restricted to the set [0, t] ×W, and let H12|t denote H12 restricted to the set Ut ×W.
We can then write

Q(T0 ≤ t, T > t)

=

∫

W

∫ t

0

exp

(
−
∫ t

s

h12(z, s, w) dz −
∫ s

0

{h01(z, w) + h02(z, w)}dz

)
H01(ds, w)µ(dw)

=

∫

W

∫ t

0

exp (−H12(t, s, w)−H01(s, w)−H02(s, w))H01(ds, w)µ(dw)

=

∫

W

∫ t

0

exp
(
−H12|t(t, s, w)−H01|t(s, w)−H02|t(s, w)

)
H01|t(ds, w)µ(dw),

and it now only remains to be argued that the parameters H01|t, H02|t, H12|t, and µ can be
identi�ed from the observed data distribution. As the baseline covariates W are una�ected
by the coarsening mechanism it is clear that µ is identi�able. Next, the assumption that Γ0

is bounded by a �nite constant on [0, t] implies that
∫ s

0

Ñ0k(du)− Ỹ0(u)H01|t(du,W )

P (T̃0 ≥ u |W )

is well-de�ned for all s ∈ [0, t]. Lemma 2.2 implies that the above expression is a zero-mean
martingale with respect to F̃t, in particular,

0 = EP

[∫ s

0

Ñ0k(du)

P (T̃0 ≥ u |W )
−
∫ s

0

Ỹ0(u)H01|t(du,W )

P (T̃0 ≥ u |W )

∣∣∣∣∣ F̃0

]

= EP

[∫ s

0

Ñ0k(du)

P (T̃0 ≥ u |W )
−
∫ s

0

Ỹ0(u)H01|t(du,W )

P (T̃0 ≥ u |W )

∣∣∣∣∣W
]
,

which gives

EP

[∫ s

0

Ñ0k(du)

P (T̃0 ≥ u |W )

∣∣∣∣∣W
]

= EP

[∫ s

0

Ỹ0(u)H01|t(du,W )

P (T̃0 ≥ u |W )

∣∣∣∣∣W
]

=

∫ s

0

EP
[
Ỹ0(u)

∣∣∣W
]
H01|t(du,W )

P (T̃0 ≥ u |W )

=

∫ s

0

H01|t(du,W )

= H01|t(s,W ),

for all s ∈ [0, t]. The left hand side involves only observable terms, and hence H01|t is
identi�able. Similar arguments give that H02|t and H12|t are also identi�able.
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B Gâteaux derivative of the target parameter

In this section we prove Lemma 3.2. Let Pε = P + ε(δO − P ), where δO denotes the Dirac
measure in O = (T̃0, T̃ ,∆0,∆1,W ). For a function f : R → R that is di�erentiable at 0 we
use the notation ∂εf(ε) := f ′(0). De�ne the operators κ0l : P → K0,

κ0l[P ](t, w) :=

∫ t

0

P (T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)
, for l ∈ {1, 2}, (20)

and κ12 : P → K1

κ12[P ](t, s, w) :=

∫ t

s

P (T̃0 ∈ du, η = 1,∆ = 1, T̃0 = s,W = w)

P (T̃0 ≥ u, η = 1, T̃0 = s,W = w)
,

where K0 is the collection all cumulative transition hazard functions out of state 0, and K1

is the collection all cumulative transition hazard functions out of state 1. By Lemma 2.2,
κ01, κ02, and κ12 identify the cumulative transition hazard H01, H02, and H12, and thus we
may write

Ψt(Pε) =

∫

W

∫ t

0

exp {−κ01[Pε](s, w)− κ02[Pε](s, w)− κ12[Pε](t, s, w)}κ01[Pε](ds, w)Pε(dw)

Above we abuse notation slightly by letting P (dw) denote the marginal measure over W.
From this we derive

∂εΨt(Pε)

=

∫

W

∫ t

0

exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}

× κ01[P ](ds, w){∂εPε(dw)}

+

∫

W

∫ t

0

exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}

× {∂εκ01[Pε](ds, w)}P (dw)

−
∫

W

∫ t

0

{∂εκ01[Pε](s, w) + ∂εκ02[Pε](s, w) + ∂εκ12[Pε](t, s, w)}

× exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}κ01[P ](ds, w)P (dw).

(21)

As ∂εPε(dw) = (δO −P )(dw) and κ01(P ) = H01, κ02(P ) = H02, and κ12(P ) = H12 we have
that the �rst expression on the right hand side of equation (21) is equal to

∫

W
ρ(t, 0, w; ν)(δ0 − P )(dw) = ρ(t, 0,W ; ν)− Ψ̃t(ν).

To prove Lemma 3.2 it then only remains to show that

ϕt(O; ν)

=

∫

W

∫ t

0

exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}{∂εκ01[Pε](ds, w)}

× P (dw)

−
∫

W

∫ t

0

{
(∂εκ01[Pε](s, w) + ∂εκ02[Pε](s, w) + ∂εκ12[Pε](t, s, w))

× exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}κ01[P ](ds, w)
}
P (dw),

(22)
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where ϕt is de�ned in equation (4). Firstly we have for l ∈ {1, 2} that

∂εκ0l[Pε](s, w)

= ∂ε

∫ s

0

Pε(T̃0 ∈ du, η = l,∆0 = 1,W = w)

Pε(T̃0 ≥ u,W = w)

=

∫ s

0

[δO − P ](T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)

− [δO − P ](T̃0 ≥ u,W = w)P (T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)2

=

∫ s

0

δO(T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)

− δO(T̃0 ≥ u,W = w)P (T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)2

= δW (w)

∫ s

0

1

P (T̃0 ≥ u,W = w)

{
1(T̃0 ∈ du, η = l,∆0 = 1)

− 1(T̃0 ≥ u)P (T̃0 ∈ du, η = l,∆0 = 1,W = w)

P (T̃0 ≥ u,W = w)

}

= δW (w)

∫ s

0

1

P (T̃0 ≥ u,W = w)

{
Ñ0l(du)− Ỹ0(u)H0l(du,w)

}
.

(23)

This gives

∫

W

∫ t

0

exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}

× {∂εκ01[Pε](ds, w)}P (dw)

=

∫ t

0

exp {−κ01[P ](s,W )− κ02[P ](s,W )− κ12[P ](t, s,W )}

×
∫ ds

0

Ñ01(du)− Ỹ0(u)H01(du,W )

P (T̃0 ≥ u |W = W )

=

∫ t

0

exp {−κ01[P ](u,W )− κ02[P ](u,W )− κ12[P ](t, u,W )}
exp {−H01(u,W )−H02(u,W )− Γ0(u,W )}

×
[
Ñ01(du)− Ỹ0(u)H01(du,W )

]

=

∫ t

0

exp {−κ12[P ](t, u,W )}
exp {−Γ0(u,W )}

[
Ñ01(du)− Ỹ0(u)H01(du,W )

]

=

∫ t

0

exp {−H12(t, u,W )}Ñ01(du)− Ỹ0(u)H01(du,W )

exp {−Γ0(u,W )} .

(24)
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From equation (23) it also follows that

∫

W

∫ t

0

∂εκ0l[Pε](s, w) exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}

× κ01[P ](ds, w)P (dw)

=

∫ t

0

∫ s

0




[
Ñ0l(du)− Ỹ0(u)H0l(du,W )

]

exp {−H01(u,W )−H02(u,W )− Γ0(u,W )}




× e−H01(s,W )−H02(s,W )−H12(t,s,W )H01(ds, w)

=

∫ t

0

∫ t

u

e−H01(s,W )−H02(s,W )−H12(t,s,W )H01(ds, w)

×
(

Ñ0l(du)− Ỹ0(u)H0l(du,W )

exp {−H01(u,W )−H02(u,W )− Γ0(u,W )}

)

=

∫ t

0

ρ(t, u,W ; ν)
Ñ0l(du)− Ỹ0(u)H0l(du,W )

exp {−Γ0(u,W )} ,

(25)

where we used Fubini's theorem for the second equality, and for the third equality we used
the de�nition of ρ from equation (2) and that

∫ s
u
h0l(z) dz = H0l(s) − H0l(u). Next, a
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calculation similar to the one in equation (23) gives

∂εκ12[Pε](t, s, w)

= ∂ε

∫ t

s

Pε(T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

Pε(T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

=

∫ t

s

[δO − P ](T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

−
(

[δO − P ](T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)2

× P (T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

)

=

∫ t

s

δO(T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

−
(
δO(T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)2

× P (T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

)

= δW,T̃0
(w, s)

∫ t

s

1

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

×
{
1(T̃ ∈ du,∆ = 1,∆0 = 1, η = 1)

−
(

1(T̃ ≥ u,∆0 = 1, η = 1)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

× P (T̃ ∈ du,∆ = 1,∆0 = 1, η = 1, T̃0 = s,W = w)

)}

= δW,T̃0
(w, s)

∫ t

s

Ñ12(du)− Ỹ1(u)H12(du, s, w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)
,
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and so we have that
∫

W

∫ t

0

∂εκ12[Pε](t, s, w) exp {−κ01[P ](s, w)− κ02[P ](s, w)− κ12[P ](t, s, w)}

× κ01[P ](ds, w)P (dw)

=

∫

W

∫ t

0

δW,T̃0
(w, s)

×
∫ t

s

[Ñ12(du)− Ỹ1(u)H12(du, s, w)]e−H01(s,w)−H02(s,w)−H12(t,s,w)

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s,W = w)

×H01(ds, w)P (dw)

=

∫ t

0

δT̃0
(s)

∫ t

s

[Ñ12(du)− Ỹ1(u)H12(du, s,W )]e−H01(s,W )−H02(s,W )−H12(t,s,W )

P (T̃ ≥ u,∆0 = 1, η = 1, T̃0 = s |W = W )

×H01(ds,W )

=

∫ t

0

δT̃0
(s)

∫ t

s

[Ñ12(du)− Ỹ1(u)H12(du, s,W )]e−H01(s,W )−H02(s,W )−H12(t,s,W )

e−H01(s,W )−H02(s,W )−Γ0(s,W )h01(s,W )e−H12(u,s,W )−Γ1(u,s,W )

×H01(ds,W )

=

∫ t

0

δT̃0
(s)

∫ t

s

[Ñ12(du)− Ỹ1(u)H12(du, s,W )]e−[H12(t,s,W )−H12(u,s,W )]

e−Γ0(s,W )h01(s,W )e−Γ1(u,s,W )

×H01(ds,W )

=

∫ t

T̃0

[Ñ12(du)− Ỹ1(u)H12(du, T̃0,W )]e−[H12(t,T̃0,W )−H12(u,T̃0,W )]

e−Γ0(T̃0,W )e−Γ1(u,T̃0,W )

= eΓ0(T̃0,W )

∫ t

T̃0

e−[H12(t,T̃0,W )−H12(u,T̃0,W )] Ñ12(du)− Ỹ1(u)H12(du, T̃0,W )

e−Γ1(u,T̃0,W )
.

(26)

Combining equations (24), (25), and (26) gives equation (22).

B.1 Gâteaux derivative of the probability of being event-free

The probability of being event-free can be analyzed as a standard survival problem where
the adverse event is illness or death. This is a well-studied problem for which the canonical
gradient is well-known [e.g., Robins and Rotnitzky, 1992, van der Laan and Robins, 2003,
van der Laan and Rose, 2011, Rytgaard et al., 2021]. In this section we brie�y show how the
calculations above can be used to construct a debiased estimator of this parameter. Using
Lemma 2.2 and the de�nition of κ0l, l ∈ {1, 2} (see equation (20)), we can show that the
probability of being event free can be expressed as

Υt(P ) =

∫

W
exp {−κ01[P ](t, w)− κ02[P ](t, w)}P (dw).

Below we calculate the Gâteaux derivative of this parameter. With this calculation in hand
we can use the same arguments as given in Section 4 to de�ne a debiased estimator of Υt.
Finally, similar arguments as given in Appendix B below can then be used to establish a
result akin to Theorem 4.2 for this parameter.
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To calculate the Gâteaux derivative of Υt at δO we �rst note that

∂εΥt(Pε)

= exp {−H01(t,W )−H02(t,W )} −
∫

W
exp {−H01(t, w)−H02(t, w)}P (dw)

−
∫

W
∂ε{κ01[Pε](t, w) + κ02[Pε](t, w)} exp {−H01(t, w)−H02(t, w)}P (dw)

= exp {−H01(t,W )−H02(t,W )}
(

1−
∫

W
∂ε{κ01[Pε](t, w) + κ02[Pε](t, w)}P (dw)

)

−
∫

W
exp {−H01(t, w)−H02(t, w)}P (dw).

We can then use equation (23) to write

∫

W
∂ε{κ0l[Pε](t, w)}P (dw) =

∫ t

0

Ñ0l(du)− Ỹ0(u)H0l(du,W )

exp {−H01(u,w)−H02(u,w)− Γ0(u,W )} ,

for l ∈ {1, 2}, and hence the Gâteaux derivative of Υt is

exp {−H01(t,W )−H02(t,W )}

×
(

1−
∫ t

0

2∑

l=1

Ñ0l(du)− Ỹ0(u)H0l(du,W )

exp {−H01(u,w)−H02(u,w)− Γ0(u,W )}

)
−Υt(P )

C Bounding the remainder term

In this section we show that Assumptions 4.1 (i) and (ii) imply that the remainder term
de�ned in equation (10) is oP (n−1/2). Firstly, we de�ne for notational convenience

ε̂0k = ‖ĥ0k − h0k‖L2
m⊗µ([0,t]×W), k ∈ {1, 2},

ε̂0C = ‖γ̂0 − γ0‖L2
m⊗µ([0,t]×W),

ε̂12 = ‖ĥ12 − h12‖L2
m⊗µ(Ut×W),

ε̂1C = ‖γ̂1 − γ1‖L2
m⊗µ(Ut×W),

(27)
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where m denotes Lebesgue measure. Recall also that the remainder is

Rem(P, ν̂)

= Pn[ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)] + P [IFt(·; ν̂)]

= Pn[ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)] + P [ρ(t, 0, ·; ν̂)]

+ P [ϕ(t, 0, ·; ν̂)]− P [Pn[ρ(t, 0, ·; ν̂)]]

= P [ρ(t, 0, ·; ν̂)]− P [ρ(t, 0, ·; ν)] + P [ϕ(t, 0, ·; ν̂)]

= E[ρ(t, 0,W ; ν̂)]− E[ρ(t, 0,W ; ν)]

+ E

[∫ t

0

e−Ĥ12(t,u,W ) Ñ01(du)− Ỹ0(u)Ĥ01(du,W )

e−Γ̂0(u,W )

]

− E

[∫ t

0

ρ(t, u,W ; ν̂)
Ñ01(du)− Ỹ0(u)Ĥ01(du,W )

e−Γ̂0(u,W )

]

− E

[∫ t

0

ρ(t, u,W ; ν̂)
Ñ02(du)− Ỹ0(u)Ĥ02(du,W )

e−Γ̂0(u,W )

]

− E

[
eΓ̂0(T̃ ,W )

∫ t

0

e−[Ĥ12(t,T̃0,W )−Ĥ12(u,T̃0,W )] Ñ12(du)− Ỹ1(u)Ĥ12(du, T̃0,W )

e−Γ̂1(u,T̃0,W )

]
,

(28)

where we here and in the following use E to denote expectation under P with respect to a
sample O ∼ P when the estimators ν̂ are considered �xed, i.e., formally we here use E to
denote the conditional expectation given {Oi}i=1,...,n when O ⊥⊥ {Oi}i=1,...,n. We have the
following result.

Proposition C.1. If Assumption 4.1 (i) holds, the estimators Ĥ01, Ĥ02, Ĥ12, Γ̂0, and Γ̂1

are uniformly bounded by a �xed constant with probability tending to 1, equation (7) holds
for these estimators, and all terms in equation (27) are oP (1), then

Rem(P, ν̂) = OP
{

(ε̂C1 + ε̂C0 + ε̂12) ε̂12 + (ε̂01 + ε̂02) (ε̂01 + ε̂02 + ε̂12) + ε̂2
01 + ε̂2

02 + ε̂2
12

}
.

In particular, Assumptions 4.1 (i) and (ii) imply that Rem(P, ν̂) = oP (n−1/2).

We divide the proof of Proposition C.1 into three lemmas, Lemmas C.2, C.3, and C.4 stated
below. To ease the notation we will for a function f : [0, t] × W → R write ‖f‖ to mean
‖f‖L2

m⊗µ([0,t]×W), and for a function f : Ut×W → R we write ‖f‖ to mean ‖f‖L2
m⊗µ(Ut×W).

When we write fn
P−−→ f we mean convergence in probability with respect to this norm, i.e.,

‖fn − f‖ P−−→ 0.

Lemma C.2. Let µ be a σ-�nite measure on Z, h : [0, t] × Z → R a measurable function,
and de�ne H : [0, t]×Z → R as

H(s, z) :=

∫ s

0

h(u, z) du.

Then ‖H‖L2
m⊗µ([0,t]×Z) = O(‖h‖L2

m⊗µ([0,t]×Z)).
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Proof. This follows from Jensen's inequality:

‖H‖2L2
m⊗µ([0,t]×Z) =

∫

Z

∫ t

0

H(s, z)2 ds µ(dz)

=

∫

Z

∫ t

0

(
s

∫ s

0

h(u, z)
du

s

)2

ds µ(dz)

=

∫

Z

∫ t

0

s2

(∫ s

0

h(u, z)
du

s

)2

ds µ(dz)

≤
∫

Z

∫ t

0

s2

∫ s

0

h(u, z)2 du

s
ds µ(dz)

=

∫

Z

∫ t

0

s

∫ s

0

h(u, z)2 duds µ(dz)

≤ t2
∫

Z

∫ t

0

h(u, z)2 du µ(dz) = t2‖h‖2L2
m⊗µ([0,t]×Z).

Applying Lemma C.2 on ĥ01− h01 gives that ‖Ĥ01−H01‖ = OP (ε̂01), and likewise for H02,
H12, Γ0, and Γ1.

Lemma C.3. (a) For a measurable function f : [0, t]×W → R it holds that

E
[∫ t

0

f(u,W )[Ñ0l(du)− Ỹ0(u)ĥ0l(u,W ) du]

]

= E
[∫ t

0

f(u,W )e−H01(u,W )−H02(u,W )−Γ0(u,W )[h0l(u,W )− ĥ0l(u,W )] du

]
,

for l ∈ {1, 2}.
(b) For a measurable function f : Ut ×W → R it holds that

E
[∫ t

0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

]

= E
[
1{∆0 = 1, η = 1, T̃0 < t}

×
∫ t

T̃0

f(u, T̃0,W )e−H12(u,T̃0,W )−Γ1(u,T̃0,W )[h12(u, T̃0,W )− ĥ12(u, T̃0,W )] du

]
.

Proof. For statement (a) we have by de�nition of the counting process Ñ0l that
∫ t

0

f(u,W )Ñ0l(du) = ∆01{η = l}1{T̃ < t}f(T̃ ,W ),

and so

E
[∫ t

0

f(u,W )Ñ0l(du)

∣∣∣∣W
]

= E
[
∆01{η = l}1{T̃ < t}f(T̃ ,W )

∣∣∣W
]

=

∫ t

0

f(u,W )e−H01(u,W )−H02(u,W )−Γ0(u,W )H0l(du,W ).

Thus the tower property gives that

E
[∫ t

0

f(u,W )Ñ0l(du)

]
= E

[∫ t

0

f(u,W )e−H01(u,W )−H02(u,W )−Γ0(u,W )H0l(du,W )

]
. (29)
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Next, Fubini's theorem and the tower property gives that

E

[∫ t

0

f(u,W )Ỹ0(u)ĥ0l(u,W ) du

]

=

∫ t

0

E
[
f(u,W )Ỹ0(u)ĥ0l(u,W )

]
du

=

∫ t

0
E
[
f(u,W )ĥ0l(u,W )E

[
Ỹ0(u)

∣∣∣W
]]

du

=

∫ t

0
E
[
f(u,W )ĥ0l(u,W )e−H01(u,W )−H02(u,W )−Γ0(u,W )

]
du

= E
[∫ t

0

f(u,W )ĥ0l(u,W )e−H01(u,W )−H02(u,W )−Γ0(u,W ) du

]
.

(30)

Combining equations (29) and (30) then gives the result.

For statement (b), let η̃t := 1{T̃0 < t,∆0 = 1,∆0η = 1} and note that η̃t = 1{T̃0 < t,∆0 =
1, η = 1}. We can write

E
[∫ t

0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

∣∣∣∣ η̃t
]

= η̃tE
[∫ t

T̃0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

∣∣∣∣ η̃t = 1

]
,

= η̃tE
[
E
[∫ t

T̃0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

∣∣∣∣ T̃0, η̃t = 1

] ∣∣∣∣ η̃t = 1

]

and then we can use the same arguments as we used to prove statement (a) to derive

E
[∫ t

T̃0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

∣∣∣∣ T̃0, η̃t = 1

]

= E
[ ∫ t

T̃0

f(u, T̃0,W )e−H12(u,T̃0,W )−Γ1(u,T̃0,W )

× [h12(u, T̃0,W )− ĥ12(u, T̃0,W )] du

∣∣∣∣ T̃0, η̃t = 1

]
.

The tower property then gives

E
[∫ t

0

f(u, T̃0,W )[Ñ12(du)− Ỹ1(u)ĥ12(u, T̃0,W ) du]

]

= E
[
η̃tE
[
E
[ ∫ t

T̃0

f(u, T̃0,W )e−H12(u,T̃0,W )−Γ1(u,T̃0,W )

× [h12(u, T̃0,W )− ĥ12(u, T̃0,W )] du

∣∣∣∣ T̃0, η̃t = 1

] ∣∣∣∣ η̃t = 1

]]

= E
[
η̃tE
[ ∫ t

T̃0

f(u, T̃0,W )e−H12(u,T̃0,W )−Γ1(u,T̃0,W )

× [h12(u, T̃0,W )− ĥ12(u, T̃0,W )] du

∣∣∣∣ η̃t
]]

= E
[
η̃t

∫ t

T̃0

f(u, T̃0,W )e−H12(u,T̃0,W )−Γ1(u,T̃0,W )[h12(u, T̃0,W )− ĥ12(u, T̃0,W )] du

]
,

which by de�nition of η̃t is the wanted result.
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Lemma C.4. Let µ be a measure on Z, and let {fn}n∈N and {hn}n∈N be sequences of
measurable real-valued random functions with domain [0, t]× Z such that ‖hn‖∞ = OP (1).
Then

∫

Z

∫ t

0

ehn(u,z)fn(u, z) du µ(dz)

=

∫

Z

∫ t

0

fn(u, z) du µ(dz) + OP

{
‖hn‖L2

m⊗µ([0,t]×Z) · ‖fn‖L2
m⊗µ([0,t]×Z)

}
.

Proof. Using that eh ≤ 1 + heh for all h ∈ R we can write

∫

Z

∫ t

0

ehn(u,z)fn(u, z) du µ(dz)−
∫

Z

∫ t

0

fn(u, z) du µ(dz)

≤
∫

Z

∫ t

0

hn(u, z)ehn(u,z)fn(u, z) du µ(dz).

Two applications of Hölder's inequality give that
∣∣∣∣∣

∫

Z

∫ t

0

hn(u, z)ehn(u,z)fn(u, z) du µ(dz)

∣∣∣∣∣ = ‖hnehnfn‖L1
m⊗µ([0,t]×Z)

≤ ‖ehn‖∞‖hnfn‖L1
m⊗µ([0,t]×Z)

≤ ‖ehn‖∞‖hn‖L2
m⊗µ([0,t]×Z)‖fn‖L2

m⊗µ([0,t]×Z).

As ‖hn‖∞ is bounded in probability so is ‖ehn‖∞, and from this the result follows.

We are now ready to prove Proposition C.1

Proof of Proposition C.1. By Lemma C.3 (a) we have that

E

[∫ t

0

e−Ĥ12(t,u,W ) Ñ01(du)− Ỹ0(u)Ĥ01(du,W )

e−Γ̂0(u,W )

]

= E
[∫ t

0

e−Ĥ01(u,W )−Ĥ02(u,W )−Ĥ12(t,u,W )
[
H01(du,W )− Ĥ01(du,W )

]]

and hence by the de�nition of ρ (see equation (2)) the �rst three terms of the right hand
side of equation (28) are equal to

E[ρ(t, 0,W ; ν̂)]− E[ρ(t, 0,W ; ν)] + E

[∫ t

0

e−Ĥ12(t,u,W ) Ñ01(du)− Ỹ0(u)Ĥ01(du,W )

e−Γ̂0(u,W )

]

= E
[∫ t

0

e−Ĥ01(u,W )−Ĥ02(u,W )−Ĥ12(t,u,W )H01(du,W )

]

− E
[∫ t

0

e−H01(u,W )−H02(u,W )−H12(t,u,W )H01(du,W )

]

= E
[ ∫ t

0

(
e[H01−Ĥ01](u,W )+[H01−Ĥ02](u,W )+[H12−Ĥ12](t,u,W ) − 1

)

× e−H01(u,W )−H02(u,W )−H12(t,u,W )H01(du,W )

]

(31)
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Next, using Lemma C.3 (a) and Fubini's theorem we have that

E

[∫ t

0

ρ(t, u,W ; ν̂)
Ñ0l(du)− Ỹ0(u)Ĥ0l(du,W )

e−Γ̂0(u,W )

]

= E
[∫ t

0

ρ(t, u,W ; ν̂)e−Ĥ01(u,W )−Ĥ02(u,W )[H0l − Ĥ0l](du,W )

]

= E

[∫ t

0

∫ t

u

exp

(
−
∫ s

u

{ĥ01(z,W ) + ĥ02(z,W )} dz −
∫ t

s

ĥ12(z, s,W ) dz

)

× Ĥ01(ds,W )e−Ĥ01(u,W )−Ĥ02(u,W )[H0l − Ĥ0l](du,W )

]

= E
[∫ t

0

∫ t

u

e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )Ĥ01(ds,W )[H0l − Ĥ0l](du,W )

]

= E
[∫ t

0

∫ s

0

[H0l − Ĥ0l](du,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )Ĥ01(ds,W )

]

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )Ĥ01(ds,W )

]
.

Using Cauchy-Schwarz' inequality this implies that

E

[∫ t

0

ρ(t, u,W ; ν̂)
Ñ0l(du)− Ỹ0(u)Ĥ0l(du,W )

e−Γ̂0(u,W )

]

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )h01(s,W ) ds

]

+ E
[∫ t

0

[H0l − Ĥ0l](s,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )[ĥ01 − h01](s,W ) ds

]

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )h01(s,W ) ds

]

+ OP {ε̂0l · ε̂01, } ,

(32)

where we used Lemma C.2 and that Ĥ01, Ĥ02, Ĥ12 are uniformly bounded with probability
tending to one for the last equality. Using Lemma C.4 we have

E
[∫ t

0

[H0l − Ĥ0l](s,W )e−Ĥ01(s,W )−Ĥ02(s,W )−Ĥ12(t,s,W )h01(s,W ) ds

]

= E

[∫ t

0

[H0l − Ĥ0l](s,W )e[H01−Ĥ01](s,W )+[H02−Ĥ02](s,W )+[H12−Ĥ12](t,s,W )

× e−H01(s,W )−H02(s,W )−H12(t,s,W )h01(s,W ) ds

]

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−H01(s,W )−H02(s,W )−H12(t,s,W )h01(s,W ) ds

]

+ OP

{∥∥∥[H0l − Ĥ0l]h01e
−H01−H02−H12

∥∥∥

×
∥∥∥[H01 − Ĥ01] + [H02 − Ĥ02] + [H12 − Ĥ12]

∥∥∥
}

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−H01(s,W )−H02(s,W )−H12(t,s,W )h01(s,W ) ds

]

+ OP

{
‖H0l − Ĥ0l‖ ·

(
‖H01 − Ĥ01‖+ ‖H02 − Ĥ02‖+ ‖H12 − Ĥ12‖

)}
,

(33)
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where the last equality follows from the triangle inequality, and the assumptions that H01,
H02, H12, and h01 are uniformly bounded. Equations (32) and (33) and Lemma C.2 then
gives

E

[∫ t

0

ρ(t, u,W ; ν̂)
Ñ0l(du)− Ỹ0(u)Ĥ0l(du,W )

e−Γ̂0(u,W )

]

= E
[∫ t

0

[H0l − Ĥ0l](s,W )e−H01(s,W )−H02(s,W )−H12(t,s,W )h01(s,W ) ds

]

+ OP {ε̂0l · (ε̂01 + ε̂02 + ε̂12)}.

(34)

Next we have by Lemma C.3 (b) that

E

[
eΓ̂0(T̃ ,W )

∫ t

0

e−[Ĥ12(t,T̃0,W )−Ĥ12(u,T̃0,W )] Ñ12(du)− Ỹ1(u)Ĥ12(du, T̃0,W )

e−Γ̂1(u,T̃0,W )

]

= E
[
eΓ̂0(T̃ ,W )−Ĥ12(t,T̃0,W )

∫ t

0

eĤ12(u,T̃0,W )+Γ̂1(u,T̃0,W )
[
Ñ12(du)− Ỹ1(u)Ĥ12(du, T̃0,W )

]]

= E

[
eΓ̂0(T̃ ,W )−Ĥ12(t,T̃0,W )1{∆0 = 1, η = 1, T̃0 < t}

×
∫ t

0

eĤ12(u,T̃0,W )−H12(u,T̃0,W )+Γ̂1(u,T̃0,W )−Γ1(u,T̃0,W )[H12 − Ĥ12](du, T̃0,W )

]

= E
[
eΓ̂0(T̃ ,W )−Ĥ12(t,T̃0,W )1{∆0 = 1, η = 1, T̃0 < t}

∫ t

0

[H12 − Ĥ12](du, T̃0,W )

]

+ OP {(ε̂12 + ε̂C1) · ε̂12},

where the last equality follows from Lemmas C.2 and C.4 and the triangle inequality. By
the same arguments we have

E
[
eΓ̂0(T̃ ,W )−Ĥ12(t,T̃0,W )1{∆0 = 1, η = 1, T̃0 < t}

∫ t

0

[H12 − Ĥ12](du, T̃0,W )

]

= E
[
eΓ̂0(T̃ ,W )−Ĥ12(t,T̃0,W )1{∆0 = 1, η = 1, T̃0 < t}[H12 − Ĥ12](t, T̃0,W )

]

= E
[
eΓ0(T̃ ,W )−H12(t,T̃0,W )1{∆0 = 1, η = 1, T̃0 < t}[H12 − Ĥ12](t, T̃0,W )

]

+ OP {(ε̂C0 + ε̂12) · ε̂12}

= E
[∫ t

0

[H12 − Ĥ12](t, s,W )e−H12(t,s,W )−H01(s,W )−H02(s,W )h01(s,W ) ds

]

+ OP {(ε̂C0 + ε̂12) · ε̂12},

where the last equality follows by calculating the conditional expectation givenW and using
the tower property. Thus we can write

E

[
eΓ̂0(T̃ ,W )

∫ t

0

e−[Ĥ12(t,T̃0,W )−Ĥ12(u,T̃0,W )] Ñ12(du)− Ỹ1(u)Ĥ12(du, T̃0,W )

e−Γ̂1(u,T̃0,W )

]

= E
[∫ t

0

[H12 − Ĥ12](t, s,W )e−H12(t,s,W )−H01(s,W )−H02(s,W )h01(s,W ) ds

]

+ OP {(ε̂C1 + ε̂C0 + ε̂12) · ε̂12}.

(35)
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Combining equations (31), (34), and (35) gives

Rem(P, ν̂)

= E

[∫ t

0

(
e[H01−Ĥ01](u,W )+[H01−Ĥ02](u,W )+[H12−Ĥ12](t,u,W ) − 1

−
(

[H01 − Ĥ01](u,W ) + [H01 − Ĥ02](u,W ) + [H12 − Ĥ12](t, u,W )
))

× e−H01(u,W )−H02(u,W )−H12(t,u,W )H01(du,W )

]

+ OP {(ε̂C1 + ε̂C0 + ε̂12) ε̂12 + (ε̂01 + ε̂02) (ε̂01 + ε̂02 + ε̂12)}.

(36)

Using the power series expansion of ex we have that

ex − 1− x = x2
∞∑

k=0

xk

(k + 2)!
≤ x2

∞∑

k=0

xk

k!
= x2ex,

and as ex − 1− x is minimized at 0, we can write
∣∣∣∣∣E
[∫ t

0

(
e[H01−Ĥ01](u,W )+[H01−Ĥ02](u,W )+[H12−Ĥ12](t,u,W ) − 1

−
(

[H01 − Ĥ01](u,W ) + [H01 − Ĥ02](u,W ) + [H12 − Ĥ12](t, u,W )
))

× e−H01(u,W )−H02(u,W )−H12(t,u,W )H01(du,W )

]∣∣∣∣∣

≤ E

[∫ t

0

(
[H01 − Ĥ01](u,W ) + [H01 − Ĥ02](u,W ) + [H12 − Ĥ12](t, u,W )

)2

× e−Ĥ01(u,W )−Ĥ02(u,W )−Ĥ12(t,u,W )H01(du,W )

]

= OP
{
ε̂2

01 + ε̂2
02 + ε̂2

12

}
,

where we used the triangle inequality, that Ĥ01, Ĥ02, Ĥ12, and H01 are assumed uniformly
bounded with probability tending to 1, and Lemma C.2 for the last equality. From this
calculation and equation (36) we thus �nally obtain

Rem(P, ν̂) = OP
{

(ε̂C1 + ε̂C0 + ε̂12) ε̂12 + (ε̂01 + ε̂02) (ε̂01 + ε̂02 + ε̂12) + ε̂2
01 + ε̂2

02 + ε̂2
12

}
.

C.1 Bounding the remainder when using the Nelson-Aalen estima-

tor

In this section we give an additional argument that is needed when we cannot assume that
estimators of the cumulative hazard H01 and H02 are absolutely continuous, but are instead
Nelson-Aalen estimators. Firstly, when we have no baseline covariates the remainder term
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de�ned in equation (10) is equal to

Rem(P, ν̂)

=

∫ t

0

e−Ĥ01(s)−Ĥ02(s)−Ĥ12(t,s)Ĥ01(ds)−
∫ t

0

e−H01(s)−H02(s)−H12(t,s)H01(ds)

+ E

[∫ t

0

e−Ĥ12(t,u) Ñ01(du)− Ỹ0(u)Ĥ01(du)

e−Γ̂0(u)

]

− E

[∫ t

0

ρ(t, u; ν̂)
Ñ01(du)− Ỹ0(u)Ĥ01(du)

e−Γ̂0(u)

]

− E

[∫ t

0

ρ(t, u; ν̂)
Ñ02(du)− Ỹ0(u)Ĥ02(du)

e−Γ̂0(u)

]

− E

[
eΓ̂0(T̃ )

∫ t

0

e−[Ĥ12(t,T̃0)−Ĥ12(u,T̃0)] Ñ12(du)− Ỹ1(u)Ĥ12(du, T̃0)

e−Γ̂1(u,T̃0)

]
.

(37)

Similar to Lemma C.3, for any measurable function f : [0, t]→ R we have that

E
[∫ t

0

f(u)[Ñ0l(du)− Ỹ0(u)Ĥ0l(du)]

]
= E

[∫ t

0

f(u)Ñ0l(du)

]
−
∫ t

0

f(u)E[Ỹ0(u)]Ĥ0l(du)

=

∫ t

0

f(u)e−H01(u)−H02(u)−Γ0(u)[H0l − Ĥ0l](du),

for l ∈ {1, 2}. We can use this calculation on the three terms in equation (37) involving
Ñ0l(du)−Ỹ0Ĥ0l(du). However, to bound these term we in the previous section used Cauchy-
Schwarz' inequality, see in particular Lemma C.4 and equation (34). We cannot use the same
argument here as we cannot write Ĥ0l = ĥ0l ·µ with respect to some �xed measure µ. In the
following lemma we show how we can instead control these terms using empirical process
theory. With this result in hand, one can proceed to bound the remainder in equation (37)
using the same arguments as given in the main section (Appendix C) above.

Below we use T̃ to denote an event time and ∆ denotes whether a particular event of
interest was observed or not. We use h to denote the cause-speci�c hazard of this event and
P denotes the distribution of the observed data (T̃ ,∆).

Lemma C.5. Let Ĥn be the Nelson-Aalen estimator of the cause-speci�c cumulative hazard
function H, and let F be a Donsker class of functions f : [0, t] → R. Assume that f̂n ∈ F
with probability tending to one, and ‖f̂n‖L2

m([0,t])
P−−→ 0. Assume also that h is uniformly

bounded away from 0 and in�nity on [0, t] and that P (T̃ > t) > 0. Then

∫ t

0

f̂n(u)[H − Ĥn](du) = oP (n−1/2).

Proof. Let y(s) = P (T̃ ≥ s), F̃ (s) = P (T̃ ≤ s,∆ = 1), ŷn(s) = 1
n

∑n
i=1 Ỹi(s) and η̂(s) :=

1{ŷn(s) > 0}, where Ỹi(s) is the at risk indicator at time s. Then we can write

dH =
dF̃

y
=
η̂ dF̃

ŷn
+

(
1

y
− η̂

ŷn

)
dF̃ ,
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and so
∫ t

0

f̂n(u)[H − Ĥn](du)

=

∫ t

0

f̂n(u)

[
η̂(u)F̃ (du)

ŷn(u)
− Ĥn(du)

]
+

∫ t

0

f̂n(u)

(
1

y(u)
− η̂(u)

ŷn(u)

)
F̃ (du)

=

∫ t

0

η̂(u)f̂n(u)

ŷn(u)

[
F̃ (du)−

(
1

n

n∑

i=1

1{T̃i ∈ du,∆i = 1}
)]

+

∫ t

0

f̂n(u)

(
1

y(u)
− η̂(u)

ŷn(u)

)
F̃ (du).

If we de�ne the functions gn : [0, t]× {0, 1} → R as gn(u, δ) := δη̂(u)f̂n(u)ŷn(u)
−1, then

√
n

∫ t

0

η̂(u)f̂n(u)

ŷn(u)

[
F̃ (du)−

(
1

n

n∑

i=1

1{T̃i ∈ du,∆i = 1}
)]

=
√
n(P − Pn)[gn] = −Gn[[gn]],

where Gn[=]
√
n(Pn − P ) is the empirical process with respect to the observations (T̃i,∆i).

As f̂n and ŷn belong to Donsker classes with probability tending to one so does gn. As
f̂n converges to 0 in probability with respect to the L2

m([0, t])-norm so does gn, and by the

assumptions about h and P this implies that also gn
P−−→ 0 with respect to the L2

P ([0, t])-
norm. From this it follows by lemma 19.24 in van der Vaart [2000] that Gn[[gn]] = oP (1).
Hence the result will follow if we can show that

∫ t

0

f̂n(u)

(
1

y(u)
− η̂(u)

ŷn(u)

)
F̃ (du) = oP (n−1/2). (38)

With probability tending to 1, η̂ = 1 and thus
∫ t

0

f̂n(u)

(
1

y(u)
− η̂(u)

ŷn(u)

)
F̃ (du) =

∫ t

0

f̂n(u)η̂(u)

(
1

y(u)
− 1

ŷn(u)

)
F̃ (du)

with probability tending to 1. We can thus focus on controlling the right hand side, which
we can write as∣∣∣∣

∫ t

0

f̂n(u)
η̂(u)(ŷn(u)− y(u))

y(u)ŷn(u)
F̃ (du)

∣∣∣∣ =

∣∣∣∣
∫ t

0

f̂n(u)
η̂(u)(ŷn(u)− y(u))

ŷn(u)
H(du)

∣∣∣∣

=

∥∥∥∥f̂n
η̂n
ŷn

(ŷn − y)h

∥∥∥∥
Lm([0,t])

.

Now, by assumption there exist a constant C <∞ such that ‖h‖∞ ≤ C, where we use ‖·‖∞
to denote the supremum-norm on [0, t]. We can then use this and Hölder's inequality twice
to write

∥∥∥f̂n
η̂n
ŷn

(y − ŷn)h
∥∥∥
L1
m([0,t])

≤ C
∥∥∥f̂n

η̂n
ŷn

(y − ŷn)
∥∥∥
L1
m([0,t])

≤ C
∥∥∥f̂n

η̂n
ŷn

∥∥∥
L1
m([0,t])

· ‖y − ŷn‖∞

≤ C‖f̂n‖L2
m([0,t]) ·

∥∥∥ η̂n
ŷn

∥∥∥
L2
m([0,t])

· ‖y − ŷn‖∞.

It follows from the strong law of large numbers and the assumption y(t) = P (T̃ > t) > 0
that ‖η̂n/ŷn‖∞ = OP (1), and by Donsker's theorem ‖y − ŷn‖∞ = OP (n−1/2). Finally, we
have by assumption that ‖f̂n‖L2

m([0,t]) = oP (1), and thus
∥∥∥f̂n

η̂n
ŷn

(y − ŷn)h
∥∥∥
L1
m([0,t])

= oP (1) ·OP (1) ·OP (n−1/2) = oP (n−1/2),

which implies equation (38).
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D Iterative representation of some simple integrals

In this section we derive an algorithm that can be used to calculate the one-step estimator
de�ned in equation (6) when we use estimators of the transition hazard functions that are
piece-wise constant. This is for instance the case when we use the penalized Poisson regres-
sion approach described in Section 5. The �nal procedure is summarized in Algorithm 1. It
is often possible to perform the computations needed in Algorithm 1 in a vectorized fashion,
and hence each step of the algorithm can be done for all data points at once. In this section
we suppress the dependence on baseline covariates W and the index i.

Let 0 = t0 < t1 < · · · < tK = τ be a �xed grid on the interval [0, τ ]. Let A denote
the class of functions a : [0, τ ] → R that are constant on the each interval [tk−1, tk) for
k = 1, . . . ,K, and let B be the class of functions b : [0, τ ]2 → R that are constant on each
square [tk−1, tk)× [tl−1, tl) for all k = 1, . . . ,K and l = 1, . . . ,K. To calculate the estimator
de�ned in (6) when we use nuisance parameter estimators that give piece-wise constant
hazard functions, the main di�culty lies in calculating expressions of the form

f(s, r, t; a, b, h) =

∫ r

s

exp

(∫ u

s

a(v) dv +

∫ t

u

b(v, u) dv

)
h(u) du, (39)

with 0 ≤ s < r ≤ t ≤ τ , and a, h ∈ A, b ∈ B, or the form

g(r, t; c, d, f) =

∫ r

0

f(u, t, t)exp

(∫ u

0

c(v) dv

)
d(u) du, (40)

with 0 < r ≤ t ≤ τ , and c, d ∈ A, and where f is on the form in equation (39). For instance,
to calculate the one-step estimator from equation (6) we need to calculate

∫ t

0

e−Ĥ12(t,u) Ỹ0(s)Ĥ01(du)

e−Γ0(u)
,

which we can write as

∫ t

0

e−Ĥ12(t,u)+Γ0(u)Ỹ0(s)Ĥ01(du) =

∫ T̃0∧t

0

exp

(∫ u

0

γ̂0(v) d−
∫ t

u

ĥ12(v, u) dv

)
ĥ01(u) du

= f(0, T̃0 ∧ t, t; γ̂0,−ĥ12, ĥ01),

We also need to calculate ∫ t

0

ρ(t, u, ν̂)
Ỹ0(s)Ĥ01(du)

e−Γ0(u)
,

which, by de�nition of ρ (see equation (2)), equals g(T̃0 ∧ t, t; γ̂0, ĥ01, fρ) where fρ(u, t, t) :=
ρ(t, u, ν̂).

We �rst show the correctness of Algorithm 1, and afterwards we demonstrate how the
expression g(r, t; c, d, f) in equation (40) can be rewritten as several terms on the form given
in equation (39). Thus Algorithm 1 can be used to calculate both expressions.

To derive Algorithm 1, �rst de�ne for k = 1, . . . ,K,

l(k) = 1{s < tk, tk−1 < r}
∫ r∧tk

s∨tk−1

exp

(∫ u

s

a(v) dv +

∫ t

u

b(v, u) dv

)
h(u) du. (41)

Then de�ne recursively
L(0) = 0, L(k) = L(k − 1) + l(k),
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Algorithm 1: Iterative integral calculation
Input: Functions a, h ∈ A and b ∈ B and time points 0 ≤ s < r ≤ t ≤ τ
Output: The value f(s, r, t; a, b, h) de�ned in equation (39)

Initialize: L← 0, ∆A← 0, A← 0
for k = 1, . . . ,K do

δ ← 1{s < tk, tk−1 < r}
if δ = 0 then

continue

A← A+ ∆A
h← h(tk−1)
a← a(tk−1)
b← b(tk−1, tk−1)

B ← b · [(tk ∧ t)− (tk ∧ r)] +
∑K−1
l=k 1{tl < t}b(tl, tk−1)[(tl+1 ∧ t)− tl]

∆T ← (r ∧ tk)− (s ∨ tk−1)
∆A← a ·∆T
β ← b ·∆T
l← h · eA+B

if a 6= b then

l← l · e∆A−eβa−b
else

l← l · e∆A ·∆T
L← L+ l

return L

and note that f(s, r, t; a, b, h) = L(K). For u ∈ [tk−1, tk) we have that

exp

{∫ u

s

a(v) dv +

∫ t

u

b(v, u) dv

}

= exp

{∫ tk−1∨s

s

a(v) dv − a(tk−1)[tk−1 ∨ s] +

∫ t

r∧tk
b(v, tk−1) dv + b(tk−1, tk−1)[r ∧ tk]

}
×

exp {[a(tk−1)− b(tk−1, tk−1)]u} ,

and thus
∫ r∧tk

s∨tk−1

exp

(∫ u

s

a(v) dv +

∫ t

u

b(v, u) dv

)
h(u) du

= exp

{∫ tk−1∨s

s

a(v) dv − a(tk−1)[tk−1 ∨ s] +

∫ t

r∧tk
b(v, tk−1) dv + b(tk−1, tk−1)[r ∧ tk]

}
×

h(tk−1)

∫ r∧tk

s∨tk−1

exp {[a(tk−1)− b(tk−1, tk−1)]u}du.

For a(tk−1) 6= b(tk−1, tk−1) this equals

exp

{∫ tk−1∨s

s

a(v) dv +

∫ t

r∧tk
b(v, tk−1) dv

}
×

exp {−a(tk−1)[tk−1 ∨ s] + b(tk−1, tk−1)[r ∧ tk]}×

h(tk−1)
exp {[a(tk−1)− b(tk−1, tk−1)] (r ∧ tk)} − exp {[a(tk−1)− b(tk−1, tk−1)] (s ∨ tk−1)}

a(tk−1)− b(tk−1, tk−1)

=
h(tk−1)

a(tk−1)− b(tk−1, tk−1)
exp

{∫ tk−1∨s

s

a(v) dv +

∫ t

r∧tk
b(v, tk−1) dv

}
×

exp {a(tk−1) [(r ∧ tk)− (s ∨ tk−1)]} − exp {b(tk−1, tk−1) [(r ∧ tk)− (s ∨ tk−1)]} ,

35



Manuscript I

while for a(tk−1) = b(tk−1, tk−1) we get

exp

{∫ tk−1∨s

s

a(v) dv +

∫ t

r∧tk
b(v, tk−1) dv

}
×

exp {−a(tk−1)[tk−1 ∨ s] + b(tk−1, tk−1)[r ∧ tk]}h(tk−1) [r ∧ tk − s ∨ tk−1]

= exp

{∫ tk−1∨s

s

a(v) dv +

∫ t

r∧tk
b(v, tk−1) dv

}
×

exp {a(tk−1)[r ∧ tk − tk−1 ∨ s]}h(tk−1) [r ∧ tk − s ∨ tk−1] .

De�ne for k = 1, . . . ,K,

A(k) =

∫ tk−1∨s

s

a(v) dv,

B(k) =

∫ t

r∧tk
b(v, tk−1) dv,

∆A(k) = a(tk−1) [(r ∧ tk)− (s ∨ tk−1)] ,

β(k) = b(tk−1, tk−1) [(r ∧ tk)− (s ∨ tk−1)] ,

where we note that B(k) is well-de�ned because r > tk−1, so v ≥ tk−1. Then we may write

l(k) = 1{s < tk, tk−1 < r}h(tk−1)eA(k)+B(k)×
(
1{a(tk−1) 6= b(tk−1)} e∆A(k) − eβ(k)

a(tk−1)− b(tk−1, tk−1)
+

1{a(tk−1) = b(tk−1)}e∆A(k)[(r ∧ tk)− (s ∨ tk−1)]
)
.

De�ning ∆A(0) = 0 and A(0) = 0, for use in the above expression we can calculate A(k)
recursively as

A(k) = A(k − 1) + ∆A(k − 1),

because this holds when tk−1 < r. Thus all terms except for B(k) can be calculated recur-
sively using only the values of the function h, a, and b when evaluated at tk−1 at each step.
We calculate B(k) as

B(k) = b(tk−1, tk−1)[(tk ∧ t)− (tk ∧ r)] + 1{k < K}
K−1∑

l=k

1{tl < t}b(tl, tk−1)[(tl+1 ∧ t)− tl]

where we have again used that r > tk−1. This demonstrate the correctness of the procedure
given in Algorithm 1.

Finally we consider terms of the form in equation (40). Firstly, for any r ∈ (u, t) we can
write

f(u, t, t; a, b, h) = f(u, r, t; a, b, h) + e
∫ r
u
a(v) dvf(r, t, t; a, b, h),
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and thus

g(r, t; c, d, f(·; a, b, h))

=

∫ r

0

f(u, t, t; a, b, h)e
∫ u
0
c(v) dvd(u) du

=

∫ r

0

f(u, r, t; a, b, h)e
∫ u
0
c(v) dvd(u) du

+

∫ r

0

e
∫ r
u
a(v) dvf(r, t, t; a, b, g)e

∫ u
0
c(v) dvd(u) du

=

∫ r

0

f(u, r, t; a, b, h)e
∫ u
0
c(v) dvd(u) du

+ f(r, t, t; a, b, h)

∫ r

0

e
∫ u
0
c(v) dv+

∫ r
u
a(v) dvd(u) du.

=

∫ r

0

f(u, r, t; a, b, h)e
∫ u
0
c(v) dvd(u) du

+ f(r, t, t; a, b, h)e
∫ r
0
a(v) dv

∫ r

0

e
∫ u
0

[c−a](v) dvd(u) du.

=

∫ r

0

f(u, r, t; a, b, h)e
∫ u
0
c(v) dvd(u) du

+ f(r, t, t; a, b, h)ef(0,r,t;0,0,a)f(0, r, t; c− a, 0, d).

(42)

The second expression can be calculated using Algorithm 1 so we now focus on the �rst
expression,

(∗) :=

∫ r

0

f(u, r, t; a, b, h)e
∫ u
0
c(v) dvd(u) du. (43)

Fubini's theorem gives that

(∗) =

∫ r

0

∫ r

u

e
∫ v
u
a(z) dz+

∫ t
v
b(z,v) dzh(v) dve

∫ u
0
c(z) dzd(u) du

=

∫ r

0

∫ v

0

e
∫ v
u
a(z) dz+

∫ t
v
b(z,v) dzh(v)e

∫ u
0
c(z) dzd(u) dudv

=

∫ r

0

∫ v

0

e
∫ v
0
a(z) dz+

∫ t
v
b(z,v) dzh(v)e

∫ u
0
c(z)−a(z) dzd(u) dudv

=

∫ r

0

e
∫ v
0
a(z) dz+

∫ t
v
b(z,v) dzh(v)

∫ v

0

e
∫ u
0

[c−a](z) dzd(u) dudv,

so if we de�ne

H(v) := e
∫ v
0
a(z) dz+

∫ t
v
b(z,v) dzh(v)

F (u) := e
∫ u
0

[c−a](z) dzd(u),

we have

(∗) =

∫ r

0

H(v)

∫ v

0

F (u) dudv.

In the following we assume that a(tk) 6= c(tk) for all k = 1, . . . ,K. For any functions H and
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F we may write

(∗) =

K∑

k=1

{
1{tk−1 < r}

∫ tk∧r

tk−1

H(v)

k∑

l=1

∫ tl∧v

tl−1

F (u) dudv

}

=
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v)

∫ tk∧v

tk−1

F (u) dudv

+

K∑

k=2

{
1{tk−1 < r}

∫ tk∧r

tk−1

H(v)

k−1∑

l=1

∫ tl∧v

tl−1

F (u) dudv

}

=

K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v)

∫ v

tk−1

F (u) dudv

+

K∑

k=2

{
1{tk−1 < r}

∫ tk∧r

tk−1

H(v) dv

k−1∑

l=1

∫ tl

tl−1

F (u) du

}
.

(44)

Now, consider the summands of the �rst sum of the right hand side. We have that

∫ tk∧r

tk−1

H(v)

∫ v

tk−1

F (u) dudv

=

∫ tk∧r

tk−1

H(v)

∫ tk∧r

tk−1

F (u) dudv −
∫ tk∧r

tk−1

H(v)

∫ tk∧r

v

F (u) dudv

=

∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du−
∫ tk∧r

tk−1

H(v)

∫ tk∧r

v

F (u) dudv,

and for v ∈ (tk−1, tk ∧ r),
∫ tk∧r

v

F (u) du =

∫ tk∧r

v

e
∫ u
0

[c−a](z) dzd(u) du

= e
∫ tk−1
0 [c−a](z) dzd(tk−1)

∫ tk∧r

v

e
∫ u
tk−1

[c−a](z) dz
du

= e
∫ tk−1
0 [c−a](z) dzd(tk−1)

∫ tk∧r

v

e[c−a](tk−1)·(u−tk−1) du

=
e
∫ tk−1
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

(
e[c−a](tk−1)·(tk∧r−tk−1) − e[c−a](tk−1)·(v−tk−1)

)

=
e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)
− e

∫ v
0

[c−a](z) dzd(tk−1)

[c− a](tk−1)
,
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and hence we can write
∫ tk∧r

tk−1

H(v) dv

∫ v

tk−1

F (u) du

=

∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

∫ tk∧r

tk−1

H(v) dv

+

∫ tk∧r

tk−1

H(v)
e
∫ v
0

[c−a](z) dzd(tk−1)

[c− a](tk−1)
dv

=

∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

∫ tk∧r

tk−1

H(v) dv

+

∫ tk∧r

tk−1

H(v)
e
∫ v
0

[c−a](z) dzd(v)

[c− a](v)
dv

=

∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

∫ tk∧r

tk−1

H(v) dv

+

∫ tk∧r

tk−1

e
∫ v
0
a(z) dz+

∫ t
v
b(z,v) dzh(v)

e
∫ v
0

[c−a](z) dzd(v)

[c− a](v)
dv

=

∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du

− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

∫ tk∧r

tk−1

H(v) dv

+

∫ tk∧r

tk−1

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv.

(45)
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Combining equations (44) and (45) then gives

(∗) =
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v)

∫ v

tk−1

F (u) dudv

+

K∑

k=2

{
1{tk−1 < r}

∫ tk∧r

tk−1

H(v) dv

k−1∑

l=1

∫ tl

tl−1

F (u) du

}

=
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v) dv

∫ tk∧r

tk−1

F (u) du

−
K∑

k=1

1{tk−1 < r}e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

∫ tk∧r

tk−1

H(v) dv

+
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv

+
K∑

k=2

{
1{tk−1 < r}

∫ tk∧r

tk−1

H(v) dv
k−1∑

l=1

∫ tl

tl−1

F (u) du

}

=
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v) dv

{
k∑

l=1

∫ tl∧r

tl−1

F (u) du− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

}

+
K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv

=

K∑

k=1

1{tk−1 < r}
∫ tk∧r

tk−1

H(v) dv

{∫ tk∧r

0

F (u) du− e
∫ tk∧r
0 [c−a](z) dzd(tk−1)

[c− a](tk−1)

}

+

∫ r

0

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv.

De�ning h̃ as the piece-wise constant function determined by

h̃(tk) =

∫ tk+1∧r

0

F (u) du− d(tk)

[c− a](tk)
e
∫ tk+1∧r
0 [c−a](z) dz, for k = 0, . . . ,K − 1, (46)

we then have

(∗) =

∫ r

0

H(v)h̃(v) dv +

∫ r

0

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv

=

∫ r

0

e
∫ v
0
a(z) dz+

∫ t
v
b(z,v) dzh(v)h̃(v) dv +

∫ r

0

e
∫ v
0
c(z) dz+

∫ t
v
b(z,v) dz h(v)d(v)

[c− a](v)
dv

= f(0, r, t; a, b, h · h̃) + f

(
0, r, t; c, b,

h · d
c− a

)
.

Using this and equations (42) and (43) we conclude that

g(r, t; c, d, f(·; a, b, h)) =f(0, r, t; a, b, h · h̃) + f

(
0, r, t; c, b,

h · d
c− a

)

+ f(r, t, t; a, b, h)ef(0,r,t;0,0,a)f(0, r, t; c− a, 0, d),

(47)

and hence we can use Algorithm 1 to also calculate g if we can evaluate h̃ de�ned in equa-
tion (46) e�ciently in addition to a, b, h, c, and d. A simple calculation shows that
∫ tk+1∧t

0

F (u) du =

∫ tk

0

F (u) du+
d(tk)

[c− a](tk)
e
∫ tk+1∧t
0 [c−a](z) dz − d(tk)

[c− a](tk)
e
∫ tk
0 [c−a](z) dz,
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which implies

h̃(tk) =

∫ tk+1∧t

0

F (u) du− d(tk)

[c− a](tk)
e
∫ tk+1∧t
0 [c−a](z) dz

=

∫ tk

0

F (u) du− d(tk)

[c− a](tk)
e
∫ tk
0 [c−a](z) dz

=

∫ tk

0

F (u) du− d(tk)

[c− a](tk)
e
∫ tk
0 [c−a](z) dz ± d(tk−1)

[c− a](tk−1)
e
∫ tk
0 [c−a](z) dz

= h̃(tk−1) +

(
d(tk−1)

[c− a](tk−1)
− d(tk)

[c− a](tk)

)
e
∫ tk
0 [c−a](z) dz.

The values
∫ tk

0
[c − a](z) dz can be calculated recursively, and so also h̃ can be calculated

recursively. Hence with Algorithm 1 and the relation in equation (47) we have an computa-
tionally e�cient way of calculating g de�ned in equation (40).

E Additional simulations

To further examine the performance of the one-step estimator we conduct a simulation
study when baseline covariates are present. In this setting all transition hazard functions
are estimated with the method proposed in Section 5. We use the same data-generating
mechanism as described in Section 6, except that we use a coarser time grid for computational
reasons. The transition hazard function from state 1 to state 2 is now

h12(u, s) =
5∑

i=1

1{2(i− 1) ≤ s < 2i}βi,

where the βi's are chosen as the equally spaced grid of 5 decreasing numbers with β1 = 0.3
and β5 = 0.01. The four other transition hazard functions remain the same. In addition
to the censored state transition times we generate a set of binary baseline covariates which
have no e�ect on the transition times or the censoring time. We consider the cases with 1, 3,
and 5 baseline covariates. We consider only two censoring regimes, one with state-dependent
censoring (α = 0.02) and one with no state-dependent censoring (α = 0.2), see Section 6.
We simulate data with sample sizes 200, 500, 1000, and 5000. All simulations are repeated
1000 times.

We again calculate the Aalen-Johansen estimator, the plug-in estimator Ψ̂0
t de�ned in equa-

tion (5), and the one-step estimator Ψ̂t de�ned in equation (6). We now use the coarser time
grid 0, 2, . . . , 8, 10 for the penalized Poisson regression models but also include all interactions
of all orders between the baseline covariates and the time grid.

The results are shown in Figures 6-7 and Tables 2-3. From this we draw the same conclusion
as we did in Section 6.

We have formulas and estimators for the asymptotic variance of the Aalen-Johansen estima-
tor and the one-step estimator, and thus we can also examine the coverage of Wald-based
con�dence intervals for these two estimators. When we use the data-adaptive estimation
method from Section 5 we do not have a formula for the asymptotic variance of the plug-in
estimator so there is no coverage to examine for this estimator. The asymptotic variance
of the Aalen-Johansen estimator is estimated using the R-package etm [Allignol et al., 2011]
which uses a Greenwood type estimator [Andersen et al., 2012]. The asymptotic variance
for the one-step estimator can be estimated using the asymptotic linear expansion given by
Theorem 4.2. Figure 8 shows the coverage of the Nelson-Aalen estimator and the one-step
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1 baseline covariate 3 baseline covariates 5 baseline covariates
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Method: Aalen−Johansen ψ̂t

0
ψ̂t

Figure 6: The mean squared error (MSE) estimated with 1000 simulations of the three
estimators for two censoring regimes (with and without state-dependent censoring) and
di�erent number of baseline covariates (1, 3, and 5) plotted against sample size. Note the
log scale on both axis. The estimators are the Aalen-Johansen estimator (Aa-J), the plug-in
estimator Ψ̂0

t de�ned in equation (5), and the debiased estimator Ψ̂t de�ned in equation (6).

estimator. We see that the one-step estimator has good coverage which is comparable to the
coverage for the Nelson-Aalen estimator when there is no state-dependent censoring. When
there is state-dependent censoring the coverage for the one-step estimator remains good
while the coverage for the Nelson-Aalen estimator is poor and decreases to 0 with sample
size due to bias.
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Figure 7: The results of 1000 simulations of the three estimators for di�erent censoring
regimes, increasing number of baseline covariates, and increasing number of samples. The
gray boxplots show the distribution of the Aalen-Johansen estimator, the blue boxplots show
the distribution of the plug-in estimator Ψ̂0

t de�ned in equation (5), and the orange boxplots
show the distribution of the debiased estimator Ψ̂t de�ned in equation (6). The black line
is the state occupation probability Ψt at time t = 9 of the data-generating distribution.

Bias SE MSE
Baseline covariates n Aa-J Ψ̂0

t Ψ̂t Aa-J Ψ̂0
t Ψ̂t Aa-J Ψ̂0

t Ψ̂t

1 200 -1.65 -2.33 -0.17 3.63 2.68 3.89 15.90 12.62 15.11
500 -1.43 -1.86 -0.03 2.30 1.84 2.47 7.34 6.83 6.09
1000 -1.44 -1.40 -0.03 1.67 1.40 1.79 4.85 3.91 3.20
5000 -1.39 -0.48 0.03 0.76 0.63 0.83 2.51 0.63 0.68

3 200 -1.33 -2.56 0.06 3.82 2.51 4.11 16.33 12.86 16.86
500 -1.47 -2.42 -0.09 2.31 1.71 2.49 7.51 8.82 6.21
1000 -1.40 -1.88 0.02 1.66 1.34 1.81 4.71 5.32 3.29
5000 -1.38 -0.79 0.02 0.75 0.63 0.80 2.48 1.03 0.65

5 200 -1.48 -2.74 -0.04 3.86 2.51 4.09 17.06 13.76 16.70
500 -1.37 -2.52 0.00 2.38 1.71 2.54 7.53 9.26 6.44
1000 -1.43 -2.20 -0.04 1.63 1.21 1.74 4.68 6.29 3.04
5000 -1.39 -1.08 0.04 0.74 0.61 0.80 2.47 1.54 0.65

Table 2: The results of 1000 simulations of the three estimators when there is state-dependent
censoring for di�erent numbers of baseline covariates (1, 3, and 5) and sample sizes (n ∈
{200, 500, 1000, 5000}). The table shows the bias, standard error (SE), and mean squared
error (MSE) of the Aalen-Johansen estimator (Aa-J), the plug-in estimator Ψ̂0

t de�ned in
equation (5), and the debiased estimator Ψ̂t de�ned in equation (6).
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Bias SE MSE
Baseline covariates n Aa-J Ψ̂0

t Ψ̂t Aa-J Ψ̂0
t Ψ̂t Aa-J Ψ̂0

t Ψ̂t

1 200 -0.11 -2.23 -0.10 5.15 3.25 5.05 26.48 15.54 25.45
500 -0.15 -1.95 -0.18 3.32 2.19 3.25 11.04 8.62 10.61
1000 -0.02 -1.45 -0.01 2.32 1.74 2.32 5.37 5.10 5.38
5000 -0.04 -0.51 -0.04 1.04 0.79 1.03 1.09 0.88 1.07

3 200 -0.12 -2.77 -0.14 4.93 2.95 4.82 24.34 16.39 23.26
500 -0.10 -2.36 -0.12 3.20 2.04 3.16 10.23 9.75 10.01
1000 0.10 -1.90 0.06 2.34 1.53 2.31 5.50 5.94 5.35
5000 -0.04 -0.87 -0.05 1.00 0.75 1.00 1.00 1.32 0.99

5 200 -0.05 -2.69 0.02 5.36 3.04 5.21 28.67 16.52 27.08
500 -0.08 -2.53 -0.10 3.21 1.91 3.15 10.32 10.03 9.90
1000 -0.01 -2.29 -0.04 2.24 1.43 2.24 5.01 7.29 5.00
5000 -0.07 -1.25 -0.08 1.04 0.73 1.03 1.08 2.09 1.06

Table 3: The results of 1000 simulations of the three estimators when there is no state-
dependent censoring for di�erent numbers of baseline covariates (1, 3, and 5) and sample
sizes (n ∈ {200, 500, 1000, 5000}). The table shows the bias, standard error (SE), and mean
squared error (MSE) of the Aalen-Johansen estimator (Aa-J), the plug-in estimator Ψ̂0

t

de�ned in equation (5), and the debiased estimator Ψ̂t de�ned in equation (6).

1 baseline covariate 3 baseline covariates 5 baseline covariates

S
tate−

dependent censoring
N

o state−
dependent censoring

300 1000 3000 300 1000 3000 300 1000 3000

60%

80%

100%

60%

80%

100%

n

co
ve

ra
ge

Method: Aalen−Johansen ψ̂t

Figure 8: The coverage of Wald-based con�dence intervals estimated with 1000 simulations
of the Aalen-Johansen estimator and the debiased estimator Ψ̂t de�ned in equation (6).
Results are shown for two censoring regimes (with and without state-dependent censoring)
and di�erent number of baseline covariates (1, 3, and 5) plotted against sample size. The
con�dence bands around the estimated coverage are calculated using the empirical standard
deviation of the 1000 Monte Carlo samples of the coverage.
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The state learner

� a super learner for right-censored data

Anders Munch and Thomas A. Gerds

Abstract

In survival analysis, prediction models are needed as stand-alone tools and in ap-

plications of causal inference to estimate nuisance parameters. The super learner is a

machine learning algorithm which combines a library of prediction models into a meta

learner based on cross-validated loss. Unfortunately, the commonly used partial likeli-

hood loss is not suited for super learning, and inverse probability of censoring weighted

loss functions require a pre-speci�ed estimator of the censoring distribution. To relax

this, we introduce the state learner, a new super learner for survival analysis, which

evaluates the loss based on the observed data simultaneously for two libraries of predic-

tion models, one for the event time distribution and one for the censoring distribution.

We establish an oracle inequality for the state learner and investigate its performance

through numerical experiments.

1 Introduction

A super learner is a machine learning algorithm that combines a �nite set of learners into a
meta learner by estimating prediction performance in hold-out samples using a pre-speci�ed
loss function [van der Laan et al., 2007]. When the aim is to make a prediction model,
super learners typically combine strong learners, such as Cox regression models and random
survival forests [Gerds and Kattan, 2021]. While the general idea of combining strong
learners based on cross-validation data stems from earlier work [Wolpert, 1992, Breiman,
1996], the name super learner is justi�ed by an oracle inequality [van der Laan and Dudoit,
2003, van der Vaart et al., 2006]: The super learner is guaranteed to perform almost as well
as the model which minimizes the expected performance, i.e., the model we would select if
we could evaluate the prediction performance in an in�nite hold-out sample.

We are concerned with the choice of the loss function for super learning in survival anal-
ysis. Existing super learner algorithms for right-censored data use partial log-likelihood
loss or inverse probability of censoring weighted loss [Polley and van der Laan, 2011, Keles
et al., 2004, Golmakani and Polley, 2020, Westling et al., 2021]. The use of the partial log-
likelihood loss restricts the class of learners and excludes for example simple Kaplan-Meier
based learners and also more complex random survival forest algorithms. For this reason
Golmakani and Polley [2020] restrict their learners to Cox proportional hazard models. A
lesser known fact is that a super learner constructed with the negative partial log-likelihood
loss implicitly depends on the censoring distribution (Appendix A). A disadvantage of in-
verse probability of censoring weighted loss functions is that they requires a pre-speci�ed
model for the censoring distribution. Westling et al. [2021] tackle this challenge by iterating
between super learning of the censoring distribution and the event time distribution.

In this article we de�ne the state learner, a new super learner for right-censored data, which
simultaneously evaluates the loss for learners of the event time distribution and the censoring
distribution. The loss function which is used to de�ne the state learner is only based on
observable quantities. The state learner can be applied to all types of survival estimators,
works in the presence of competing risks, and does not require a single pre-speci�ed estimator
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of the conditional censoring distribution. To analyze the theoretical properties of the state
learner we focus on the so-called discrete super learner which `combines' the library of
learners by picking the one that minimizes the cross-validated loss. The state learner uses
separate libraries to model each competing event and the censoring distribution. We show
that the oracle selector of the state learner is consistent if all libraries contain a consistent
learner and prove a �nite sample oracle inequality.

The state learner can be used to select a model which predicts the probability of an event
based on covariates in the presence of competing risks. Another application is in targeted
learning where conditional event probabilities occur as high-dimensional nuisance parameters
which need to be estimated at a certain rate [van der Laan and Rose, 2011, Rytgaard et al.,
2021, Rytgaard and van der Laan, 2022]. We show how a targeted estimator can be obtained
from the state learner, and that a second order product structure for the asymptotic bias
term of the targeted estimator is retained when the state learner is used to estimate nuisance
parameters.

The article is organized as follows. We introduce our notation and framework in Section 2.
In Section 3 we de�ne super learning in general with right-censored data, and in Section 4 we
introduce the state learner. Section 5 provides theoretical guarantees for the state learner. In
Section 6 we discuss the use of the state learner in the context of targeted learning. We report
a numerical study in Section 7, and analyze a prostate cancer data set in Section 8. Finally,
we relate the state learner to existing approaches in Section 9 and discuss some limitations of
our proposal. In Appendix A, we present a formal result stating that the oracle according to
the partial log-likelihood loss (always) depends on the censoring distribution. Appendices B
and C contain proofs.

2 Notation and framework

In a competing risk framework [Andersen et al., 2012], let T be a time to event variable,
D ∈ {1, 2} the cause of the event, and X ∈ X a vector of baseline covariates taking values
in a bounded subset X ⊂ Rp, p ∈ N. Let τ < ∞ be the maximal length of follow-up. We
use Q to denote the collection of all probability measures on [0, τ ] × {1, 2} × X such that
(T,D,X) ∼ Q for some unknown Q ∈ Q. For j ∈ {1, 2}, the cause-speci�c conditional
cumulative hazard functions are de�ned by Λj : [0, τ ]×X → R+ such that

Λj(t | x) =

∫ t

0

Q(T ∈ ds,D = j | X = x)

Q(T ≥ s | X = x)
.

For ease of notation we assume throughout that Λj(· | x) is continuous for all x and j. We
denote by S the conditional event-free survival function,

S(t | x) = exp {−Λ1(t | x)− Λ2(t | x)} .

Let M denote the space of all conditional cumulative hazard functions on [0, τ ] × X . Any
distribution Q ∈ Q can be characterized by

Q(dt, j, dx) = {S(t− | x)Λ1(dt | x)H(dx)}1{j=1}

{S(t− | x)Λ2(dt | x)H(dx)}1{j=2} ,

where Λj ∈M for j = 1, 2 and H is the marginal distribution of the covariates.

We consider the usual right-censored setting in which we observe data O = (T̃ , D̃,X),
where T̃ = min(T,C) for a right-censoring time C, ∆ = 1{T ≤ C}, and D̃ = ∆D. Let P

2



Manuscript II

denote a set of probability measures on the sample space O = [0, τ ] × {0, 1, 2} × X such
that O ∼ P for some unknown P ∈ P. We assume that the event time and the censoring
time are conditionally independent given covariates, T ⊥⊥ C | X. This implies that any
distribution P ∈ P is characterized by a distribution Q ∈ Q and a conditional cumulative
hazard function for C given X [c.f., Begun et al., 1983, Gill et al., 1997]. We use Γ ∈M to
denote the conditional cumulative hazard function for censoring. We assume that Γ(· | x)
is continuous for all x, and let G(t | x) = exp {−Γ(t | x)} denote the survival function of the
conditional censoring distribution. In our setting with competing risks, this yields

P (dt, j, dx) = {G(t− | x)S(t− | x)Λ1(dt | x)H(dx)}1{j=1}

{G(t− | x)S(t− | x)Λ2(dt | x)H(dx)}1{j=2}

{G(t− | x)S(t− | x)Γ(dt | x)H(dx)}1{j=0}

= {G(t− | x)Q(dt, j, dx)}1{j 6=0}

{G(t− | x)S(t− | x)Γ(dt | x)H(dx)}1{j=0}
.

(1)

Hence, we may write P = {PQ,Γ : Q ∈ Q,Γ ∈ G} for some G ⊂M. We also have

P (T̃ > t | X = x) = S(t | x)G(t | x) = exp {−Λ1(t | x)− Λ2(t | x)− Γ(t | x)} .

We further assume that there exists κ < ∞ such that Λj(τ− | x) < κ, for j ∈ {1, 2}, and
Γ(τ− | x) < κ for almost all x ∈ X . Note that this implies that G(τ− | x) is bounded away
from zero for almost all x ∈ X . Under these assumptions, the conditional cumulative hazard
functions Λj and Γ can be identi�ed from P by

Λj(t | x) =

∫ t

0

P (T̃ ∈ ds, D̃ = j | X = x)

P (T̃ ≥ s | X = x)
, (2)

Γ(t | x) =

∫ t

0

P (T̃ ∈ ds, D̃ = 0 | X = x)

P (T̃ ≥ s | X = x)
. (3)

Thus, we can consider Λj and Γ as operators which map from P toM.

3 Super learning with right-censored survival data

A super learner estimates a parameter Ψ which can be identi�ed from the observed data
distribution P ∈ P. In this section, to introduce the concept of super learning, we simply
consider estimation of the function Λj . The parameter Ψ : P → M is then identi�ed via
equation (2) by Ψ(P ) = Λj .

As input to the super learner we need a sample Dn = {Oi}ni=1 of i.i.d. observations from
some unknown P ∈ P and a �nite collection of candidate learners A. Each learner a ∈ A is
a map a : On →M which takes a data set as input and returns an estimate a(Dn) ∈ M of
Λj . In what follows, we use the short-hand notation P [f ] =

∫
f(o)P (do). A super learner

evaluates the performance of a ∈ A using a loss function L : M×O → R+ by estimating the
expected loss P [L(a(Dn), ·)] using cross-validation. Speci�cally, the expected loss of a ∈ A
is estimated by splitting the data set Dn into K disjoint approximately equally sized subsets
D1
n,D2

n, . . . ,DKn and then calculating the cross-validated loss

R̂n(a;L) =
1

K

K∑

k=1

1

|Dkn|
∑

Oi∈Dkn

L
(
a(D−kn ), Oi

)
, with D−kn = Dn \ Dkn.
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The subset D−kn is referred to as the k'th training sample, while Dkn is referred to as the k'th
test or hold-out sample. The discrete super learner is de�ned as

ân = argmin
a∈A

R̂n(a;L).

The �nal estimator of Ψ(P ) = Λj is then the selected learner applied to the full data set,
i.e., ân(Dn). The oracle learner is de�ned as the learner that minimizes the average loss
according to the data-generating distribution P , i.e.,

ãn = argmin
a∈A

R̃n(a;L), with R̃n(a;L) =
1

K

K∑

k=1

P
[
L
(
a(D−kn ), ·

)]
.

Note that both the discrete super learner and the oracle learner depend on the library of
learners and on the number of folds K, and that the oracle learner is a function of the data
and the unknown data-generating distribution. These dependencies are suppressed in the
notation.

4 The state learner

The problem with most existing super learners for right-censored data is that they depend
on a pre-speci�ed estimator of the censoring distribution. The main idea of the state learner
is to jointly use learners of Λ1, Λ2, and Γ, and the relations in equation (1), to learn a feature
of the observed data distribution P . The discrete state learner ranks a tuple of learners of
(Λ1,Λ2,Γ) based on how well they jointly model the observed data. To formally introduce
the state learner, we de�ne the multi-state process

η(t) = 1{T̃ ≤ t, D̃ = 1}+ 21{T̃ ≤ t, D̃ = 2}+ 31{T̃ ≤ t, D̃ = 0}, for t ∈ [0, τ ].

Note that at time t, we observe that each observation is in one of four mutually exclusive
states (Figure 1). The conditional distribution of η(t) given X = x is determined by the

Initial

Cause 1

Cause 2

Censored

Figure 1: Illustration of the multi-state process η used by the state learner. Note that
`censored' is a state, hence the process is always observed at any time.

function

F (t, k, x) = P (η(t) = k | X = x), for all t ∈ [0, τ ], k ∈ {0, 1, 2, 3}, x ∈ X . (4)
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The function F describes the conditional state occupation probabilities corresponding to the
observed multi-state process η.

We propose to construct a super learner for F , i.e., the target of this super learner is
Ψ(P ) = F where the parameter is identi�ed through equation (4). Because each quadruple
(Λ1,Λ2,Γ, H) characterizes a P ∈ P which in turn determines (F,H), a learner for F can
be constructed from learners of Λ1, Λ2, and Γ as follows:

F (t, 1, x) = P (T̃ ≤ t,∆ = 1 | X = x) =

∫ t

0

e{−Λ1(s|x)−Λ2(s|x)−Γ(s|x)}Λ1(ds | x),

F (t, 2, x) = P (T̃ ≤ t,∆ = 2 | X = x) =

∫ t

0

e{−Λ1(s|x)−Λ2(s|x)−Γ(s|x)}Λ2(ds | x),

F (t, 3, x) = P (T̃ ≤ t,∆ = 0 | X = x) =

∫ t

0

e{−Λ1(s|x)−Λ2(s|x)−Γ(s|x)}Γ(ds | x),

F (t, 0, x) = P (T̃ > t | X = x) = 1− F (t, 1, x)− F (t, 2, x)− F (t, 3, x).

(5)

The state learner requires three libraries of learners, A1, A2, and B, whereA1 andA2 contain
learners of the conditional cause-speci�c cumulative hazard functions of the event time
distribution Λ1 and Λ2, respectively, and B contains learners of the conditional cumulative
hazard function of the censoring distribution. Based on the Cartesian product of libraries
of learners for (Λ1,Λ2,Γ) we construct a library F(A1,A2,B) of learners for F :

F(A1,A2,B) = {ϕa1,a2,b : a1 ∈ A1, a2 ∈ A2, b ∈ B},

where in correspondance with the relations in equation (5),

ϕa1,a2,b(Dn)(t, 1, x) =

∫ t

0

e{−a1(Dn)(s|x)−a2(Dn)(s|x)−b(Dn)(s|x)}a1(Dn)(ds | x),

ϕa1,a2,b(Dn)(t, 2, x) =

∫ t

0

e{−a1(Dn)(s|x)−a2(Dn)(s|x)−b(Dn)(s|x)}a2(Dn)(ds | x),

ϕa1,a2,b(Dn)(t, 3, x) =

∫ t

0

e{−a1(Dn)(s|x)−a2(Dn)(s|x)−b(Dn)(s|x)}b(Dn)(ds | x),

ϕa1,a2,b(Dn)(t, 0, x) = 1−
3∑

j=1

ϕa1,a2,b(Dn)(t, j, x).

To evaluate how well a function F predicts the observed multi-state process we use the
integrated Brier score B̄τ (F,O) =

∫ τ
0
Bt(F,O) dt, where Bt is the Brier score [Brier et al.,

1950] at time t ∈ [0, τ ],

Bt(F,O) =
3∑

j=0

(F (t, j,X)− 1{η(t) = j})2
.

As described in Section 3, each learner ϕa1,a2,b in the library F(A1,A2,B) is evaluated using
the cross-validated loss,

R̂n(ϕa1,a2,b; B̄τ ) =
1

K

K∑

k=1

1

|Dkn|
∑

Oi∈Dkn

B̄τ
(
ϕa1,a2,b(D−kn ), Oi

)
,

and the discrete state learner is

ϕ̂n = argmin
(a1,a2,b)∈A1×A2×B

R̂n(ϕa1,a2,b; B̄τ ).

5
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5 Theoretical results for the state learner

In this section we establish theoretical guarantees for the state learner. Proposition 5.1
can be derived from the fact that the integrated Brier score (also called the continuous
ranked probability score) is a strictly proper scoring rule [Gneiting and Raftery, 2007]. This
implies that if we minimize the average loss of the integrated Brier score, we recover the
parameters of the data-generating distribution. In particular, the oracle of a state learner
will be consistent if the library of learners contains at least one learner that is consistent
for estimation of F . Recall that the function F implicitly depends on the data generating
probability measure P ∈ P but that this was suppressed in the notation. We now make
this dependence explicit by writing F0 for the function which is obtained by substituting a
speci�c P0 ∈ P for P in equation (5).

Proposition 5.1. For P0 ∈ P de�ne

F ∗ = argmin
F

P0[B̄τ (F, ·)],

where the minimum is taken over all F , such that F is a conditional state occupation prob-
ability function for some measure P as de�ned in equation (4). Then F ∗(t, j, ·) = F0(t, j, ·)
H-almost surely for any j ∈ {0, 1, 2, 3} and almost any t ∈ [0, τ ].

Proof. See Appendix B.

We establish a �nite sample oracle result for the state learner. Our Corollary 5.2 is in essence
a special case of a general cross-validation result by van der Vaart et al. [2006]. We assume
that we split the data into equally sized folds, and for simplicity of presentation we take
n to be such that |D−kn | = n/K with K �xed. We will allow the number of learners to
grow with n and write Fn = F(A1,n,A2,n,Bn) as short-hand notation and to emphasize the
dependence on n. In the following we let ‖·‖P denote the norm

‖F‖P =





3∑

j=0

∫

X

∫ τ

0

F (t, j, x)2 dtH(dx)





1/2

. (6)

Corollary 5.2. For all P0 ∈ P, n ∈ N, k ∈ {1, . . . ,K}, and δ > 0,

EP0

[
‖ϕ̂n(D−kn )− F0‖2P0

]
≤ (1 + 2δ)EP0

[
‖ϕ̃n(D−kn )− F0‖2P0

]

+ (1 + δ)16Kτ

(
13 +

12

δ

)
log(1 + |Fn|)

n
.

Proof. See Appendix B.

Corollary 5.2 has the following asymptotic consequences.

Corollary 5.3. Assume that |Fn| = O(nq), for some q ∈ N and that there exists a sequence
ϕn ∈ Fn, n ∈ N, such that EP0

[
‖ϕn(D−kn )− F0‖2P0

]
= O(n−α), for some α ≤ 1.

(i) If α = 1 then EP0

[
‖ϕ̂n(D−kn )− F0‖2P0

]
= O(log(n)n−1).

(ii) If α < 1 then EP0

[
‖ϕ̂n(D−kn )− F0‖2P0

]
= O(n−α).

Proof. See Appendix B.
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6 Targeted learning

For ease of presentation, in this section we discuss the special case without competing risks,
i.e., where D = 1 for all subjects and hence D̃ = ∆. By abusing notation we now also simply
write Λ for the cumulative hazard function instead of Λ1. In the two-state survival setting
with baseline covariates, the distribution P ∈ P is characterized by (Λ,Γ, H).

Features of the observed data distribution P ∈ P are rarely of interest. We are instead
interested in a parameter θ : Q → Θ that expresses a property of the uncensored population
governed by the measure Q ∈ Q. The parameter space Θ can be a subset of Rd or a subset
of a function space, such asM. In causal inference, θ could be an average treatment e�ect
on the survival probability [Rytgaard et al., 2021] in which case Θ = [−1, 1]. Under the
assumption of conditional independent censoring and positivity, θ is identi�able from P
which means that there exists an operator Ψ: P → Θ such that θ(Q) = Ψ(PQ,Γ) for all
Γ ∈M. According to equation (1) and equation (28) in Appendix C, any P is characterized
by both (Λ,Γ, H) and (F,H), which means that there exist operators Ψ̃ and Ψ̄ such that

Ψ̃(Λ0,Γ0, H0) = Ψ(P0) = Ψ̄(F0, H0).

Hence, any parameter Ψ de�ned on P can be estimated using either estimators (Λ̂n, Γ̂n, Ĥn)
or (F̂n, Ĥn). When we use the state learner the �nal estimator of the target parameter is
Ψ̄(ϕ̂n(Dn), Ĥn), where Ĥn can often be taken to be the marginal empirical measure.

For the rest of this section we consider the case where Θ = R, and Ψ is estimable by a regular
asymptotically linear estimator. Speci�cally, we assume that it is possible to construct an
estimator Ψ̃(Λ̂n, Γ̂n, Hn) such that the the following expansion holds:

Ψ̃(Λ̂n, Γ̂n, Hn)−Ψ(P ) = Pn[ψP ] + Rem(Λ̂n, Γ̂n, P ) + oP (n−1/2), (7)

where Pn is the empirical measure of a sample {Oi}ni=1, ψP a zero-mean function with

P [ψ2
P ] <∞, and Rem(Λ̂n, Γ̂n, P ) a second order remainder term [Bickel et al., 1993, Fisher

and Kennedy, 2021]. The remainder term Rem(Λ̂n, Γ̂n, P ) is typically dominated by terms
of the form

P

[∫ τ

0

wn(s, ·)M̂1,n(s | ·)M̂2,n(ds | ·)
]
, (8)

where (M̂1,n, M̂2,n) is any of the four combinations of M̂1,n ∈ {[Γ − Γ̂n], [Λ − Λ̂n]} and

M̂2,n ∈ {[Γ− Γ̂n], [Λ− Λ̂n]}, and wn is some data-dependent function with domain [0, τ ]×X
[van der Laan and Robins, 2003]. In particular, the estimator Ψ̂n is asymptotically linear
with in�uence function ψP if the `products' of the estimation errors M̂1,n and M̂2,n in
equation (8) are oP (n−1/2). The oP (n−1/2) bound on the products of estimation errors is
typically a weaker condition than requiring Γ and Λ to be estimated independently at rate
n−1/2. This is particularly important when data-adaptive estimation methods are used as
these methods rarely provide n−1/2-rate convergence for Γ and Λ independently.

Proposition 6.1 implies that if equation (8) holds for the estimator Ψ̃(Λ̂n, Γ̂n, Hn), then a
similar product structure holds for the estimator Ψ̄(F̂n, Hn). We state the result for the
special case that M̂1,n = Γ0 − Γ̂n and M̂2,n = Λ0 − Λ̂n, but similar results holds for any

combinations of Γ0 − Γ̂n and Λ0 − Λ̂n.

Proposition 6.1. Assume that w(s, x) ≤ c, F (s, 0, x) ≥ 1/c and F̂n(s, 0, x) ≥ 1/c for some
c > 0 for all s ∈ [0, τ ] and x ∈ X . Then there are real-valued uniformly bounded functions

7
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wan, w
b
n, w

c
n, and w

d
n with domain [0, τ ]2 ×X such that

P0

[∫ τ

0

w(s, ·)
{

Γ0(s, ·)− Γ̂n(s, ·)
}

[Λ0 − Λ̂n](ds, ·)
]

= P0

[∫ τ

0

∫ s

0

wan(s, u, ·)[F0 − F̂n](u−, 0, ·)[F0 − F̂n](s−, 0, ·)F0(du, 2, ·)F0(ds, 1, ·)
]

+ P0

[∫ τ

0

∫ s

0

wbn(s, u, ·)[F0 − F̂n](u−, 0, ·)F0(du, 2, ·)[F0 − F̂n](ds, 1, ·)
]

+ P0

[∫ τ

0

∫ s

0

wcn(s, u, ·)[F0 − F̂n](du, 2, ·)[F0 − F̂n](s−, 0, ·)F0(ds, 1, ·)
]

+ P0

[∫ τ

0

∫ s

0

wdn(s, u, ·)[F0 − F̂n](du, 2, ·)[F0 − F̂n](ds, 1, ·)
]
.

Proof. See Appendix C.

7 Numerical experiments

We compare the state learner with two other discrete super learners and an oracle selector
in a simulation study without a competing event. The two other super learners are based
on inverse probability of censoring weighted (IPCW) Brier scores [Graf et al., 1999, Gerds
and Schumacher, 2006], and we refer to these as IPCW super learners. These super learners
depend on an estimator of the censoring distribution, and we consider IPCW super learners
that use either the Kaplan-Meier estimator (IPCW(KM)) or a correctly speci�ed Cox model
(IPCW(Cox)) to estimate the censoring distribution. Both IPCW super learners are �tted
using the R-package riskRegression [Gerds et al., 2023]. Each discrete super learner pro-
vides a learner for the cumulative hazard function for the outcome of interest, and from this
a risk prediction model can be obtained. We measure performance of each super learner in
terms of the Brier score of the provided risk prediction model at a speci�c time horizon. The
Brier score is approximated using a large (n = 20, 000) independent data set of uncensored
data. The oracle selector uses the large data set of uncensored event times to select the
learner with the lowest expected Brier score. The expected Brier score of the oracle selector
serves as a lower benchmark value. For all super learners we split the data into �ve folds for
training and testing.

Note that given a learner for the cumulative hazard function of the outcome event, we can
typically use the same method to construct a learner of the cumulative hazard function of
the censoring distribution. This would typically work by training the learner on the data
set Dcn, where Dcn = {Oci }ni=1 with O

c
i = (T̃i, 1−∆i, Xi). When we say that we use a learner

for the cumulative hazard function of the outcome to learn the cumulative hazard function
of the censoring time, we mean that the learner is trained on Dcn.

Scenario 1 We �rst generate a simple dataset to demonstrate that an IPCW super learner
can perform poorly when the censoring model is misspeci�ed. We start by generating a bi-
nomial baseline covariate A with success probability 30%. We then generate outcome and
censoring variables according to a Cox-Weibull distribution with hazard rates of approxi-
mately 0.5 and 2.5, respectively. We use a libraryA consisting of two learners, the (marginal)
Kaplan-Meier estimator and the Kaplan-Meier estimator strati�ed on the binary covariate.
For the state learner we use the same learners to construct the library B.

The results are shown in Figure 2. We see that the IPCW super learner based on a misspec-

8
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Figure 2: Results for scenario 1 of the simulation study. For the learner selected by each of
the four discrete super learners, the Brier score calculated in a large independent data set
without censoring is plotted against sample size. The results are based on 200 repetitions.

i�ed censoring model (IPCW(KM)) has a larger Brier score than the other super learners
and that its performance does not improve much with sample size. The performance of the
state learner is comparable to or slightly better than the IPCW super learner based on a
correctly pre-speci�ed censoring model. The performance of both the IPCW(Cox) super
learner and the state learner are close to that of the oracle for most sample sizes.

Scenario 2 We next generate data according to a more complex distribution motivated
from a real dataset in which censoring depends on the baseline covariates. We simulate
data based on a prostate cancer study described in [Kattan et al., 2000]. The outcome of
interest was the time to tumor recurrence, and �ve baseline covariates were used to predict
outcome: prostate-speci�c antigen (PSA, ng/mL), Gleason score sum (GSS, values between
6 and 10), radiation dose (RD), hormone therapy (HT, yes/no) and clinical stage (CS, six
values). The study was designed such that a patient's radiation dose depended on when the
patient entered the study [Gerds et al., 2013]. This in turn implied that the time of censoring
depended on the radiation dose. The data were re-analyzed in [Gerds et al., 2013] where
a sensitivity analysis was conducted based on simulated data. We use the same simulation
setup, where event and censoring times are generated according to parametric Cox-Weibull
models estimated from the original data, and the covariates are generated according to either
marginal Gaussian normal or binomial distributions estimated from the original data [c.f.,
Gerds et al., 2013, Section 4.6]. We use the library consisting of the nine learners described
in Table 1. For the state learner we use the same library to learn the censoring distribution.

The results are shown in Figure 3. We see that the Brier score of the IPCW super learner
based on a misspeci�ed censoring model (IPCW(KM)) decreased with sample size, but is
larger than that of the other super learners for all sample sizes. The state learner and the
IPCW super learner based on a correctly pre-speci�ed censoring model demonstrate similar
performance for all sample sizes. The performance of both the IPCW(Cox) super learner
and the state learner approaches the benchmark provided by the oracle selector for large

9
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Family Model Description

Marginal KM The Kaplan-Meier estimator
Cox Cox All �ve covariates included with additive e�ects

Cox strata CS Cox model strati�ed on CS
Cox strata HT Cox model strati�ed on HT
Cox spline PSA and RD modeled with splines

Penalized Cox Lasso Cox model with L1-norm penalty
Ridge Cox model with L2-norm penalty
Elastic Cox model with L1- and L2-norm penalty

Random forest RF Random forest with 50 trees and default settings

Table 1: Overview of the nine learners used in scenario 2 of the simulation study. The
Kaplan-Meier estimator was �tted using the package prodlim [Gerds, 2019]. All Cox mod-
els included all �ve covariates in the model and were �tted using the package survival

[Therneau, 2022]. All penalized Cox models included all �ve covariates as linear predictors
and were �tted using the package glmnet [Simon et al., 2011, Friedman et al., 2010]. The
random forest was �tted with the package randomForestSRC [Ishwaran and Kogalur, 2023].

sample sizes.

8 Real data application

The original prostate cancer data analyzed by Kattan et al. [2000], which we introduced in
Section 7, include a competing event in the form of death without tumor recurrence. To
illustrate our method we �t the state learner to the original data set consisting of 1,042
patients. We consider death without tumor recurrence and recurrence of tumor as two com-
peting events of interest. We include the �ves learner KM, Cox strata CS, Lasso, Elastic,
and RF which are described in Table 1. We use the same library of learners to learn Λ1,
Λ2, and Γ. In this case, Λ1 denotes the cause-speci�c cumulative hazard function of tumor
recurrence, and Λ2 denotes the cause-speci�c cumulative hazard function of death without
tumor recurrence.

This gives a library consisting of 53 = 125 learners for the conditional state occupation
probability function F de�ned in equation (4). We use �ve folds for training and testing
the models, and we repeat training and evaluation �ve times with di�erent splits. The
integrated Brier score for all learners are shown in Figure 4, and the top 10 combinations of
learners are displayed in Table 2. We see that the prediction performance is mostly a�ected
by the choice of learner for the censoring distribution. Several combinations of learners give
similar performance as measured by the integrated Brier score, as long as a random forest
is used to model the censoring distribution.

9 Discussion

We have proposed a new super learner that can be used with right-censored data and
competing events. In this section, we compare our proposal to existing super learners and
discuss avenues for further research.

10
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Figure 3: Results for scenario 2 of the simulation study. For the learner selected by each of
the four discrete super learners, the Brier score calculated in a large independent data set
without censoring is plotted against sample size. The results are based on 200 repetitions.
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Figure 4: The results of applying the 125 combinations of learners to the prostate cancer data
set. The learners are KM (KM), Cox strata CS (strata), Lasso (lasso), Elastic (elastic),
and RF (RF) as described Table 1. The error bars are based on �ve repetitions using
di�erent splits. We refer to learners of Λ1, Λ2, and Γ as `Tumor learner', `Death learner',
and `Censoring learner', respectively.
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Tumor learner Death learner Censoring learner Integrated Brier score

Elastic Elastic RF 7.03± 0.02
Elastic KM RF 7.03± 0.02
Lasso Elastic RF 7.04± 0.02
Lasso KM RF 7.04± 0.02
Elastic Lasso RF 7.04± 0.02
Cox strata CT Elastic RF 7.04± 0.03
Lasso Lasso RF 7.04± 0.02
Cox strata CT Lasso RF 7.04± 0.03
Cox strata CT KM RF 7.04± 0.03
Elastic RF RF 7.04± 0.02

Table 2: The 10 best performing models in terms of integrated Brier score. The reported
standard errors are based on �ve repetitions using di�erent splits. The models are described
in Table 1. We refer to learners of Λ1, Λ2, and Γ as `Tumor learner', `Death leaner', and
`Censoring learner', respectively.

9.1 Existing super learners for right-censored data

Machine learning based on right-censored data commonly use the negative partial log-
likelihood as loss function [e.g., Li et al., 2016, Yao et al., 2017, Lee et al., 2018, Katzman
et al., 2018, Gensheimer and Narasimhan, 2019, Lee et al., 2021, Kvamme and Borgan, 2021].
However, this loss function is unsuited for super learning, because many canonical survival
learners (e.g., the Kaplan-Meier estimator, random survival forest, and semi-parametric Cox
models) provide cumulative hazard functions that are piece-wise constant in the time argu-
ment, and hence assign zero probability to event times not observed in the training data.
This implies that when data are observed in continuous time, any of these learners will al-
most surely have in�nite loss in any independent hold-out sample according to the negative
partial log-likelihood loss. When a proportional hazards model is assumed, the baseline
hazard function can be pro�led out of the likelihood to give a new partial log-likelihood loss
[Cox, 1972], which has been suggested as a loss function for super learning [Golmakani and
Polley, 2020, Verweij and van Houwelingen, 1993]. While this allows the library of learners
to include Cox' proportional hazard models, the drawback is that the library is in fact only
allowed to include these models. The advantage of the state learner is that it does not re-
quire evaluation of the density of F (·, j, x) and does not assume a particular semi-parametric
structure for Λj but can be used with any library of learners.

Another approach for super learning with right-censored data is to use an inverse probability
of censoring weighted (IPCW) loss function [Graf et al., 1999, van der Laan and Dudoit,
2003, Molinaro et al., 2004, Keles et al., 2004, Hothorn et al., 2006, Gerds and Schumacher,
2006, Gonzalez Ginestet et al., 2021]. An IPCW loss function is attractive because the
associated risk does not depend on the censoring distribution but describes a feature of the
population of interested governed by the measure Q ∈ Q. Similar results can be obtained
using censoring unbiased transformations [Fan and Gijbels, 1996, Steingrimsson et al., 2019]
or pseudo-values [Andersen et al., 2003, Mogensen and Gerds, 2013]. All these methods
rely on an estimator of the censoring distribution, and their drawback is that this estimator
has to be pre-speci�ed. When the data-generating mechanism is complex and not well-
understood, pre-speci�cation of the censoring distribution is a challenge. The advantage
of using the state learner is that a censoring distribution need not be pre-speci�ed but is
selected automatically based on the provided library B.

To the best of our knowledge, the only existing attempt at avoiding the need to pre-specify
a censoring model is a recent proposal suggested independently by Han et al. [2021] and
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Westling et al. [2021]. The authors do not consider competing risks but suggest to iterate
between learning Λ and Γ using IPCW loss functions and select the �nal learner when the
iterative procedure has converged. No general theoretical guarantees exist for this procedure,
but it would be interesting to compare its performance to that of the state learner in a
simulation study.

In a non-survival targeted learning setting Sun et al. [2022], based on ideas presented by
Robins et al. [2007], proposed to use as a model selection criteria the so-called `doubly ro-
bustness' property that some targeted estimators enjoy. In many special cases the remainder
term Rem(Λ̂n, Γ̂n, P ) de�ned in equation (7) has the property that

Rem(Λ∗,Γ0, P0) = Rem(Λ0,Γ
∗, P0) = 0, for any Λ∗,Γ∗ ∈M. (9)

The property in equation (9) is known as `doubly robustness' because it ensures that
Ψ̃(Λ̂n, Γ̂n, Hn) de�ned in equation (7) is consistent if just one of Λ or Γ is estimated consis-
tently [van der Laan and Robins, 2003, Bang and Robins, 2005, Kang and Schafer, 2007].
For a ∈ A and b ∈ B, de�ne Ψ̂k

n(a, b) = Ψ̃(a(Dkn), b(Dkn),Pkn) where Pkn is the empirical
measure of Dkn. Sun et al. [2022] suggest to select a ∈ A as the minimizer of the estimated
`�uctuation pseudo-risk',

R̂f(a) = max
b1,b2∈B

1

K

K∑

k=1

{
Ψ̂k
n(a, b1)− Ψ̂k

n(a, b2)
}2

.

The idea is that the doubly robustness property (equation (9)) implies that R̂f(a) will be
zero (asymptotically) if the learner a correctly estimates Λ. The authors establish �nite
sample results guarantying that the selected learner a will be robust against changing the
learner of the other nuisance parameter across B. It seems unclear to what extend this
robustness property also guarantees consistency of the estimator of the target parameters
when we use the �uctuation risk R̂f to select the learners of the nuisance parameters. It
would be interesting to explore the performance of this procedure in a survival setting and
compare it to targeted estimators obtained using the state learner as outlined in Section 6.

9.2 A performance measure of interest

A major advantage of the state learner is that performance of each combination of learners
is measured in terms of observable quantities. This means that no additional nuisance
parameters need to be estimated to evaluate the loss. The drawback with this approach is
that we are rarely interested in features of the observed data distribution when the data are
right-censored. The �nite sample oracle inequality in Corollary 5.2 concerns the function F ,
which is a feature of P ∈ P, while what we are typically interested in is Λj or S, which are
features of Q ∈ Q. We emphasize that while the state learner provides us with estimates
of Λj and Γ based on libraries Aj and B, performance are not assessed directly for these
parameters, but only jointly for estimation of the parameter F . For settings without a
competing risk, our numerical studies suggest that measuring performance with respect to
estimation of F also leads to good performance for estimation of S. Further research on this
topic, both numerical and theoretical, is warranted.

In the context of targeted learning, a drawback of the state learner is that the doubly robust-
ness property de�ned in equation (9) seem to be lost because we only use a single nuisance
parameter estimator. As de�ned here, however, the state learner is build using libraries for
the conditional cause-speci�c cumulative hazard functions, so some doubly robustness might
be preserved.

13
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9.3 Implementation

Our proposed super learner can be implemented with a broad library of learners using exist-
ing software, for instance the R-package riskRegression [Gerds et al., 2023]. Furthermore,
while the library F(A1,A2,B) consists of |A1||A2||B| learners, as long as we have su�cient
memory we need only �t |A1|+ |A2|+ |B| learners in each fold. To evaluate the performance
of each learner we need to perform |A1||A2||B| operations to calculate the integrated Brier
score in each hold-out sample, one for each combination of the �tted models, but these
operations are often negligible compared to �tting the models. Hence the state learner is
essentially no more computationally demanding than any procedure that uses super learning
to learn Λ1, Λ2, and Γ separately. While our proposal is based on constructing the library
F from libraries for learning Λ1, Λ2, and Γ, it would also be of interest to consider learners
that estimate F directly.

In our numerical studies, we only considered learners of Λj and Γ that provide cumulative
hazard functions which are piece-wise constant in the time argument. This simpli�es the
calculation of F as the integrals in equation (5) reduce to sums. When Λj or Γ are ab-
solutely continuous in the time argument, calculating F is more involved, but we expect
that a good approximation can be achieved by discretization. In the future, we intend to
investigate the performance of the state learner when using a broader library of learners in
more comprehensive simulation studies.

A The oracle according to the partial log-likelihood loss

In this section we examine the oracle according to the partial log-likelihood loss and its
relation to the censoring distribution. For simplicity we assume the special case without
competing risks so that D̃ = ∆, and we abuse notation by writing Λ = Λ1. We also simplify
matters considerably by considering a setting with no baseline covariates, which is of course
a severe limitation. However, as our Proposition A.1 is a `negative result', we �nd that a
generalization is perhaps not so interesting. We also simplify the exposition by consider an
oracle with respect to a �xed collection of learners R ⊂ M that does not depend on data.
The collection R should be interpreted as the limit of a library of learners, which we might
informally write as R = {a(D∞) : a ∈ A}.

Let Mb ⊂ M be the collection of all absolutely continuous cumulative hazard functions
Λ: [0, τ ]→ R+ such that 0 < Λ(s) <∞ for all s ∈ [0, τ). As we have no baseline covariates,
the measure PΛ,Γ is the distribution of O = (T̃ ,∆) = (T ∧C,1{T ≤ C}) when T and C are
independent draws from the measures induced by Λ ∈ Mb and Γ ∈ Mb, respectively. The
negative partial log-likelihood for the parameter Λ ∈Mb is

Lpl(Λ, O) =

∫ T̃

0

λ(s) ds−∆ log λ(T̃ ), where Λ(ds) = λ(s) ds.

While Lpl does not depend on the censoring distribution, the oracle typically will. This
is because the oracle is de�ned with respect to the data-generating distribution P which
depends on the censoring distribution [Hjort, 1992, Whitney et al., 2019]. Recall that the
Kullback-Leibler divergence between the probability measures P1 and P2 is de�ned as

DKL(P1 ||P2) = P1

[
log

p1

p2

]
, where P1 = p1 · ν, and P2 = p2 · ν,

for some σ-�nite measure ν such that {P1, P2} � ν. Let ` denote the partial likelihood for

14
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Γ. We observe that

PΛ0,Γ0 [Lpl(Λ, ·)]
= PΛ0,Γ0 [Lpl(Λ, ·)]± PΛ0,Γ0 [log `(Γ0, ·)− Lpl(Λ0, ·)]
= PΛ0,Γ0

[log `(Γ0, ·)− Lpl(Λ0, ·)−
{

log `(Γ0, ·)− Lpl(Λ, ·)
}

] + PΛ0,Γ0
[Lpl(Λ0, ·)]

= DKL(PΛ0,Γ0
||PΛ,Γ0

) + PΛ0,Γ0
[Lpl(Λ0, ·)],

hence the oracle according to Lpl under PΛ0,Γ0
is equivalent to the minimizer of Λ 7→

DKL(PΛ0,Γ0
||PΛ,Γ0

). For any Γ ∈Mb and sub-family R ⊂Mb de�ne the oracle relative to
Γ and R as

ã(Γ,R) = argmin
Λ∈R

DKL (PΛ0,Γ ||PΛ,Γ) . (10)

We can now state the main result of this section.

Proposition A.1. Let Λ0 ∈ Mb, Γ ∈ Mb, and R∗ ⊂ Mb be such that Λ0 6∈ R∗ and
PΛ0,Γ[|Lpl(Λ0, ·)−Lpl(ã(Γ,R∗), ·)|] <∞. Then there exist Λ′ ∈Mb and Γ′ ∈Mb such that

ã(Γ,R∗ ∪ {Λ′}) 6= ã(Γ′,R∗ ∪ {Λ′}).

Proof. In the following let Λ∗ = ã(Γ,R). The proposition follows if we can �nd a Λ′ ∈ Mb

such that
DKL(PΛ0,Γ ||PΛ′,Γ) > DKL(PΛ0,Γ ||PΛ∗,Γ), (11)

and a Γ′ ∈Mb such that

DKL(PΛ0,Γ′ ||PΛ′,Γ′) < DKL(PΛ0,Γ′ ||PΛ∗,Γ′). (12)

In the following we use dPΛ,Γ to denote the density of PΛ,Γ with respect to the product of
Lebesgue and counting measure, and we use EΛ,Γ to denote the expectation under PΛ,Γ. We
can then for any Λ ∈Mb write the Kullback-Leibler divergence as

DKL(PΛ0,Γ0
||PΛ,Γ0

) = EΛ0,Γ0

[
∆ log

λ0(T̃ )

λ(T̃ )

]
− EΛ0,Γ0

[
Λ0(T̃ )− Λ(T̃ )

]
, (13)

where we use λ to denote the hazard corresponding to the cumulative hazard Λ. Because
the likelihood for the observed data O factorises we have

EΛ0,Γ

[∣∣∣∣log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

∣∣∣∣
]

= EΛ0,Γ

[∣∣∣∣log
`(Λ0, O)

`(Λ∗, O)

∣∣∣∣
]

= PΛ0,Γ

[∣∣Lpl(Λ0, ·)− Lpl(Λ∗, ·)
∣∣] <∞,

(14)

where the last inequality follows because we assumed that Γ ∈ Mb was chosen such that
PΛ0,Γ[|Lpl(Λ0, ·)− Lpl(Λ∗, ·)|] <∞.

To �nd Λ′ and Γ′ that satisfy equations (11) and (12) we construct parametric families
{Λβ} ⊂ Mb and {Γα} ⊂ Mb, and show that we can �nd Λ′ and Γ′ within these families.
First we pick a time t1 ∈ (0, τ) such that

EΛ0,Γ

[
1{T̃ ≤ u} log

dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]
≥ c > 0, (15)

for all u ∈ [t1, τ). This is possible because equation (14) and dominated convergence allows
us to conclude that

lim
u↑τ

EΛ0,Γ

[
1{T̃ ≤ u} log

dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]
= DKL(PΛ0,Γ ||PΛ∗,Γ) > 0,
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where the inequality at the end holds because Λ∗ 6= Λ0 by assumption. Next, we pick some
t2 ∈ (t1, τ) and ε > 0 such that t2 + ε < τ , and de�ne the function

hβ(s) =

{
β−1 if u ∈ [t2, t2 + ε]

1 if u 6∈ [t2, t2 + ε]
, for all β > 1.

Let Λβ be the cumulative hazard function with derivative λ0hβ . Since the hazard of Λ0 and
Λβ are identical on [0, t2) ∪ (t2 + ε,∞), equation (13) yields for any Γ ∈Mb

DKL(PΛ0,Γ ||PΛβ ,Γ) = EΛ0,Γ

[
1{T̃ ∈ [t2, t2 + ε]}∆ log

λ0(T̃ )

λβ(T̃ )

]

− EΛ0,Γ

[
1{T̃ ≥ t2}(Λ0(T̃ )− Λβ(T̃ ))

]

= log(β)EΛ0,Γ

[
1{T̃ ∈ [t2, t2 + ε]}∆

]

− EΛ0,Γ

[
1{T̃ ≥ t2}(Λ0(T̃ )− Λβ(T̃ ))

]
.

(16)

For s ∈ [t2, t2 + ε] we have

Λ0(s)− Λβ(s) =

∫ s

t2

{
λ0(u)− β−1λ0(u)

}
du = (1− β−1)[Λ0(s)− Λ0(t2)],

and for s > t2 + ε we have

Λ0(s)− Λβ(s) =

∫ t2+ε

t2

{
λ0(u)− β−1λ0(u)

}
du = (1− β−1)[Λ0(t2 + ε)− Λ0(t2)],

so

EΛ0,Γ

[
1{T̃ ≥ t2}(Λ0(T̃ )− Λβ(T̃ ))

]

= (1− β−1)
{
EΛ0,Γ[1{T̃ ∈ [t2, t2 + ε]}Λ0(T̃ )]

+ EΛ0,Γ[1{T̃ > t2 + ε}Λ0(t2 + ε)]

− EΛ0,Γ[1{T̃ ≥ t2}Λ0(t2)]
}
.

(17)

As Λ0 is non-decreasing it holds that

EΛ0,Γ[1{T̃ ∈ [t2, t2 + ε]}Λ0(T̃ )] ≤ Λ0(t2 + ε)EΛ0,Γ[1{T̃ ∈ [t2, t2 + ε]}]
≤ Λ0(t2 + ε)PΛ0,Γ(T̃ ≥ t2).

(18)

Using again that Λ0 is non-decreasing and positive we have

∣∣EΛ0,Γ[1{T̃ > t2 + ε}Λ0(t2 + ε)]− EΛ0,Γ[1{T̃ ≥ t2}Λ0(t2)]
∣∣

≤ max
{
EΛ0,Γ[1{T̃ > t2 + ε}Λ0(t2 + ε)],EΛ0,Γ[1{T̃ ≥ t2}Λ0(t2)]

}

= max
{
PΛ0,Γ(T̃ > t2 + ε)Λ0(t2 + ε), PΛ0,Γ(T̃ ≥ t2)Λ0(t2)

}

≤ Λ0(t2 + ε)PΛ0,Γ(T̃ ≥ t2).

(19)

Equations (17), (18), and (19) then imply

∣∣∣EΛ0,Γ

[
1{T̃ ≥ t}(Λ0(T̃ )− Λβ(T̃ ))

] ∣∣∣ ≤ (1− β−1)2Λ0(t2 + ε)PΛ0,Γ(T̃ ≥ t2)

≤ 2Λ0(t2 + ε)PΛ0,Γ(T̃ ≥ t2),
(20)
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where we used that (1 − β−1) ∈ (0, 1). In the following we use O-notation to bound a
function in ε close to zero, i.e., f(ε) = O(g(ε)) means that there exist ε0 > 0 and M < ∞
such that

|f(ε)| ≤Mg(ε) for all ε < ε0.

Thus by equations (16) and (20) we can write

DKL(PΛ0,Γ ||PΛβ ,Γ)

= log(β)PΛ0,Γ(T̃ ∈ [t2, t2 + ε],∆ = 1) + O
{

Λ0(t2 + ε)PΛ0,Γ(T̃ ≥ t2)
}
,

(21)

for any Γ ∈ Mb and β > 1. As Λ0 ∈ Mb and Γ ∈ Mb it follows that PΛ0,Γ(T̃ ∈ [t2, t2 +
ε],∆ = 1) > 0 and thus equation (21) implies

DKL(PΛ0,Γ ||PΛβ ,Γ)→∞, when β →∞.
By equation (14) we have that DKL(PΛ0,Γ ||PΛ∗,Γ) < ∞, which together with the previous
display implies that we can �nd β2 > 1 such that

DKL(PΛ0,Γ ||PΛβ2
,Γ) > DKL(PΛ0,Γ ||PΛ∗,Γ). (22)

If we choose the model Λ′ to be Λβ2
, equation (22) shows that equation (11) holds, pro-

viding the �rst part of the proof. The next step is to construct the censoring mecha-
nism Γ′. To do this, let F be the probability measure on [0, τ ] uniquely determined by
the cumulative hazard function Γ and let f denote the Lebesgue density of F . De�ne
ᾱ = {F (C ∈ [t1, t2) | C ≥ t1)}−1 and the function fα : [0, τ ]→ R+ as

fα(s) =





f(s) if s < t1

αf(s) if s ∈ [t1, t2)

c(α)f(s) if s ≥ t2
, with c(α) =

F (C ≥ t1)− αF (C ∈ [t1, t2))

F (C ≥ t2)
,

for α ∈ [1, ᾱ]. Note that ᾱ > 1 because F has support on [0, τ ]. By construction, for any
α ∈ [1, ᾱ], fα de�nes a density, and we let Fα denote the measure with this density and Γα
the corresponding cumulative hazard function. Note that Γα ∈ Mb for all α ∈ [1, ᾱ) while
Γᾱ 6∈ Mb because fᾱ is equal to 0 on (t2, τ ] and thus Fᾱ does not have support on all of
[0, τ ]. By Lemma A.2 below,

DKL(PΛ0,Γα ||PΛ∗,Γα) −→ DKL(PΛ0,Γᾱ ||PΛ∗,Γᾱ) when α ↑ ᾱ. (23)

As the measures PΛ0,Γ and PΛ0,Γᾱ agree on (0, t1), and the measures PΛ∗,Γ and PΛ∗,Γᾱ agree
on (0, t1), equation (15) implies that the measures PΛ0,Γᾱ and PΛ∗,Γᾱ must be di�erent. In
particular, we have that DKL(PΛ0,Γᾱ ||PΛ∗,Γᾱ) > 0, and hence equation (23) implies that we
can �nd an α′ ∈ (1, ᾱ) such that

DKL(PΛ0,Γα ||PΛ∗,Γα) ≥ c′ > 0, for all α ∈ (α′, ᾱ). (24)

By construction of Γα we have that PΛ0,Γα(T̃ ≥ t2)→ 0 when α ↑ ᾱ, and hence equation (21)
gives

DKL(PΛ0,Γα ||PΛβ2
,Γα)

= log(β2)PΛ0,Γα(T̃ ∈ [t2, t2 + ε2],∆ = 1) + O
{

Λ0(t2 + ε2)PΛ0,Γα(T̃ ≥ t2)
}

−→ 0, when α ↑ ᾱ,
(25)

where we used that PΛ0,Γα(T̃ ∈ [t2, t2+ε2],∆ = 1) ≤ PΛ0,Γα(T̃ ≥ t2). Finally, equations (24)
and (25) imply that we can �nd α2 ∈ (α′, ᾱ) such that

DKL(PΛ0,Γα2
||PΛβ2

,Γα2
) < DKL(PΛ0,Γα2

||PΛ∗,Γα2
).

Choosing the alternative censoring mechanism Γ′ to be Γα2
the inequality above gives the

second part of the proof.
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To complete the proof it now remains to prove the following lemma.

Lemma A.2. Let Γα and ᾱ be as de�ned above. Then

DKL(PΛ0,Γα ||PΛ∗,Γα) −→ DKL(PΛ0,Γᾱ ||PΛ∗,Γᾱ) when α ↑ ᾱ.

Proof. For the measure F , let F̄ denote the survivor function and use the factorisation of
the likelihood to write

DKL(PΛ0,Γα ||PΛ∗,Γα) = EΛ0,Γα

[
log

dPΛ0,Γα

dPΛ∗,Γα
(T̃ ,∆)

]

= EΛ0,Γα

[
log

dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

= EΛ0,Γα

[
{f(T̃ )}1−∆{F̄ (T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

= EΛ0,Γ

[
{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]
.

From this we obtain

DKL(PΛ0,Γα ||PΛ∗,Γα)

= EΛ0,Γ

[
1{T̃ < t2}

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

+ EΛ0,Γ

[
1{T̃ ≥ t2}

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]
.

(26)

Consider the �rst term of the right hand side of equation (26). By construction of fα we
have ∣∣∣∣∣1{T̃ < t2}

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

∣∣∣∣∣

≤ α

F̄ (t2)

∣∣∣∣log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

∣∣∣∣

≤ ᾱ

F̄ (t2)

∣∣∣∣log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

∣∣∣∣ ,

(27)

where we used that F̄α is bounded by 1 and 1/F̄ is non-decreasing. Because F has support
on (0, τ) we have that F̄ (t2) > 0, and thus it follows from equations (14) and (27) and
dominated convergence that

EΛ0,Γ

[
1{T̃ < t2}

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

−→ EΛ0,Γ

[
1{T̃ < t2}

{fᾱ(T̃ )}1−∆{F̄ᾱ(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

= EΛ0,Γᾱ

[
1{T̃ < t2} log

dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]

= EΛ0,Γᾱ

[
1{T̃ < t2} log

dPΛ0,Γᾱ

dPΛ∗,Γᾱ
(T̃ ,∆)

]
,

= EΛ0,Γᾱ

[
log

dPΛ0,Γᾱ

dPΛ∗,Γᾱ
(T̃ ,∆)

]

= DKL(PΛ0,Γᾱ ||PΛ∗,Γᾱ),
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when α ↑ ᾱ. The second to last equality follows because PΛ0,Γᾱ has support on (0, t2), and
the last equality follows by de�nition. Thus the result follows if we can show that the second
term of the right hand side of equation (26) goes to zero when α ↑ ᾱ. To see this, �rst note
that

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

=
{c(α)f(T̃ )}1−∆{c(α)

∫ τ
T̃
f(s) ds}∆

{f(T̃ )}1−∆{
∫ τ
T̃
f(s) ds}∆

= c(α).

This gives

∣∣∣∣∣EΛ0,Γ

[
1{T̃ ≥ t2}

{fα(T̃ )}1−∆{F̄α(T̃ )}∆
{f(T̃ )}1−∆{F̄ (T̃ )}∆

log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

]∣∣∣∣∣

< c(α)EΛ0,Γ

[∣∣∣∣log
dPΛ0,Γ

dPΛ∗,Γ
(T̃ ,∆)

∣∣∣∣
]
−→ 0,

when α ↑ ᾱ by equation (14) and the de�nition of c(α). This proves the lemma.

B Theoretical guarantees for the state learner

In this section we provide proofs of the results stated in Section 5.

De�ne B̄τ,0(F, o) = B̄τ (F, o)− B̄τ (F0, o) and R0(F ) = P0[B̄τ,0(F, ·)].

Lemma B.1. R0(F ) = ‖F − F0‖2P0
, where ‖·‖P0

is de�ned in equation (6).

Proof. For any t ∈ [0, τ ] and k ∈ {0, 1, 2} we have

EP0

[
(F (t, k,X)− 1{η(t) = k})2

]

= EP0

[
(F (t, k,X)− F0(t, k,X) + F0(t, k,X)− 1{η(t) = k})2

]

= EP0

[
(F (t, k,X)− F0(t, k,X))2

]
+ EP0

[
(F0(t, k,X)− 1{η(t) = k})2

]

+ 2EP0
[(F (t, k,X)− F0(t, k,X))(F0(t, k,X)− 1{η(t) = k})]

= EP0

[
(F (t, k,X)− F0(t, k,X))2

]
+ EP0

[
(F0(t, k,X)− 1{η(t) = k})2

]
,

where the last equality follows from the tower property. Hence, using Fubini, we have

P [B̄τ (F, ·)] = ‖F − F0‖2P0
+ P0[B̄τ (F0, ·)].

Proof of Proposition 5.1. The result follows from Lemma B.1.

In the following, let Θ denote the function space consisting of all conditional state occupation
probability functions for some measure P as de�ned in equation (4).

Proof of Corollary 5.2. First note that minimising the loss B̄τ is equivalent to minimising
the loss B̄τ,0, so the discrete super learner and oracle according to B̄τ and B̄τ,0 are identical.
By Lemma B.1, R0(F ) ≥ 0 for any F ∈ Θ, and so using Theorem 2.3 from [van der Vaart
et al., 2006] with p = 1, we have that for all δ > 0,

EP0

[
R0(ϕ̂n(D−kn ))

]
≤(1 + 2δ)EP0

[
R0(ϕ̃n(D−kn ))

]

+ (1 + δ)
16K

n
log(1 + |Fn|) sup

F∈Θ

{
M(F ) +

v(F )

R0(F )

(
1

δ
+ 1

)}
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where for each F ∈ Θ, (M(F ), v(F )) is some Bernstein pair for the function o 7→ B̄τ,0(F, o).
As B̄τ,0(F, ·) is uniformly bounded by τ for any F ∈ Θ, it follows from section 8.1 in [van der
Vaart et al., 2006] that (τ, 1.5P0[B̄τ,0(F, ·)2]) is a Bernstein pair for B̄τ,0(F, ·). Now, for any
a, b, c ∈ R we have

(a− c)2 − (b− c)2 = (a− b+ b− c)2 − (b− c)2

= (a− b)2 + (b− c)2 + 2(b− c)(a− b)− (b− c)2

= (a− b) {(a− b) + 2(b− c)}
= (a− b) {a+ b− 2c} ,

so using this with a = F (t, k, x), b = F0(t, k, x), and c = 1{η(t) = k}, we have by Jensen's
inequality

P0[B̄τ,0(F, ·)2]

≤ 2τEP0

[
3∑

k=0

∫ τ

0

{
(F (t, k,X)− 1{η(t) = k})2 − (F0(t, k,X)− 1{η(t) = k})2

}2

dt

]

= 2τEP0

[
3∑

k=0

∫ τ

0

(F (t, k,X)− F0(t, k,X))
2

× {F (t, k,X) + F0(t, k,X)− 21{η(t) = k}}2 dt

]

≤ 8τEP0

[
3∑

k=0

∫ τ

0

(F (t, k,X)− F0(t, k,X))
2

dt

]
.

= 8τ‖F − F0‖2P0
.

Thus when v(F ) = 1.5P0[B̄τ,0(F, ·)2] we have by Lemma B.1

v(F )

R0(F )
= 1.5

P0[B̄τ,0(F, ·)2]

P0[B̄τ,0(F, ·)] ≤ 12τ,

and so using the Bernstein pairs (τ, 1.5P0[B̄τ,0(F, ·)2]) we have

sup
F∈Θ

{
M(F ) +

v(F )

R0(F )

(
1

δ
+ 1

)}
≤ τ

(
13 +

12

δ

)
,

For all δ > 0 we thus have

EP0

[
R0(ϕ̂n(D−kn ))

]
≤(1 + 2δ)EP0

[
R0(ϕ̃n(D−kn ))

]

+ (1 + δ) log(1 + |Fn|)τ
16K

n

(
13 +

12

δ

)
,

and then the �nal result follows from Lemma B.1.

Proof of Corollary 5.3. By de�nition of the oracle and Lemma B.1, EP0

[
‖ϕ̃n(D−kn )− F0‖2P0

]
≤

EP0

[
‖ϕn(D−kn )− F0‖2P0

]
for all n ∈ N. The results then follows from Corollary 5.2.

C The state learner with targeted learning

In this section we give an explicit formula for obtaining of Λ and Γ from F and show
that a product structure is preserved when the estimator Ψ̄(F̂n, Ĥn) is used instead of
Ψ̃(Λ̂n, Γ̂n, Ĥn).
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By equations (2) and (3) and the de�nition of F , we have

Λ0(t, x) =

∫ t

0

F0(ds, 1, x)

F0(s−, 0, x)
, and Γ0(t, x) =

∫ t

0

F0(ds, 2, x)

F0(s−, 0, x)
, (28)

where we use a subscript to denote that all parameters are associated to the same measure
P0.

Proof of Proposition 6.1. For notational convenience we suppress X in the following. The
�nal result can be obtained by adding the argument X to all functions and averaging. We
use the relations from equation (28) to write

∫ τ

0

w(s)
{

Γ(s)− Γ̂n(s)
}

[Λ− Λ̂n](ds)

=

∫ τ

0

w(s)

{∫ s

0

F (du, 2)

F (u−, 0)
−
∫ s

0

F̂n(du, 2)

F̂n(u−, 0)
−
}[

F (ds, 1)

F (s−, 0)
− F̂n(ds, 1)

F̂n(s−, 0)

]

=

∫ τ

0

w(s)

{∫ s

0

(
1

F (u−, 0)
− 1

F̂n(u−, 0)

)
F (du, 2)

+

∫ s

0

1

F̂n(u−, 0)

[
F (du, 2)− F̂n(du, 2)

]}

×
[(

1

F (s−, 0)
− 1

F̂n(s−, 0)

)
F (ds, 1) +

1

F̂n(s−, 0)

(
F (ds, 1)− F̂n(ds, 1)

)]

=

∫ τ

0

∫ s

0

w(s)

(
1

F (u−, 0)
− 1

F̂n(u−, 0)

)(
1

F (s−, 0)
− 1

F̂n(s−, 0)

)
F (du, 2)F (ds, 1)

+

∫ τ

0

∫ s

0

w(s)

(
1

F (u−, 0)
− 1

F̂n(u−, 0)

)
F (du, 2)

F̂n(u−, 0)

(
F (ds, 1)− F̂n(ds, 1)

)

+

∫ τ

0

∫ s

0

w(s)

F̂n(u−, 0)

[
F (du, 2)− F̂n(du, 2)

]( 1

F (s−, 0)
− 1

F̂n(s−, 0)

)
F (ds, 1)

+

∫ τ

0

∫ s

0

w(s)

F̂n(u−, 0)

[
F (du, 2)− F̂n(du, 2)

] 1

F̂n(s−, 0)

(
F (ds, 1)− F̂n(ds, 1)

)
.

Consider the �rst term on the right hand side. De�ning

w∗n(t) =
(
F (t−, 0)− F̂n(t−, 0)

)( 1

F (t−, 0)
− 1

F̂n(t−, 0)

)
,

we can write
∫ τ

0

∫ s

0

w(s)

(
1

F (u−, 0)
− 1

F̂n(u−, 0)

)(
1

F (s−, 0)
− 1

F̂n(s−, 0)

)
F (du, 2)F (ds, 1)

=

∫ τ

0

∫ s

0

w(s)w∗n(u)
(
F (u−, 0)− F̂n(u−, 0)

)

× w∗n(s)
(
F (s−, 0)− F̂n(s−, 0)

)
F (du, 2)F (ds, 1)

=

∫ τ

0

∫ s

0

wan(s, u)
(
F (u−, 0)− F̂n(u−, 0)

)(
F (s−, 0)− F̂n(s−, 0)

)
F (du, 2)F (ds, 1),

where we have de�ned wan(s, u) = w(s)w∗n(s)w∗n(u). By assumption, wan(s, u) is uniformly
bounded. The same approach can be applied to the three remaining terms which gives the
result.
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1

Estimating conditional hazard functions and densities

with the highly-adaptive lasso

Anders Munch, Mark J. van der Laan, Thomas A. Gerds, and Helene Rytgaard

Abstract

We consider estimation of conditional hazard functions and densities over the class
of multivariate càdlàg functions with uniformly bounded sectional variation norm when
data are either fully observed or subject to right-censoring. We emphasize the di�erence
between the empirical risk minimizer and the highly-adaptive lasso and show that the
empirical risk minimizer is either not well-de�ned or not consistent for estimation of
conditional hazard functions and densities. Under an additional smoothness assumption
we formally show that the highly-adaptive lasso achieves the same convergence rate as
has been shown to hold for the empirical risk minimizer in settings where the latter is
well-de�ned. Finally, we show that our results are of interest also for settings where
the empirical risk minimizer is well-de�ned, because the highly-adaptive lasso depends
on a much smaller number of basis function than the empirical risk minimizer.

1 Introduction

Let D1
M be the space of càdlàg functions f : [0, 1] → R with variation norm bounded by

M <∞. For a suitable loss function L : D1
M × [0, 1]→ R and sample dataset {Xi}ni=1 of iid.

observations Xi ∼ P , we consider estimation of the parameter

f∗ = argmin
f∈D1

M

P [L(f, ·)], where P [L(f, ·)] =

∫

[0,1]

L(f, x) dP (x). (1)

The empirical risk minimizer estimates f∗ by minimizing Pn[L(f, ·)] over D1
M , where Pn is

the empirical measure of the sample dataset {Xi}ni=1. The highly-adaptive lasso (HAL) esti-
mator [van der Laan, 2017] estimates f∗ by minimizing Pn[L(f, ·)] over the data-dependent
function class

D1
M,n =

{
f : [0, 1]→ R : f(x) = β0 +

n∑

i=1

βi1{Xi ≤ x}, βi ∈ R,
n∑

i=0

|βi| ≤M
}
.

In this article, we consider the multivariate version of the estimation problem in equation (1)
and the corresponding multivariate HAL estimator. Previous work has studied the conver-
gence rates of the empirical risk minimizer [van der Laan, 2017, Benkeser and van der Laan,
2016, Bibaut and van der Laan, 2019, Fang et al., 2021] but not of the HAL estimator
directly. The HAL estimator can be interpreted as a highly data-adaptive sieve estimator
[Grenander, 1981, Geman, 1981, Geman and Hwang, 1982, Walter and Blum, 1984]. We show
that the empirical risk minimizer and the HAL estimator are not in general the same, and
we study the asymptotic convergence rates for the HAL estimator. Our asymptotic results
for the HAL estimator are particularly important for estimation of (conditional) densities
and hazard functions, because the empirical risk minimizer is either not well-de�ned or not
consistent for these parameters. For least-squares regression, the empirical risk minimizer
is well-de�ned [Fang et al., 2021] but is only equal to the HAL estimator in the univariate
case.
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(a)

X

(b)

X

Figure 1: Illustration of two càdlàg densities, where the ticks at the x-axis denote observed
data points, and the y-coordinates of the black dots denote the likelihood given to these
points by the densities. Panel (a) shows a given càdlàg density, while panel (b) shows an
adjusted density that has the same variation norm but assigns a higher likelihood to the
observed data. Note that the function in panel (b) is a density, because the gray boxes in
panels (a) and (b) have the same area.

Neuhaus [1971] generalized the concept of a càdlàg function to the multivariate setting; our
De�nition 2.1 is an equivalent de�nition used by, e.g., Czerebak-Morozowicz et al. [2008] and
Ferger [2015]. A useful generalization of the variation norm of a function to the multivariate
setting is the sectional variation norm. This norm was introduced by [Gill et al., 1995, van der
Laan, 2017], and is closely related to the Hardy-Krause variation of a function [Krause,
1903, Hardy, 1906, Owen, 2005, Aistleitner and Dick, 2015]. The Hardy-Krause variation is
identical to the sectional variation norm, except that a constant function f(x) = c has zero
Hardy-Krause variation while its sectional variation norm is |c|. Informally, the sectional
variation norm measures how much a function �uctuates without taking into account where
in the domain the �uctuations happen. This poses a challenge when the loss L(f, x) in
equation (1) depends on the whole function f and not just on the value f(x). For instance,
we can redistribute the probability mass assigned by a given càdlàg density function without
changing its sectional variation norm in such a way that the log-likelihood loss is decreased
(Figure 1). A similar issue occurs with right-censored data in survival analysis, and our
Proposition 5.1 formally shows that the empirical risk minimizer is in general either not
well-de�ned or not consistent for the conditional hazard function. On the other hand, a
consistent HAL estimator of a conditional hazard function does exist.

Targeted learning [van der Laan and Rose, 2011] and debiased machine learning [Cher-
nozhukov et al., 2018] rely on non-parametric estimators of in�nite-dimensional nuisance
parameters, such as regression functions, conditional densities, and conditional hazard func-
tions. To guarantee valid statistical inference, we need to estimate these nuisance parameters
faster than rate n−1/4. It has been shown that this rate can be achieved independently of
the dimension of the covariate space for regression functions when the nuisance parameter
is assumed to belong to the class of càdlàg functions with uniformly bounded sectional vari-
ation norm [van der Laan, 2017, Bibaut and van der Laan, 2019]. Our work extends this
result to settings that include estimation of (conditional) densities and hazard functions.
In addition, our work is relevant for estimation of regression functions, because the HAL
estimator can be constructed using a number of basis functions that scales linearly in the
sample size n while the empirical risk minimizer (when it is de�ned) needs a number of basis
function that is potentially of order nd [Fang et al., 2021].

Earlier related work on non-parametric functional estimation used Sobolev spaces [Goldstein
and Messer, 1992, Bickel and Ritov, 1988, Stone, 1980, Goldstein and Khasminskii, 1996].
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Estimation over the class of multivariate càdlàg functions with uniformly bounded sectional
variation norm was introduced in [van der Laan, 2017]. Estimation of conditional hazard
functions in the presence of censoring has traditionally been done using kernel smooth-
ing or local linear polynomials [e.g., Ramlau-Hansen, 1983, McKeague and Utikal, 1990,
van Keilegom and Veraverbeke, 2001, Spierdijk, 2008], while more recent approaches use
boosting [Schmid and Hothorn, 2008, Hothorn, 2020, Lee et al., 2021]. To the best of our
knowledge, estimation of conditional hazard functions over the class of càdlàg functions
with uniformly bounded sectional variation norm has not been studied theoretically before.
Fang et al. [2021] considered estimation of regression functions over the class of functions
with uniformly bounded Hardy-Krause variation, but assumed only that the functions are
right-continuous in each coordinate. Aistleitner and Dick [2015] showed that the class of
right-continuous functions with bounded Hardy-Krause variation is in one-to-one correspon-
dence with �nite signed measures on [0, 1]d. Using their results we formally show that the
same correspondence holds for càdlàg functions with uniformly bounded sectional variation
norm (Proposition 2.3). Thus the class of functions DdM considered here is identical to the
function class considered by Fang et al. [2021], except for a constant baseline value. In par-
ticular, for a coordinate-wise right-continuous function, having bounded sectional variation
norm implies that the function is càdlàg. The reverse statement is not true; for instance,
almost any trajectory of a Brownian motion is a continuous (hence càdlàg) function with
in�nite sectional variation norm.

In Section 2 we introduce our notation and the space of multivariate càdlàg functions with
bounded sectional variation norm. Section 3 contains a formal de�nition of the general
loss based estimation problem and two (potentially di�erent) estimators; the empirical risk
minimizer and the HAL estimator. In Section 4 we derive, for a general loss function,
the asymptotic convergence rate directly for the HAL estimator without assuming it to be
identical to the empirical risk minimizer. In Sections 5-7 we apply our general results to
special cases. In Section 5 we consider the setting of censored survival data observed in
continuous time, and show that while the HAL estimator is well-de�ned, the empirical risk
minimizer is in general either ill-de�ned or inconsistent. In Section 6 we consider conditional
density estimation. Section 7 considers an example from the regression setting, where the
empirical risk minimizer is well-de�ned, and we illustrate the dramatic reduction in the
number of basis functions needed to calculate the HAL estimator compared to the empirical
risk minimizer. Section 8 contains a discussion of our results. Appendices A-C contain
proofs.

2 Multivariate càdlàg functions with bounded sectional

variation norm

For d = 1 the de�nition of a càdlàg function is given by its name � it is a function that is
continuous from the right with left-hand limits. When d > 1 we can approach a point from
an in�nite number of directions, and thus the concepts `right' and `left' are not de�ned. In
dimension d ∈ N we de�ne càdlàg functions as follows. For any u ∈ [0, 1] and a ∈ {0, 1}
de�ne the interval

Ia(u) =

{
[u, 1] if a = 1,

[0, u) if a = 0.

For any u = (u1, . . . , ud) ∈ [0, 1]d and a = (a1, . . . , ad) ∈ {0, 1}d de�ne the quadrant
Qa(u) = Ia1(u1)× · · · × Iad(ud).

De�nition 2.1 (Multivariate càdlàg function). A function f : [0, 1]d → R is càdlàg if for all
u ∈ [0, 1]d, a ∈ {0, 1}d, and any sequence {un} ⊂ Qa(u) which converges to u as n → ∞,
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the limit limn→∞ f(un) exists, and limn→∞ f(un) = f(u) for a = 1.

We use Dd to denote the collection of all càdlàg functions with domain [0, 1]d. The content
of De�ntion 2.1 is illustrated in Figure 2 for d = 2.

Q{0, 0}(x)

x

Southwest

Q{1, 0}(x)

x

Southeast

Q{0, 1}(x)
x

Northwest

Q{1, 1}(x)
x

Northeast

Figure 2: The four quadrants Q{0,0}(x), Q{1,0}(x), Q{0,1}(x), and Q{1,1}(x) spanned by the
point x ∈ [0, 1]2 and each of the vertices in the unit square. A sequence which is contained in
one of the quadrants and converges to u, converges from `southwest', `southeast', `northwest',
or `northeast'. That the function f is càdlàg means that the limit of the function f should
exist when we approach it from any of these four directions, and the limit should agree with
the function value at u when we approach it from `northeast'.

A bit of notation is needed to formally de�ne the section of a càdlàg function and the sectional
variation norm. Our notation resembles that of Fang et al. [2021] but we focus on multivari-
ate càdlàg functions. For any non-empty subset s ⊂ [d] = {1, . . . , d} let πs : {1, . . . , |s|} → [d]
be the unique increasing function such that Im(πs) = s, i.e., πs provides the ordered indices
of 1, . . . , d included in s. For any x ∈ [0, 1]d we de�ne the s-section of the vector x as

xs = (xπs(1), . . . , xπs(|s|)) ∈ [0, 1]|s|,

i.e., xs is the ordered tuple in [0, 1]|s| consisting of all components of x with index in s. Note
that for a singleton s = {i}, we have x{i} = xi. De�ning

xs = (1{1 ∈ s}x1,1{2 ∈ s}x2, . . . ,1{d ∈ s}xd) ∈ [0, 1]d.

the s-section of f is the function

fs : [0, 1]|s| −→ R such that fs(xs) = f(xs), ∀x ∈ [0, 1]d.

In words, fs is the function that appears when all arguments of f that are not in s are �xed
at zero. For vectors a,b ∈ [0, 1]d we write

a � b if ak ≤ bk, for k = 1, . . . , d,

a ≺ b if ak < bk, for k = 1, . . . , d,

and we de�ne closed and half-open boxes by [a,b] = {x ∈ [0, 1]d : a � x � b} and
(a,b] = {x ∈ [0, 1]d : a ≺ x � b}, respectively. For a box A = (a,b] ⊂ [0, 1]d with a ≺ b,
let

V(A) = {v = (v1, . . . , vd) : vi = ai or vi = bi}
denote the set of vertices of the box A. The quasi-volume assigned to the box A = (a,b] by
the function f is

∆(f ;A) =
∑

v∈V(A)

(−1)H(v)f(v), with H(v) =

d∑

k=1

1{vk = ak}.
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+
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b
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b

−
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Figure 3: The area of the box (a,b] can be calculated by �rst calculating the gray area in
the leftmost �gure, subtracting the gray areas in the two middle �gures, and then adding
the gray area in the rightmost �gure.

The idea is that the volume of the box A as measured by f can be computed by calculating
volumes of boxes with corners at 0, as illustrated in Figure 3 for d = 2. Let ρ denote a �nite
partition of (0, 1] given by

ρ = {(xl−1, xl] : l = 1, . . . , L}, with 0 = x0 < x1 < · · · < xL = 1.

For any collection ρ1, . . . , ρd of univariate partitions, we de�ne a partition P of (0, 1]d by

P = {I1 × I2 × · · · × Id : Ik ∈ ρk, k = 1, . . . , d}. (2)

For a function f : [0, 1]d → R the Vitali variation is de�ned as

V (f) = sup
P

∑

A∈P
|∆(f ;A)|,

where the supremum is taken over all partitions given by equation (2). The sectional vari-
ation norm of a function f : [0, 1]d → R is the sum of the Vitali variation of all its sections
plus the absolute value of the function at 0, i.e.,

‖f‖v = |f(0)|+
∑

s∈S
V (fs), with S = {s ⊂ [d] : s 6= ∅}.

For M ∈ (0,∞) we use DdM to denote the space of càdlàg functions f : [0, 1]d → R with
‖f‖v ≤M .

We now give two alternative descriptions of DdM . The �rst characterizes DdM as the closure of
the collection of rectangular piece-wise constant functions (Proposition 2.2), and the second
puts DdM into a one-to-one correspondence with �nite signed measures (Proposition 2.3).

De�ne the function space Fd = {1[x,1] : x ∈ [0, 1]d}, let Span(Fd) denote all linear combi-
nations of elements from Fd, and de�ne RdM = {f ∈ Span(Fd) : ‖f‖v ≤ M}. An example
of an element in Fd is shown in Figure 4 (a).

Proposition 2.2. Consider RdM and DdM as subspaces of the Banach space of all bounded

functions f : [0, 1]d → R equipped with the supremum norm. Then DdM = RdM , that is,
RdM ⊂ DdM and for any function f ∈ DdM there exists a sequence of functions {fn} ⊂ RdM
such that ‖f − fn‖∞ → 0.

Proof. See Appendix A.

In the following, let ‖µ‖TV = µ+([0, 1]d) +µ−([0, 1]d) denote the total variation norm of the
measure µ.

5
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Proposition 2.3. For any f ∈ DdM there exists a unique signed measure µf on [0, 1]d such
that

f(x) = µf ([0,x]), ∀x ∈ [0, 1]d,

and ‖µf‖TV = ‖f‖v. For any signed measure µ on [0, 1]d with ‖µf‖TV ≤ M there exists a
unique function fµ ∈ DdM such that

fµ(x) = µ([0,x]), ∀x ∈ [0, 1]d.

Proof. A similar result is proved in Aistleitner and Dick [2015]. We use their result in our
proof in Appendix A which is for càdlàg functions.

Based on Proposition 2.3 we can de�ne the integral with respect to a function f ∈ DdM as the
integral with respect to the measure µf . We use the notation df = dµf and |df | = d|µf |,
where |µ| = µ+ + µ−. The connection between càdlàg functions and measures is the key
component underlying the HAL estimator. The HAL estimator is motivated by the following
representation of functions in DdM which is due to Gill et al. [1995] and van der Laan [2017].

Proposition 2.4. For any f ∈ DdM we can write

f(x) = f(0) +
∑

s∈S

∫

[0,1]|s|
1(0s,xs](u) dfs(u),

and

‖f‖v = |f(0)|+
∑

s∈S

∫

[0,1]|s|
1(0s,1s](u)|dfs|(u),

where S = {s ⊂ [d] : s 6= ∅}.

Proof. See Appendix A.

Proposition 2.2 showed that DdM is the closure of the piece-wise constant functions RdM .
Proposition 2.5 implies that piece-wise constant functions that are not in RdM , like the ones
in Figures 4 (b) and (c), are not càdlàg.

Proposition 2.5. Let f : [0, 1]d → K ⊂ R for some �nite set K. If f 6∈ RdM then f is not
càdlàg.

Proof. See Appendix A.

3 Empirical risk minimization and the HAL estimator

We now consider a general setup for loss-based estimation. We assume given an i.i.d. dataset
Oi ∼ P , i = 1, . . . , n, with data on the form

O = (X,Y ) ∈ O = [0, 1]d × Y, for Y ⊂ R. (3)

We use Pn to denote the empirical measure corresponding to a data set {Oi}ni=1. Let L be
a loss function L : DdM ×O → R. We de�ne the target parameter

f∗ = argmin
f∈DdM

P [L(f, ·)], (4)

6
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(a) (b) (c)

Figure 4: Illustration of functions f : [0, 1]2 → R that are 0 on the white area and 1 on the
shaded area. The function in panel (a) is càdlàg. The functions in panels (b) and (c) are
not càdlàg.

which formally depends on M but we suppress that in the notation. A natural estimator of
f∗ is the substitution estimator, also known as the the empirical risk minimizer,

argmin
f∈DdM

Pn[L(f, ·)]. (5)

The optimization problem in equation (5) reduces to a �nite but high-dimensional optimiza-
tion problem for the squared error loss [Fang et al., 2021]. We conjecture that this can
be generalized to loss functions for which we can write [Bibaut and van der Laan, 2019,
Assumption 2]

L(f, (x, y)) = L̃(f(x), y), ∀f ∈ DdM , for some function L̃ : [0, 1]d × Y −→ R+. (6)

Note that equation (6) does not hold in general for the negative log-likelihood as we demon-
strate in Section 5.

We now turn to de�ne the HAL estimator [van der Laan, 2017]. The HAL estimator is
motivated from the representation given by Proposition 2.4, which shows that we can esti-
mate f ∈ DdM by estimating the signed measures generated by its sections. Let δXs,i be the
Dirac measure at the s-section of Xi and de�ne the estimator of the signed measure of the
s-section of f ,

dfβs,n =

n∑

i=1

βsi δXs,i , with unknown parameter vector βs = (βs1, . . . , β
s
n) ∈ Rn.

This gives the following data-dependent model for estimation of f ∈ DdM ,

fβ,n(x) = β0 +
∑

s∈S

n∑

i=1

βsi 1{Xs,i � xs}, with β = {βs : s ∈ S} ∪ {β0}, (7)

where S = {s ⊂ [d] : s 6= ∅}. As |S| =
∑d
j=1

(
d
j

)
= 2d − 1 we have that β ∈ Rm(d,n) with

m(d, n) = n(2d−1)+1. We refer to the indicator functions in equation (7) as basis function.
Some examples of basis functions are given in Figure 5 for d = 2. By Proposition 2.2, any
fβ,n is an element of Dd and we have

‖fβ,n‖v = ‖β‖1 = |β0|+
∑

s∈S

n∑

i=1

|βi,s|. (8)

Denote the space of all functions of this form by

Ddn := {fβ,n : β ∈ Rm(d,n)} ⊂ Dd,

7
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and denote similarly the subspace of these function with a sectional variation norm bounded
by a �xed constant M <∞ by

DdM,n := {fβ,n : β ∈ Rm(d,n), ‖β‖1 ≤M} ⊂ DdM .

A highly-adaptive lasso (HAL) estimator is then de�ned as

f̂n ∈ argmin
f∈DdM,n

Pn[L(f, ·)]. (9)

We refer to any minimizer as a HAL estimator.

x 7→ 1{X{1} � x{1}}

X

x 7→ 1{X{2} � x{2}}

X

x 7→ 1{X{1,2} � x{1,2}}

X

Figure 5: Examples of the basis functions that are used to construct the HAL estimator for
d = 2.

4 Convergence rates using an approximate minimizer

In this section we show that a HAL estimator f̂n enjoys the same convergence rate as has
been shown to hold for the empirical risk minimizer, when this is well-de�ned, under an
additional smoothness assumption (see Assumption 4.2 and the following discussion). In
addition, we derive asymptotic convergence rates for a HAL estimator in a setting where
the empirical risk minimizer is not well-de�ned. We denote by N[ ](ε,H, ‖·‖) the bracketing
number for a function space H with respect to a norm ‖·‖. The bracketing number is the
minimum number of brackets with a norm smaller than ε needed to cover H [van der Vaart
and Wellner, 1996]. We use ‖·‖∞ to denote the supremum norm and ‖·‖v to denote the
sectional variation norm, while for a measure µ we use ‖·‖µ to denote the L2(µ)-norm.
We use λ to denote Lebesgue measure. Recall that the data is of the form O = (X,Y )
with X ∈ [0, 1]d. For all non-empty subsets s ⊂ {1, . . . , d} we let Ps denote the marginal
distribution of Xs. We let µf∗s denote the measures generated by the sections f∗s . Note
that the measures µf∗s and Ps operate on the same measure space [0, 1]|s|. We assume that
1(0s,1s] · µf∗s � 1(0s,1s] · Ps and write the Radon-Nikodym derivatives as

1(0s,1s]
df∗s
dPs

=
d{1(0s,1s] · µf∗s }
d{1(0s,1s] · Ps}

, for s ∈ S.

Assumption 4.1 (Smoothness of the loss function). For a loss function L de�ne the function
space LM =

{
L(f, ·) : f ∈ DdM

}
. There exist constants C <∞, η > 0, and κ ∈ N such that

the following conditions hold.

(i) ‖L(f, ·)‖∞ ≤ C for all f ∈ DdM .

(ii) P [L(f, ·)− L(f∗, ·)] ≤ C‖f − f∗‖2λ for all f ∈ DdM .

8
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(iii) For any ε > 0, inf{P [L(f, ·)− L(f∗, ·)] : f ∈ DdM , ‖f − f∗‖λ ≥ ε} > 0.

(iv) N[ ](ε,LM , ‖·‖P ) ≤ CN[ ](ε/C,DdM , ‖·‖λ)κ for all ε ∈ (0, η).

Assumptions 4.1 (ii) and (iii) are standard assumptions [e.g., van der Vaart and Wellner,
1996]. Some general conditions on the loss functions can be given to ensure that Assump-
tion 4.1 (iv) holds, see for instance Lemma 4 in Appendix B in [Bibaut and van der Laan,
2019].

Assumption 4.2 (Data-generating distribution). There is a constant C <∞ such that the
following conditions hold.

(i) The target parameter f∗ is an inner point of DdM with respect to the sectional variation
norm, i.e., ‖f∗‖v < M .

(ii) 1(0s,1s] · µf∗s � 1(0s,1s] · Ps and ‖1(0s,1s] df∗s /dPs‖∞ ≤ C for all s ∈ S.

Assumption 4.2 (ii) is substantial, as it imposes an additional smoothness condition on f∗.
For instance, if P is dominated by Lebesgue measure, Assumption 4.2 (ii) implies that the
measures generated by the sections of f∗ must also be dominated by Lebesgue measure, hence
f∗ must be continuous. We discuss the necessity of this assumption further in Section 7.

Theorem 4.3. If Assumptions 4.1 and 4.2 hold, and f̂n is a HAL estimator as de�ned in
equation (9), then

‖f̂n − f∗‖λ = oP (n−1/3 log(n)2(d−1)/3).

Proof. We de�ne
Γn(δ) = sup

‖f−f∗‖λ<δ
|Gn[L(f, ·)− L(f∗, ·)]| , (10)

where Gn =
√
n(Pn − P ) is the empirical process. We apply theorem 3.2.5 from van der

Vaart and Wellner [1996] to a HAL estimator f̂n. This yields that f̂n converges to f∗ at
rate rn if Assumption 4.1 (ii) holds together with the following three conditions.

(a) For each n ∈ N, there exists a function ϕn : (0,∞) → R such that δ 7→ ϕn(δ)/δα is
decreasing for some α < 2 and

E∗[Γn(δ)] . ϕn(δ) and n−1/2ϕn(r−1
n ) ≤ r−2

n ,

where E∗ denotes outer expectation.

(b) Pn[L(f̂n, ·)] ≤ Pn[L(f∗, ·)] + OP (r−2
n ).

(c) ‖f̂n − f∗‖λ P∗−−−→ 0, where P ∗ denotes outer probability.

Lemma B.1 in Appendix B shows that condition (a) holds for the rate rn =

n1/3 log (n)
−2(d−1)/3. Lemma 4.4 shows that condition (b) holds for this rate. Condition (c)

follows from Assumptions 4.1 (iii) and (iv), Lemma 4.4, and Lemma B.2 in Appendix B.

The key component of Lemma 4.4 is to construct an auxiliary function f∗n which belongs to
DdM,n with high probability and is close to the target parameter f∗.

Lemma 4.4. If Assumptions 4.1 and 4.2 hold, and f̂n is a HAL estimator as de�ned in
equation (9), then

Pn[L(f̂n, ·)] ≤ Pn[L(f∗, ·)] + OP

(
n−2/3(log n)4(d−1)/3

)
. (11)

9
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Proof. By Assumption 4.2 (ii) we can de�ne the random function

f∗n(x) = f∗(0) +
∑

s∈S

∫

(0s,xs]

df∗s
dPs

dPs,n, (12)

where Ps,n is the empirical measure of the s-section of the data {Xi}ni=1, i.e., the empirical
measure obtained from {Xs,i}ni=1. The function f

∗
n has the following useful properties,

‖f∗n − f∗‖λ = OP (n−1/2) and P
(
f∗n ∈ DdM,n

)
−→ 1. (13)

To see this, we use the representation given by Proposition 2.4 and Assumption 4.2 (ii) to
write

f∗(x) = f∗(0) +
∑

s∈S

∫

(0s,xs]

df∗s = f∗(0) +
∑

s∈S

∫

(0s,xs]

df∗s
dPs

dPs,

from which we obtain

f∗n(x)− f∗(x) =
∑

s∈S

∫

(0s,xs]

df∗s
dPs

d[Ps,n − Ps] = n−1/2
∑

s∈S
Gs,n

[
1(0s,xs]

df∗s
dPs

]
,

where Gs,n denotes the empirical process of the s-section of the data. As {1(0s,xs] : xs ∈
(0, 1]|s|} is a Donsker class [van der Vaart and Wellner, 1996], it follows from the preser-
vation properties of Donsker classes and the assumption that 1(0s,1s] df∗s / dPs is uniformly
bounded, that also

F∗s =

{
1(0s,xs]

df∗s
dPs

: xs ∈ (0, 1]|s|
}

is a Donsker class. As this holds for any section s ∈ S, we have

‖f∗n − f∗‖∞ ≤ n−1/2
∑

s∈S
sup
f∈F∗s

|Gs,n[f ]| = n−1/2
∑

s∈S
OP (1) = OP (n−1/2),

which in particular shows the �rst statement of equation (13). To show the second statement
in equation (13), note that

f∗n(x) = f∗(0) +
∑

s∈S

1

n

n∑

i=1

1(0s,1s](Xs,i)
df∗s
dPs

(Xs,i)1{Xs,i � xs}. (14)

Equation (14) shows that f∗n ∈ Ddn, and by equation (8)

‖f∗n‖v = f∗(0) +
∑

s∈S

1

n

n∑

i=1

1(0s,1s](Xs,i)

∣∣∣∣
df∗s
dPs

∣∣∣∣ (Xs,i) = f∗(0) +
∑

s∈S
Ps,n

[
1(0s,1s]

|df∗s |
dPs

]
,

where we use |df∗s |/ dPs to denote the Radon-Nikodym derivative of |µf∗s | with respect
to Ps on (0s,1s]. The the last equality follows from the properties of the Jordan-Hahn
decomposition and the fact that Ps is a positive measure. By Assumption 4.2 (ii) and the law

of large numbers this implies that ‖f∗n‖v
P−−→ ‖f∗‖v. As ‖f∗‖v < M by Assumption 4.2 (i)

it follows that P (‖f∗n‖v < M)→ 1, which shows the second statement in equation (13).

Let now rn = n1/3 log (n)
−2(d−1)/3 and de�ne the indicator variable

ηn = 1
{
f∗n ∈ DdM,n, ‖f∗n − f∗‖λ < r−1

n

}
.

Note that equation (13) implies that P (ηn = 1) → 1 and [Schuler et al., 2023, Lemma 2]
yields

(1− ηn) = oP (a−1
n ) for any sequence {an}∞n=1 ⊂ R. (15)

10
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When ηn = 1 we have f∗n ∈ DdM,n an thus by de�nition of f̂n we have ηnPn[L(f̂n, ·)] ≤
ηnPn[L(f∗n, ·)]. We obtain

Pn[L(f̂n, ·)]− Pn[L(f∗, ·)]
= ηnPn[L(f̂n, ·)− L(f∗, ·)] + (1− ηn)Pn[L(f̂n, ·)− L(f∗, ·)]
≤ ηnPn[L(f∗n, ·)− L(f∗, ·)] + (1− ηn)Pn[L(f̂n, ·)− L(f∗, ·)]
= ηnPn[L(f∗n, ·)− L(f∗, ·)] + OP (1− ηn),

(16)

where we used Assumption 4.1 (i) for the last equality. Similarly, when ηn = 1 then ‖f∗n −
f∗‖λ < r−1

n so we can write

|ηnPn[L(f∗n, ·)− L(f∗, ·)]| = ηn

(∣∣∣n−1/2Gn[L(f∗n, ·)− L(f∗, ·)] + P [L(f∗n, ·)− L(f∗, ·)]
∣∣∣
)

≤ ηnn−1/2Γn(r−1
n ) + ηnP [L(f∗n, ·)− L(f∗, ·)]

≤ n−1/2Γn(r−1
n ) + ηnP [L(f∗n, ·)− L(f∗, ·)]

≤ n−1/2Γn(r−1
n ) + ηnr

−2
n ,

where Γn was de�ned in equation (10) and we used Assumption 4.1 (ii) for the last inequality.
Thus, by equations (15) and (16) we have

Pn[L(f̂n, ·)]− Pn[L(f∗, ·)] ≤ n−1/2Γn(r−1
n ) + OP (r−2

n ).

By Markov's inequality, Assumption 4.1 (i) and (iv), and Lemma B.1 in Appendix B, we
have

n−1/2Γn(r−1
n ) = OP (r−2

n ), (17)

which proves the lemma.

5 Right-censored data

Let T ∈ R+ be a time to event variable and W ∈ [0, 1]d−1 a covariate vector. In this section
we discuss estimation of the hazard function α(t,w), for t ∈ [0, 1] and w ∈ [0, 1]d−1, where

α(t,w) = lim
ε↘0

P (T ∈ [t, t+ ε] | T ≥ t,W = w)

ε
.

We parameterize the log-hazard function as a multivariate càdlàg function with bounded
sectional variation norm,

logα(t,w) = f(t,w), with f ∈ DdM . (18)

Let C ∈ R+ be a right-censoring time. We assume conditional independent censoring, i.e.,
C ⊥⊥ T | W . As we are only interested in the conditional hazard function for t ∈ [0, 1], we
can focus on the truncated event time T ∧1. We observe O = (W, T̃ ,∆), where T̃ = T ∧1∧C
and ∆ = 1{T ≤ (C ∧ 1)}. The right-censored data �ts into the setup described in Section 3
by setting X = (W, T̃ ), Y = ∆, and Y = {0, 1}. We denote by n′ the number of unique time
points, and by T̃(1) < T̃(2) < T̃(n′) the ordered sequence of observed unique time points. We
de�ne T̃(0) = 0.

As loss function we use the negative log of the partial likelihood for f [Cox, 1975, Andersen
et al., 2012],

Lpl(f,O) =

∫ T̃

0

ef(u,W ) du−∆f(T̃ ,W ). (19)

11
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The remainder of this section is organized as follows. We start by showing that the empirical
risk minimizer according to the partial likelihood loss is either not de�ned or not consistent.
We then show that the HAL estimator is well-de�ned and derive its asymptotic convergence
rate.

Proposition 5.1 gives a formal statement of the problem described in Figure 1 in Section 1.
To demonstrate the problem it is su�cient to consider the univariate case without covariates.

Proposition 5.1. Let f◦ ∈ D1
M be given. If there exists a j ∈ {1, . . . , n′ − 1} such that

f◦(T̃(j)) > f◦(T̃(j+1)), then

f◦ 6∈ argmin
f∈D1

M

Pn[Lpl(f, ·)].

Proof. See Appendix C.1.

Proposition 5.1 implies that any estimator f̂n ∈ D1
M of the log-hazard function which de-

creases between two time points is not an empirical risk minimizer. Thus, unless the hazard
function that generated the data is non-decreasing, an empirical risk minimizer either does
not exist or is inconsistent. Proposition 5.2 on the other hand shows that a HAL estimator
can be found as the solution to a convex optimization problem.

Proposition 5.2. Let fβ,n be the data-dependent model de�ned in equation (7). The problem

min
‖β‖1≤M

Pn[Lpl(fβ,n, ·)], (20)

is convex and has a solution. For any solution β̂, fβ̂,n is a HAL estimator, i.e.,

fβ̂,n ∈ argmin
f∈DdM,n

Pn[Lpl(f, ·)].

Proof. See Appendix C.1.

We assume that the conditional hazard function for the right-censoring time exists on [0, 1)
for all w ∈ [0, 1]d−1 and denote it by γ(t,w). We assume that γ is uniformly bounded for
all (t,w) ∈ [0, 1)× [0, 1]d−1. Without loss of generality we can take

P (T̃ = 1 |W = w) = P (T̃ = 1,∆ = 0 |W = w) = exp

{
−
∫

[0,1)

γ0(s,w) ds

}
. (21)

As T and C are assumed conditionally independent given W , any two uniformly bounded
conditional hazard functions α and γ together with a marginal distribution for the covariate
vectorW uniquely determine a distribution P for the observed data O through equation (21).
We write αP and γP for the two conditional hazard functions corresponding to a distribution
P , and let fP = logαP . We assume that W has a Lebesgue density and denote this with
ωP .

Lemma 5.3. Let P be a distribution such that ‖γP ‖∞ < ∞, ‖ωP ‖∞ < ∞, and fP ∈ DdM .
Then the following holds.

(a) For any ε > 0, inf{P [L(f, ·)− L(fP , ·)] : f ∈ DdM , ‖f − fP ‖λ ≥ ε} > 0.

(b) P [Lpl(f, ·)− Lpl(fP , ·)] . ‖f − fP ‖2λ.

12
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Proof. These properties essentially follow from general properties of the Kullback-Leibler
divergence. However, due to the point-mass at t = 1, a few additional arguments are needed
which we present in Appendix C.1.

Corollary 5.4. Let P be a distribution such that ‖γP ‖∞ <∞, ‖ωP ‖∞ <∞, and let f̂n be
a HAL estimator based on the negative partial log-likelihood loss de�ned in equation (19). If
Assumption 4.2 holds, then

‖f̂n − fP ‖λ = oP (n−1/3 log(n)2(d−1)/3).

Proof. Corollary 5.4 follows from Theorem 4.3 and Lemma 5.3. Details are given in Ap-
pendix C.1.

We illustrate the HAL estimator of a conditional hazard function and the e�ect of the sec-
tional variation with the following example. Consider a study that enrolls patients between
the age of 20 and 60 to study the e�ect of a treatment on death within one year after
treatment. We simulate an arti�cial dataset such that the hazard of death does not de-
pend on age in the untreated group, while the hazard of death among treated patients is
lowered for patients younger than 40, but increased for older patients. Censoring is gener-
ated independently of covariates and event times. As noted by Rytgaard et al. [2021], the
loss in equation (39) can be recognized as the negative log-likelihood of a Poisson model.
This implies that we can use existing software from the R-packages glmnet [Friedman et al.,
2010, Tay et al., 2023] and hal9001 [Hejazi et al., 2020, Coyle et al., 2022] to construct a
HAL estimator. The HAL estimator, computed on a simulated dataset of 200 patients, is
displayed for the treated group in Figure 6 across various values of the sectional variation
norm M . We illustrate the corresponding estimate of the conditional survival function for
both treatment groups in Figure 7.

Small M Medium M Large M

30 40 50 30 40 50 30 40 50
0

1

Age

T
im

e

Figure 6: The HAL estimator of the hazard function for the treated group based on a sample
size of 200 from the simulated study with darker values corresponding to higher values of
the hazard function. Estimates are shown for three di�erent values of the sectional variation
norm (M).

6 Density estimation

Let U ∈ [0, 1] andW ∈ [0, 1]d−1 and consider estimation of the conditional density of U given
W . In this section the available data are O = (U,W ), i.e., in the notation of the general
setup of Section 3, X = (U,W ) and no additional variable Y is observed. We parameterize

13
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Figure 7: Estimates of the survival function derived from the HAL estimator strati�ed on
treatment and three di�erent age values based on a sample of 200 patients from the simulated
study. Estimates are shown for three di�erent values of the sectional variation norm (M).

the conditional density as an element of

PdM =

{
p : [0, 1]d → R+

∣∣∣∣ log p(u,w) = f(u,w)− log

(∫ 1

0

ef(z,w) dz

)
, f ∈ DdM

}
. (22)

This parametrization is a natural one and has been used before for (univariate) density
estimation [e.g., Leonard, 1978, Silverman, 1982, Gu and Qiu, 1993]. Note that any element
of PdM is a conditional density, and that PdM includes all conditional densities p such that
log p ∈ DdM . De�ne the data-adaptive model

PdM,n =

{
p ∈ PdM

∣∣∣∣ log p(u,w) = f(u,w)− log

(∫ 1

0

ef(z,w) dz

)
, f ∈ DdM,n

}
,

and a HAL estimator as
p̂n ∈ argmin

p∈PdM,n
Pn[− log p]. (23)

Proposition 6.1 shows that a HAL estimator is well-de�ned and can be found as the solution
to a convex optimization problem.

Proposition 6.1. De�ne the set of indices I = {{1} ∪ s : s ⊂ {2, . . . , d}} and let

gβ,n(x) =

n∑

i=1

∑

r∈I
βri 1{Xr,i � xr}, with β = {βr = (βr1 , . . . , β

r
n) : r ∈ I}.

The problem

min
‖β‖1≤M

Pn
[
L̄(gβ,n, ·)

]
, with L̄(g,O) = log

(∫ 1

0

eg(z,W ) dz

)
− g(U,W ), (24)

is convex and has a solution. For any solution β̂,

pβ̂,n ∈ argmin
p∈PdM,n

Pn[− log p], where log pβ̂,n(u,w) = gβ̂,n(u,w)− log

(∫ 1

0

egβ̂,n(z,w) dz

)
.

Proof. See Appendix C.2

14
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Proposition 6.1 shows that the HAL estimator de�ned in equation (23) does not need to
include basis functions that are only functions of w, so the number of basis functions is
reduced to |I| = n2d−1.

We assume that (U,W ) ∼ P for some distribution P � λ. For a distribution P , let pP
denote the conditional density of U givenW and ωP the marginal density ofW with respect
to λ.

Corollary 6.2. Let P be a distribution such that ‖ωP ‖∞ < ∞ and pP ∈ PdM , and let p̂n
be a HAL estimator as de�ned in equation (23). If Assumption 4.2 holds when f∗ is the
minimizer of f 7→ P [L̄(f, ·)] over DdM , then

‖p̂n − pP ‖λ = oP (n−1/3 log(n)2(d−1)/3).

Proof. Corollary 6.2 follows from Theorem 4.3. See Appendix C.2 for a detailed proof.

A density can be obtained from a hazard function. This implies that an alternative density
estimator can be constructed by �rst using the HAL estimator de�ned in Section 5 to
estimate the corresponding log-hazard function and then transforming this into a density.
We refer to this estimator as a `HAL hazard parametrization' and to the estimator de�ned
in equation (23) as a `HAL density parametrization'. We compare these two estimators
in Figure 8, where we have �tted both estimators to a simulated univariate dataset. We
see that the estimator based on the hazard parametrization can exhibit erratic behavior at
the end of the interval. The reason is that assuming a log-hazard function belongs to DdM
implies that the corresponding density will not integrate to one. To see this, observe that
the conditional survival function associated with a log-hazard function f ∈ DdM evaluated
at t = 1 is

exp

{
−
∫ 1

0

ef(z,w) dz

}
≥ exp

{
−eM

}
> 0.

Thus when the support of U is [0, 1], the assumption that the log-hazard belongs to DdM will
be wrong by de�nition for any M <∞. We argue that the parametrization in equation (22)
is better suited when U is known to have support in [0, 1].

7 Least-squares regression

Let O = (X,Y ) for X ∈ [0, 1]d and Y ∈ [−B,B] for some B <∞, and de�ne

fP (x) = E[Y | X = x], when (X,Y ) ∼ P.

In this section we consider estimation of fP using the squared error loss

Lse(f,O) = (f(X)− Y )2. (25)

We here use ωP to denote the Lebesgue density of X which we assume to exist.

Corollary 7.1. Let P be a distribution such that ‖ωP ‖∞ <∞ and fP ∈ DdM , and let f̂n be
a HAL estimator based on the squared error loss de�ned in equation (25). If Assumption 4.2
holds, then

‖f̂n − fP ‖λ = oP (n−1/3 log(n)2(d−1)/3).

Proof. We show that Assumption 4.1 holds for the squared error loss, and so Corollary 7.1
follows from Theorem 4.3. First note that because the squared error loss is a strictly proper
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Figure 8: Two di�erent density estimators under two di�erent data-generating distributions.
We generated 200 samples from a uniform distribution (left panel) and a mixture of a beta
distribution and a uniform distribution (right panel). The `HAL hazard parametrization'
refers to a density estimator obtained from a HAL estimator of a hazard function, which
was de�ned in Section 5. The `HAL density parametrization' refers to the HAL estimator
de�ned in equation (23).

scoring rule [Gneiting and Raftery, 2007], the assumption that fP ∈ DdM implies that f∗ =
fP a.e. Conditions 4.1 (i)-(iii) hold by the de�nition of the squared error loss and the
assumption that Y and ωP are bounded. Condition 4.1 (iv) holds by Proposition 3 and
Lemma 4 in Appendix B of [Bibaut and van der Laan, 2019].

For the squared error loss an empirical risk minimizer as de�ned in equation (5) exists. This
was formally shown by Fang et al. [2021]. The authors also derive an algorithm for �nding
a collection of basis functions that is su�cient to construct an empirical risk minimizer. We
illustrate the di�erence between the HAL estimator and the empirical risk minimizer by
comparing the number of basis functions needed to calculate the two estimators for di�erent
sample sizes and dimensions. The results are shown in Figure 9. We see that a HAL
estimator can be constructed using much fewer basis functions.

8 Discussion

In this paper we have demonstrated that an empirical risk minimizer over the class of
càdlàg functions with bounded sectional variation norm is in general di�erent from a HAL
estimator. We have derived the asymptotic convergence rates directly for the HAL estimator.
In particularly, our work now rigorously justi�es the use of a HAL estimator for estimation of
conditional hazard functions and densities with uniformly bounded sectional variation norm.
As discussed in Sections 4, our main result relies on the smoothness assumption 4.2 (ii).
We conjecture that it is possible to construct a sieve estimator using a �ner grid than
the one used by a HAL estimator, in such a way that the sieve estimator remains well-
de�ned in general settings while achieving the same rate of convergence without imposing
any other assumptions than f∗ ∈ DdM . From a practical perspective, an interesting question
is how much we can reduce the number of basis functions and still expect to achieve fast
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Figure 9: The black line is the average number of basis functions needed to calculate the
empirical risk minimizer with ribbons denoting the 2.5%- and 97.5%-quantiles based on 200
simulations of uniformly distributed covariates. The number of observations is denoted by
n and the dimension by d. The blue line is a deterministic upper bound on this number (see
Lemma 3.5 of Fang et al. [2021]). The orange line is the number of basis functions needed
to calculate a HAL estimator.

convergence, and whether we need to impose additional smoothness assumptions for this to
hold. Schuler et al. [2023] recently demonstrated that a good approximation to the HAL
estimator can be achieved using a gradient tree boosting algorithm which is computationally
scalable.

As mention in Section 7, for the special case of least-squares regression, an empirical risk
minimizer exists. In addition, the empirical risk minimizer converges at the same rate as
the HAL estimator without imposing Assumption 4.2 [Bibaut and van der Laan, 2019, Fang
et al., 2021]. We do not know whether this assumption is necessary for ensuring convergence
of the HAL estimator. The dramatic reduction in the number of needed basis functions
indicate that there might be a price to pay when using the HAL estimator instead of the
empirical risk minimizer. It would be interesting to investigate if the HAL estimator remains
consistent at the same or a slower rate when the additional smoothness assumption 4.2 (ii)
fails to hold.

Throughout this paper we have stated that an empirical risk minimizer does not exist or
is inconsistent when a density or a hazard function is estimated. Formally, our Proposi-
tion 5.1 does not rule out that a consistent empirical risk minimizer can exist in the special
case that the data-generating hazard function is non-decreasing. If the data-generating
hazard function is believed to be monotone, it is natural to use shape-constrained estima-
tors [Groeneboom and Jongbloed, 2014]. An interesting direction for future research is to
investigate HAL-like estimators when biologically motivated monotonicity constraints are
imposed.

A Càdlàg functions and measures

We use the following theorem from Aistleitner and Dick [2015] to prove the results from
Section 2.

Theorem A.1 (Theorem 3 in [Aistleitner and Dick, 2015]). (a) If f : [0, 1]d → R is right-
continuous in each of its coordinates and ‖f‖v <∞ then there exists a unique signed
Borel measure µf on [0, 1]d such that

f(x) = µf ([0,x]), x ∈ [0, 1]d,
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and ‖µf‖TV = ‖f‖v, where ‖·‖TV denote the total variation norm of a measure.

(b) If µ is a signed Borel measure on [0, 1]d with ‖µf‖TV <∞ then there exists a unique
function fµ that is right-continuous in each of its coordinates such that

fµ(x) = µ([0,x]), x ∈ [0, 1]d.

We start by proving the following two lemmas.

Lemma A.2. For a function f : [0, 1]d → R and a sequence of functions fn : [0, 1]d → R,
n ∈ N, assume that ‖fn − f‖∞ → 0 when n→∞. If fn ∈ DdM for all n ∈ N then f ∈ DdM .

Proof. Neuhaus [1971] shows that the uniform limit of a sequence of càdlàg functions is also
càdlàg. It thus only remains so be shown that ‖f‖v ≤ M . Assume for contradiction that
this is not the case. We thus assume that ‖f‖v > M + ε for some ε > 0, which by de�nition
means that there must exist �nite partitions Ps of all faces (0s,1s], ∅ 6= s ⊂ [d] such that

∑

s∈S

∑

A∈Ps
|∆(f ;A)| > M + ε, where S = {s ⊂ [d] : s 6= ∅}

The sum above is made up of κ =
∑
s |Ps|2|s| < ∞ number of terms on the form ±f(x)

for some x ∈ [0, 1]d. By assumption we can �nd n0 ∈ N such that ‖fn − f‖∞ < ε/κ for all
n ≥ n0, and thus

M <
∑

s∈S

∑

A∈Ps
|∆(fn;A)| ≤ ‖fn‖v, ∀n > n0.

This contradicts the fact that fn ∈ DdM for all n ∈ N, so we must have ‖f‖v ≤M .

Lemma A.3. Let f be a function that is right-continuous in each of its coordinates with
‖f‖v ≤M . There exists a sequence {fn} ⊂ RdM such that ‖f − fn‖∞ → 0 for n→∞.

Proof. By Theorem A.1 (a) there exists a unique, �nite signed measure µf such that f(x) =
µ([0,x]). By the Jordan-Hahn decomposition theorem we may write µf = αP+ − βP−,
where P+ and P− are uniquely determined probability measures with P+ ⊥ P−, and
α, β ∈ [0,∞). Letting F+ and F− denote the associated cumulative distribution functions,
we have that f = αF+ − βF−. By Theorem A.1 and because P+ ⊥ P− we have

M ≥ ‖f‖v = ‖µf‖TV = α‖P+‖TV + β‖P−‖TV = α+ β. (26)

Let P+
n and P−n denote the empirical measures obtained from i.i.d. samples from P+ and

P−, respectively. Let F+
n and F−n denote the associated empirical distribution functions,

and de�ne Fn = αF+
n − βF−n . As P+

n ⊥ P−n almost surely we have

‖Fn‖v = α‖P+
n ‖TV + β‖P−n ‖TV = α+ β a.s.

The multivariate version of the Dvoretzky-Kiefer-Wolfowitz theorem [Dvoretzky et al., 1956,
Naaman, 2021] and the Borel-Cantelli lemma imply that ‖F+

n − F+‖∞ → 0 and ‖F−n −
F−‖∞ → 0 almost surely. Hence there must exist deterministic sequences of discrete mea-
sures p+

n and p−n with associated cumulative distribution functions f+
n and f−n such that

p+
n ⊥ p−n , ∀n ∈ N, (27)

and
‖f+
n − F+‖∞ −→ 0 and ‖f−n − F−‖∞ −→ 0. (28)
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Note that f+
n is a linear combination of the indicator functions {1[xi,1]}ni=1, where {xi}ni=1

are the support points of the discrete measure p+
n , and similarly for f−n . Hence, with fn =

αf+
n − βf−n , we have that fn ∈ Span(Fd). By equations (26) and (27),

‖fn‖v = α+ β ≤M,

so fn ∈ RdM for all n ∈ N. Equation (28) gives that ‖fn − f‖∞ → 0 which concludes the
proof.

Proof of Proposition 2.2. For f1, f2 ∈ Dd and α, β ∈ R the function f = αf1 +βf2 is càdlàg,
so RdM ⊂ DdM . It thus follows from Lemma A.2 that RdM ⊂ DdM . As any f ∈ DdM is right-
continuous in each of its coordinates, the reverse inclusion follows from Lemma A.3.

Proof of Proposition 2.3. Any function f ∈ DdM is by de�nition right-continuous in each
of its arguments so the �rst statement follows immediately from Theorem A.1 (a). For
the second statement, we know by Theorem A.1 (b) that there exists a right-continuous
function fµ with ‖fµ‖v = M < ∞ such that fµ(x) = µ([0,x]). By Lemma A.3, fµ can be
approximated uniformly by a sequence of functions fn ∈ DdM . Lemma A.2 then implies that
fµ ∈ DdM .

Proof of Proposition 2.4. For the �rst statement we use that we can partition a box [0,x]
into `half-closed' lower dimensional faces with corners at 0, the point 0, and the remaining
`half-closed interior' of the box, i.e.,

[0,x] = {0} ∪
( ⋃

s∈S
A(x; s),

)
, for A(x; s) = A1(x; s)× · · · ×Ad(x; s),

where

S = {s ⊂ {1, . . . , d} : s 6= ∅} , and Ai(x; s) =

{
(0, xi] if i ∈ s
{0} if i 6∈ s ,

and we de�ne (0, 0] = ∅. Using this and Proposition 2.3 we can write

f(x) = µf ([0,x]) = µf ({0}) +
∑

s∈S
µf (A(x; s)) (29)

Any section fs of f is also a càdlàg function with bounded sectional variation norm and
hence generates a measure on the cube [0, 1]|s| through the relation

fs(x) = µfs([0s,x]), for all x ∈ [0, 1]|s|. (30)

By de�nition of the section fs it follows that the measure assigned to a box in [0, 1]|s| by
µfs is the same as the measure assigned by µf when this space is considered as a subspace
of [0, 1]d, i.e.,

µfs([0s,xs]) = µf ([0,xs]), for x ∈ [0, 1]d.

By the uniqueness of the measures generated by f and each fs it follows that

µf (A(x; s)) = µfs((0s,xs]). (31)

By equations (29) and (31) we then have

f(x) = f(0) +
∑

s∈S
µfs((0s,xs]) = f(0) +

∑

s∈S

∫

(0s,xs]

dfs.
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The second statement follows because A(1; s), for s ∈ S, are disjoint sets, so the measures
1A(1;s) · µf are mutually singular. Hence,

‖µf‖TV =

∥∥∥∥∥1{0} · µf +
∑

s∈S
1A(1;s) · µf

∥∥∥∥∥
TV

=
∥∥1{0} · µf

∥∥
TV

+
∑

s∈S

∥∥1A(1;s) · µf
∥∥

TV

=

∫

{0}
d|µf |+

∑

s∈S

∫

A(1;s)

d|µf |

= |f(0)|+
∫

(0s,1s]

|dfs|.

Proof of Proposition 2.5. Let Br(x) be the ball around the point x ∈ [0, 1]d with radius
r > 0. For a function f : [0, 1]d → K ⊂ R with K �nite, we now claim that

∀x ∈ [0, 1]d,∀a ∈ {0, 1}d,∃r > 0,∀z, y ∈ Br(x) ∩Qa(x) : f(z) = f(y), (∗)

implies f ∈ RdM . To see this, assume that (∗) holds. De�ne the covering

B = {B(x) : x ∈ [0, 1]d},

where B(x) is an open ball around x such that for any a ∈ {0, 1}d, f is constant on
Brx(x) ∩ Qa(x) for some rx > 0. Such an open ball exists around any x by (∗). As [0, 1]d

is compact there exists a �nite subset {B(x1), . . . , B(xJ)} ⊂ B that covers [0, 1]d. Consider
now any box of the form

I(j) = I1(j1)× · · · Id(jd), where Ii(j) =





[0, x1
i ) if j = 1,

[xji , x
j+1
i ) if 0 < j < J,

[xJi 1] if j = J,

for all unique sequences j = (j1, . . . , jd) ∈ {1, . . . , J}d. These boxes partition [0, 1]d, and
by construction of the covering {B(x1), . . . , B(xJ)}, f is constant on B(xj) ∩ I(j) for all j
and j. As any I(j) is connected and {B(x1), . . . , B(xJ)} is an open cover, it follows that f
is constant on each I(j). Hence f ∈ RdM , and thus we have proved the initial claim. The
proposition now follows by noting that this implies that if f 6∈ RdM , then (∗) is false, i.e.,

∃x ∈ [0, 1]d,∃a ∈ {0, 1}d,∀r > 0,∃z, y ∈ Br(x) ∩Qa(x) : f(z) 6= f(y).

Thus, if f 6∈ RdM , we can �nd a point x ∈ [0, 1]d, a vertex a ∈ {0, 1}d and a sequence rn ↘ 0
such that for all n ∈ N, f is not constant on Brn(x) ∩Qa(x). This in turn implies that we
can �nd a sequence {xn} ∈ Brn(x)∩Qa(x) such that f(xn) 6= f(xn−1). Clearly, xn ∈ Qa(x)
and xn → x, but as f(x) ∈ K for all x ∈ [0, 1]d, f(xn) cannot converge. Hence f is not
càdlàg.

B Lemmas from empirircal process theory

Recall the notation LM =
{
L(f, ·) : f ∈ DdM

}
for a loss function L : DdM × O → R+, and

the assumption

∃C <∞, η > 0, κ ∈ N : N[ ](ε,LM , ‖·‖P ) ≤ CN[ ](ε/C,DdM , ‖·‖λ)κ, ∀ε ∈ (0, η). (B)
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Lemma B.1. Let

Γn(δ) = sup
‖f−f∗‖<δ

|Gn[L(f, ·)− L(f∗, ·)]| with f ∈ DdM .

If (B) holds and ‖L(f, ·)‖∞ < C, then for all n ∈ N,

E∗P [Γn(δ)] . δ1/2| log(δ)|d−1 +
| log(δ)|2(d−1)

δ
√
n

.

In particular, when rn = n1/3 log(n)−2(d−1)/3 we have

n−1/2E∗P [Γn(rn)] = O(r−2
n ).

Proof. De�ne the entropy integral

J[ ](δ,H, ‖·‖) =

∫ δ

0

√
1 + logN[ ](ε,H, ‖·‖) dε.

Lemma 3.4.2 in van der Vaart and Wellner [1996] provides the bound

E∗P [Γn(δ)] . J[ ](δ,LM , ‖·‖P )

(
1 +

J[ ](δ,LM , ‖·‖P )

δ2
√
n

C

)
. (32)

Bibaut and van der Laan [2019] established that

logN[ ](ε,DdM , ‖·‖λ) . ε−1| log(ε/M)|2(d−1),

for ε ∈ (0, 1), and so we have by assumption

logN[ ](ε,LM , ‖·‖P ) ≤ logC + κ logN[ ](ε/C,DdM , ‖·‖λ) . ε−1| log (ε)|2(d−1), (33)

for small enough ε. Using integration by parts we have

∫ δ

0

√
ε−1| log ε|2(d−1) dε = (−1)d−1

∫ δ

0

ε−1/2(log ε)
d−1

dε

= (−1)d−1

(
δ1/2(log δ)

d−1 − (d− 1)

∫ δ

0

ε1/2(log ε)
d−2

ε−1 dε

)

= δ1/2| log δ|d−1 + (d− 1)

∫ δ

0

ε−1/2| log ε|d−2 dε.

As the second term on the right vanishes for δ → 0, we can use this and equation (33) to
obtain

J[ ](δ,LM , ‖·‖P ) . δ1/2| log δ|d−1,

and so equation (32) gives

E∗P [Γn(δ)] . δ1/2| log δ|d−1

(
1 +

δ1/2| log δ|d−1

δ2
√
n

M

)
. δ1/2| log δ|d−1 +

| log δ|2(d−1)

δ
√
n

,

which was the �rst statement of the lemma. For the second statement, set δ = r−1
n and
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obtain for all n ≥ 3,

n−1/2r2
nE
[
Γn(r−1

n )
]
. n−1/2r2

n

(
r−1/2
n | log(rn)|d−1 +

rn| log(rn)|2(d−1)

√
n

)

≤ n−1/2r2
n

(
r−1/2
n | log(n)|d−1 +

rn| log(n)|2(d−1)

√
n

)

= n−1/2r2
n

(
n−1/6| log(n)|4(d−1)/3 +

n1/3| log(n)|4(d−1)/3

√
n

)

= n−1/2r2
n

(
n−1/6| log(n)|4(d−1)/3 + n−1/6| log(n)|4(d−1)/3

)

= n1/6| log(n)|−4(d−1)/32n−1/6| log(n)|4(d−1)/3

= 2

Lemma B.2. Assume that (B) holds and that for any ε > 0,

inf{P [L(f, ·)− L(f∗, ·)] : f ∈ DdM , ‖f − f∗‖λ ≥ ε} > 0. (34)

If Pn[L(f̂n, ·)] ≤ Pn[L(f∗, ·)] + oP (1) then ‖f̂n − f∗‖λ P∗−−−→ 0.

Proof. Proposition 1 in [Bibaut and van der Laan, 2019] and Theorem 2.4.1 in [van der Vaart
and Wellner, 1996] together with Assumption (B) imply that LM is a Glivenko-Cantelli class
of functions. The result then follows from Corollary 3.2.3 in [van der Vaart and Wellner,
1996].

C Additional proofs

C.1 Right-censored data

Proof of Proposition 5.1. Let f◦ ∈ D1
M be a function and j ∈ {1, . . . , n − 1} an index such

that f◦(T̃(j)) > f◦(T̃(j+1)). We shall construct a function f̌ ∈ D1
M such that Pn[Lpl(f̌ , ·)] <

Pn[Lpl(f◦, ·)] when Lpl is the negative log-likelihood de�ned in equation (19). This implies
that f◦ cannot be the minimizer of the empirical risk over D1

M . To �nd f̌ we �rst de�ne

V = inf
u∈[T̃(j),T̃(j+1)]

f◦(u),

and
fε(t) = 1{t ∈ [T̃(j) + ε, T̃(j+1))}V + 1{t 6∈ [T̃(j) + ε, T̃(j+1))}f◦(t),

for ε ∈ (0, [T̃(j+1) − T̃(j)]/2). In words, fε is identical to f◦, except on the interval [T̃(j) +

ε, T̃(j+1)) where it is constant and equals V . Note that by the assumption that f◦(T̃(j)) >

f◦(T̃(j+1)) we must have
f◦(T̃(j)) > V. (35)

As f◦ is càdlàg, so is fε, and as fε does not �uctuate more than f◦, we must have ‖fε‖v ≤
‖f◦‖v. Thus fε ∈ D1

M . Now, by equation (35) and because f◦ is continuous from the right,
we can �nd a δ > 0 and an ε0 > 0 such that f◦(t) > V + δ for all t ∈ [T̃(j), T̃(j) + ε0]. Thus,
if we de�ne f̌ = fε0/2 and I = (T̃(j) + ε0/2, T̃(j) + ε0), this implies that f̌(t) ≤ f◦(t) for all
t ∈ [0, 1] and f̌(t) < f◦(t)− δ for t ∈ I. This in turn implies that

∫ T̃i

0

ef̌(u) du =

∫ T̃i

0

ef
◦(u) du, for all i ≤ j, (36)
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and ∫ T̃i

0

ef̌(u) du <

∫ T̃i

0

ef
◦(u) du, for all i > j. (37)

Finally, we have by construction that

f̌(T̃i) = f◦(T̃i) for all i ∈ {1, . . . , n}. (38)

Equations (36)-(38) together imply that Pn[Lpl(f̌ , ·)] < Pn[Lpl(f◦, ·)].

Proof of Proposition 5.2. Let BM = {β ∈ Rm(d,n) : ‖β‖1 ≤M}. By construction, for any w
and β ∈ BM the map s 7→ fβ,n(s,w) is constant on [T̃(j−1), T̃(j)) for all j = 1, . . . , n′, and
thus we can write

∫ T̃i

0

efβ,n(s,Wi) ds =
n′∑

j=1

1{T̃i ≥ T̃(j−1)}(T̃(j) ∧ T̃i − T̃(j−1))e
fβ,n(T̃(j−1),Wi). (39)

For any t andw, the map β 7→ fβ,n(t,w) is linear and as z 7→ ez is convex and non-decreasing
it follows that β 7→ efβ,n(t,w) is convex [Boyd and Vandenberghe, 2004, Section 3.2.4]. Thus
equation (39) implies that the map β 7→ Pn[Lpl(fβ,n, ·)] is convex, and as BM is convex
it follows that the problem in (20) is convex. The minimum is attained because the map
β 7→ Pn[Lpl(fβ,n, ·)] is continuous and BM is compact.

Proof of Lemma 5.3. Let Pf denote the distribution of the observed data induced by the
marginal density PW , the conditional hazard for censoring γP , and the conditional log-
hazard for the event time of interest f . Let ν = PW ⊗ (λ⊗ τ + δ{1}×{0}) denote a measure
on the sample space O = [0, 1]d−1 × [0, 1]×{0, 1} where λ denotes Lebesgue measure, τ the
counting measure, δ Dirac measure, and λ ⊗ τ and δ{1}×{0} are considered as measures on
[0, 1]×{0, 1}. Then for every f ∈ DdM , Pf � ν and if we let pf denote the Radon-Nikodym
derivative of Pf with respect to ν we have a.s.,

pf (w, t, δ) =

(
ef(t,w) exp

{
−
∫ t

0

[ef(s,w) + γP (s,w)] ds

})δ

×
(
γP (t,w)1[0,1)(t) exp

{
−
∫ t

0

[ef(s,w) + γP (s,w)] ds

})1−δ

=
(
ef(t,w)

)δ
exp

{
−
∫ t

0

ef(s,w) ds

}

×
(
γP (t,w)1[0,1)(t)

)1−δ
exp

{
−
∫ t

0

γP (s,w) ds

}
,

=: qf (w, t, δ)g(w, t, δ),

(40)

where qf denotes a component of the likelihood that depends only on f , and g denotes a
component that depends only on γP . From this it follows that

DKL(Pf0 ||Pf ) =

∫
log

pf0
pf
pf0 dν

=

∫

[0,1]d×{0,1}

[ ∫ t

0

ef(s,w) ds− δf(t,w)

−
(∫ t

0

ef0(s,w) ds− δf0(t,w)

)]
pf0(w, t, δ) dν(w, t, δ)

= Pf0 [Lpl(f, ·)]− Pf0 [Lpl(f0, ·)],

(41)
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where DKL is the Kullback-Leiber divergence. Following [van der Vaart, 2000, p. 62] we
have

DKL(Pf0 ||Pf ) ≥
∫ (√

pf0 −
√
pf
)2

dν

≥
(
‖(√pf0 +

√
pf )2‖∞

)−1
∫

(pf0 − pf )
2

dν

≥
(
4eM (‖γP ‖∞ ∨ 1)

)−1
∫

(pf0 − pf )
2

dν

=
(
4eM (‖γP ‖∞ ∨ 1)

)−1
∫

(pf0 − pf )
2

dν.

(42)

Letting Sf (t,w) = exp
{
−
∫ t

0
ef(s,w) ds

}
we have

∫
(pf0 − pf )

2
dν =

∫
g2 (qf0 − qf )

2
dν

≥
∫

[0,1]d−1×[0,1)×{1}
g2 (qf0 − qf )

2
dν

≥ e‖γP ‖∞
∫

[0,1]d−1

∫ t

0

(ef0Sf0 − efSf )2 dλ⊗ PW

≥ e−‖γP ‖∞

‖ωP ‖∞
‖ef0Sf0 − efSf‖2λ.

(43)

Note that when f and f0 are uniformly bounded, then ‖ef0Sf0 − efSf‖λ → 0 implies

‖f0 − f‖λ → 0. Hence, because e−‖γP ‖∞
‖ωP ‖∞ > 0 by the assumptions about γP and ωP ,

equations (41)-(43) imply that for any sequence of function {fn} ⊂ DdM ,
{
Pf0 [Lpl(fn, ·)]− Pf0 [Lpl(f0, ·)]

}
−→ 0 implies ‖fn − f0‖λ −→ 0, (44)

when n → ∞. To see that this implies statement (a), note that if statement (a) were false
there would exist an ε > 0 and a sequence of functions {fn} ⊂ DdM such that Pf0 [Lpl(fn, ·)]−
Pf0 [Lpl(f0, ·)] → 0 and ‖f0 − fn‖λ ≥ ε for all n ∈ N. However, this is not possible by
equation (44).

To show statement (b) we use, e.g., [Gibbs and Su, 2002, Theorem 5] to argue that

DKL(Pf0 ||Pf ) ≤
∫

(pf0 − pf )2

pf
dν.

Using the decomposition in equation (40) we obtain

DKL(Pf0 ||Pf ) ≤
∫
g2(qf0 − qf )2

qfg
dν

=

∫
g(qf0 − qf )2

qf
dν

≤ exp {M + e−M}(‖γP ‖∞ ∨ 1)

∫
(qf0 − qf )2 dν,

(45)

where we used that 1/qf is bounded by exp {M + e−M} for all f ∈ DdM , and that g is
bounded by ‖γP ‖∞ ∨ 1. Using that [0, 1]d−1 × {1} × {0} is a null set under ν, we can write

∫
(qf0 − qf )2 dν =

∫

[0,1]d−1×[0,1)×{0,1}
(qf0 − qf )2 dν

+

∫

[0,1]d−1×{1}×{0}
(qf0 − qf )2 dν.

(46)
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If we use E to denote expectation of W under PW , we can write the �rst term on the right
hand side of equation (46) as
∫

[0,1]d−1×[0,1)×{0,1}
(qf0 − qf )2 dν

= E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})2

dt

]

+ E

[∫ 1

0

(
exp

{
f0(t,W )−

∫ t

0

ef0(s,W ) ds

}
− exp

{
f(t,W )−

∫ t

0

ef(s,W ) ds

})2

dt

]

= E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})2

dt

]

+ E

[∫ 1

0

(
exp

{
f0(t,W )−

∫ t

0

ef0(s,W ) ds

}
− exp

{
f(t,W )−

∫ t

0

ef(s,W ) ds

})2

dt

]

= E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})2

dt

]

+ E

[∫ 1

0

{(
ef0(t,W ) − ef(t,W )

)
exp

{
−
∫ t

0

ef0(s,W ) ds

}

+

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})
ef(t,W )

}2

dt

]

= E

[∫ 1

0

(
1 + e2f(t,W )

)(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})2

dt

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

exp

{
−2

∫ t

0

ef0(s,W ) ds

}
dt

]

− E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})(
ef0(t,W ) − ef(t,W )

)

× exp

{
f(t,W )−

∫ t

0

ef0(s,W ) ds

}
dt

]

. E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})2

dt

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

+ E

[∫ 1

0

(
exp

{
−
∫ t

0

ef0(s,W ) ds

}
− exp

{
−
∫ t

0

ef(s,W ) ds

})(
ef0(t,W ) − ef(t,W )

)
dt

]
,

where we used that f0 and f are uniformly bounded. Using Taylor expansions of x 7→ ex
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around 0, Jensen's inequality, and Cauchy-Schwarz' inequality we then obtain
∫

[0,1]d−1×[0,1)×{0,1}
(qf0 − qf )2 dν

. E

[∫ 1

0

(∫ t

0

(ef0(s,W ) − ef(s,W )) ds

)2

dt

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

+ E

[∫ 1

0

∫ t

0

(
ef0(s,W ) − ef(s,W )

)
ds
(
ef0(t,W ) − ef(t,W )

)
dt

]

. E
[∫ 1

0

(
ef0(s,W ) − ef(s,W )

)2

ds

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

+ E

[∫ 1

0

∫ t

0

(
ef0(s,W ) − ef(s,W )

)
ds
(
ef0(t,W ) − ef(t,W )

)
dt

]

. E
[∫ 1

0

(
ef0(s,W ) − ef(s,W )

)2

ds

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

+

(√√√√E

[∫ 1

0

{∫ t

0

(
ef0(s,W ) − ef(s,W )

)
ds

}2

dt

]

×

√√√√E

[∫ 1

0

{(
ef0(t,W ) − ef(t,W )

)}2
dt

])

. E
[∫ 1

0

(
ef0(s,W ) − ef(s,W )

)2

ds

]

+ E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

+

√√√√E

[∫ 1

0

(
ef0(s,W ) − ef(s,W )

)2
ds

]√√√√E

[∫ 1

0

{(
ef0(t,W ) − ef(t,W )

)}2
dt

]

= E
[∫ 1

0

(
ef0(t,W ) − ef(t,W )

)2

dt

]

. E
[∫ 1

0

(f0(t,W )− f(t,W ))
2

dt

]
= ‖f0 − f‖2λ⊗PW .

(47)

The second term on the right hand side of equation (46) is

∫

[0,1]d−1×{1}×{0}
(qf0 − qf )2 dν = E

[(
exp

{
−
∫ 1

0

ef0(s,W ) ds

}
− exp

{
−
∫ 1

0

ef(s,W ) ds

})2
]
,

and thus using similar arguments we obtain
∫

[0,1]d−1×{1}×{0}
(qf0 − qf )2 dν . E

[∫ 1

0

(f0(s,W )− f(s,W ))
2

ds

]

= ‖f0 − f‖2λ⊗PW .
(48)
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Equations (41) and (45)-(48) then give statement (b).

Proof of Corollary 5.4. First note that because condition 4.2 (i) is assumed to hold, fP = f∗

a.e. by Lemma 5.3 (a). Thus Corollary 5.4 follows from Theorem 4.3 if we can show that
Assumption 4.1 is true. Condition 4.1 (i) follows by de�nition of the loss function and (ii)-
(iii) follow from Lemma 5.3 as γP and ωP are assumed uniformly bounded. It thus only
remains to show 4.1 (iv). To do so, let ε > 0 be given and let [l1, u1], . . . , [lK , uK ] denote a
collection of ε-brackets with respects to ‖·‖λ covering DdM . By de�nition of the bracketing
number we can take K = N[ ](ε,DdM , ‖·‖λ). De�ne for all k = 1, . . . ,K,

l̃k(t, δ,w) = δlk(t,w)−
∫ t

0

euk(s,w) ds, and ũk(t, δ,w) = δuk(t,w)−
∫ t

0

elk(s,w) ds.

Any element in LM is on the form Lpl(f, ·) for some f ∈ DdM . If [lk, uk] is a bracket
containing f then it follows that [l̃k, ũk] contains Lpl(f, ·). Thus [l̃1, ũ1], . . . , [l̃K , ũK ] is a
collection of brackets covering LM . If we let E denote expectation under P we have by the
triangle inequality

‖l̃k − ũk‖P ≤ E
[
∆
{
lk(T̃ ,W )− uk(T̃ ,W )

}2
]1/2

+ E



{∫ T̃

0

euk(s,W ) − elk(s,W ) ds

}2



1/2

.

By equation (21), ∆ = ∆1{T̃ < 1} a.s., which implies

∆
{
lk(T̃ ,W )− uk(T̃ ,W )

}2

≤ 1{T̃ < 1}
{
lk(T̃ ,W )− uk(T̃ ,W )

}2

a.s.,

and so

E
[
∆
{
lk(T̃ ,W )− uk(T̃ ,W )

}2
]

≤ E
[
1{T̃ < 1}

{
lk(T̃ ,W )− uk(T̃ ,W )

}2
]

=

∫

[0,1]d−1

∫ 1

0

{lk(s,w)− uk(s,w)}2 h(s,w)e−
∫ s
0
h(u,w) duωP (w) dsdw,

where we use h(·,w) to denote the conditional hazard for T̃ on [0, 1) given W = w. By
assumption, ‖hωP ‖∞ ≤ B for some �nite constant B, and so we obtain

E
[
∆
{
lk(T̃ ,W )− uk(T̃ ,W )

}2
]1/2

≤ B‖lk − uk‖λ.

By Jensen's inequality and the mean value theorem we similarly obtain

E



{∫ T̃

0

euk(s,W ) − elk(s,W ) ds

}2



1/2

≤ E

[
T̃

∫ T̃

0

(
euk(s,W ) − elk(s,W )

)2

ds

]1/2

≤ E
[∫ 1

0

(
euk(s,W ) − elk(s,W )

)2

ds

]1/2

≤ eME
[∫ 1

0

{uk(s,W )− lk(s,W )}2 ds

]1/2

≤ eM‖ωP ‖∞‖uk − lk‖λ,
and so we have

‖l̃k − ũk‖P ≤
(
B + eM‖ωP ‖∞

)
‖uk − lk‖λ.

Thus [l̃1, ũ1], . . . , [l̃K , ũK ] is a collection of (B + eM‖ωP ‖∞)ε-brackets covering LM , which
shows that N[ ](ε,LM , ‖·‖P ) ≤ N[ ](ε/(B + eM‖ωP ‖∞),DdM , ‖·‖λ).
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C.2 Density estimation

Proof of Proposition 6.1. De�ne B̃M = {β ∈ Rm̃(d,n) : ‖β‖1 ≤ M} where m̃(d, n) = n2d−1.
To show that β 7→ Pn[L̄(gβ,n, ·)] is convex, take β1, β0 ∈ B̃M . Note that for any u ∈ [0, 1],
w ∈ [0, 1]d−1, and α ∈ [0, 1],

exp
{
gαβ1+(1−α)β0

(z,w)
}

= (exp {gβ1
(z,w)})α (exp {gβ0

(z,w)})1−α
.

By Hölder's inequality,
∫ 1

0

egαβ1+(1−α)β0
(z,w) dz =

∫ 1

0

(exp {gβ1(z,w)})α (exp {gβ0(z,w)})1−α
dz

≤
(∫ 1

0

exp {gβ1
(z,w)} dz

)α(∫ 1

0

exp {gβ0
(z,w)} dz

)1−α
,

which implies

log

(∫ 1

0

egαβ1+(1−α)β0
(s,w) ds

)
≤ α log

(∫ 1

0

egβ1 (s,w) ds

)
+ (1− α) log

(∫ 1

0

egβ0 (s,w) ds

)
.

From this it follows that

Pn[L̄(gαβ1+(1−α)β0
, ·)] ≤ αPn[L̄(gβ1

, ·)] + (1− α)Pn[L̄(gβ0
, ·)],

so β 7→ Pn[L̄(gβ,n, ·)] is convex. Because B̃M is convex the problem in (24) is convex, and
because β 7→ Pn[L̄(gβ,n, ·)] is continuous, the minimum is attained. To show the second
statement in the proposition, note that

Pn[− log p] = Pn[L̄(log p, ·)] for any p ∈ PdM,n. (49)

Observe that if a : [0, 1]d → R is a function such that a(u,w) = a(0,w) for all u ∈ [0, 1] and
w ∈ [0, 1]d−1, then for any f ∈ DdM and O ∈ [0, 1]d,

L̄(f + a,O) = log

(∫ 1

0

ef(s,W )+a(s,W ) ds

)
− (f(U,W )− a(U,W ))

= log

(
ea(0,W )

∫ 1

0

ef(s,W ) ds

)
− (f(U,W )− a(0,W ))

= L̄(f,O).

(50)

In particular, this holds when a(x) = b1{Xs,i � xs} for some b ∈ R, i ∈ {1, . . . , n}, and
s 6∈ I. Hence by de�nition of PdM,n we have for any p ∈ PdM,n that Pn[L̄(log p, ·)] =

Pn[L̄(gβ,n, ·)] for some β ∈ B̃M . By equation (49), we thus have that for any p ∈ PdM,n,

Pn[− log p] = Pn[L̄(gβ,n, ·)] for some β ∈ B̃M . The result then follows from the de�nition of
gβ̂,n.

Proof of Corollary 6.2. De�ne the log-density f∗1 (u,w) = f∗(u,w)− log (
∫ 1

0
ef
∗(z,w) dz) and

note that f∗1 ∈ PdM . Equations (49) and (50) imply that P [L̄(f∗, ·)] = P [− log f∗1 ] and thus
pP = f∗1 a.e., because the log-likelihood is a strictly proper scoring rule [Gneiting and
Raftery, 2007] and pP ∈ PdM by assumption. For any HAL estimator p̂n we can write
log p̂n(u,w) = gβ̂,n(u,w) − log (

∫ 1

0
egβ̂,n(z,w) dz), for some solution β̂ to the problem (24).

By equation (50), gβ̂,n is a HAL estimator for the loss L̄ as de�ned in equation (9). To prove
Corollary 6.2 it su�ces to show that

‖gβ̂,n − f∗‖λ = oP (n−1/3 log(n)2(d−1)/3). (51)
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We show that Assumption 4.1 holds for L̄, which imply that equation (51) is true by The-
orem 4.3. Condition 4.1 (i) holds because all f ∈ DdM,n are uniformly bounded, and condi-
tions 4.1 (ii)-(iii) hold by properties of the Kullback-Leibler divergence because we assume
that ωP is uniformly bounded [Gibbs and Su, 2002]. Condition 4.1 (iv) is established by the
same arguments used in the proof of Corollary 5.4.
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