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Summary

This PhD thesis develops statistical methods that integrate deep neural
networks in statistical models to predict various health outcomes, with a
focus on electrocardiogram (ECG) data as predictors. Traditional ECG
signal analysis relies mostly on fixed algorithms, which can be affected
by patient motion during observation, leading to inaccurate readings,
but also being specifically tailored to predetermined outcomes through
non-data-driven feature extraction methods.

This research aims to eliminate such artifacts and bypass the pre-
specified feature selection step entirely by associating full ECG signals
directly to clinical outcomes of interest using methods from functional
data analysis. Additionally, the project seeks to evaluate ECG mea-
surements to predict short-term and long-term risks of various cardio-
vascular diseases, mortality, and other conditions by adapting existing
methodologies and developing new algorithms.

The analysis of ECG data presents significant challenges due to in-
herent noise, high dimensionality, and changes over time. The primary
objectives of this PhD thesis include a method for alignment of mul-
tivariate functional data in time and the development of neural net-
works capable of processing functional inputs and time-to-event out-
comes while adjusting for the time warping. Proper alignment of ECG
data in time ensures accurate diagnosis, comparability, noise reduc-
tion, and data integration. Combining functional data analysis and neu-
ral networks into a hybrid model offers robust models that are less
prone to overfitting. Furthermore, the application of survival analy-
sis to ECG data allows for the prediction and understanding of critical
cardiac events, enabling timely interventions at the patient level.
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Resumé

Denne ph.d.-afhandling fokuserer på udviklingen af statistiske metoder,
der integrerer dybe, neurale netværk i statistiske modeller, der kan
bruges til at forudsige forskellige helbredsudfald, med fokus på elek-
trokardiogram (EKG) data som prædiktorer. Traditionel analyse af
EKG-signaler er for det meste baseret på faste algoritmer, som kan
påvirkes af patientbevægelser under observation, hvilket fører til
unøjagtige aflæsninger, men de er også specifikt skræddersyet til
forudbestemte resultater gennem ikke-datadrevne ekstraktionsmetoder.

Forskningen i denne afhandling sigter mod at eliminere sådanne arte-
fakter og omgå det forudspecificerede ekstraktionstrin ved at knytte
fulde EKG-signaler direkte til kliniske udfald af interesse ved hjælp
af metoder fra funktionel dataanalyse. Derudover søger projektet at
evaluere EKG-målinger til at forudsige kort- og langsigtede risici for
forskellige kardiovaskulære sygdomme, dødelighed og andre tilstande
ved at tilpasse eksisterende metoder og udvikle nye algoritmer.

Analyse af EKG-data har betydelige udfordringer på grund af
iboende støj, høj dimensionalitet og ændringer over tid. De primære
mål for denne ph.d.-afhandling omfatter en metode til opretning af
multivariate funktionelle data i tid og udvikling af neurale netværk,
der er i stand til at behandle funktionelle data som input og tid-til-
hændelsesudfald, mens der justeres for tidsforskydninger. Korrekt
justering for tidsforskydninger af EKG-data sikrer nøjagtig diagnose,
sammenlignelighed, støjreduktion og dataintegration. Kombinationen
af funktionel dataanalyse og neurale netværk i en hybrid model giver
robuste modeller, der er mindre tilbøjelige til at overtilpasse. Desuden
giver anvendelsen af overlevelsesanalyse til EKG-data mulighed for
forudsigelse og forståelse af kritiske hjerterelaterede hændelser, hvilket
muliggør rettidige indgreb på patientniveau.
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1. Introduction

The primary objective of this research project is to develop advanced neural networks
capable of providing clinically relevant predictions of various health outcomes based on
electrocardiogram (ECG, Chen, 2018) data. The ultimate aim is to create a deep learning
algorithm to deliver predicted risk probabilities for different health outcomes based on
ECG measurements.

The study population consists of participants from the Copenhagen General Popula-
tion Study (CGPS),1 a large-scale ongoing study. It aims to investigate prevalent health
conditions within the Danish population and establish correlations among lifestyle fac-
tors, genetics, and various diseases. Participants, aged between 20 and 100 years, are
randomly selected from the Danish Civil Registration System.2 In 2010, the Danish Na-
tional Committee on Health Research Ethics authorized the inclusion of cardiac CT scans3

for participants aged 40 and above in the CGPS4. Cardiac CT scans were conducted at
Rigshospitalet, with over 10,000 participants from the study undergoing these examina-
tions. Over the years, cardiac CT imaging has proven instrumental in identifying novel
cardiovascular biomarkers. CT scans can help identify and diagnose conditions such as
bone features, internal injuries, tumors, infections, and blood clots, and are often used to
guide further medical procedures, such as biopsies, surgeries, and radiation therapy.

ECGs offer several advantages over CT scans, particularly in cardiac diagnostics. ECGs
are quick and provide immediate results, making them ideal for initial assessments and
routine check-ups. They are also more cost-effective and do not expose patients to ion-
izing radiation, which benefits those requiring frequent monitoring. Additionally, ECG
machines are portable and can be used in various settings, including emergency rooms
and ambulances. However, ECGs cannot show the heart’s structure or the condition of
coronary arteries (Goldberger et al., 2018, chap. 24). Given the widespread availability of
ECGs, beyond their use in detecting arrhythmias, heart attacks, and heart damage, we aim
to demonstrate their potential in screening for anatomical heart diseases.

Currently, ECG signal interpretation relies on a predetermined set of algorithms that
assess heart rate, detect irregularities in heart rhythm, and identify other patterns within

1Copenhagen University Hospitals, Organization page of the Copenhagen General Population Study [web-
site], https://research.regionh.dk/en/organisations/copenhagen-general-population-study, accessed November 29,
2024

2The National Centre for Register-based Research, The Danish Civil Registration System (CPR) [website],
https://ncrr.au.dk/danish-registers/the-danish-civil-registration-system-cpr, accessed November 29, 2024

3National Health Service, CT Scan [website], https://www.nhs.uk/conditions/ct-scan/, accessed November
29, 2024

4Cardiovascular CT Research Unit, Rigshospitalet, Ongoing Cardiovascular CT Projects [website],
https://rh-ct.org/projects/, accessed November 29, 2024
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4 Introduction

the signal waves, aiding in diagnosing and monitoring cardiac conditions. However, ECG
signals are often affected by patient motion, which can be either rhythmic or irregular.
Using these predefined algorithms, signal distortions may be misinterpreted as cardiac
arrhythmias, leading to inaccurate readings and prognoses. One possible approach to this
issue is to circumvent the diagnostic step altogether by directly associating ECG signals
with clinical outcomes.

The project aims to assess ECG measurements and predict the short-term and long-
term risks of various cardiovascular diseases, mortality, and other conditions by refining
existing methodologies and designing new algorithms.

1.1. OBJECTIVES

The analysis of ECG data presents significant challenges due to inherent noise and the high
dimensionality of the dataset. This section delineates the three primary objectives and the
underlying motivations that will facilitate the analysis of ECG data and its association
with clinical outcomes. The objectives include the alignment of multivariate functional
data and the development of neural networks capable of processing functional inputs and
time-to-event outcomes.

1.1.1. Alignment of functional data

Alignment of functional data is imperative for automated analysis, particularly when em-
ploying neural networks, due to several critical factors. Firstly, it ensures consistency
and comparability, allowing data points to be accurately positioned relative to each other,
which is essential for effective pattern recognition and reliable conclusions. Secondly,
alignment minimizes noise and artifacts, resulting in cleaner data inputs that enhance the
learning and predictive capabilities of neural networks. Additionally, well-aligned data
improves the performance of neural network architectures, such as recurrent neural net-
works and convolutional neural networks, by enabling them to better capture underlying
patterns and relationships.

Alignment of ECG data is essential for ensuring accurate diagnosis, comparability,
noise reduction, and data integration. Proper alignment guarantees that the electrical ac-
tivity of the heart is correctly represented, thereby minimizing the risk of misdiagnosis
or inappropriate treatment. It also facilitates consistent comparisons between different
recordings, which is crucial for monitoring changes in a patient’s heart condition over
time or comparing results across different patients. Additionally, alignment helps reduce
noise and artifacts caused by external factors such as body movements or muscle activity,
leading to clearer and more reliable ECG readings.

We aim to implement neural network models capable of aligning multivariate quasi-
periodic functional data, such as ECG, and this objective is achieved in Manuscript I. The
motivation for Manuscript I is further detailed in Section 2.

1.1.2. Functional neural network

ECG signals are continuous, and each heartbeat can be represented as a curve. Functional
data analysis allows for the study of these curves as whole entities rather than discrete
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points, capturing the data’s inherent smoothness and continuity. Functional data analysis
provides a more comprehensive understanding of the heart’s electrical activity, which can
lead to better identification of cardiac abnormalities and more robust biomarkers.

Neural networks are particularly useful for analyzing functional data for several reasons.
They can adaptively learn the best representation of the functional data, which is especially
useful when the data is high-dimensional and complex. Unlike traditional methods that
require separate steps for feature extraction and classification, neural networks can perform
these tasks simultaneously. This end-to-end learning approach can improve the efficiency
and accuracy of the analysis.

We aim to combine functional data analysis and neural networks into a hybrid model
that offers significant benefits of both approaches – functional data analysis ensures that the
data is well-structured while neural networks can handle large datasets. This combination
thus leads to robust models that are less prone to overfitting. We achieve the integration
of functional data analysis into neural networks in Manuscript II. Section 4 provides the
foundation for functional neural networks.

1.1.3. Time-to-event outcome

Applying survival analysis to ECG data is important because it allows for the prediction
and understanding of critical cardiac events, such as sudden cardiac death or recurrent car-
diovascular incidents. ECG signals provide continuous data that can be analyzed to iden-
tify which features are most predictive of adverse outcomes. By modeling the time until
these events occur, survival analysis helps in risk stratification and patient management,
enabling timely interventions. This approach is particularly useful in handling censored
data, where the event of interest has not occurred for some patients during the study period.

Using neural networks for survival analysis offers several benefits compared to standard
semi-parametric models, one of them being their ability to handle high-dimensional data.
Furthermore, the relationship between predictors and time-to-event is often non-linear and
complex. Neural networks can capture these non-linearities, which is crucial for under-
standing the underlying risk factors and their interactions.

We achieve the implementation of neural networks for time-to-event outcomes in
Manuscript III. An extended background for Manuscript III is described in Section 3.

1.2. USE OF GENERATIVE AI

Microsoft Copilot (Microsoft, 2024) was utilized during the preparation of this thesis to
assist with grammar correction and to enhance the clarity and coherence of the writing.
The contributions of Microsoft Copilot were strictly limited to linguistic improvements
and did not influence the substantive content or the originality of the presented research.
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2. Alignment of quasi-periodic functional data

ECG data is often misaligned due to several factors that can significantly impact the ac-
curacy and reliability of the readings. One of the reasons for misalignment is the incor-
rect placement of electrodes. Proper electrode placement is crucial for obtaining accurate
ECG readings, since misplacement can lead to significant errors (Goldberger et al., 2018,
chap. 25). Patient movement during the ECG recording is another major factor contribut-
ing to misalignment. Even slight movements can disrupt the signal, causing artifacts and
inaccuracies in the ECG data. Physiological variability, such as breathing, heart rate vari-
ability, and other bodily movements, can cause fluctuations in the ECG signal, contributing
to misalignment. These natural physiological variations are inherent in all patients and can
complicate the alignment process. Figure 2.1 represents the noise in the ECG data. This
figure is intended solely for illustrative purposes and does not capture the full range of vari-
ability present in ECG recordings. This data was simulated using the NeuroKit2 Python
module (Makowski et al., 2021) and will be used throughout the thesis for demonstrations.
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a) Template heartbeats b) Multiple template heartbeats

c) Observed data

FIGURE 2.1. Illustration of the observed misalignment in the ECG data. Figure a) shows the com-
mon (black) and subject-specific template heartbeats, while Figure b) shows multiple consecutive
common (black) and subject-specific template heartbeats. Figure c) shows the observed data, which
stems from Figure b) with additional noise in the time domain and amplitude.
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8 Alignment of quasi-periodic functional data

2.1. JOINT ALIGNMENT OF FUNCTIONS

First, we focus on the joint alignment of individual heartbeats, as represented in Fig-
ure 2.1a). In general, our objective is to identify warping functions that align the ECG
biomarkers. We denote the set of 𝑁 observed functions as { 𝑓𝑖}, which is a shorthand for
{ 𝑓𝑖}𝑁𝑖=1 = { 𝑓𝑖 ∈ F𝐼 | 𝑖 = 1, . . . , 𝑁}, where F𝐼 is the set of absolutely continuous functions
defined on the interval 𝐼. Without loss of generality, we consider 𝐼 = [0, 1]. Given a
functional template 𝜇 ∈ F𝐼 , we aim to determine warping functions {𝛾𝑖}, a shorthand for
{𝛾𝑖}𝑁𝑖=1 = {𝛾𝑖 ∈ Γ𝐼 | 𝑖 = 1, . . . , 𝑁}, that align them to this template function 𝜇. The set Γ𝐼
is the set of boundary-preserving (𝛾(0) = 0 and 𝛾(1) = 1) diffeomorphisms (𝛾 and 𝛾−1 are
differentiable). Note also that 𝛾′ (𝑡) > 0, for all 𝑡 ∈ 𝐼. Mathematically, aligning functions
𝜇, 𝑓 ∈ F𝐼 equals finding 𝛾 as a solution to

𝛾 = arg min
𝛾∗∈Γ𝐼

𝑑 (𝜇, 𝑓 ◦ 𝛾∗),

where ◦ denotes function composition, and 𝑑 (·, ·) is some distance measure.

2.1.1. Fisher-Rao metric

Srivastava and Klassen (2016, sec. 4.4) argue that a good distance measure for aligning
functions 𝑓 , 𝑔 ∈ F𝐼 should satisfy the invariance property, that is

𝑑 ( 𝑓 , 𝑔) = 𝑑 ( 𝑓 ◦ 𝛾, 𝑔 ◦ 𝛾), for all 𝛾 ∈ Γ𝐼 . (2.1)

Intuitively, the invariance property is desirable, because if functions 𝑓 and 𝑔 are aligned,
then if both of them are warped in the same way, they should still be aligned, thus their
“distance” should be the same.

However, under the L2 norm, which has been widely used for functional registration,
the action of Γ𝐼 on F𝐼 is not by isometries (distance-preserving transformation), making it
inappropriate for direct use in functional alignment, as illustrated by the following exam-
ple. Given general functions 𝑓 , 𝑔 ∈ L2 and 𝛾 ∈ Γ𝐼 , we have that

∥ 𝑓 ◦ 𝛾 − 𝑔 ◦ 𝛾∥ =
∫ 1

0
[ 𝑓 (𝛾(𝑡)) − 𝑔(𝛾(𝑡))]2𝑑𝑡 =

∫ 1

0
[ 𝑓 (𝑠) − 𝑔(𝑠)]2 1

𝛾′ (𝛾−1 (𝑠))
𝑑𝑠,

where 𝑠 = 𝛾(𝑡). In general, 𝛾′ (𝛾−1 (𝑠)) ≠ 1, then ∥ 𝑓 ◦ 𝛾 − 𝑔 ◦ 𝛾∥ ≠ ∥ 𝑓 − 𝑔∥, and the
distance between 𝑓 and 𝑔 under this norm depends greatly on the choice of 𝛾 (Srivastava
& Klassen, 2016, sec. 4.5).

This motivates the use of a metric that satisfies the invariance property. We first define
a Square-Root Slope Function representation of functions (SRSF, Srivastava & Klassen,
2016, def. 4.2), denoted 𝑞 here, as

SRSF( 𝑓 ) = 𝑞(𝑡) := sign( 𝑓 ′ (𝑡))
√︁
| 𝑓 ′ (𝑡) |. (2.2)

The original function can be retrieved by 𝑓 (𝑡) = 𝑓 (0) +
∫ 𝑡

0 𝑞(𝑠) |𝑞(𝑠) |𝑑𝑠. Note that the
SRSF representation of any warping function 𝛾 ∈ Γ𝐼 is simply

√
𝛾′. Furthermore, for any
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𝑓 ∈ F𝐼 , its SRSF 𝑞, and 𝛾 ∈ Γ𝐼 , the SRSF of 𝑓 ◦ 𝛾 has the form

𝑞(𝑡) = sign(( 𝑓 ◦ 𝛾)′ (𝑡))
√︁
| ( 𝑓 ◦ 𝛾)′ (𝑡) | = sign( 𝑓 ′ (𝛾(𝑡))𝛾′ (𝑡))

√︁
| 𝑓 ′ (𝛾(𝑡))𝛾′ (𝑡) |

= sign( 𝑓 ′ (𝛾(𝑡))) sign(𝛾′ (𝑡))
√︁
| 𝑓 ′ (𝛾(𝑡)) |

√︁
|𝛾′ (𝑡) |

= sign( 𝑓 ′ (𝛾(𝑡)))
√︁
| 𝑓 ′ (𝛾(𝑡)) |

√︁
𝛾′ (𝑡) = 𝑞(𝛾(𝑡))

√︁
𝛾′ (𝑡) =: (𝑞, 𝛾) (𝑡).

Using this representation, the action of Γ𝐼 on F𝐼 under the standard L2 metric is a
distance-preserving transformation, and we call the L2 metric on the SRSF representation
space the Fisher-Rao metric. The technical details are formally described by Srivastava
and Klassen (2016, chap. 4).

2.1.2. Karcher mean

With the definition of the Fisher-Rao metric 𝑑FR, given { 𝑓𝑖}, we aim to find {𝛾𝑖} such that

𝛾𝑖 = arg min
𝛾∈Γ𝐼

𝑑FR (𝜇, 𝑓𝑖 ◦ 𝛾) = arg min
𝛾∈Γ𝐼
∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥, (2.3)

where 𝜇𝑞 is the SRSF representation of 𝜇, and 𝑞𝑖 is the SRSF representation of 𝑓𝑖 .
However, the template 𝜇 is often unknown and needs to be estimated. Consider mis-

aligned data as in Figure 2.1a). Even within this limited example, a basic statistical mea-
sure such as the cross-sectional mean is inadequate in capturing the intrinsic characteristics
of the heartbeat, as demonstrated in Figure 2.2. Instead, an estimate of the template 𝜇 can
be found iteratively using Algorithm 1, with an example represented by Figure 2.3.
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a) Template heartbeats and cross-sectional mean b) Cross-sectional mean and common template

FIGURE 2.2. Comparison of the cross-sectional mean and the common template. Figure a) shows
the cross-sectional mean (black) of the misaligned data, while Figure b) shows the comparison to
the common template (gray).

The cross-sectional mean of the aligned functions in Figure 2.3 becomes progressively
more similar to the common template regarding the number of peaks, and although the
cross-sectional mean does capture the size of the amplitudes of the heartbeats, it fails to
extract their positions and thus differs from the true common template. This is a direct
consequence of the invariance property, which can be demonstrated as follows. Denote
the true common template as 𝜇, the cross-sectional mean of the aligned data as 𝜇̂, and let
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Algorithm 1 Iterative template calculation

Input: Functions { 𝑓𝑖}𝑁𝑖=1, stopping criterion*

Output: Mean template 𝜇, warping functions {𝛾𝑖}𝑁𝑖=1

1: 𝑞𝑖 ← SRSF( 𝑓𝑖) ⊲ Calculate the SRSF representation of 𝑓𝑖 using Equation (2.2)
2: 𝛾𝑖 ← 𝛾id ⊲ Initialize 𝛾𝑖 as identity warp
3: while stopping criterion not satisfied do
4: 𝜇← 𝑁−1 ∑𝑁

𝑖=1 𝑓𝑖 ◦ 𝛾𝑖 ⊲ Calculate the cross-sectional mean of { 𝑓𝑖 ◦ 𝛾𝑖}𝑁𝑖=1
5: 𝜇𝑞 ← SRSF(𝜇) ⊲ Calculate the SRSF representation of 𝜇 using Equation (2.2)
6: 𝛾𝑖 ← arg min𝛾∈Γ𝐼 ∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥ ⊲ Find 𝛾𝑖 as a solution to Equation (2.3)
7: end while

*The choice of stopping criterion can be very general, for example, the distance between two consecutive 𝜇.
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a) Observed data b) First iteration c) Templates

FIGURE 2.3. Example of the iterative template calculation, as described in Algorithm 1. The black
lines represent the cross-sectional mean in each step, and the gray line in Figure c) represents the
true common template compared to the cross-sectional mean after multiple iterations (black).

𝛾̂ be the warping function for which 𝜇 = 𝜇̂ ◦ 𝛾̂. Then,

𝛾̃𝑖 = arg min
𝛾∗∈Γ𝐼

𝑑FR (𝜇, 𝑓𝑖 ◦ 𝛾∗) = arg min
𝛾∗∈Γ𝐼

𝑑FR ( 𝜇̂ ◦ 𝛾̂, 𝑓𝑖 ◦ 𝛾∗)

(2.1)
= arg min

𝛾∗∈Γ𝐼
𝑑FR ( 𝜇̂, 𝑓𝑖 ◦ 𝛾∗ ◦ 𝛾̂−1).

If 𝛾𝑖 is a solution to
𝛾𝑖 = arg min

𝛾∗∈Γ𝐼
𝑑FR ( 𝜇̂, 𝑓𝑖 ◦ 𝛾∗),

then 𝛾̃𝑖 = 𝛾𝑖 ◦ 𝛾̂. In other words, Algorithm 1 reconstructs the template up to a warp.
In the example of Figure 2.3, the distortion is quite substantial, and depending on the
misalignment of the observed data, there is no guarantee that the resulting template would
have the shape of the true template.

This prompts an alternative concept of the amplitude of 𝑓 . Let 𝑞 be the SRSF represen-
tation of 𝑓 , the amplitude of 𝑓 is given by the orbit

[𝑞] = closure{(𝑞, 𝛾) | 𝛾 ∈ Γ𝐼 }.



Alignment of quasi-periodic functional data 11

Srivastava and Klassen (2016, def. 4.9) define the amplitude distance 𝑑𝑎 as

𝑑𝑎 ( [𝑞1], [𝑞2]) = inf
𝛾1 ,𝛾2∈Γ̃𝐼

(∥(𝑞1, 𝛾1) − (𝑞2, 𝛾2)∥),

where 𝑞1, 𝑞2 ∈ L2 are the SRSF representations of 𝑓1, 𝑓2 ∈ F𝐼 , respectively, and Γ̃𝐼 is
the set of absolutely continuous boundary-preserving weakly increasing functions. With
the help of this distance measure, we can define the mean amplitude, also known as the
Karcher mean (Srivastava & Klassen, 2016, def. 8.1).

DEFINITION 1 (Karcher mean in A). The Karcher mean [𝜇𝑞] of the amplitudes
{[𝑞𝑖]}𝑁𝑖=1 of given functions { 𝑓𝑖}𝑁𝑖=1 with SRSFs {𝑞𝑖}𝑁𝑖=1 is the solution to

[𝜇𝑞] = arg inf
[𝑞 ]∈A

𝑁∑︁
𝑖=1

𝑑2
𝑎 ( [𝑞], [𝑞𝑖]),

where A is the quotient space A = F𝐼/Γ̃𝐼 .

2.1.3. Center of an orbit

Algorithm 1 provides an element of the amplitude of 𝜇. However, to find an element that
is the best representative of a set of given functions { 𝑓𝑖}, we need to determine the center
of the orbit [𝜇𝑞] with respect to the SRSFs {𝑞𝑖} (Srivastava & Klassen, 2016, def. 8.2).

DEFINITION 2 (Center of an orbit). For a given set of SRSFs {𝑞𝑖}𝑁𝑖=1 and 𝑞, an element
𝑞 of [𝑞] is the center of [𝑞] with respect to the set {𝑞𝑖}𝑁𝑖=1 if the relative phases {𝛾𝑖}𝑁𝑖=1,
where 𝛾𝑖 = arg inf𝛾∈Γ𝐼 ∥𝑞−(𝑞𝑖 , 𝛾)∥, have their sample Karcher mean as identity, 𝛾id (𝑡) = 𝑡.

Given functions { 𝑓𝑖} and their SRSF representations {𝑞𝑖}, let [𝜇𝑞] be the Karcher mean
of amplitudes {[𝑞𝑖]}, let 𝑞 be an element of [𝜇𝑞], and let 𝛾𝑖 be the solution to

𝛾𝑖 = arg inf
𝛾∈Γ𝐼
∥𝑞 − (𝑞𝑖 , 𝛾)∥,

then the Karcher mean of warping functions {𝛾𝑖} can be found as 𝜇𝛾 (𝑡) =
∫ 𝑡

0 𝜇2
𝜓
(𝑠)𝑑𝑠,

where 𝜇𝜓 is the Karcher mean of the SRSF representations of {𝛾𝑖}. The center of the orbit
[𝜇𝑞] with respect to {𝑞𝑖} is then given by

𝑞 = (𝑞, 𝜇−1
𝛾 ).

Finally, to find the Karcher mean of the SRSF representations of {𝛾𝑖}, we use a conve-
nient property of these SRSF representations. Since 𝛾′ > 0 for any warping function 𝛾, its
SRSF representation is simply 𝜓 =

√
𝛾′, and furthermore, the set of representations 𝜓 is

the positive orthant of the unit sphere, S∞+ , in the Hilbert space L2, because

∥𝜓∥2 =
∫ 1

0 𝜓
2 (𝑡)𝑑𝑡 =

∫ 1
0 𝛾
′ (𝑡)𝑑𝑡 = 𝛾(1) − 𝛾(0) = 1.

The Karcher mean on S∞+ is defined as follows (Srivastava & Klassen, 2016, def. 8.3)
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DEFINITION 3. For a given set of points 𝜓1, . . . , 𝜓𝑁 ∈ S∞+ , their Karcher mean in
S∞+ is defined to be a local minimum of the cost function 𝜓 ↦→ ∑𝑁

𝑖=1 𝑑
2
𝜓
(𝜓, 𝜓𝑖), where

𝑑𝜓 (𝜓1, 𝜓2) = cos−1
(∫ 1

0 𝜓1 (𝑡)𝜓2 (𝑡)𝑑𝑡
)
.

The Karcher mean can be calculated using Algorithm 2 (Srivastava & Klassen, 2016,
alg. 24) which is based on a fixed-point algorithm, see Bhattacharya and Bhattacharya
(2012, chap. 5). Furthermore, this algorithm uses projections to the tangent space 𝑇𝜓 (S∞+ ),
which is defined as 𝑇𝜓 (S∞+ ) =

{
𝑣 ∈ L2

�� ∫ 1
0 𝜓(𝑡)𝑣(𝑡)𝑑𝑡 = 0

}
. To project points between

S∞+ and 𝑇𝜓 (S∞+ ), we utilize the exponential map exp𝜓 : 𝑇𝜓 (S∞+ ) → S∞+

exp𝜓 (𝑣) = cos(∥𝑣∥)𝜓 + sin(∥𝑣∥) 𝑣∥𝑣∥ , (2.4)

with an inverse exp−1
𝜓

: S∞+ → 𝑇𝜓 (S∞+ )

exp−1
𝜓

(
𝜓̃
)
=

𝜃

sin(𝜃)
(
𝜓̃ − cos(𝜃)𝜓

)
, where 𝜃 = cos−1

(∫ 1
0 𝜓(𝑡)𝜓̃(𝑡)𝑑𝑡

)
, (2.5)

see Srivastava and Klassen (2016, sec. 3.2). We refer to Figure 2.4 for an illustration of
Algorithm 2. Algorithm 3 shows the iterative calculation of the common template as the
center of the mean orbit, and Figure 2.5 illustrates this process.

Algorithm 2 Karcher mean on S∞+

Input: Functions {𝜓𝑖}𝑁𝑖=1 on S∞+ , stopping criterion 𝜀, step size 𝜆
Output: Karcher mean 𝜇𝜓

1: 𝜇𝜓 ← 𝑁−1 ∑𝑁
𝑖=1 𝜓𝑖 ⊲ Initialize 𝜇𝜓 as a cross-sectional mean of {𝜓𝑖}𝑁𝑖=1

2: 𝜇𝜓 ← ∥𝜇𝜓 ∥−1𝜇𝜓 ⊲ Normalize 𝜇𝜓 , so it lies on S∞+
3: 𝜇𝑣 ←∞ ⊲ Initialize mean 𝜇𝑣 in the tangent space 𝑇𝜇𝜓 (S∞+ )
4: while ∥𝜇𝑣 ∥ ≥ 𝜀 do
5: 𝑣𝑖 ← exp−1

𝜇𝜓
(𝜓𝑖) ⊲ Project 𝜓𝑖 to the tangent space 𝑇𝜇𝜓 (S∞+ ) using Equation (2.5)

6: 𝜇𝑣 ← 𝑁−1 ∑𝑛
𝑖=1 𝑣𝑖 ⊲ Calculate the cross-sectional mean of {𝑣𝑖}

7: 𝜇𝜓 ← exp𝜇𝜓 (𝜆𝜇𝑣) ⊲ Project 𝜆𝜇𝑣 to S∞+ using Equation (2.4)
8: end while

2.2. QUASI-PERIODIC DATA

Algorithm 3 enables the alignment of individual heartbeats. However, ECGs typically
comprise multiple heartbeats, as illustrated in Figure 2.1. We refer to data with this struc-
ture as quasi-periodic and conjecture that they stem from a multiscale warping model, see
Figure 2.6. The multiscale warping model presumes that the underlying data is strictly
periodic, yet the observed data is affected by noise in both the time domain and the ampli-
tude, thus the strict periodicity is lost.

Mathematically, the multiscale warping model can be described as follows. Given the
common template 𝜇 on the interval [0, 𝜏], the set of subject-specific templates {𝜇𝑖} on the
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𝜇𝜓

a)

𝜇𝜓

××

b)

𝜇𝜓

c)

FIGURE 2.4. Example of one step in Algorithm 2. Figure a) shows points 𝜓𝑖 on S∞+ and initial
guess of 𝜇𝜓 (black dots) together with the tangent plane 𝑇𝜇𝜓 (S∞+ ) (orange). Figure b) shows the
projections 𝑣𝑖 (orange dots) of 𝜓𝑖 to the tangent space 𝑇𝜇𝜓 (S∞+ ), cross-sectional mean 𝜇𝑣 of {𝑣𝑖}
(orange cross) and the new updated mean 𝜇𝜓 (black cross) on S∞+ . Finally, Figure c) shows the
updated 𝜇𝜓 with the new tangent plane.
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a) Observed data b) First iteration c) Templates

FIGURE 2.5. Example of the iterative template calculation as the center of the mean orbit, as
described in Algorithm 3. The black lines represent the resulting center of the mean orbit in each
step, and the gray line in Figure c) represents the true common template compared to the iterative
template after multiple iterations (black).

interval [0, 𝜏] is generated as
𝜇𝑖 (𝑡) =

(
𝜇 ◦ 𝛾𝑙𝑖

)
(𝑡), (2.6)

where 𝛾𝑙
𝑖
∈ Γ[0,𝜏 ] are the local warping functions as in Figure 2.6d), and the set of func-

tions { 𝑓𝑖} on the interval [0, 𝐾𝜏] is generated as

𝑓𝑖 (𝑡) =
(
ext𝐾L2 (𝜇𝑖) ◦ 𝛾𝑔𝑖

)
(𝑡), (2.7)

where 𝛾𝑔
𝑖
∈ Γ[0,𝐾 𝜏 ] are the global warping functions as in Figure 2.6e), 𝐾 is the (known)

number of quasi-periods, and ext𝐾
L2 (𝜇) is the periodic extension of 𝜇 to 𝐾 periods. A

periodic extension of a function 𝑓 ∈ F[0,𝜏 ] to 𝐾 periods is defined on the interval [0, 𝐾𝜏]
as

ext𝐾L2 ( 𝑓 ) (𝑡 + 𝑘𝜏) := 𝑓 (𝑡) and ext𝐾L2 ( 𝑓 ) (𝐾𝜏) := 𝑓 (𝑡) (2.8)

for 𝑡 ∈ [0, 𝜏] and 𝑘 = 0, . . . , 𝐾 − 1. Similarly, we can define a periodic extension of a
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Algorithm 3 Iterative template calculation as the center of the mean orbit

Input: Functions { 𝑓𝑖}𝑁𝑖=1, stopping criterions 𝑐 and 𝜀, step size 𝜆
Output: Mean template 𝜇, warping functions {𝛾𝑖}𝑁𝑖=1

1: 𝑞𝑖 ← SRSF( 𝑓𝑖) ⊲ Calculate the SRSF representation of 𝑓𝑖 using Equation (2.2)
2: 𝛾𝑖 = 𝛾id ⊲ Initialize 𝛾𝑖 as identity warp
3: while stopping criterion 𝑐 not satisfied do
4: 𝜇← 1

𝑁

∑𝑁
𝑖=1 𝑓𝑖 ◦ 𝛾𝑖 ⊲ Calculate the cross-sectional mean of { 𝑓𝑖 ◦ 𝛾𝑖}𝑁𝑖=1

5: 𝜇𝑞 ← SRSF(𝜇) ⊲ Calculate the SRSF representation of 𝜇 using Equation (2.2)
6: 𝛾𝑖 ← arg min

𝛾∈Γ𝐼
∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥ ⊲ Find 𝛾𝑖 as a solution to Equation (2.3)

7: 𝜓𝑖 ← SRSF(𝛾𝑖) ⊲ Calculate the SRSF representation of 𝛾𝑖 using Equation (2.2)
8: Algorithm 2 with
9: Input: Functions {𝜓𝑖}𝑁𝑖=1 on S∞+ , stopping criterion 𝜀, step size 𝜆

10: Output: Karcher mean 𝜇𝜓
11: 𝜇𝛾 ←

∫ 1
0 𝜇2

𝜓
(𝑡)𝑑𝑡 ⊲ Calculate 𝜇𝛾 in Γ𝐼

12: 𝛾𝑖 ← 𝛾𝑖 ◦ 𝜇−1
𝛾 ⊲ Warp 𝛾𝑖 by the inverse of their Karcher mean, 𝜇−1

𝛾

13: end while
14: 𝜇← 1

𝑁

∑𝑁
𝑖=1 𝑓𝑖 ◦ 𝛾𝑖 ⊲ Calculate the cross-sectional mean of { 𝑓𝑖 ◦ 𝛾𝑖}𝑁𝑖=1

warping function 𝛾 ∈ Γ[0,𝜏 ] to 𝐾 periods on the interval [0, 𝐾𝜏] as

ext𝐾Γ (𝛾) (𝑡 + 𝑘𝜏) := 𝛾(𝑡) + 𝑘𝜏 and ext𝐾Γ (𝛾) (𝐾𝜏) := 𝐾𝜏, (2.9)

for 𝑡 ∈ [0, 𝜏] and 𝑘 = 0, . . . , 𝐾 − 1. We can thus combine Equations (2.6) and (2.7) in a
multiscale warping model as

𝑓𝑖 (𝑡) =
(
ext𝐾L2 (𝜇𝑖) ◦ 𝛾𝑔𝑖

)
(𝑡) =

(
ext𝐾L2 (𝜇 ◦ 𝛾𝑙𝑖 ) ◦ 𝛾

𝑔

𝑖

)
(𝑡) =

(
ext𝐾L2 (𝜇) ◦ ext𝐾Γ

(
𝛾𝑙𝑖

)
◦ 𝛾𝑔

𝑖

)
(𝑡)

=

(
ext𝐾L2 (𝜇) ◦ 𝛾𝑡𝑖

)
(𝑡),

where 𝛾𝑡
𝑖
∈ Γ[0,𝐾 𝜏 ] are the total warping functions as in Figure 2.6f) that are defined as

𝛾𝑡
𝑖
= ext𝐾

Γ
(𝛾𝑙
𝑖
) ◦ 𝛾𝑔

𝑖
.

Aligning quasi-periodic data requires special attention, as estimating the common tem-
plate 𝜇 corresponding to a single period is not straightforward. The obvious idea of directly
estimating the periodic extension ext𝐾

L2 (𝜇) as an output of Algorithm 3 does not provide
a strictly periodic function, especially when the misalignment is substantial. Hence, it is
not possible to extract the single-period common template. Another idea is splitting the
functions 𝑓 ∈ F[0,𝐾 𝜏 ] into 𝐾 periods for 𝑡 ∈ [0, 𝜏] by

split𝐾 ( 𝑓 ) (𝑡) = ( 𝑓 (𝑡), . . . , 𝑓 (𝑡 + (𝑘 − 1)𝜏), . . . , 𝑓 (𝑡 + (𝐾 − 1)𝜏))
=: ( 𝑓1 (𝑡), . . . , 𝑓𝑘 (𝑡), . . . , 𝑓𝐾 (𝑡)),

(2.10)

and we denote spl𝐾 ( 𝑓 ) := { 𝑓𝑘 ∈ F[0,𝜏 ] | 𝑘 = 1, . . . , 𝐾} = { 𝑓𝑘}𝐾𝑘=1. Then we estimate
the common template as the center of the mean orbit with respect to the amplitudes of
{ 𝑓𝑖,𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) . Again, in the case of considerable misalignment, the resulting estimate
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0 1𝜏 2𝜏 3𝜏

0 1𝜏 2𝜏 3𝜏

0 1𝜏 2𝜏 3𝜏

0 1𝜏 2𝜏 3𝜏

0 1𝜏 2𝜏 3𝜏

0 1𝜏 2𝜏 3𝜏

0

1𝜏

2𝜏

3𝜏

0

1𝜏

2𝜏

3𝜏

0

1𝜏

2𝜏

3𝜏

a) Common template

b) Subject-specific template

c) Observed function

d) Local warping

e) Global warping

f) Total warping

FIGURE 2.6. Multiscale warping model. Figure a) shows the common template (bright orange)
and its periodic extension (pale orange), where 𝜏 is the length of one period. Figure b) shows the
subject-specific template (bright blue) and its periodic extension (pale blue), as well as the periodic
extension of the common template (pale orange). Figure c) shows the observed function (green),
together with the periodic extensions of the common and subject-specific templates (pale orange
and blue, respectively). Figure d) shows the local warping (black) and its periodic extension (grey),
which warps the time domain of the common template in Figure a) to obtain the subject-specific
template in Figure b). Figure e) shows the global warping that warps the time domain of the subject-
specific template in Figure b) to obtain the observed function in Figure c). Figure f) shows the total
warping, which is the composition of the periodic extension of the local warping in Figure d) and
the global warping in Figure e).

differs from the true common template. See Figure 2.7 for an example of these two simple
estimates.

Instead, we use a combination of the two simple methods. We still align the whole
signal, but estimate the common template as the center of the Karcher mean of single
heartbeats. Thus, we extend Algorithm 3 with the following modifications. In Step 4,
rather than calculating the cross-sectional mean of the warped functions, we compute the
cross-sectional mean of the split of the warped functions as defined in Equation (2.10),
𝜇 = 𝑁−1𝐾−1 ∑𝑁

𝑖=1
∑𝐾
𝑘=1 ( 𝑓𝑖 ◦ 𝛾𝑖)𝑘 . More importantly, in Steps 8 to 10 of Algorithm 3, we

calculate the Karcher mean of the split of warping functions as defined in Equation (2.10),
{𝛾𝑖,𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) . Note that when splitting warping functions, they must be normalized to
the same interval, which we chose here to be [0, 1], in both their domain and range to apply
the exponential and inverse exponential maps as described in Equations (2.4) and (2.5).
Henceforth, we will assume that split warping functions are normalized. The detailed
procedure of aligning quasi-periodic functional data is formally outlined in Algorithm 4
and illustrated in Figure 2.8.
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a) Observed data

b) Direct estimate of ext𝐾
L2 (𝜇)

c) Split of data, { 𝑓𝑖,𝑘 } (𝑖,𝑘) ∈ (𝑁×𝐾 )

d) Estimate of 𝜇 of { 𝑓𝑖,𝑘 } (𝑖,𝑘) ∈ (𝑁×𝐾 )

FIGURE 2.7. Example of simple estimates of the common template of quasi-periodic data. Figure a)
shows the observed data and the cross-sectional mean (black). Figure b) shows the center of the
orbit (black) of amplitudes of { 𝑓𝑖}𝑁𝑖=1 resulting from Algorithm 3 and the true common template
(grey). Figure c) shows the split of data into three periods using Equation (2.10) and the cross-
sectional mean (black). Figure d) compares the center of the mean orbit (black) of amplitudes of
{ 𝑓𝑖,𝑘 } (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) to the true common template (grey).

2.2.1. Varying number of quasi-periods

The number of heartbeats recorded in a standard ECG over a 10-second interval can vary
significantly among different subjects due to various factors influencing heart rate. Heart
rate variability is affected by individual differences in age, fitness level, and overall health,
with athletes typically exhibiting lower resting heart rates compared to non-athletes. Emo-
tional states such as stress, anxiety, or excitement can elevate heart rate, while relaxation
can lower it. Additionally, medical conditions like arrhythmias can impact heart rate, as
can medications. These factors collectively contribute to the natural variability in the num-
ber of heartbeats observed in ECG recordings across different individuals (Billman et al.,
2015). Figure 2.9 shows an example of ECG data with varying number of heartbeats.

To handle this kind of data, we modify Algorithm 4 in the following way. Denote the
number of heartbeats of each subject as 𝐾𝑖 . Then the calculation of the mean in Step 5 is
replaced by 𝜇 = 𝑁−1 ∑𝑁

𝑖=1 𝐾𝑖
−1 ∑𝐾𝑖

𝑘=1 ( 𝑓𝑖 ◦ 𝛾𝑖)𝑘 , and the Karcher mean in Steps 11 to 13 is
calculated in two phases. First, we calculate the Karcher mean of warping functions sep-
arately for each subject, and then we compute the Karcher mean of the resulting warping
functions.

2.2.2. Multivariate functional data

Up to this point, we have focused on univariate functional data. In this section, we expand
our approach to address multivariate functional data, which refers to data that consists of
multiple functions or curves measured over time on the same subject. Examples of such
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Algorithm 4 Iterative template calculation for quasi-periodic functional data

Input: Functions { 𝑓𝑖}𝑁𝑖=1, stopping criterions 𝑐 and 𝜀, step size 𝜆
Output: Mean template 𝜇, warping functions {𝛾𝑖}𝑁𝑖=1

1: 𝑞𝑖 ← SRSF( 𝑓𝑖) ⊲ Calculate the SRSF representation of 𝑓𝑖 using Equation (2.2)
2: 𝛾𝑖 = 𝛾id ⊲ Initialize 𝛾𝑖 as identity warp
3: while stopping criterion 𝑐 not satisfied do
4: {( 𝑓𝑖 ◦ 𝛾𝑖)𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) ⊲ Calculate the split of { 𝑓𝑖 ◦ 𝛾𝑖}𝑁𝑖=1 using Equation (2.10)
5: 𝜇← 𝑁−1𝐾−1 ∑𝑁

𝑖=1
∑𝐾
𝑘=1 ( 𝑓𝑖 ◦ 𝛾𝑖)𝑘 ⊲ Calculate the mean template

6: 𝜇← ext𝐾L (𝜇) ⊲ Calculate the periodic extension of 𝜇 using Equation (2.8)
7: 𝜇𝑞 = SRSF(𝜇) ⊲ Calculate the SRSF representation of 𝜇 using Equation (2.2)
8: 𝛾𝑖 = arg min𝛾∈Γ𝐼 ∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥ ⊲ Find 𝛾𝑖 as a solution to Equation (2.3)
9: 𝜓𝑖 ← SRSF(𝛾𝑖) ⊲ Calculate the SRSF representation of 𝛾𝑖 using Equation (2.2)

10: {𝜓𝑖,𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) ⊲ Calculate the split of {𝜓𝑖}𝑁𝑖=1 using Equation (2.10)
11: Algorithm 2 with
12: Input: Functions {𝜓𝑖,𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) on S∞+ , stopping criterion 𝜀, step size 𝜆
13: Output: Karcher mean 𝜇𝜓
14: 𝜇𝛾 ←

∫ 1
0 𝜇2

𝜓
(𝑡)𝑑𝑡 ⊲ Calculate 𝜇𝛾 in Γ𝐼

15: 𝜇𝛾 ← ext𝐾
Γ
𝜇𝛾 ⊲ Calculate the periodic extension of 𝜇𝛾 using Equation (2.9)

16: 𝛾𝑖 ← 𝛾𝑖 ◦ 𝜇−1
𝛾 ⊲ Warp 𝛾𝑖 by the inverse of their Karcher mean, 𝜇−1

𝛾

17: end while
18: {( 𝑓𝑖 ◦ 𝛾𝑖)𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) ⊲ Calculate the split of { 𝑓𝑖 ◦ 𝛾𝑖}𝑁𝑖=1 using Equation (2.10)
19: 𝜇← 𝑁−1𝐾−1 ∑𝑁

𝑖=1
∑𝐾
𝑘=1 ( 𝑓𝑖 ◦ 𝛾𝑖)𝑘 ⊲ Calculate the mean template

data include gait analysis, where various variables like joint angles are recorded (Baker,
2006), and weather data, which involves measuring multiple factors such as temperature,
humidity, wind speed, and precipitation (Hosseini-Nasab & Sharghi, 2024). Another ex-
ample from the medical sector is electroencephalography,1 which measures brain activity,
and multi-lead ECG.

In multivariate functional data, dimensions often represent different aspects of the same
underlying phenomenon. Each function in this type of data should be warped using the
same warping function to ensure consistency and to maintain temporal alignment across
dimensions, thereby preserving the relationships between them. Applying the same warp-
ing function also improves interpretability. For instance, in medical data such as ECG,
using a uniform warping function across different leads helps compare and understand the
overall heart activity more clearly. This uniformity makes it easier to draw meaningful
conclusions from the data.

We denote multivariate functional data as 𝑓𝑖 = ( 𝑓𝑖1, . . . , 𝑓𝑖𝐽 ) : 𝐼 → R𝐽 , and we con-
sider the relevant operations described previously to be element-wise. As an example,
the element-wise warping is defined as ( 𝑓𝑖 ◦ 𝛾𝑖) (𝑡) = (( 𝑓𝑖1 ◦ 𝛾𝑖) (𝑡), . . . , ( 𝑓𝑖𝐽 ◦ 𝛾𝑖) (𝑡)), the
element-wise SRSF is defined as 𝑞𝑖 (𝑡) = (𝑞𝑖1 (𝑡), . . . , 𝑞𝑖𝐽 (𝑡)), and so on. The template 𝜇
is a multivariate function as well, 𝜇 = (𝜇·1, . . . , 𝜇·𝐽 ), and the multivariate quasi-periodic

1National Health Service. Electroencephalogram (EEG) [website],
https://www.nhs.uk/conditions/electroencephalogram/, accessed November 30, 2024
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FIGURE 2.8. Iterative template calculation for quasi-periodic data as the center of the mean or-
bit of amplitudes {( 𝑓𝑖 ◦ 𝛾𝑖)𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) , as described in Algorithm 4. Figure a) shows the ob-
served data with the cross-sectional mean (black). Figure b) shows the cross-sectional mean of
{( 𝑓𝑖 ◦ 𝛾𝑖)𝑘} (𝑖,𝑘 ) ∈ (𝑁×𝐾 ) (black) and the true common template (grey). Figure d) shows the esti-
mated template (black), Figure c) shows the aligned data to the periodic extension of this template
after one iteration. Figures f) and e) show the same, but after multiple iterations of Algorithm 4.

data is generated with

𝜇𝑖 𝑗 (𝑡) =
(
𝜇· 𝑗 ◦ 𝛾𝑙𝑖

)
(𝑡),

𝑓𝑖 𝑗 (𝑡) =
(
ext𝐾L2 (𝜇𝑖 𝑗 ) ◦ 𝛾𝑔𝑖

)
(𝑡).
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a) Observed data

b) Scaled data

c) Aligned data

FIGURE 2.9. Example of data with varying number of periods. The vertical dashed lines represent
isometric periods. Figure 2.9a) shows the observed data with one, two, and three heartbeats (orange,
blue and green lines, respectively). Figure 2.9b) scales the observed data so that the heartbeats
span the correct number of periods (orange – one period, blue – two periods, green – three periods).
Figure 2.9c) shows the aligned data. The black line is the periodic extension of the true common
template.
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3. Time-to-event outcome

Survival analysis, often referred to as time-to-event analysis, is a branch of statistics ded-
icated to understanding the time until a specific event occurs. The event could involve a
variety of outcomes, such as the recurrence of a disease or the time until remission. Unlike
standard regression techniques, survival analysis focuses on censored data, where the full
information about the timing of the event is only partially observed.

Key concepts in survival analysis include the survival function, hazard function, and
cumulative distribution function. The survival function, 𝑆(𝑡), represents the probability of
the event occurring after time 𝑡, 𝑆(𝑡) = P(𝑇 > 𝑡), where 𝑇 is the event time. The hazard
function, ℎ(𝑡), or the instantaneous failure rate, expresses the rate at which events occur at
a specific time, given survival up to that point. It is essentially a measure of risk over time
and is given by ℎ(𝑡) = lim△𝑡→0 (△𝑡)−1P(𝑡 ≤ 𝑇 < 𝑡 + △𝑡 | 𝑇 ≥ 𝑡). The cumulative hazard
function, 𝐻 (𝑡), aggregates the hazard over time and is defined as 𝐻 (𝑡) =

∫ 𝑡
0 ℎ(𝑠)𝑑𝑠.

There are several approaches to estimating survival and hazard functions from right-
censored data, each suited to different types of data and study designs. The Kaplan-Meier
estimator (Kaplan & Meier, 1958) is a widely used non-parametric method for estimat-
ing the survival function. The Cox proportional hazards model (Cox, 1972) is a semi-
parametric model that relates the hazard function to a set of covariates, allowing for an
analysis of factors influencing the hazard rate. The Cox model assumes that hazard ratios
are constant over time, thus the name proportional hazards model. Additionally, para-
metric approaches assume a specific probability distribution for survival times, e.g., ex-
ponential, Weibull, or log-normal distributions. When these assumptions hold, parametric
models can yield more efficient estimates and smoother survival curves.

The individuals may often be at risk for multiple types of events, or they may move
through different states over time, such as different stages of disease progression. Multi-
state models extend survival analysis by accounting for situations where more than one
type of event could occur (Andersen & Keiding, 2002). The competing risk model is a
special case of a multi-state model (Andersen et al., 2002).

Let (𝑇, 𝐷̃,X) be the right-censored data with the observed time 𝑇 = min{𝑇, 𝐶}, the
minimum of the event time 𝑇 and the censoring time 𝐶, with the observed event type
𝐷̃ = Δ𝐷 ∈ {0, 1, . . . , 𝐽}, where 0 represents the censoring events, 𝐷 ∈ {1, . . . , 𝐽} repre-
sents one of the 𝐽 (competing) events, and Δ is the censoring indicator, Δ = 1(𝑇 < 𝐶), and
with the set of scalar and functional covariates X.

Further, conditional on covariates x, let 𝑆(𝑡 | x) = P(𝑇 > 𝑡 | X = x) be the survival func-
tion of the event time, 𝐹𝑗 (𝑡 | x) = P(𝑇 ≤ 𝑡, 𝐷 = 𝑗 | X = x) the cause-specific distribution

21
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function of the event time and

ℎ 𝑗 (𝑡 | x) = lim
△𝑡→0

1
△𝑡 P(𝑡 ≤ 𝑇 < 𝑡 + △𝑡, 𝐷 = 𝑗 | 𝑇 ≥ 𝑡,X = x), 𝑗 = 1, . . . , 𝐽

the cause-specific hazard. Similarly, we denote by 𝑆(𝑡 | x) = P(𝑇 > 𝑡 | X = x) the
event-free survival function of the observed time, 𝐹̃𝑗 (𝑡 | x) = P(𝑇 ≤ 𝑡, 𝐷̃ = 𝑗 | X = x) the
cause-specific distribution function of observed time and

ℎ̃ 𝑗 (𝑡 | x) = lim
△𝑡→0

1
△𝑡 P(𝑡 ≤ 𝑇 < 𝑡 + △𝑡, 𝐷̃ = 𝑗 | 𝑇 ≥ 𝑡,X = x), 𝑗 = 0, 1, . . . , 𝐽

the cause-specific hazard. Additionally, we let 𝑆0 (𝑡 | x) = P(𝐶 > 𝑡 | X = x) be the
survival function of censoring time and 𝐺 (𝑡 | x) = P(𝐶 ≤ 𝑡 | X = x) its distribution
function. Furthermore, we assume that the event time 𝑇 and the censoring time 𝐶 are
conditionally independent given X, i.e. 𝑇 ⊥ 𝐶 | X.

The likelihood of the observed data (𝑇, 𝐷̃,X) with individual observations (𝑡𝑖 , 𝑑𝑖 , x𝑖),
𝑖 = 1, . . . , 𝑁 , is defined as

L(𝑡, 𝑑, x; 𝜽) =
𝑁∏
𝑖=1
L(𝑡𝑖 , 𝑑𝑖 , x𝑖; 𝜽) =

𝑁∏
𝑖=1

𝜇(x𝑖; 𝜽)𝑆(𝑡𝑖− | x𝑖; 𝜽)
𝐽∏
𝑗=0

ℎ̃ 𝑗 (𝑡𝑖 | x𝑖; 𝜽)1(𝑑𝑖= 𝑗 )

=

𝑁∏
𝑖=1

𝜇(x𝑖; 𝜽) exp ©­«−
∫ 𝑡𝑖−

0

𝐽∑︁
𝑗=0

ℎ̃ 𝑗 (𝑡 | x𝑖; 𝜽)𝑑𝑡
ª®¬

𝐽∏
𝑗=0

ℎ̃ 𝑗 (𝑡𝑖 | x𝑖; 𝜽)1(𝑑𝑖= 𝑗 )

=

𝑁∏
𝑖=1

𝜇(x𝑖; 𝜽)
𝐽∏
𝑗=0

exp

(
−

∫ 𝑡𝑖−

0
ℎ̃ 𝑗 (𝑡 | x𝑖; 𝜽)𝑑𝑡

)
ℎ̃ 𝑗 (𝑡𝑖 | x𝑖; 𝜽)1(𝑑𝑖= 𝑗 ) ,

where 𝜇(x𝑖) = P(X = x𝑖) is the density of X and 𝜽 is the set of additional parameters
of the distribution (for example, the shape and scale parameters of a Weibull distribution,
Weibull, 1951). The negative log-likelihood is given by

ℓ(𝑡, 𝑑, x; 𝜽) =
𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=0

(∫ 𝑡𝑖−

0
ℎ̃ 𝑗 (𝑡 | x𝑖; 𝜽)𝑑𝑡 − 1(𝑑𝑖 = 𝑗) log( ℎ̃ 𝑗 (𝑡𝑖 | x𝑖; 𝜽))

)
. (3.1)

Minimizing the negative log-likelihood for the parameters 𝜽 in Equation (3.1) yields
maximum-likelihood estimators of the cause-specific hazards of observed time. Moreover,
given the following equalities,

ℎ̃ 𝑗 (𝑡 | x; 𝜽) =
𝑑𝐹̃𝑗 (𝑡 | x; 𝜽)/𝑑𝑡
𝑆(𝑡− | x; 𝜽)

𝑇⊥𝐶 |X
=

𝑑𝐹𝑗 (𝑡 | x; 𝜽)/𝑑𝑡
𝑆(𝑡− | x; 𝜽) = ℎ 𝑗 (𝑡 | x; 𝜽)

and

ℎ̃0 (𝑡 | x; 𝜽) = 𝑑𝐹̃0 (𝑡 | x; 𝜽)/𝑑𝑡
𝑆(𝑡− | x; 𝜽)

𝑇⊥𝐶 |X
=

𝑑𝐺 (𝑡 | x; 𝜽)/𝑑𝑡
𝑆0 (𝑡− | x; 𝜽) = ℎ0 (𝑡 | x; 𝜽),
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we can reconstruct the cause-specific distribution functions of the underlying event time
by

𝐹𝑗 (𝑡 | x; 𝜽) =
∫ 𝑡

0
exp

(
−

𝐽∑︁
𝑗=1

𝐻 𝑗 (𝑠 | x; 𝜽)
)
ℎ 𝑗 (𝑠 | x; 𝜽)𝑑𝑠, 𝑗 = 1, . . . , 𝐽. (3.2)

Depending on the underlying distribution of the event times, as well as the observed and
censoring times, it is possible to derive explicit formulas for the hazard rate, cumulative
hazard function, and the distribution functions as presented in Equation 3.2.

For the Weibull distribution (Weibull, 1951), these functions can be expressed in terms
of the shape parameter, 𝑘 > 0, and the scale parameter, 𝜆 > 0. Here we assume that both
these parameters can depend on the covariates X and some additional parameters 𝜽 , thus
𝑘 := 𝑘 (x; 𝜽) and 𝜆 := 𝜆(x; 𝜽). The hazards and the cumulative hazards in Equation (3.2)
can be expressed as

ℎ(𝑡 | x; 𝜽) = 𝑘 (x; 𝜽)
𝜆(x; 𝜽)

(
𝑡

𝜆(x; 𝜽)

) 𝑘 (x;𝜽 )−1
and 𝐻 (𝑡 | x; 𝜽) =

(
𝑡

𝜆(x; 𝜽)

) 𝑘 (x;𝜽 )
.

In the case of a piecewise constant hazard function, we can obtain a closed-form
expression for the distribution function. Let T be an ordered set of evaluation times,
T = {𝑡1 = 0, 𝑡2, . . . , 𝑡𝑃 | 𝑙 < 𝑚 ⇔ 𝑡𝑙 < 𝑡𝑚}, and let ℎ(𝑡 | x; 𝜽) =: ℎ𝑝 be the constant
hazard for 𝑡𝑝 ≤ 𝑡 < 𝑡𝑝+1. The cumulative hazard can be calculated iteratively as

𝐻 (𝑡 | x; 𝜽) = 𝐻 (𝑡𝑝 | x; 𝜽) + (𝑡 − 𝑡𝑝)ℎ𝑝 , (3.3)

where 𝐻 (0 | x; 𝜽) = 0. Similarly, the survival function of event time can be derived as

𝑆(𝑡 | x; 𝜽) = exp

(
−

𝐽∑︁
𝑗=1

𝐻 𝑗 (𝑡 | x; 𝜽)
)

(3.3)
= exp

(
−

𝐽∑︁
𝑗=1

𝐻 𝑗 (𝑡𝑝 | x; 𝜽) − (𝑡 − 𝑡𝑝)
𝐽∑︁
𝑗=1

ℎ𝑝 𝑗

)
= 𝑆(𝑡𝑝 | x; 𝜽) exp

(
−(𝑡 − 𝑡𝑝)

𝐽∑︁
𝑗=1

ℎ𝑝 𝑗

)
,

(3.4)

where 𝑆(0 | x; 𝜽) = 1. And finally, the cause-specific risk can also be calculated iteratively
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by

𝐹𝑗 (𝑡 | x; 𝜽) =
∫ 𝑡

0
𝑆(𝑠 | x; 𝜽)ℎ 𝑗 (𝑠 | x; 𝜽)𝑑𝑠

=

∫ 𝑡𝑝

0
𝑆(𝑠 | x; 𝜽)ℎ 𝑗 (𝑠 | x; 𝜽)𝑑𝑠 +

∫ 𝑡

𝑡𝑝

𝑆(𝑠 | x; 𝜽)ℎ 𝑗 (𝑠 | x; 𝜽)𝑑𝑠

= 𝐹𝑗 (𝑡𝑝 | x; 𝜽) + ℎ𝑝 𝑗
∫ 𝑡

𝑡𝑝

𝑆(𝑠 | x; 𝜽)𝑑𝑠

(3.4)
= 𝐹𝑗 (𝑡𝑝 | x; 𝜽) + ℎ𝑝 𝑗𝑆(𝑡𝑝 | x; 𝜽)

∫ 𝑡

𝑡𝑝

exp

(
−(𝑠 − 𝑡𝑝)

𝐽∑︁
𝑗=1

ℎ𝑝 𝑗

)
𝑑𝑠

= 𝐹𝑗 (𝑡𝑝 | x; 𝜽) +
ℎ𝑝 𝑗∑𝐽
𝑗=1 ℎ𝑝 𝑗

𝑆(𝑡𝑝 | x; 𝜽)
(
1 − exp ©­«−(𝑡 − 𝑡𝑝)

𝐽∑︁
𝑗=1

ℎ𝑝 𝑗

)ª®¬ ,
where 𝐹 (0 | x; 𝜽) = 0.



4. Neural networks

In this chapter, we explore the fundamental concepts of neural networks and deep learning,
aiming to provide a clear understanding. We then consider specific applications tailored
to address distinct challenges in various problem domains, such as the analysis of high-
dimensional data, including multivariate time series.

4.1. FULLY CONNECTED FEEDFORWARD NEURAL NETWORKS

A fully connected feedforward neural network is one of the most fundamental architectures
in the field of neural networks and serves as a building block for more complex neural
network models that are widely used in various applications, including image recogni-
tion, natural language processing, and predictive analysis. It consists of layers labeled by
𝑙 = 0, 1 . . . , 𝐿, where 𝑙 = 0 denotes the input layer, 𝑙 = 𝐿 denotes the output layer, and
the layers in between, 0 < 𝑙 < 𝐿, are called the hidden layers. We use a superscript (𝑙)
to refer to a particular layer. Each layer has a dimension 𝑑 (𝑙) specifying the number of
nodes in this layer, labeled as 1, . . . , 𝑑 (𝑙) . Layers 𝑙 < 𝐿 contain a special node called the
bias node, labeled as 0, which is always set to have the value 1. Each layer 𝑙 > 0 has an
input signal s(𝑙) and each layer 𝑙 < 𝐿 has an output signal x(𝑙) =

(
1, 𝜎 (𝑙) (s(𝑙) )𝑇

)𝑇 . Here
𝜎 (𝑙) represents the activation function and is typically applied element-wise. Figure 4.1
illustrates examples of commonly used activation functions.

a) ReLU

𝑓 (𝑥 ) = max(0, 𝑥 )
b) sigmoid

𝑓 (𝑥 ) = 1
1 + exp(−𝑥 )

c) tanh

𝑓 (𝑥 ) = 1 − exp(−2𝑥 )
1 + exp(−2𝑥 )

d) softplus

𝑓 (𝑥 ) = log(1 + exp(𝑥 ) )

FIGURE 4.1. Commonly used activation functions. The black lines are the lines 𝑥 = 0, and 𝑦 = 0,
the diagonal gray lines represent 𝑦 = 𝑥, and the horizontal gray lines represent 𝑦 = 1 or 𝑦 = −1.

The output of the neural network is calculated through forward propagation. Let x be
the neural network input, let y be the true outcome, and let ŷ = x(𝐿) be the neural network

25



26 Neural networks

output. Then

s(𝑙) = W(𝑙)x(𝑙−1) and x(𝑙) =
(

1
𝜎 (𝑙) (s(𝑙) )

)
, (4.1)

where W(𝑙) is the 𝑑 (𝑙) × (𝑑 (𝑙−1) + 1) dimensional matrix of weights with components 𝑤 𝑗𝑘 ,
the input is x(0) = x and the output is x(𝐿) = 𝜎 (𝐿) (s(𝐿) ) = ŷ. We denote w the set of all the
weight matrices, w = {W(1) , . . . ,W(𝐿) }. The neural network and the forward propagation
are typically represented by diagrams as in Figure 4.2, where the direction of the arrows
illustrates the iterative dependency between the layers.

𝑥1

𝑥2

𝑥3

𝑦̂1

𝑦̂2

hiddeninput output

𝑥
(𝑙−1)
1

𝑥
(𝑙−1)
2

𝑥
(𝑙−1)
3

𝑠
(𝑙)
1 𝑥

(𝑙)
1𝜎 (𝑙)

𝑤
(𝑙)
11

𝑤
(𝑙)
12

𝑤
(𝑙)
13

a) Neural network diagram b) Forward propagation

FIGURE 4.2. An example of a fully connected feedforward neural network. In Figure a), the input
is x = (𝑥1, 𝑥2, 𝑥3)𝑇 and the output is x(𝐿) = ŷ = ( 𝑦̂1, 𝑦̂2)𝑇 . The circles represent the nodes of
the individual layers, and the lines show the dependency between them. Each line corresponds to
an element of the weight matrices W(𝑙) , 0 < 𝑙. The bias nodes in each layer 𝑙 < 𝐿 are usually not
depicted in these diagrams. Figure b) shows the forward propagation as described in Equation (4.1).

4.1.1. Backpropagation

The weights of the neural network are the learnable coefficients of the model that need to
be estimated. The main component in estimating these weights or training the model, is
the loss function, which is the objective function measuring how well the neural network’s
predictions match the actual target values. Common loss functions are the mean squared
error (MSE) for regression tasks,

ℓ(𝑦, x; w) = 1
𝑁

𝑁∑︁
𝑖=1
( 𝑦̂𝑖 − 𝑦𝑖)2,



Neural networks 27

binary cross-entropy for classification tasks,

ℓ(𝑦, x; w) = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log( 𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)] ,

and categorical cross-entropy for multi-class classification tasks,

ℓ(y, x; w) = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑖𝑐 log( 𝑦̂𝑖𝑐),

where 𝑁 is the number of observations and 𝐶 is the number of classes. The weights w are
then updated iteratively by utilizing the (batch) gradient descent as

w← w − 𝜂∇ℓ(y, x; w),

where ∇ is the gradient of the loss function ℓ and 𝜂 is the step size, also called the learning
rate. The gradient ∇ℓ is calculated through iterative application of the chain rule, termed
the backpropagation (Abu-Mostafa et al., 2012). To ease the notation, we let 𝜎 (𝑙) = 𝜎,
𝑙 = 1, . . . , 𝐿. The sensitivity vector for one observation (x, y) = (x𝑖 , y𝑖) is defined as

𝛿 (𝑙) =
𝜕ℓ(y, x; w)
𝜕s(𝑙)

.

The loss ℓ(y, x; w) only depends on s(𝑙) through x(𝑙) , thus

𝛿
(𝑙)
𝑗

=
𝜕ℓ(y, x; w)
𝜕𝑠
(𝑙)
𝑗

=
𝜕ℓ(y, x; w)
𝜕𝑥
(𝑙)
𝑗

𝜕𝑥
(𝑙)
𝑗

𝜕𝑠
(𝑙)
𝑗

= 𝜎′
(
𝑠
(𝑙)
𝑗

) 𝜕ℓ(y, x; w)
𝜕𝑥
(𝑙)
𝑗

. (4.2)

Additionally, the loss ℓ(y, x; w) depends on x(𝑙) through all the components of s(𝑙+1) , thus

𝜕ℓ(y, x; w)
𝜕𝑥
(𝑙)
𝑗

=

𝑑 (𝑙+1)∑︁
𝑘=1

𝜕ℓ(y, x; w)
𝜕𝑠
(𝑙+1)
𝑘︸       ︷︷       ︸

(4.2)

𝜕𝑠
(𝑙+1)
𝑘

𝜕𝑥
(𝑙)
𝑗︸  ︷︷  ︸

(4.1)

=

𝑑 (𝑙+1)∑︁
𝑘=1

𝛿
(𝑙+1)
𝑘

𝑤
(𝑙+1)
𝑗𝑘

,

yielding iterative formula for the sensitivity

𝛿
(𝑙)
𝑗

= 𝜎′
(
𝑠
(𝑙)
𝑗

) 𝑑 (𝑙+1)∑︁
𝑘=1

𝛿
(𝑙+1)
𝑘

𝑤
(𝑙+1)
𝑗𝑘

. (4.3)
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Finally, since ℓ(y, x; w) only depends on 𝑤 (𝑙)
𝑗𝑘

through 𝑠 (𝑙)
𝑗

, the gradient of ℓ(y, x; w) with
respect to the weight parameters can be written as

𝜕ℓ(y, x; w)
𝜕𝑤
(𝑙)
𝑗𝑘

=
𝜕ℓ(y, x; w)
𝜕𝑠
(𝑙)
𝑗︸       ︷︷       ︸

(4.2)

𝜕𝑠
(𝑙)
𝑗

𝜕𝑤
(𝑙)
𝑗𝑘︸︷︷︸

(4.1)

= 𝛿
(𝑙)
𝑗
𝑥
(𝑙)
𝑘
. (4.4)

The backpropagation algorithm is described in Algorithm 5.

Algorithm 5 Backpropagation (Abu-Mostafa et al., 2012)

Input: Data {(x𝑖 , y𝑖)}𝑁𝑖=1, weights w = {W(1) , . . . ,W(𝐿) }, activation functions 𝜎 (𝑙) ,
𝑙 = 1, . . . , 𝐿

Output: Gradient ∇ℓ(y, x; w) = {𝐺 (1) , . . . , 𝐺 (𝐿) }
1: 𝐺 (𝑙) ← 0 ⊲ Initialize gradient
2: for 𝑖 = 1 to 𝑁 do
3: 𝑥 (0) ← x𝑖 ⊲ Initialize input
4: Compute 𝑥 (𝑙) , 𝑙 = 1, . . . , 𝐿 ⊲ Forward propagation using Equation (4.1)
5: Compute 𝛿 (𝑙) , 𝑙 = 𝐿, . . . , 1 ⊲ Calculate sensitivities using Equation (4.3)
6: 𝐺 (𝑙) ← 𝐺 (𝑙) + 𝑁−1 [

x(𝑙−1) (𝛿 (𝑙) )𝑇
]
, 𝑙 = 1, . . . , 𝐿 ⊲ Update gradient using

Equation (4.4)
7: end for

Stochastic and mini-batch gradient descent. Algorithm 5 describes the batch gradient
descent, which computes the gradient of the loss function with respect to the weight param-
eters using the entire dataset. The weight parameters are only updated after considering all
training examples, ensuring high accuracy. This means that the batch gradient descent can
be very slow and computationally expensive. Additionally, in the case of large datasets, it
can require a significant amount of memory.

Stochastic gradient descent (SGD, Adigun & Yinka-Banjo, 2022), on the other hand,
updates the parameters for each training example individually. Instead of computing the
gradient over the entire dataset, SGD computes the gradient for a single training example
and updates the parameters immediately. This results in much faster iterations and can
lead to quicker convergence, especially for large datasets. However, the updates can be
noisy because they are based on individual examples, which can cause the loss function
to fluctuate rather than decrease smoothly. Nevertheless, the noise can help the algorithm
escape local minima and potentially find a better global minimum.

Mini-batch gradient descent combines the properties of batch gradient descent and
SGD. It splits the training dataset into small batches and computes the gradient for each
mini-batch. The parameters are then updated after processing each mini-batch. This ap-
proach combines the advantages of both batch gradient descent and SGD. It reduces the
variance of the parameter updates, leading to more stable convergence compared to SGD,
while still being more efficient and faster than batch gradient descent.
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4.2. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNN, Goodfellow et al., 2016, chap. 9) are a class of
deep neural networks that have proven effective in areas such as image recognition, med-
ical image analysis, time series, and natural language processing. The main architectural
difference between CNNs and fully connected neural networks is the use of convolutional
layers, which is designed to automatically and adaptively learn spatial/temporal relation-
ships from the input data. Each node in a convolutional layer is only connected to a small,
localized region of the previous layer. The nodes in a layer 𝑙 can be calculated by “slid-
ing” a kernel/filter across the nodes in the previous layer. Additionally, each convolutional
layer consists of one or more channels, which we can think of as an additional dimension
of the data.

Let the nodes in each layer 𝑙 be a 3-dimensional array x(𝑙) , where the last index rep-
resents the channels. Let 𝑃 (𝑙) be the number rows, let 𝐽 (𝑙) be the number of columns,
and let 𝐾 (𝑙) be the number of channels of the data in layer 𝑙. Let W(𝑙) ,𝑘 = (𝑤 (𝑙) ,𝑘

𝑚𝑛ℓ
),

𝑘 = 1, . . . , 𝐾 (𝑙) , be filters of size 𝜑 (𝑙) , yielding W(𝑙) ,𝑘 ∈ R𝜑 (𝑙)×𝜑 (𝑙)×𝐾 (𝑙−1)
. Then the in-

put signal s(𝑙) is calculated using cross-correlation as

𝑠
(𝑙)
𝑝 𝑗𝑘

= 𝑤
(𝑙) ,𝑘
0 +

𝐾 (𝑙−1)∑︁
ℓ=1

𝜑 (𝑙)∑︁
𝑚=1

𝜑 (𝑙)∑︁
𝑛=1

𝑤
(𝑙) ,𝑘
𝑚𝑛ℓ

𝑥
(𝑙−1)
𝑝+𝑚−1, 𝑗+𝑛−1,ℓ , (4.5)

where 𝑝 = 1 . . . , 𝑃 (𝑙−1) − 𝜑 (𝑙) + 1, 𝑗 = 1 . . . , 𝐽 (𝑙−1) − 𝜑 (𝑙) + 1, and 𝑤 (𝑙) ,𝑘0 is the weight
parameter corresponding to a bias node. For illustration, refer to Figure 4.3.

a) Layer 𝑙 − 1 b) Layer 𝑙

c) Filters

FIGURE 4.3. Convolutional layer. Figure a) represents the layer 𝑙 − 1 with 4 channels of 6× 4 units.
The orange squares represent a filter of size 3, corresponding to dimensions 3 × 3 × 4 (filter size ×
filter size × number of channels in layer 𝑙−1), at two different spatial locations starting at the points
(1, 1) and (3, 2), producing the first (orange) channel in Figure b) of size 4× 2 using Equation (4.5).
The rest of the channels in Figure b) are produced by different filters, represented in Figure c). Note
that all filters have the size 3 × 3 × 4.
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It is clear from Equation (4.5) and Figure 4.3 that using cross-correlation in this manner
results in a reduction of layer dimensions for 𝜑 > 1. To control the spatial dimensions
of the data as it passes through the convolutional layers, a technique called padding is
employed. The most common form is the same padding, also known as zero-padding,
which involves adding extra zero-valued nodes around the borders of the output signals in
each layer, ultimately preventing the data dimensions from shrinking.

The output from the last convolutional layer, which is usually a multidimensional tensor,
is often flattened into a one-dimensional vector. This vector then serves as an input to a
subsequent fully connected neural network.

One-dimensional convolution. One-dimensional (1D) convolution is a fundamental op-
eration in signal processing, particularly suited for analyzing multivariate time-series data,
such as multi-lead ECG. When dealing with multivariate data, each time step in the input
sequence consists of multiple values, one for each feature, or lead in the case of ECG. The
input to a 1D convolutional layer for multivariate data is typically a 2-dimensional array,
where the first dimension represents the time steps and the second dimension represents
the different features. Let 𝑃 (𝑙) be the temporal dimension of layer 𝑙 and let 𝐾 (𝑙) be the
number of channels in layer 𝑙. Let W(𝑙) ,𝑘 = (𝑤 (𝑙) ,𝑘

𝑚ℓ
) ∈ R𝜑

(𝑙)×𝐾 (𝑙−1)
, 𝑘 = 1, . . . , 𝐾 (𝑙) , be

the filters of size 𝜑 (𝑙) . The cross-correlation in Equation (4.5) reduces to

𝑠
(𝑙)
𝑝𝑘

= 𝑤
(𝑙) ,𝑘
0 +

𝐾 (𝑙−1)∑︁
ℓ=1

𝜑 (𝑙)∑︁
𝑚=1

𝑤
(𝑙) ,𝑘
𝑚ℓ

𝑥
(𝑙−1)
𝑝+𝑚−1,ℓ = 𝑤

(𝑙) ,𝑘
0 + e𝑇

(
W(𝑙) ,𝑘 ⊙ x(𝑙−1)

𝑝:𝜑 (𝑙)

)
e, (4.6)

where ⊙ is element-wise multiplication, e is a vector of ones, and x(𝑙−1)
𝑝:𝜑 (𝑙) = (𝑥

(𝑙−1)
𝑖 𝑗
) with

𝑝 ≤ 𝑖 < 𝑝+𝜑 (𝑙) , 1 ≤ 𝑗 ≤ 𝐾 (𝑙−1) . Refer to Figure 4.4 for an illustration of 1D convolution.

a) Layer 𝑙 − 1 b) Filter operation

c) Filters

d) Layer 𝑙

FIGURE 4.4. 1D convolutional layer. Figure a) represents the layer 𝑙 − 1 with 4 channels of 5 units.
Figure b) shows the operation of the filter on this layer at the temporal location 2, producing the
second node of the first channel in layer 𝑙 in Figure d) using Equation (4.6). The other two channels
of layer 𝑙 are produced by applying the filters in Figure c).

Equivalence between 1D CNN with a filter of size one and fully connected NN. Con-
sider a fully connected NN and 1D CNN with a filter of size one with layers 𝑙 = 0, . . . , 𝐿,
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and a functional/time series input of length 𝑃, x ∈ R𝑃 . In the case of a fully connected neu-
ral network, the input would be the values of the functional input at time points 𝑡1, . . . , 𝑡𝑃 ,
separately, with a forward propagation for layers 𝑙 < 𝐿 given by

x(0)𝑝 = (1, 𝑥𝑝)𝑇 , s(𝑙)𝑝 = W(𝑙)x(𝑙−1)
𝑝 , x(𝑙)𝑝 = (1, 𝜎 (𝑙) (s(𝑙)𝑝 )𝑇 )𝑇 , (4.7)

where 𝑥𝑝 is the value of the time series at time point 𝑡𝑝 , and x(𝐿)𝑝 = 𝜎 (𝑙) (s(𝐿)𝑝 ). The
subscript 𝑝 in s(𝑙)𝑝 and x(𝑙)𝑝 denote the input signal and the output signal of layer 𝑙 corre-
sponding to the input 𝑥𝑝 . Note that s(𝑙)𝑝 and x(𝑙)𝑝 are vectors of dimension 𝑑 (𝑙) and 𝑑 (𝑙) + 1,
respectively.

In the case of 1D CNN with filters of size one and time series input x ∈ R𝑃 , we have the
following. Since the filter size is one, each node in the convolutional layers depends only
on the nodes in the previous layer with the same temporal index, 𝑝, see Figure 4.5a). Let
W̄(𝑙) ,𝑘 = (𝑤 (𝑙) ,𝑘

ℓ
) ∈ R𝐾 (𝑙−1)

, 𝑘 = 1, . . . , 𝐾 (𝑙) , be the filters in layer 𝑙. Note that the weights

W̄(𝑙) ,𝑘 are now one-dimensional arrays/vectors. The cross-correlation in Equation (4.6)
reduces to

𝑠
(𝑙)
𝑝𝑘

= 𝑤
(𝑙) ,𝑘
0 +

𝐾 (𝑙−1)∑︁
ℓ=1

𝑤
(𝑙) ,𝑘
ℓ

𝑥
(𝑙−1)
𝑝,ℓ

= 𝑤
(𝑙) ,𝑘
0 + (W̄(𝑙) ,𝑘)𝑇 x̄(𝑙−1)

𝑝 = (W(𝑙) ,𝑘)𝑇x(𝑙−1)
𝑝 ,

where x̄(𝑙−1)
𝑝 is the “slice” of layer 𝑙−1 at the temporal location 𝑝, x(𝑙−1)

𝑝 = (1, (x̄(𝑙−1)
𝑝 )𝑇 )𝑇 ,

and W(𝑙) ,𝑘 = (𝑤 (𝑙) ,𝑘0 , (W̄(𝑙) ,𝑘)𝑇 )𝑇 . Furthermore, we can collect the elements 𝑠 (𝑙)
𝑝𝑘

in vectors
that can be calculated by

𝑠
(𝑙)
𝑝 = W(𝑙)x(𝑙−1)

𝑝 ,

where W(𝑙) = (W(𝑙) ,1, . . . ,W(𝑙) ,𝐾 (𝑙) )𝑇 is a matrix of all the weights between layers 𝑙 − 1
and 𝑙. Finally, the vectors s(𝑙)𝑝 and x(𝑙)𝑝 can be collected in matrices and with the forward
propagation for layers 𝑙 < 𝐿 given by

x(0) = (1, 𝑥1, . . . , 𝑥𝑃)𝑇 ,

s(𝑙) = (s(𝑙)1 , . . . , s(𝑙)
𝑃
)𝑇 = (W(𝑙)x(𝑙−1)

1 , . . . ,W(𝑙)x(𝑙−1)
𝑃
)𝑇 ,

x(𝑙)𝑝 = (1, 𝜎 (𝑙) (s(𝑙)𝑝 )𝑇 )𝑇 ,

x(𝑙) = (x(𝑙)1 , . . . , x(𝑙)
𝑃
)𝑇 ,

(4.8)

with the output layer x(𝐿) = (𝜎 (𝐿) (x(𝐿)1 ), . . . , 𝜎
(𝐿) (x(𝐿)

𝑃
))𝑇 .

From Equations (4.7) and (4.8), we can see that if the number of filters in the 1D con-
volutional neural network corresponds to the number of units in the fully connected NN,
then backpropagation estimates the same weight parameters W(𝑙) . Refer to Figure 4.5 for
an illustration of the equivalence.

4.3. ALIGNMENT

We leverage 1D CNN for the alignment of multivariate quasi-periodic functional data as
outlined in Chapter 2 and Algorithm 4. Specifically, we use a neural network as the opti-
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a) 1D CNN with a filter of size one

b) Fully connected neural network

FIGURE 4.5. Equivalence between 1D CNN with a filter of size one and a fully connected neural
network. Figure a) shows the 1D CNN with four layers and 4, 3, and 1 filters, respectively. Since the
size of all the filters is one, each node in each layer only depends on the nodes in the previous layer
with the same “temporal” index (2 in the example of Figure a)), which is illustrated by the arrows
between the layers. Considering only one temporal location, all the connections can be represented
using the diagram in Figure b), which is equivalent to a diagram of a fully connected NN. This is
formally shown in Equations (4.7) and (4.8).

mizer in Step 8, thus we use the Fisher-Rao metric as the loss function. Given the multi-
variate quasi-periodic data { 𝑓𝑖 = ( 𝑓𝑖1, . . . , 𝑓𝑖𝐽 )} observed at 𝑃 time points and their SRSF
representations {𝑞𝑖}, the loss function has the following form

ℓ( 𝑓 ; w) = 1
𝑁𝐽

𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=1
∥𝜇𝑞 𝑗 − (𝑞𝑖 𝑗 , 𝛾𝑖)∥,

where 𝜇𝑞 𝑗 is an element of the current Karcher mean of the amplitudes given by {𝑞𝑖 𝑗 } and
{𝛾𝑖} are the output of the 1D CNN.

Let s(𝐿) ∈ R𝑃 be the input signal to the output layer. We use a simplex activation
function based on the unit simplex inverse transform (Stan Development Team, 2024) to
ensure, that the resulting warping functions are boundary-preserving diffeomorphisms as
follows. First, we apply a modified sigmoid activation function with an offset to obtain
new coordinates z ∈ R𝑃

𝑧𝑝 =


0, 𝑝 = 1,
sigmoid(𝑠 (𝐿)𝑝 − log(𝑃 − 𝑝)), 1 < 𝑝 < 𝑃.

1, 𝑝 = 𝑃.

(4.9)
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This vector is then used to determine the unit simplex x ∈ R𝑃 as

𝑥1 = 0 and 𝑥𝑝 =
©­«1 −

𝑝−1∑︁
𝑝′=1

𝑥𝑝′
ª®¬ 𝑧𝑝 .

This transformation ensures that 𝑥𝑝 ≥ 0, 𝑝 = 1, . . . , 𝑃, and
∑𝑃
𝑝=1 𝑥𝑝 = 1. Finally, we

transform this unit simplex to a discretized warping function 𝜸 ∈ R𝑃 by

𝛾𝑝 =

𝑝∑︁
𝑝′
𝑥𝑝′ .

The offset − log(𝑃 − 𝑝) in Equation (4.9) ensures that a zero vector s(𝐿)𝑝 is mapped to the
simplex x = (0, (𝑃 − 1),−1 , . . . , (𝑃 − 1)−1), which is then mapped to the identity warp.

4.4. FUNCTIONAL INPUT

The conventional fully connected neural network processes scalar variables as inputs, thus
some modifications are required to accommodate functional inputs, 𝑓 ∈ F𝐼 , that are ob-
served on a time grid 𝑡𝑝 , 𝑝 = 1, . . . , 𝑃. This is achieved through the implementation of
a basis layer, introduced by Yao et al. (2021), which serves as the initial hidden layer
in the network. Let 𝑑𝑏 denote the number of nodes in the basis layer. Each node 𝑥𝑏,
𝑏 = 1, . . . , 𝑑𝑏 is computed as a projection of the function 𝑓 onto some basis function 𝛽𝑏
as

𝑥𝑏 =

∫
𝐼

𝛽𝑏 (𝑡) 𝑓 (𝑡)𝑑𝑡. (4.10)

These basis functions are estimated adaptively using 1D CNNs with filters of size one that
take the observed time points 𝑡𝑝 , 𝑝 = 1, . . . , 𝑃, and output the value 𝛽(𝑡𝑝), see Figure 4.6.

Note that the output signal of the nodes in the basis layer is a scalar, and therefore, the
rest of the network after the basis layer is a standard fully connected neural network. Note
also that the weight functions are a function of time 𝑡 and not functions of individual 𝑓𝑖 ,
thus are shared by all the observations. In the case of multivariate data 𝑓 = ( 𝑓1, . . . , 𝑓𝐽 ),
we propose estimating a separate basis layer for each of the dimensions 𝑗 = 1, . . . , 𝐽,
concatenating these basis layers and together with additional tabular scalar covariates, z,
propagating through the subsequent NN. We define the concatenated layer x(1) using

x 𝑗 =
(∫
𝐼

𝛽1 𝑗 (𝑠) 𝑓 𝑗 (𝑠)𝑑𝑠, . . . ,
∫
𝐼

𝛽𝑑𝑏 𝑗 𝑗 (𝑠) 𝑓 𝑗 (𝑠)𝑑𝑠
)𝑇

and x(1) =
©­­­­«

x1
...

x𝐽
z

ª®®®®¬
.
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𝑓

𝑦̂1

𝑦̂2

hiddeninput outputbasis

𝛽1

𝛽2

𝛽3

a) Networks in network b) Functional NN with adaptive basis layer

FIGURE 4.6. Functional NN with adaptive basis layer. Figure a) shows the 1D CNNs that parame-
terize the weight functions 𝛽𝑖 . Figure b) shows the neural network with a functional input and with
a basis layer. The nodes in the basis layer are obtained as a projection on the weight functions using
Equation (4.10).

4.4.1. Instantaneous contribution to the total probability

Neural networks are often referred to as “black box” models because their internal work-
ings are not easily interpretable by humans. This arises from the complex structure con-
sisting of numerous interconnected layers of units. Understanding how the predictions
of the neural networks are made in critical applications like healthcare is essential. We
introduce an explainability method for binary classification tasks based on the functional
weights, and we call it the Instantaneous Contribution to the total Probability (ICP). It is
defined as follows.

Let 𝑓 = ( 𝑓1, . . . , 𝑓𝐽 ) be the multivariate functional input to the neural network defined
on the interval 𝐼 = [𝑡1, 𝑡2], let 𝛽𝑏 𝑗 be the functional weights, let 𝑑𝑏 𝑗 be the dimension of
the basis layer for the 𝑗-th dimension of 𝑓 , 𝑓 𝑗 , let z be the additional scalar covariates, let
w be all the weights of the functional neural network including the neural networks that
parametrize the 𝛽𝑏 𝑗 , and let 𝑦̂ be the predicted probability of the positive class.

Furthermore, we denote by 𝜂 the functional neural network after the basis layer x(1) ,
and we denote by 𝜋(𝑡2, 𝑓 , z; w) the total probability, which is defined as

𝜋(𝑡2, 𝑓 , z; w) := 𝑦̂ = x(𝐿) = 𝜂
(∫ 𝑡2

𝑡1

𝛽11 (𝑠) 𝑓1 (𝑠)𝑑𝑠, . . . ,
∫ 𝑡2

𝑡1

𝛽𝑑𝑏𝐽 𝐽 (𝑠) 𝑓𝐽 (𝑠)𝑑𝑠, z; w
)
.

For 𝑡 ∈ 𝐼, we define the contribution to the total probability as

𝜋(𝑡, 𝑓 , z; w) = 𝜂
(∫ 𝑡

𝑡1

𝛽11 (𝑠) 𝑓1 (𝑠)𝑑𝑠, . . . ,
∫ 𝑡

𝑡1

𝛽𝑑𝑏𝐽 𝐽 (𝑠) 𝑓𝐽 (𝑠)𝑑𝑠, z; w
)
.
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The total probability can be decomposed as

𝜋(𝑡2, 𝑓 , z; w) = 𝜋(𝑡1, 𝑓 , z; w) +
∫ 𝑡2

𝑡1

𝜋′ (𝑡, 𝑓 , z; w)𝑑𝑡

=

∫ 𝑡2

𝑡1

(
𝜋(𝑡1, 𝑓 , z; w)
𝑡2 − 𝑡1

+ 𝜋′ (𝑡, 𝑓 , z; w)
)
𝑑𝑡,

where the last integrand is the ICP. Comparing the cross-sectional means of the ICP of the
two classes facilitates the understanding of important regions in the functional input for
the classification problem.

In the context of ECG, the integration of this explainability technique significantly en-
hances model transparency. When a definitive correlation between a specific cardiac dis-
ease exists, ICP assists in validating the model by enabling the verification of whether the
neural network’s output is influenced by relevant regions in the ECG data. Conversely, in
scenarios where no established correlation exists between the ECG and the cardiac condi-
tion under investigation, ICP can identify critical areas within the ECG measurements.

4.5. TIME-TO-EVENT OUTCOME

To accommodate time-to-event outcomes in continuous time in the presence of competing
risks and censoring, we exploit the loss function defined as the negative log-likelihood in
Equation (3.1)

ℓ(𝑡, 𝑑, x; w) =
𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=0

(∫ 𝑡𝑖−

0
ℎ̂ 𝑗 (𝑡 | x𝑖; w)𝑑𝑡 − 1(𝑑𝑖 = 𝑗) log( ℎ̂ 𝑗 (𝑡𝑖 | x𝑖; w))

)
,

where ℎ̂ 𝑗 is the estimated hazard of cause/censoring 𝑗 = 0, ..., 𝐽, and x is the set of func-
tional and scalar covariates. We estimate the hazard function in two ways, as follows.

4.5.1. Weibull distribution

The first method assumes the Weibull distribution of the event and censoring times. We
use a fully connected neural network that takes covariates x as input and outputs the shape
and scale parameters, 𝑘 𝑗 and 𝜆 𝑗 , respectively. Let s(𝐿) be the input signal to the output
layer of the neural network. The dimension is 𝑑 (𝐿) = 2(𝐽 + 1), since we use two nodes
per cause and two nodes for censoring to represent the shape and scale of the underlying
distributions. For clarity, we reshape the vector s(𝐿) ∈ R2(𝐽+1) to a matrix Y ∈ R2×(𝐽+1) ,
the first row corresponding to the shape parameters and the second row corresponding to
the scale parameters.

However, we need to constrain the values of Y because both the scale and the shape have
to be positive, 𝑘 𝑗 , 𝜆 𝑗 > 0. We do this by using activation functions such as the softplus or
the exponential. The output of the neural network is then

𝜂(x; w) =
(
𝑘0 𝑘1 · · · 𝑘𝐽

𝜆0 𝜆1 · · · 𝜆𝐽

)
,
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where 𝜂 represents the neural network. The cause- and censoring-specific hazards are
calculated as

ℎ 𝑗 (𝑡 | x; w) =
𝑘 𝑗

𝜆 𝑗

(
𝑡

𝜆 𝑗

) 𝑘 𝑗−1
.

4.5.2. Piecewise constant hazards

The second method approximates the unknown hazard function by a piecewise constant
hazard function. Given an ordered set T = {𝑡1 = 0, 𝑡2, . . . , 𝑡𝑃 | 𝑙 < 𝑚 ⇔ 𝑡𝑙 < 𝑡𝑚} of eval-
uation times, the input signal to the output layer of the neural network has the shape
s𝐿 ∈ R𝑃 (𝐽+1) . Again, for clarity, we reshape s(𝐿) to a matrix, but this time Y ∈ R𝑃×(𝐽+1) ,
each row 𝑝 corresponding to a time point 𝑡𝑝 and each column corresponding to one cause
or censoring 𝑗 .

Again, we have to constrain the values of Y, because hazards are non-negative, thus we
use an activation function with this property. The output of the neural network is then

𝜂(x; w) =
©­­­­«
ℎ1,0 ℎ1,1 · · · ℎ1,𝐽
ℎ2,0 ℎ2,1 · · · ℎ2,𝐽
...

...
. . .

...

ℎ𝑃,0 ℎ𝑃,1 · · · ℎ𝑃,𝐽

ª®®®®¬
,

and the hazard rates can be retrieved for 𝑡𝑝 ≤ 𝑡 < 𝑡𝑝+1 as

ℎ 𝑗 (𝑡 | x; w) = ℎ𝑝, 𝑗 .

We use the 1D CNN with the filter of size one as the neural network model for this task,
and we use the equivalence between this model and a fully connected neural network, see
example in Figure 4.7.

4.6. HYPERPARAMETER TUNING AND PERFORMANCE EVALUATION

The performance of neural networks is highly dependent on the correct setting of hyper-
parameters, which are the parameters defining the network architecture and the learning
process, and they must be set before the model training. Proper tuning of hyperparame-
ters, such as learning rate, number of layers, number of nodes, and activation functions,
is crucial for achieving optimal model performance and generalization. Methods like grid
search, random search, and Bayesian optimization are commonly used to systematically
explore the hyperparameter space (Roy et al., 2023).

Grid search is a method for hyperparameter tuning that involves defining a set of values
for each hyperparameter and then evaluating all possible combinations of these values to
find the best set based on a performance metric. This exhaustive approach ensures that
every potential combination is considered, but it can be very time-consuming and com-
putationally expensive, especially with a large number of hyperparameters. In contrast,
random search randomly samples hyperparameter combinations from specified distribu-
tions, which allows it to explore the hyperparameter space more broadly and often more
efficiently. While random search may not guarantee that the optimal combination will
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a) 1D CNN with a filter of size one

b) Fully connected neural network

FIGURE 4.7. Example of a 1D CNN that parametrizes the hazard function. Figure a) shows the 1D
CNN with a filter of size one, and Figure b) shows the equivalent fully connected neural network.
In this example, we have 5 evaluation times 𝑡𝑝 , 𝑝 = 1, . . . , 5, and 3 covariates 𝑥𝑞 , 𝑞 = 1, . . . , 3.
At each time point 𝑡𝑝 , the neural network outputs the cause-specific hazards and the hazard of the
censoring.

be found, it typically requires fewer evaluations and can handle larger hyperparameter
spaces more effectively. Both methods have their advantages and limitations, with grid
search being more thorough but less efficient, and random search being more scalable but
potentially less precise. Still, Bergstra and Bengio (2012) provide empirical and theoret-
ical evidence showing that random search can outperform grid search, especially when
the number of hyperparameters is large and only a few of them significantly impact the
model’s performance.

4.6.1. Bayesian optimization

Bayesian optimization offers significant advantages over grid search and random search
in terms of efficiency and effectiveness in finding optimal hyperparameters, particularly in
complex and high-dimensional spaces (Turner et al., 2021). It uses a surrogate modelM,
typically a Gaussian process, to approximate the objective function, which is generally the
loss function or other evaluation metric of the neural network and is usually “expensive” to
evaluate directly. The surrogate function provides a prediction of the objective function’s
value for any given set of hyperparameters, along with an estimate of the uncertainty for
that prediction.
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We write the Gaussian process as

𝑔(x) ∼ GP(𝑚(x), 𝑘 (x, x′)),

where 𝑚 : X → R is the mean function, 𝑘 : X × X → R is the covariance function, and
X is the set of possible inputs (Williams & Rasmussen, 2006, chap. 2). Consider a re-
alization of 𝑔 at {x1, . . . , x𝑁 } ⊂ X. Given a new point x, the posterior of 𝑔(x) given
𝝍 = (𝑔(x1), . . . , 𝑔(x𝑁 ))𝑇 is

𝑔(𝑥) | 𝝍 ∼ N(k𝑇K−1 (𝝍 − 𝝁) + 𝑚(x), 𝑘 (x, x) − k𝑇K−1k),

where 𝝁 = (𝑚(x1), . . . , 𝑚(x𝑁 ))𝑇 , 𝐾𝑖 𝑗 = 𝑘 (x𝑖 , x 𝑗 ) and k = (𝑘 (x, x1), . . . , 𝑘 (x, x𝑁 ))𝑇 (H.
Wang & Yang, 2023, chap. 3).

The next set of hyperparameters is selected using an acquisition function A, that bal-
ances exploration (trying out hyperparameters in regions with high uncertainty) and ex-
ploitation (focusing on regions where the surrogate function predicts high performance).
Common acquisition functions include Expected Improvement (EI), probability of im-
provement, and upper confidence (Snoek et al., 2012). These acquisition functions depend
on the surrogate model estimated from the previous observations and hyperparameters of
the Gaussian process, and this dependence is denoted by A(x;M, 𝜽). The expected im-
provement is defined as

AEI (x;M, 𝜽) = [ 𝑓 ∗ − 𝜇(x;M, 𝜽)]Φ(𝑍) + 𝜎(x;M, 𝜽)𝜙(𝑍)

for 𝑍 = [ 𝑓 ∗ − 𝜇(x;M, 𝜽)]/𝜎(x;M, 𝜽), where 𝑓 ∗ is the current best evaluated objective
function, 𝜇(x;M, 𝜽) and 𝜎2 (x;M, 𝜽) are the predictive mean function and the predictive
variance function under the Gaussian process prior, respectively, Φ(·) is the cumulative
distribution function and 𝜙(·) is the density function of the standard normal distribution,
respectively. The process of Bayesian optimization is described in Algorithm 6 and illus-
trated in Figure 4.8.

Algorithm 6 Bayesian optimization (adapted from H. Wang & Yang, 2023, alg. 10.1)

Input: Objective function 𝑓 , surrogate modelM, acquisition function A, parameters 𝜽
of A, search space X, number of initial evaluation points 𝑁 , stopping criterion

1: 𝑋 ← {x1, . . . , x𝑁 } ⊂ X ⊲ Generate the initial evaluation points
2: 𝑌 ← { 𝑓 (x1), . . . , 𝑓 (x𝑁 )} ⊲ Evaluate the objective function 𝑓 at 𝑋
3: estimate surrogate modelM on (𝑋,𝑌 )
4: while stopping criterion not satisfied do
5: x← arg maxx∗∈X A(x∗;M, 𝜽) ⊲ Find x that maximizes the acquisition function
6: 𝑋 ← 𝑋 ∪ {x} ⊲ Add the optimal x to 𝑋
7: 𝑌 ← 𝑌 ∪ { 𝑓 (x)} ⊲ Add the evaluated 𝑓 (x) to 𝑌
8: estimate surrogate modelM on (𝑋,𝑌 )
9: end while



Neural networks 39

Index

N
U

LL

a) First iteration

Index

N
U

LL

b) Second iteration

Index

N
U

LL

c) Third iteration

FIGURE 4.8. First three iterations of Bayesian optimization for a univariate search space X as
defined in Algorithm 6. The orange line is the objective function, with evaluated points in black, the
dashed line is the surrogate function, with the 95% confidence interval (grey area). The blue line is
the (scaled) acquisition function, and the vertical green line shows the point of the next evaluation.

4.6.2. Performance evaluation

Deep neural networks are characterized by a large number of parameters, enabling them to
learn complex patterns within the training data, including the noise inherent in the dataset.
Consequently, while these models may exhibit outstanding performance on the training
data, they often struggle to generalize to new, unseen data.

Evaluating the performance of neural networks using the training data is unreliable. The
performance metrics derived from the training data tend to be overly optimistic. This is
because the model has already been exposed to this data during training, leading to high
accuracy and low error rates that do not accurately reflect the model’s ability to generalize.
These metrics can create a false sense of confidence in the model’s performance, which
can be misleading when the model is applied to new data.

To obtain a realistic estimate of a neural network’s performance, it is crucial to use
separate validation and test sets. The validation set is employed during the training process
to fine-tune hyperparameters and make decisions regarding the model architecture. The
test set, on the other hand, is used to evaluate the final model’s performance after all
training and tuning have been completed.
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Cross-validation is often necessary to ensure a more robust and reliable evaluation of
a neural network’s performance. One of the primary reasons for this is the variability
in the data. A single training-validation-test split can lead to performance metrics that
are highly dependent on the specific partitioning of the data. Cross-validation averages
the performance over multiple splits, providing a more comprehensive assessment of the
model’s generalization capabilities.

Another important reason for using cross-validation is to maximize the use of available
data. In a single training-validation-test split, a portion of the data is reserved for testing,
and is not used during training. This can be particularly problematic when the dataset is
small. Cross-validation allows each data point to be used for both training and testing
across different folds. This ensures that the model is trained and evaluated on all available
data, leading to more reliable and stable performance metrics.

𝐾-fold cross-validation. The 𝐾-fold cross-validation is a technique for assessing the
model performance and optimizing the hyperparameters (Allgaier & Pryss, 2024). It in-
volves partitioning the dataset into 𝐾 equally sized subsets, that are often termed folds.
The model is then trained on 𝐾 − 1 folds, with the performance being estimated on the re-
maining fold. This is repeated 𝐾 times in a loop, where each fold is used as the validation
set exactly once. The performance metric is averaged over the validation folds.

If cross-validation is used for hyperparameter selection, then the hyperparameter com-
bination with the best average performance across the folds is chosen. On the other hand,
if cross-validation was used for performance evaluation, the average performance provides
a more reliable estimate of the neural network’s performance.

Nested cross-validation. Nested cross-validation is particularly useful when it comes
to model selection and hyperparameter tuning (Hastie et al., 2009, sec. 7.10). The neces-
sity of nested cross-validation arises from the need to obtain an unbiased estimate of the
model’s performance and to prevent overfitting during the hyperparameter optimization
process.

When hyperparameters need to be tuned, the traditional cross-validation can lead to an
overly optimistic estimate of the model’s performance, because the same data is used both
for hyperparameter tuning and evaluation of the model, causing information to “leak” from
the validation set into the training process (Varma & Simon, 2006).

The process involves two loops. The outer loop serves for performance evaluation,
while the inner loop is dedicated for hyperparameter tuning. In the outer loop, the dataset
is divided into 𝐾 folds, where again, one fold acts as a validation set while 𝐾 − 1 folds are
used for training. In each iteration of the outer loop, the 𝐾 − 1 folds are split into 𝐽 folds.
The combination of hyperparameters that perform best on the inner 𝐽-fold cross-validation
is selected, trained on the 𝐾 − 1 folds, and evaluated on the validation fold. This process
is repeated for each fold in the outer loop, and the performance metric is aggregated over
the folds that were used for validation.



5. Summary of manuscripts and contributions

Manuscript I. The manuscript titled “Joint alignment of multivariate quasi-periodic
functional data using deep learning” introduces a novel method for aligning multivariate
quasi-periodic functions using deep neural networks. This method, named DeepJAM, ad-
dresses the limitations of traditional techniques that often overlook phase variability and
focus solely on amplitude variability. By preserving both phase and amplitude variabil-
ity, DeepJAM provides a comprehensive alignment of multivariate functional data. The
method employs a special activation function based on the unit simplex transformation
and utilizes a loss function derived from the Fisher-Rao metric. It is unsupervised and
capable of generating both a common template function and subject-specific templates.
The effectiveness of DeepJAM is demonstrated through simulations and data from 12-lead
ECG recordings.

A key contribution of the manuscript is the introduction of a multiscale warping model
to handle quasi-periodic functions. This model allows for the decomposition of variability
into local and global components, facilitating more accurate alignment of multivariate
quasi-periodic data. The method’s applicability to real-world data and its potential for
future enhancements make it a valuable contribution to the field of functional data analysis.

Manuscript II. The manuscript titled “Deep learning for multivariate functional data
with built-in time warping” exercises an application of neural networks for analyzing mul-
tivariate quasi-periodic functional data, with a specific emphasis on 12-lead ECGs. We
build on a neural network with an adaptive basis layer for univariate data and extend the
capabilities of this approach to handle multivariate functional data alongside additional
scalar variables.

We introduce the instantaneous contribution to the total probability (ICP), a novel
method aimed at improving the interpretability of the neural network model’s predictions.
It identifies key segments of the input signal that have an impact on the predictions,
offering valuable insights into the data-generating mechanisms. This interpretability is es-
pecially important in clinical settings, where understanding the factors influencing model
predictions can build trust in the model’s output.

Additionally, we address the challenge of handling input data with varying length and
varying number of periods, a common issue in ECG recordings stemming from heart rate
variability among patients.

Manuscript III. The manuscript titled “Deep learning of event risk in continuous time
with competing risks” presents an innovative approach for predicting time-to-event out-
comes in continuous time with competing risks using neural networks. Survival analysis,
which focuses on understanding the time until a specific event occurs, is extended in this
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work to incorporate high-dimensional data and competing risks.
The proposed method introduces two types of neural network models. The first type as-

sumes that the underlying generating processes follow a Weibull distribution and outputs
the shape and scale parameters of this distribution for each event type and censoring. The
model leverages the flexibility of neural networks to capture complex relationships be-
tween the covariates and the parameters of the Weibull distribution, allowing for accurate
prediction of time-to-event outcomes.

The second type of model directly parameterizes the hazard functions as piecewise
constant over predefined time intervals. This model does not assume a specific distribution
for the underlying processes. Instead, it uses a convolutional neural network to estimate
the hazard rates for each event type and censoring at different time points, allowing for the
estimation of the cause-specific risks.

A significant contribution of this work is its ability to simultaneously predict the risk of
the event of interest, competing risks, and the probability of censoring, while also incor-
porating high-dimensional data.



6. Discussion and perspectives

The primary objective of this thesis was to develop statistical methods integrating deep
learning and functional data analysis for predicting various clinical outcomes based on
ECG signals. The ultimate goal was to create models that clinicians could use for early
diagnosis of heart diseases, leveraging the rich data available from the Danish national
health registers.

Achievements and limitations. The proposed methods, including the algorithm for joint
alignment of multivariate quasi-periodic data and the neural network for multivariate func-
tional data as input with adaptive basis layers, showed promising results in reducing vari-
ability caused by misalignment and improving prediction accuracy.

The application of these methods to 12-lead ECG recordings from the Copenhagen
General Population Study highlighted their effectiveness in handling high-dimensional
functional data. The introduction of the instantaneous contribution to the total probability
provided insight into the model’s predictions, enhancing interpretability and transparency.

However, the scope of the ECG analysis was limited to a dichotomized coronary cal-
cification score due to the challenges in accessing and processing the clinical outcomes
from the Danish patient registry. The inability to perform a more extensive analysis of
various clinical outcomes related to heart diseases represents a limitation and opportunity
for future work.

Future directions. Future research should focus on addressing the computational chal-
lenges and expanding the analysis to include a broader range of clinical outcomes. The
following areas are suggested for further exploration.

Utilizing the extensive data available in the Danish health registers will be crucial. This
will enable a more detailed analysis of short- and long-term risks of various cardiovascular
diseases, providing clinicians with valuable tools for early diagnosis and interventions.

Implementing transfer learning techniques to retrain the models for different clinical
outcomes can significantly enhance their applicability and reduce computational costs (J.
Wang & Chen, 2023). This approach allows the models to be adapted to new datasets and
outcomes, improving their generalizability and utility in clinical practice.

Extending the survival analysis methods developed in this thesis to ECG data will pro-
vide a more comprehensive understanding of the prognostic value of ECG measurements.
This integration requires addressing the computational challenges associated with training
the neural networks, especially the convolutional neural networks, on the research ma-
chines of Statistics Denmark.1

1Statistics Denmark, Homepage of Statistics Denmark [website], https://www.dst.dk/en/, accessed November
30, 2024
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Validating the proposed methods on diverse datasets from different populations and
clinical settings will be essential to establish their robustness and generalizability. This
will also help identify potential biases and ensure that the models are applicable across
different demographic groups.

Perspectives. The advancements in deep learning and functional data analysis pre-
sented in this thesis have important implications for future clinical diagnostics and per-
sonalized medicine. By leveraging ECG data and advanced statistical methods, clinicians
can gain deeper insights into the health status of patients and make more informed deci-
sions regarding their care.

The integration of these methods into clinical workflows has the potential to transform
the early diagnosis and management of heart diseases. As computational resources con-
tinue to improve, the application of these techniques will likely expand, offering new op-
portunities for enhancing patient outcomes.

In conclusion, while this thesis laid the groundwork for using ECG data to predict clini-
cal outcomes with deep learning, there is still much work to be done. The proposed future
directions provide a roadmap for further research and development, with the ultimate goal
of creating robust, adaptable, and interpretable models that can be integrated into clinical
practice.
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DAMAŠEVIČIUS, & R. MASKELIUNAS (Eds.), Informatics and intelligent applications (pp. 283–
296, Vol. 1547). Springer International Publishing. https://doi.org/10.1007/978-3-030-95630-
1 20

ALLGAIER, J., & PRYSS, R. (2024). Cross-validation visualized: A narrative guide to advanced
methods. Machine Learning and Knowledge Extraction, 6(2), 1378–1388. https : / /doi .org /10 .
3390/make6020065

ANDERSEN, P. K., ABILDSTROM, S. Z., & ROSTHØJ, S. (2002). Competing risks as a multi-state
model. Statistical Methods in Medical Research, 11(2), 203–215. https : / / doi . org / 10 . 1191 /
0962280202sm281ra

ANDERSEN, P. K., & KEIDING, N. (2002). Multi-state models for event history analysis. Statistical
Methods in Medical Research, 11(2), 91–115. https://doi.org/10.1191/0962280202SM276ra

BAKER, R. (2006). Gait analysis methods in rehabilitation. Journal of NeuroEngineering and Reha-
bilitation, 3(1), 4. https://doi.org/10.1186/1743-0003-3-4

BERGSTRA, J., & BENGIO, Y. (2012). Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

BHATTACHARYA, A., & BHATTACHARYA, R. (2012, April 5). Nonparametric inference on mani-
folds: With applications to shape spaces (1st). Cambridge University Press. https://doi.org/10.
1017/CBO9781139094764

BILLMAN, G. E., HUIKURI, H. V., SACHA, J., & TRIMMEL, K. (2015). An introduction to heart
rate variability: Methodological considerations and clinical applications. Frontiers in Physiology,
6. https://doi.org/10.3389/fphys.2015.00055

CHEN, W. (2018). Electrocardiogram. In T. TAMURA & W. CHEN (Eds.), Seamless healthcare mon-
itoring (pp. 3–44). Springer International Publishing. https://doi.org/10.1007/978-3-319-69362-
0 1

COX, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series
B (Methodological), 34(2), 187–220.

GOLDBERGER, A. L., GOLDBERGER, Z. D., & SHVILKIN, A. (2018). Goldberger’s clinical elec-
trocardiography. Elsevier. https://doi.org/10.1016/C2014-0-03319-9

GOODFELLOW, I., BENGIO, Y., & COURVILLE, A. (2016). Deep learning. The MIT Press.
HASTIE, T., TIBSHIRANI, R., & FRIEDMAN, J. (2009). The elements of statistical learning: Data

mining, inference, and prediction. Springer Science & Business Media.
HOSSEINI-NASAB, S. M. E., & SHARGHI, H. (2024). Functional data analysis: Key concepts and

applications. In H. DOOSTI (Ed.), Flexible nonparametric curve estimation (pp. 43–80). Springer
International Publishing. https://doi.org/10.1007/978-3-031-66501-1 3

KAPLAN, E. L., & MEIER, P. (1958). Nonparametric estimation from incomplete observations. Jour-
nal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1080/01621459.
1958.10501452

MAKOWSKI, D., PHAM, T., LAU, Z. J., BRAMMER, J. C., LESPINASSE, F., PHAM, H., SCHÖLZEL,
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ABSTRACT

The joint alignment of multivariate functional data plays an important role in various fields
such as signal processing, neuroscience and medicine, including the statistical analysis of
data from wearable devices. Traditional methods often ignore the phase variability and
instead focus on the variability in the observed amplitude. We present a novel method
for joint alignment of multivariate quasi-periodic functions using deep neural networks,
decomposing, but retaining all the information in the data by preserving both phase and
amplitude variability. Our proposed neural network uses a special activation of the output
that builds on the unit simplex transformation, and we utilize a loss function based on the
Fisher-Rao metric to train our model. Furthermore, our method is unsupervised and can
provide an optimal common template function as well as subject-specific templates. We
demonstrate our method on two simulated datasets and one real example, comprising data
from 12-lead 10s electrocardiogram recordings.

Keywords: Deep Learning; Elastic Phase-Amplitude Separation; Functional Data; Joint
Multivariate Alignment; Multiscale Time Warping; Quasi-Periodic Functions.
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I.1. INTRODUCTION

Statistical analysis of functional data is becoming increasingly essential in the biological
and medical research as technologies allow for measuring subjects over long time dura-
tions with potential high-frequency sampling times. When applying statistical inference
to functional data, it would be advantageous to align the functions, so that the positions of
corresponding peaks and valleys are the same across the data set. Failure to align the data
correctly can lead to inefficiency of basic statistical summaries like averages, leading to
poor estimates of population mean functions that are not representative of the data. In real-
ity, many commonly used functional data analysis techniques present inferior performance
when confronted with phase variation (Marron et al., 2015). Furthermore, alignment can
also improve prediction accuracy when classification is the goal (Tucker et al., 2013). In
practice, functional data is often misaligned and contains variability along both the 𝑥 axis,
called the phase variability, and the 𝑦 axis, called the amplitude variability. The process of
decomposing the overall variability in the data into these two components is termed elastic
phase-amplitude separation and represents the joint alignment of multiple functions. In
this paper, we focus on multivariate quasi-periodic functions. We call a function 𝑓 multi-
variate if 𝑓 (𝑡) = ( 𝑓1 (𝑡), 𝑓2 (𝑡), . . . , 𝑓𝐽 (𝑡)) ∈ R𝐽 , and following Boucheham (2008), we call
a function quasi-periodic if it is a concatenation of similar patterns or pseudo-periods, or
in other words, if it is periodic up to a warping action.

Examples of such quasi-periodic functional data are continuous glucose monitoring
(CGM) data (Klonoff, 2005), which provide information about levels of blood glucose
through wearable devices (McDonnell et al., 2022), and electrocardiogram (ECG) record-
ings (Gregg et al., 2008), which measure the electrical activity of the heart. We aim to
study ECGs as they are regularly used together with other tests to diagnose and monitor
diseases affecting the cardiovascular system, as well as to inspect symptoms of possible
heart conditions. ECGs can assist with detecting arrhythmias and can be used over time to
monitor a person with an existing diagnosis, or a person taking medication that can have an
influence on the heart. These measurements taken over time through multiple leads placed
on the body can be regarded as multivariate quasi-periodic functions, where the periods
are the heartbeats. We think of the underlying function or process as inherently periodic,
but due to phase and amplitude variability resulting from other physiological activities at
the moment, the observed data is quasi-periodic.

One can perform statistical analyses to align and compare these observations using tools
such as the L2 distance to find the cross-sectional mean and variance. In addition to these
summary measures, it is of great interest to model the variability in the data. Due to the
high dimensionality of the data and to attain flexible models, we would like to analyze
them using neural networks. In the example of the ECG data, we might want to align
the peaks and segments to extract a template heartbeat while also recording the relative
positions of these features. However, application of standard methods for the analysis
of functional data is not straightforward when it comes to quasi-periodic functions as we
illustrate in Figure I.1. The dashed lines in Figure a) represent equal period lengths, while
the dotted lines represent the observed quasi-periods. In general, we do not know the
positions of the quasi-periods of the observed data, and when assuming periodic data,
the cross-sectional mean in Figure b) is not representative of the underlying process –
the magnitude of the peaks and valleys are attenuated. On the other hand, when first
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FIGURE I.1. Figure a) shows four quasi-periods of one observed ECG lead with a length of one
period being 𝜏. The dashed lines represent periods of length 𝜏, while the dotted lines are the observed
quasi-periods. Figure b) shows the cross-sectional mean (black) of the four periods (gray), when
they are treated as periodic, and Figure c) compares this cross-sectional mean to a cross-sectional
mean of aligned data (red), taking into consideration the quasi-periodic nature of the observed data,
as well as the standard Karcher mean using dynamic programming (blue), which does not take the
quasi-periodicity of the observed data into account. The second row shows the same as the first row,
but for a case of more extreme phase variability.

aligning the data while considering the quasi-periodic nature of the observed functional
data, the cross-sectional mean preserves the maxima and minima better, see Figure c).
In the example of Figure I.1 (first row), the phase-variability is not substantial, hence
the cross-sectional mean of the observed periods still maintains the main segments of
the ECGs. Using alignment based on the elastic shape-amplitude separation algorithm
utilizing dynamic programming (Srivastava & Klassen, 2016, chap. 8), the Karcher mean
also preserves the true shape, but in extreme cases when the data contains considerable
phase variability, the simple cross-sectional mean does not retain these key ECG segments
(modality), and even when using the elastic shape-amplitude separation algorithm, the
Karcher mean is distorted, see the second row of Figure I.1.

In this paper, to jointly (simultaneously) model multiple time warping functions and
to align multivariate quasi-periodic functions along the 𝑥 axis, we modify and extend the
elastic phase-amplitude separation algorithm for univariate functions from Srivastava and
Klassen (2016) and introduce the algorithm for the Joint Alignment of Multivariate quasi-
periodic functional data using Deep learning (DeepJAM). Importantly, DeepJAM provides
us with warping functions, one for each observed function, that contain all the information
about the phase variability in the data. In the case of multivariate functional data, all the
dimensions share the same warping function, because they are all observed on the same
sample. Because our approach is unsupervised, we also utilize nice geometric proper-
ties of transformed warping functions to extract a unique multivariate functional template.
Subsequently, we can use the DeepJAM neural network to easily align new data to this
template. Furthermore, DeepJAM can be used as an integrated part of other neural net-
works in an end-to-end analysis as opposed to two-step modeling, where alignment is only
treated as a pre-processing step.
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I.1.1. Related work

A standard approach for alignment of functions is called landmark registration (Ramsay &
Silverman, 2005, chap. 7). Landmarks are typically distinctive features of a function, such
as minima, maxima, and zero-crossings of the function itself, or its derivatives. The chal-
lenge with landmark registration is that it only focuses on the alignment of specific points.
An extension to the landmark registration is template registration (Srivastava & Klassen,
2016, chap. 8.2), which aligns whole functions to a specific template. Kneip and Ramsay
(2008) suggest aligning functions to the functional principal components instead, with the
idea that aligned functions can be represented as the sum of a mean function and a lin-
ear combination of a few principal components. This is done through an iterative process
of simultaneous estimation of the mean function, warping functions, functional principal
components and their scores. An alternative approach also based on functional principal
component analysis (FPCA) is presented in Srivastava and Klassen (2016, chap. 8.8).

Dynamic Time Warping (DTW, Müller, 2007, chap. 4) is another well-known technique
for finding an optimal alignment between two time series. Building on DTW, Boulnemour
and Boucheham (2018) proposed a combination with the shape exchange algorithm, which
should be more suitable for handling quasi-periodic time series. However, in applications,
we often need joint alignment of multiple functions, because we are interested in patterns
regarding the whole data, such as population mean and variance. This could be done, for
example, by finding a representative sample in the data, or by constructing a representative
template and then using DTW to align the functions to this template. Nonetheless, DTW
does not provide us with this template. Srivastava and Klassen (2016) proposed a method
to solve this problem using dynamic programming. Regardless of whether the objective
is to achieve pairwise or group-wise alignment, the purpose of the above methods using
dynamic programming is mainly to serve as a pre-processing step.

In the deep learning universe, the main focus has been on time warping invariant neural
networks (Sun et al., 1992), convolutional neural networks (LeCun et al., 2015) that can
be invariant to shifts in the input data, and recurrent neural networks (Tallec & Ollivier,
2018). The challenge with using neural networks that are invariant to time warping or
shifts is that they mostly focus on amplitude variability. This may or may not be relevant
depending on the specific task. Disregarding the phase variability could result in loss of
information and inadequate generative models, while using models for both amplitude and
phase can improve classification of future data (Tucker et al., 2013).

Recently, research has also been done on pairwise temporal alignment using neural net-
works. Nunez and Joshi (2020) proposed a convolutional neural network for the alignment
of all pairs of functions in the data, which outputs estimated warping functions. How-
ever, the training data in this particular setting were constructed using DTW, the optimal
warping functions from DWT were used in the loss function, and as the authors them-
selves expressed, their primary motivation was demonstrating reduced computational cost
compared to DTW. In addition, the neural network was constructed to deal with pairwise
alignment of all functional pairs, but not for joint alignment of multiple functions.

Oh et al. (2018) proposed an end-to-end classification model using a Sequence Trans-
former Network (STN), which transforms the input signals with parameters learned
through a Sequence Transformer convolutional neural network, before proceeding with
another neural network for classification. However, this STN focuses on linear transfor-
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mation and does not implement more complicated time warping of the input signal.
In addition to unsupervised single-class learning, Weber et al. (2019) explored the multi-

class case with semi-supervised learning. The implemented model is trained using a loss
function that involves the empirical variance of the warped signals and uses a regulariza-
tion term on the warping as a way to ensure identifiability.

Currently, more and more deep learning methods are developed to align multivariate
functions using elastic phase-amplitude separation algorithm; see e.g., the works of Lohit
et al. (2019), Nunez et al. (2021) and Chen and Srivastava (2021), all of which use a prob-
abilistic simplex transformation for the derivative of the warping functions by calculating
the elementwise product of the neural network output and dividing it by the square of its
norm. This transformation is, however, not one-to-one.

I.1.2. Proposed approach

In this paper, we propose a non-parametric approach for joint alignment of multivariate
quasi-periodic functions. We deploy neural networks that aim to extract the optimal warp-
ing functions that achieve the smallest distance between the warped functions obtained
from the observed functions by warping their domain. We use a special one-to-one acti-
vation function in the output layer, so that the output of the neural network satisfies the
conditions for warping functions. In addition, instead of using the L2 metric to calculate
the distance between functions directly, we use the Fisher-Rao metric and the square-root
slope representation to calculate the distance between the warped functions. This metric
is used in the loss function of the neural network. Furthermore, because we take advan-
tage of the differential geometry of the space of warping functions, we can calculate the
Karcher mean of the orbits to extract a functional template.

We make use of convolutional layers with multiple channels to account for multivariate
functions, and as a result, the output layer returns a single warping function per subject
that can be used for warping all the dimensions of the observed function simultaneously,
which is desirable as they are all measured on the same subject. Finally, we incorporate a
multiscale warping model to handle quasi-periodic functions.

This paper is structured as follows: In Section I.2, we present and review the mathemat-
ical formalism behind joint alignment of functional data, which we proceed to extend in
Section I.2.1 to the case of multivariate quasi-periodic functional data. In the same section,
we present the architecture of the deep neural warping network employed in the algorithm.
In Section I.3, we apply our method to simulated univariate and multivariate functions. In
Section I.4, we carry out the joint alignment on real ECG data, and finally in Section I.5,
we discuss the results and limitations. An implementation of our method can be found on
the first author’s GitHub repository.

I.2. JOINT ALIGNMENT OF MULTIVARIATE FUNCTIONAL DATA

In this section, we present the mathematical background for joint alignment of a set of
functions { 𝑓𝑖} = { 𝑓𝑖}𝑛𝑖=1 = { 𝑓𝑖 ∈ F𝐼 | 𝑖 = 1, . . . , 𝑛}, where F𝐼 is the set of absolutely con-
tinuous functions defined on the interval 𝐼, which we without loss of generality take to be
𝐼 = [0, 1]. Further, we consider multivariate functional data 𝑓𝑖 = ( 𝑓𝑖1, . . . , 𝑓𝑖𝐽 ) : 𝐼 → R𝐽 .
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To jointly align a set of functions, we need to warp the domain of the functions in a certain
constrained way. The constraints for the mapping 𝛾 : 𝐼 → 𝐼 performing the domain warp
are that 𝛾(0) = 0 and 𝛾(1) = 1 (boundary-preserving), that 𝛾 is invertible, and that both 𝛾
and 𝛾−1 are differentiable (diffeomorphism). We denote the set of such functions Γ𝐼 . Note
that the derivative of 𝛾, denoted as ¤𝛾, is always positive.

With the definition of the two sets, F𝐼 and Γ𝐼 , we can describe the two main alignment
problems: pairwise and multiple alignment (Srivastava & Klassen, 2016, p. 85). In the
pairwise alignment problem, given functions 𝑓1, 𝑓2 ∈ F𝐼 , we wish to find a warping func-
tion 𝛾 ∈ Γ𝐼 , such that some energy term 𝐸 [ 𝑓1, 𝑓2 ◦ 𝛾], where the symbol “◦” represents
function composition, i.e., ( 𝑓 ◦ 𝛾) (𝑡) = 𝑓 (𝛾(𝑡)), is minimized. In the case of multivari-
ate functions, i.e., 𝐽 ≥ 2, we calculate the function composition elementwise, namely,
𝑓 ◦ 𝛾 = ( 𝑓1 ◦ 𝛾, . . . , 𝑓𝐽 ◦ 𝛾). The operations defined below are also elementwise, where
relevant. We wish to find 𝛾∗ as a solution to 𝛾∗ = argmin𝛾∈Γ𝐼 𝐸 [ 𝑓1, 𝑓2◦𝛾]. The function 𝑓1
is then said to be registered to 𝑓2 ◦ 𝛾∗ for any domain value 𝑡 ∈ 𝐼. The multiple alignment
problem is an extension of the pairwise alignment problem, where, given a set of functions
{ 𝑓𝑖}, we wish to find a set of warping functions {𝛾𝑖} = {𝛾𝑖}𝑛𝑖=1 = {𝛾𝑖 ∈ Γ𝐼 | 𝑖 = 1, . . . , 𝑛},
such that 𝑓𝑖 ◦ 𝛾𝑖 are said to be registered to each other over 𝑖. The {𝛾𝑖} are called the
phases and { 𝑓𝑖 ◦ 𝛾𝑖} are representatives of their amplitude. Finally, the pairwise solution
of the multiple alignment, in which all pairs of functions are registered to each other, can
be extended to a template-based registration. Here, we first consider a template function
𝜇, and then we align each of the functions { 𝑓𝑖} to this template. These steps can be done
iteratively to improve the overall alignment as well as the quality of the template (Srivas-
tava & Klassen, 2016, p. 271). First, we calculate the average of the current versions of
{ 𝑓𝑖} under a proper metric to construct the template 𝜇. Then we align the functions { 𝑓𝑖} to
this template by calculating the optimal warping functions {𝛾𝑖}, and update the functions
{ 𝑓𝑖} by 𝑓𝑖 ← 𝑓𝑖 ◦ 𝛾𝑖 , and then we iterate these steps.

A natural way to calculate the average of { 𝑓𝑖} for constructing the template would be
to use the L2 norm, yielding the cross-sectional mean of { 𝑓𝑖}. However, as argued by
Srivastava and Klassen (2016, chap. 8.2), the cross-sectional mean of { 𝑓𝑖} is not a good
representation of the template 𝜇, and in addition, also shown by Srivastava and Klassen
(2016, pp. 88–90), the standard L2 norm is not appropriate as the distance measure due to
the lack of isometry under warping, pinching effect, and inverse inconsistency. Instead,
we use a specific Riemannian metric, called the Fisher-Rao metric (Srivastava & Klassen,
2016, Definition 4.8., p. 105), together with an alternative functional representation called
the square-root slope function representation (SRSF, Srivastava & Klassen, 2016, Defini-
tion 4.2., p. 91) defined as

𝑞(𝑡) = sign
( ¤𝑓 (𝑡)) √︃�� ¤𝑓 (𝑡)��. (I.1)

from which the original function can be recovered as

𝑓 (𝑡) = 𝑓 (0) +
∫ 𝑡

0
𝑞(𝑠) |𝑞(𝑠) | 𝑑𝑠. (I.2)

Under this representation, the Fisher-Rao metric becomes the standard L2 metric (Srivas-
tava & Klassen, 2016, Lemma 4.7., p. 105). Note also that the SRSF representation of a
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warped function 𝑓 ◦ 𝛾 is (Srivastava & Klassen, 2016, p. 91)

𝑞(𝑡) = (𝑞 ◦ 𝛾) (𝑡)
√︁
¤𝛾(𝑡) =: (𝑞, 𝛾) (𝑡). (I.3)

Srivastava and Klassen (2016, chap. 8) present an alternative estimator of 𝜇 which uses
the notion of the amplitude of a function in the SRSF space. Given a function 𝑓 ∈ F𝐼
and its associated SRSF representation, 𝑞 in Equation (I.1), the amplitude of 𝑓 in the
SRSF space is defined by the orbit, which is the set of all possible domain transformations
according to the group action

[𝑞] = closure
{
(𝑞, 𝛾) = (𝑞 ◦ 𝛾)

√︁
¤𝛾
�� 𝛾 ∈ Γ𝐼 } .

With the definition of the amplitude, Srivastava and Klassen (2016) show that the Karcher
mean of the set of orbits {[𝑞𝑖]}, as described later in this section, is an estimator of the
orbit [𝜇𝑞] and that a specific element of this orbit can be used as an estimator of 𝜇𝑞 , which
is the SRSF representation of 𝜇. The template-based alignment problem is then reduced
to finding the set {𝛾𝑖} that best aligns the functions {𝑞𝑖} to the template 𝜇𝑞 , which can be
formally written as

𝛾𝑖 = arginf
𝛾∈Γ𝐼

∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥. (I.4)

In order to estimate 𝜇𝑞 , we first have to calculate the Karcher mean of the set of orbits
{[𝑞𝑖]} that is defined as (Srivastava & Klassen, 2016, Definition 8.1., p. 274)

[𝜇𝑞] = arginf [𝑞 ]∈A
𝑛∑︁
𝑖=1

inf
𝛾∈Γ𝐼
(∥𝑞 − (𝑞𝑖 , 𝛾)∥)2,

whereA is a quotient space F𝐼/Γ̃𝐼 and Γ̃𝐼 is a set of boundary preserving weakly increas-
ing absolutely continuous functions 𝛾 : 𝐼 → 𝐼.

The Karcher mean of the amplitudes is again an orbit, and we have to find a particular
element of this orbit, specifically its center with respect to the set {𝑞𝑖} (Srivastava &
Klassen, 2016, Definition 8.2., p. 275). Such an element 𝜇𝑞 satisfies the property that the
Karcher mean of the warping functions {𝛾𝑖}, which are the solutions to Equation (I.4), is
the identity warp, 𝛾id (𝑡) = 𝑡.

The algorithm for finding a center of an orbit with respect to the set {𝑞𝑖} follows Srivas-
tava and Klassen (2016, Algorithm 33., p. 277) with some modifications. In the first step
of the algorithm, we select an element 𝜇̃𝑞 of the orbit [𝜇𝑞], i.e., the cross-sectional mean
of {𝑞𝑖}, and we find {𝛾̃𝑖} by solving 𝛾̃𝑖 = arginf𝛾∈Γ𝐼 (∥ 𝜇̃𝑞 − (𝑞𝑖 , 𝛾)∥). As opposed to using
dynamic programming for this problem as in Srivastava and Klassen (2016), we propose
to use a convolutional neural network. A second step of the algorithm is calculating the
Karcher mean 𝜇𝛾̃ of the phases {𝛾̃𝑖} and finding the center of the orbit [𝜇𝑞] with respect
to the set {𝑞𝑖} by

𝜇𝑞 = ( 𝜇̃𝑞 , 𝜇−1
𝛾̃ ). (I.5)

Srivastava and Klassen (2016) show that for each 𝑞𝑖 ,

𝛾𝑖 = 𝛾̃𝑖 ◦ 𝜇−1
𝛾̃ (I.6)
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minimizes ∥𝜇𝑞 − (𝑞𝑖 , 𝛾)∥, hence these {𝛾𝑖} are a solution to the joint template-based reg-
istration problem represented by Equation (I.4). The center, 𝜇𝑞 , of the orbit is the estimator
of the SRSF of the template function 𝜇.

Karcher mean of warping functions.. To define the Karcher mean of a set of warping
functions 𝛾𝑖 under the Fisher-Rao metric, we will use the differential geometry of Γ𝐼 .
Direct analysis on Γ𝐼 is not straightforward due to it being a non-linear manifold, thus we
will work with the SRSF representation of 𝛾𝑖 . The SRSF representation of any 𝛾 ∈ Γ𝐼

has the form 𝜓 =
√
¤𝛾, which is equivalent to Equation (I.1) because ¤𝛾 > 0 for all domain

values 𝑡 ∈ 𝐼. An advantage of using this representation is that ∥𝜓∥2 =
∫ 1

0 𝜓2 (𝑡) 𝑑𝑡 =∫ 1
0 ¤𝛾(𝑡) 𝑑𝑡 = 𝛾(1) − 𝛾(0) = 1, and thus 𝜓 lies in the positive orthant of the unit Hilbert

sphere, S∞+ =
{
𝜓 ∈ L2

�� ∥𝜓∥ = 1, 𝜓 > 0
}
. On S∞+ , any point 𝜓̃ ∈ S∞+ can be projected to

the tangent space 𝑇𝜓 (S∞+ ) =
{
𝑣 ∈ L2

�� ∫ 1
0 𝜓(𝑡)𝑣(𝑡) 𝑑𝑡 = 0

}
at 𝜓 by the inverse exponential

map (Srivastava & Klassen, 2016, p. 83) by(
exp−1

𝜓 𝜓̃

)
(𝑡) = 𝜃

sin(𝜃)
(
𝜓(𝑡) − 𝜓̃(𝑡) cos(𝜃)

)
, 𝑡 ∈ [0, 1], (I.7)

with 𝜃 = cos−1
(∫ 1

0 𝜓(𝑡)𝜓̃(𝑡) 𝑑𝑡
)
. Similarly, points in the tangent space can be projected

back to the unit sphere S∞+ at the point 𝜓 by the exponential map (Srivastava & Klassen,
2016, p. 83) (

exp𝜓 𝑣
)
(𝑡) = cos (∥𝑣∥) 𝜓(𝑡) + sin (∥𝑣∥) 𝑣(𝑡)∥𝑣∥ , 𝑡 ∈ [0, 1] . (I.8)

The algorithm for finding the Karcher mean of warping functions under the Fisher-Rao
metric follows Srivastava and Klassen (2016, Algorithm 24, p. 238) and is formally de-
scribed in Algorithm I.1, with an initial estimate of the Karcher mean of the warping
functions being the normalized cross-sectional mean of their SRSFs. This procedure is
based on a fixed-point algorithm, see e.g., Bhattacharya and Bhattacharya (2012, chap. 5).

I.2.1. Joint alignment of multivariate quasi-periodic data

In this section, we describe the extension of the joint alignment algorithm to multivariate
quasi-periodic functions. We assume that quasi-periodic functions are generated from a
multiscale warping model as shown in Figure I.2. The terms describing the model are
further defined below in this section.

Let a period be defined on the interval [0, 𝜏] and let the quasi-periodic functional data
have 𝐾 periods. We assume that the length of the period, in this case 𝜏, and the number
of periods, 𝐾 , are known. We define a periodic extension of a function 𝑓 : [0, 𝜏] → R as
ext𝐾L2 𝑓 : [0, 𝐾𝜏] → R, 𝐾 ∈ N with(

ext𝐾L2 𝑓

)
(𝑡 + 𝑘𝜏) := 𝑓 (𝑡) and

(
ext𝐾L2 𝑓

)
(𝐾𝜏) := 𝑓 (𝜏), (I.9)
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Algorithm I.1 Karcher mean of warping functions

Input: Warping functions {𝛾𝑖}𝑛𝑖=1, stopping criterion 𝑐, maximum number of iterations
𝐸 , step size 𝜖

Output: Karcher mean 𝜇𝛾

1: 𝜓𝑖 ← SRSF(𝛾𝑖) ⊲ Calculate SRSF representation of 𝛾𝑖 using (I.1)
2: 𝜇𝜓 ← 1

𝑛

∑𝑛
𝑖=1 𝜓𝑖 ⊲ Initialize mean of SRSFs

3: 𝜇𝜓 ← 𝜇𝜓/∥𝜇𝜓 ∥ ⊲ Normalize the mean of SRSFs
4: 𝜇𝑣 ← 0 ⊲ Initialize mean in the tangent space
5: 𝑒 ← 0 ⊲ Initialize the index of iteration
6: while (∥𝜇𝑣 ∥ ≥ 𝑐 OR 𝑒 = 0) AND 𝑒 < 𝐸 do
7: 𝑒 ← 𝑒 + 1 ⊲ ]Increase the index of iteration
8: 𝜇𝜓 ← exp𝜇𝜓 𝜖 𝜇𝑣 ⊲ Update mean of SRSFs using (I.8)
9: 𝑣𝑖 ← exp−1

𝜇𝜓
𝜓𝑖 ⊲ Project 𝜓𝑖 to tangent space at 𝜇𝜓 using (I.7)

10: 𝜇𝑣 ← 1
𝑛

∑𝑛
𝑖=1 𝑣𝑖 ⊲ Calculate mean of projections {𝑣𝑖}

11: end while
12: 𝜇𝛾 ← ToWarp(𝜇𝜓) ⊲ Calculate mean warping function using (I.2)

0 τ 2τ 3τ 4τ
a) Common template

0 τ 2τ 3τ 4τ
b) Subject−specific template

0 τ 2τ 3τ 4τ
c) Observed function

0 τ 2τ 3τ 4τ

0

τ

2τ

3τ

4τ

d) Local warping
0 τ 2τ 3τ 4τ

0

τ

2τ

3τ

4τ

e) Global warping
0 τ 2τ 3τ 4τ

0

τ

2τ

3τ

4τ

f) Total warping

FIGURE I.2. Multiscale warping model. The common template is represented by the black line on
[0, 𝜏] in Figure a), where the gray line represents the periodic extension of this template on [0, 4𝜏].
The subject-specific template is shown in Figure b), which is a result of warping the common tem-
plate with the subject-specific local warping function, as represented in Figure d). Figure c) shows
the observed function that was obtained from the periodic extension of the subject-specific template
warped with the subject-specific global warping function, as represented in Figure e). Finally, Fig-
ure f) shows the composition of the subject-specific local and the subject-specific global warping
functions.
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for 𝑡 ∈ [0, 𝜏) and 𝑘 = 0, . . . , 𝐾 − 1. We also define a periodic extension of a warping
function 𝛾 : [0, 𝜏] → [0, 𝜏] on [0, 𝐾𝜏] by(

ext𝐾Γ 𝛾
)
(𝑡 + 𝑘𝜏) := 𝛾(𝑡) + 𝑘𝜏 and

(
ext𝐾Γ 𝛾

)
(𝐾𝜏) := 𝐾𝜏, (I.10)

for 𝑡 ∈ [0, 𝜏) and 𝑘 = 0, . . . , 𝐾 − 1. As a dual to the periodic extension, we define a split
of a function 𝑓 : [0, 𝐾𝜏] → R in its domain into 𝐾 functions with 𝑡 ∈ [0, 𝜏] by(

spl𝐾 𝑓

)
(𝑡) = ( 𝑓 (𝑡), . . . , 𝑓 (𝑡 + (𝑘 − 1)𝜏), . . . , 𝑓 (𝑡 + (𝐾 − 1)𝜏))

:= ( 𝑓1 (𝑡), . . . , 𝑓𝑘 (𝑡), . . . , 𝑓𝐾 (𝑡))),
(I.11)

for 𝑘 = 1, . . . , 𝐾 . After performing the extension or the split of a warping function, we
need to linearly transform the image of the resulting warping functions to the same interval
as the domain in order to keep the boundary-preserving property, and furthermore, when-
ever the exponential and inverse exponential maps, Equations (I.8) and (I.7), respectively,
need to be used, the domain and image of the warping functions need to be transformed to
the interval [0, 1].

The observed multivariate quasi-periodic functions 𝑓𝑖 : [0, 𝐾𝜏] → R𝐽 , where
𝑓𝑖 = ( 𝑓𝑖1, . . . , 𝑓𝑖𝐽 ) with their SRSF representations 𝑞𝑖 = (𝑞𝑖1, . . . , 𝑞𝑖𝐽 ), are assumed to
be generated from a multiscale warping model (see Figure I.2) by

𝑓𝑖 𝑗 (𝑡) =
(
ext𝐾L2 𝜇· 𝑗 ◦ ext𝐾Γ 𝛾

𝑙
𝑖 ◦ 𝛾

𝑔

𝑖

)
(𝑡)

=

(
ext𝐾L2 𝜇𝑖 𝑗 ◦ 𝛾𝑔𝑖

)
(𝑡)

=

(
ext𝐾L2 𝜇· 𝑗 ◦ 𝛾𝑡𝑖

)
(𝑡) ,

(I.12)

where 𝛾𝑙
𝑖
: [0, 𝜏] → [0, 𝜏] is the local warping function (Figure I.2d, black) and

ext𝐾
Γ
𝛾𝑙
𝑖
: [0, 𝐾𝜏] → [0, 𝐾𝜏] its periodic extension (Figure I.2d, black and gray),

𝛾
𝑔

𝑖
: [0, 𝐾𝜏] → [0, 𝐾𝜏] is the global warping function (FigureI.2e), and 𝛾𝑡

𝑖
: [0, 𝐾𝜏] →

[0, 𝐾𝜏] is the total warping function defined as the composition ext𝐾
Γ
𝛾𝑙
𝑖
◦ 𝛾𝑔

𝑖
(Figure I.2f).

Note that the local warping function is defined on another domain than the global and total
warping. In the rest of Section I.2.1, we use two subscripts for 𝜇 for clarity. The first
subscript denotes individuals, and the second subscript denotes the elements of the multi-
variate functions. We think of 𝜇· · = (𝜇·1, . . . , 𝜇·𝐽 ) as the common template (Figure I.2a,
black) and 𝜇𝑖 · = 𝜇· · ◦ 𝛾𝑙𝑖 =

(
𝜇·1 ◦ 𝛾𝑙𝑖 , . . . , 𝜇·𝐽 ◦ 𝛾𝑙𝑖

)
= (𝜇𝑖1, . . . , 𝜇𝑖𝐽 ) as the subject-specific

template (Figure I.2b, black) on [0, 𝜏].
On the other hand, given functions 𝛾𝑙

𝑖
and 𝛾𝑔

𝑖
, or 𝛾𝑡

𝑖
, we can extract the periodic ex-

tension ext𝐾L2 𝜇· 𝑗 (Figure I.2a, black and gray) of the common template function 𝜇· 𝑗 (Fig-
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ure I.2c, black) from an observed function 𝑓𝑖 𝑗 (Figure I.2c) by(
ext𝐾L2 𝜇· 𝑗

)
(𝑡) =

(
𝑓𝑖 𝑗 ◦

(
𝛾𝑡𝑖

)−1
)
(𝑡)

=

(
𝑓𝑖 𝑗 ◦

(
𝛾
𝑔

𝑖

)−1 ◦
(
ext𝐾Γ 𝛾

𝑙
𝑖

)−1
)
(𝑡)

=

(
ext𝐾L2 𝜇𝑖 𝑗 ◦

(
ext𝐾Γ 𝛾

𝑙
𝑖

)−1
)
(𝑡).

(I.13)

Subject-specific template.. The warping functions {𝛾𝑖} obtained by Algorithm I.2 cor-
respond to the inverse of the total warping functions as described in Equations (I.12) and
(I.13). In order to obtain subject-specific templates, we need to decompose this total warp-
ing function into the global and local warping functions, and we propose that this can be
done in the following way. Consider the subject 𝑖 and the corresponding warping function
𝛾𝑖 that aligns the observed function 𝑓𝑖 to the periodic extension of the common template,
ext𝐾L2 𝜇· · (see Figure I.2a). We split the domain of the warping function 𝛾𝑖 into 𝐾 functions
using Equation (I.11). We define the SRSF of the subject-specific template as the center
of the orbit [𝜇𝑞𝑖 ] with respect to the set {(𝑞𝑖 , 𝛾𝑖)𝑘}𝐾𝑘=1, the split of (𝑞𝑖 , 𝛾𝑖). We find this
by calculating the Karcher mean 𝜇𝛾𝑖 of {𝛾𝑖𝑘}𝐾𝑘=1 by first scaling their domain and image
to the interval [0, 1], and then performing Algorithm I.1. We can represent the warping
function 𝛾𝑖 as

𝛾𝑖 = 𝛾𝑖 ◦ 𝛾id = 𝛾𝑖 ◦
(
ext𝐾Γ 𝜇𝛾𝑖

)−1
◦ ext𝐾Γ 𝜇𝛾𝑖 , (I.14)

where ext𝐾
Γ
𝜇𝛾𝑖 is a periodic extension of 𝜇𝛾𝑖 , with the domain and image scaled to the

interval [0, 1]. Furthermore, we have the following identities

𝛾𝑖 =
(
𝛾𝑡𝑖

)−1
, 𝛾𝑖 ◦

(
ext𝐾Γ 𝜇𝛾𝑖

)−1
=

(
𝛾
𝑔

𝑖

)−1
, 𝜇𝛾𝑖 =

(
𝛾𝑙𝑖

)−1
, (I.15)

where 𝛾𝑡
𝑖
, 𝛾𝑔

𝑖
and 𝛾𝑙

𝑖
are the total, global and local warping functions, respectively, as

described in Equation (I.12).
The SRSF of the common template, 𝜇𝑞 , can be obtained from Algorithm I.2, and the

common template 𝜇· · can be obtained from its SRSF using Equation (I.2) up to a constant
𝑐 ∈ R, 𝜇· · (𝑡) = 𝑐 +

∫ 𝑡
0 𝜇𝑞 (𝑠) |𝜇𝑞 (𝑠) | 𝑑𝑠. The subject-specific template can be extracted

using identities in Equations (I.12) and (I.15) by

𝜇𝑖 = 𝜇 ◦ 𝜇𝑙𝛾𝑖 = 𝜇 ◦ 𝜇
−1
𝛾𝑖
. (I.16)

Quasi-periodic functions with amplitude variability.. In addition to the multiscale time
warping model, the amplitude of the subject-specific template can be further susceptible to
amplitude variability, which means that the amplitudes in the different periods might not
be the same. Furthermore, amplitudes measured on different subjects do not have to be the
same either, thus there is no longer the same relationship between 𝜇· 𝑗 and 𝜇𝑖 𝑗 as described
in Equation (I.13), and the subject-specific template cannot be obtained by Equation (I.16).

To obtain the SRSF of the subject-specific template in the presence of amplitude vari-
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FIGURE I.3. Diagram of the algorithm for joint alignment of multivariate quasi-periodic functions.
Note that both the cross-sectional and Karcher mean are taken over the whole sample. Furthermore,
the domain and image of the warping functions that are involved in the Karcher mean are first scaled
to the interval [0, 1].

ability, we propose calculating the cross-sectional mean of the aligned functional data

𝜇𝑞𝑖 (𝑡) =
1
𝐾

𝐾∑︁
𝑘=1

(
𝑞𝑖 , 𝛾

′
𝑖

)
𝑘
(𝑡),

where 𝑡 ∈ [0, 1],
{(
𝑞𝑖 , 𝛾

′
𝑖

)
𝑘

}
is the split of

(
𝑞𝑖 , 𝛾

′
𝑖

)
using Equation (I.11). Finally, the

subject-specific template can be obtained up to a constant from 𝜇𝑞𝑖 using Equation (I.2).

I.2.2. Algorithm for joint alignment of multivariate quasi-periodic data using deep
learning

The algorithm for adaptive template-based groupwise registration follows Srivastava and
Klassen (2016, Algorithm 33., p. 277) with some modifications, and is represented in
Algorithm I.2, as well as in Figure I.3. The most important modifications are replacing
dynamic programming (Srivastava & Klassen, 2016, Algorithm 58., p. 437) with a convo-
lutional neural network, and extending the algorithm to handle quasi-periodic multivariate
functions.
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Algorithm I.2 Joint alignment of multivariate quasi-periodic functional data using deep
learning: DeepJAM

Output: Observed functions { 𝑓𝑖}𝑛𝑖=1 on the interval 𝐼 = [0, 1], number of periods 𝐾 ,
number of iterations 𝐸 , initialized neural network NN

Input: Warping functions {𝛾𝑖}𝑛𝑖=1, SRSF 𝜇𝑞 of the common template

1: 𝛾𝑖 ← 𝛾id ⊲ Initialize 𝛾𝑖 to identity warp
2: 𝑞𝑖 ← SRSF( 𝑓𝑖) ⊲ Calculate SRSF representation of 𝑓𝑖 using (I.1)
3: for 𝑒 from 1 to 𝐸 do
4: 𝑞𝑖 ← (𝑞𝑖 , 𝛾𝑖) ⊲ Warp in the SRSF space using (I.3)
5: (𝑞𝑖1, . . . , 𝑞𝑖𝐾 ) ← spl𝐾 𝑞𝑖 ⊲ Split the SRSFs using (I.11)
6: 𝜇𝑞̃ ← 1

𝑛𝐾

∑𝑛
𝑖=1

∑𝐾
𝑘=1 𝑞𝑖𝑘 ⊲ Calculate mean of {𝑞𝑖𝑘}

7: 𝜇𝐾
𝑞̃
← ext𝐾L2 𝜇𝑞̃ ⊲ Calculate extension of 𝜇𝑞̃ using (I.9)

8: train NN(𝑥 = {𝑞𝑖}, 𝑦 = 𝜇𝐾𝑞̃ ) for one epoch
9: 𝛾̃𝑖 ← NN(𝑥 = 𝑞𝑖) ⊲ Calculate neural network prediction

10: (𝛾̃𝑖1, . . . , 𝛾̃𝑖𝐾 ) ← spl𝐾 𝛾̃𝑖 ⊲ Split warping functions using (I.11)
11: 𝛾̃′

𝑖𝑘
← Scale(𝛾̃𝑖𝑘) ⊲ Scale domain and image of 𝛾̃𝑖𝑘 to [0, 1]

12: 𝜇𝛾̃ ← KarcherMean({𝛾̃′
𝑖𝑘
}) ⊲ Find the Karcher mean of {𝛾̃′

𝑖𝑘
} as in Algorithm I.1

13: 𝛾∗ ← ext𝐾
Γ
𝜇−1
𝛾̃

⊲ Calculate extension of 𝜇−1
𝛾̃

using (I.10)
14: 𝛾′ ← Scale (𝛾∗) ⊲ Scale domain and image of 𝛾∗ to [0, 1]
15: 𝛾𝑖 ← 𝛾̃𝑖 ◦ 𝛾′ ⊲ Calculate warping functions using (I.6)
16: end for
17: 𝛾′ ← Scale

(
𝜇−1
𝛾̃

)
⊲ Scale domain and image of 𝜇−1

𝛾̃
to [0,1/K]

18: 𝜇𝑞 ← (𝜇𝑞̃ , 𝛾′) ⊲ Calculate SRSF of common template using (I.5)
*NN(𝑥 = {𝑞𝑖 }, 𝑦 = 𝜇𝐾

𝑞̃
) and NN(𝑥 = 𝑞𝑖 ) represent a neural network with input {𝑞𝑖 } and 𝑞𝑖 , respectively, and

outcome 𝜇𝐾
𝑞̃

.
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I.2.3. Deep learning architecture

The general architecture of a warping neural network can be quite flexible. The most im-
portant part is that it produces an output that has similar dimension of the discretized input
functions and can be transformed into a warping function. In our case, this is achieved by
using convolutional layers with a padding such that the layer output has the same length
as the layer input. The outputs of the neural network are the warping functions, which
do not need to have exactly the same dimension as the input layer. In this case, we can
use interpolation to scale the output up or down. Furthermore, to save computation time
and because of the specific loss function described below, instead of inputting the original
functions, we use their SRSF representation as inputs directly. We implemented the neural
network using Keras (Chollet et al., 2015) and TensorFlow (Abadi et al., 2015) in the R
packages keras (Allaire & Chollet, 2022) and tensorflow (Allaire & Tang, 2022).

The output of the neural network uses a special activation function based on the unit
simplex transformation, so that the resulting warping functions are boundary-preserving
increasing functions on the interval [0, 1]. For a given neural network output 𝑦 ∈ R𝑃

before any activation is applied, we calculate new coordinates 𝑧 ∈ R𝑃 by

𝑧𝑝 = expit
(
𝑦𝑝 − log(𝑃 − 𝑝 + 1)

)
, for 1 ≤ 𝑝 ≤ 𝑃, (I.17)

where expit(𝑥) = 1/(1+exp(−𝑥)), ensuring that the new coordinates are all between 0 and
1. The vector 𝑧 is then used to determine a vector 𝑥 ∈ R𝑃+1 by

𝑥𝑝 =


𝑧𝑝 , 𝑝 = 1,(
1 −∑𝑝−1

𝑝′=1 𝑥𝑝′
)
𝑧𝑝 , 1 < 𝑝 ≤ 𝑃,

1 −∑𝑃
𝑝′=1 𝑥𝑝′ , 𝑝 = 𝑃 + 1,

with the property that all the coordinates of 𝑥 are greater than 0, and that
∑𝑃+1
𝑝=1 𝑥𝑝 = 1.

Looking back at Equation (I.17), the offset − log(𝑃− 𝑝+1) is added so that the zero vector
𝑦 is mapped to the simplex 𝑥 = (1/(𝑃 + 1), . . . , 1/(𝑃 + 1)). Finally, we transform this
vector 𝑥 to a discretized warping function 𝛾 ∈ R𝑃+2 by

𝛾𝑝 =

{
0, 𝑝 = 1,∑𝑝−1
𝑝′=1 𝑥𝑝′ 1 < 𝑝 ≤ 𝑃 + 2.

In order to obtain a vector in R𝑃 , we propose linearly interpolating the values of 𝛾, so that
𝛾 ∈ R𝑃 .

The loss function of our warping neural network is defined as follows. Let 𝑓𝑖 , where
𝑓𝑖 (𝑡) = ( 𝑓𝑖1 (𝑡), . . . , 𝑓𝑖𝐽 (𝑡)) ∈ R𝐽 , be the observed multivariate functions and 𝑞𝑖 𝑗 the SRSF
representations of 𝑓𝑖 𝑗 . Let 𝜇𝑞 𝑗 be the SRSF representation of the template 𝜇 𝑗 , 𝑗 = 1, . . . , 𝐽,
and let 𝛾𝑖 be the outputs of the neural network. The Fisher-Rao loss function is then defined
as

L =
1
𝑛

𝑛∑︁
𝑖=1

1
𝐽

𝐽∑︁
𝑗=1
∥𝜇𝑞 𝑗 − (𝑞𝑖 𝑗 , 𝛾𝑖)∥2.

The univariate function case is easily obtainable by setting 𝐽 = 1.
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We used the Adam optimizer (Kingma & Ba, 2015). The architectural hyperparame-
ters such as the number of layers, number of filters, kernel size, and learning rate were
chosen with the Bayesian optimization algorithm (Snoek et al., 2012) using the expected
improvement acquisition function. Finally, the hyperbolic tangent was used as an activa-
tion function of the hidden layers.

I.3. SIMULATION STUDY

As a proof-of-concept of our neural network approach, we deploy two simulation stud-
ies: one for univariate quasi-periodic functions and one for multivariate quasi-periodic
functions. In the case of univariate functions, we did not vary the amplitudes, hence the
functions can be perfectly aligned, i.e., the distance between the true template and the
aligned functions converges to zero with increasing sample size and complexity of the
neural network. In the case of multivariate functions we varied both the inter-subject and
intra-subject amplitudes, thus the peaks and valleys of the functions can be temporally
aligned to the common template, but the vertical distance between them does not converge
to zero.

In both cases, we generated 𝑁 = 14, 000 functions and used 8,000 of them as the
training data, 2, 000 for hyperparameter tuning, 2, 000 as the validation data, and 2, 000 as
the test data.

To evaluate the performance of our method, we use the decrease in the cumulative
cross-sectional variance of the observed and aligned data. The cumulative cross-sectional
variance is a measure of the average distance of the functions from the mean, defined
as follows. Let { 𝑓𝑖 (𝑡), 𝑡 ∈ [0, 1]}𝑛𝑖=1 be a functional dataset, then the cumulative cross-
sectional variance is

V̂ar ({ 𝑓𝑖}) =
1

𝑛 − 1

∫ 1

0

𝑛∑︁
𝑖=1
( 𝑓𝑖 (𝑡) − 𝜇(𝑡))2 𝑑𝑡.

However, since we do not know the true common template 𝜇 for the real application data,
we will use the cross-sectional mean in the calculation instead

Var ({ 𝑓𝑖}) =
1

𝑛 − 1

∫ 1

0

𝑛∑︁
𝑖=1

(
𝑓𝑖 (𝑡) −

1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡)
)2

𝑑𝑡.

A decrease in the cumulative cross-sectional variance is desirable, because the cumulative
cross-sectional variance of the observed data contains both the amplitude and phase vari-
ability, whereas the cumulative cross-sectional variance of the aligned data represents only
the variability of the amplitude. Furthermore, we calculate the square of the L2 norm of
the distance between the cross-sectional mean and the true common template by




1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 − 𝜇





2

=

∫ 1

0

(
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑡) − 𝜇(𝑡)
)2

𝑑𝑡.
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FIGURE I.4. Result of the DeepJAM algorithm. The first row represents the training data and
the second row represents the test data. Figures a) and e) show random 25 observed functions
from the training and test data, respectively, while Figures b) and f) show the same functions, but
aligned using the DeepJAM neural network, respectively for the training and test data. The thick red
lines are the true common template extended to three periods, and the thick black full/dashed lines
represent the cross-sectional mean of the full observed/aligned training and test data, separately.
Figures c), d, g) and f) show the estimated local and global warping of these random 25 functions
from the training and test data, where the thick black lines are the identity lines.

I.3.1. Scenario 1, univariate functions

In the first study, we simulated the common template to be the sine wave on the interval
[0, 2𝜋], 𝜇 𝑓 = sin(𝑡), 𝑡 ∈ [0, 2𝜋], sampled at 65 equidistant points on each of the 𝐾 =

3 periods, adding up to 𝑃 = 193 equidistant points. Using the described notation, the
periodic extension of the template is a sine wave on the interval [0, 6𝜋], ext𝐾L2 𝜇 = sin(𝑡),
𝑡 ∈ [0, 6𝜋]. The domain of the functions were then scaled to the interval [0, 1]. We
simulated 𝑁 = 14, 000 global and 𝑁 = 14, 000 local warping functions denoted 𝛾𝑔

𝑖
and 𝛾𝑙

𝑖

using the fdasrvf package (Tucker, 2022), respectively. The warping functions using
this package are generated in a way, so that their Karcher mean is the identity function.
However, to ensure the identifiability of the subject-specific template, we need to transform
the generated warping functions using Equation (I.14) and the identities in Equation (I.15).
The observed functions are then generated as 𝑓𝑖 (𝑡) =

(
ext𝐾L2 𝜇 ◦ (𝛾𝑙𝑖 )𝐾 ◦ 𝛾

𝑔

𝑖

)
(𝑡).

The optimized architecture consists of an input layer with 193 nodes and one channel,
followed by 17 convolutional layers with a kernel of size 64. The hidden layers have
25 filters, while the output layer has only one filter. The learning rate was chosen to be
3.66 · 10−7.

Figure I.4 shows the observed and aligned functions, as well as the corresponding es-
timated local and global warping functions. We can see that we achieved almost perfect
alignment of both the training and test data. Furthermore, we can see that the cross-
sectional mean of the observed data still preserves the modality in the data, but the size
of the amplitudes is distorted. The cumulative cross-sectional variance of the simulated
multivariate data can be found in Table I.1.
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Functions Mean
Observed Aligned % ↓ Observed Aligned % ↓

0.475 0.001 99.81 0.148 1.89 · 10−5 99.99

TABLE I.1. Cumulative cross-sectional variance of the observed and aligned simulated univariate
data, where the columns “% ↓” show the reduction of the cumulative cross-sectional variance in
%. In addition, we calculate the square of the L2 distance between the cross-sectional mean and the
true template.

I.3.2. Scenario 2, multivariate functions

In this example, the functions to be aligned are 𝑓𝑖 where the image of the functions at
each 𝑡 is R3. We write 𝑓𝑖 (𝑡) = ( 𝑓𝑖1 (𝑡), 𝑓𝑖2 (𝑡), 𝑓𝑖3 (𝑡)), and we think of each function 𝑓𝑖 𝑗 ,
as a univariate function that is the observed version of 𝑦𝑖 𝑗 generated as follows. Let 𝑧𝑖 𝑝 ∼
N(1, 0.252), 𝑝 = 1, . . . , 18. The functions 𝑦𝑖1 : [0, 6𝜋] → R were generated as

𝑦𝑖1 (𝑡) =

𝑧𝑖1 sin(𝑡) 𝑡 ∈ [0, 2𝜋),
𝑧𝑖2 sin(𝑡) 𝑡 ∈ [2𝜋, 4𝜋),
𝑧𝑖3 sin(𝑡) 𝑡 ∈ [4𝜋, 6𝜋] .

The common template is then 𝜇1 (𝑡) = sin(𝑡), 𝑡 ∈ [0, 2𝜋]. The functions 𝑦𝑖2 were generated
as

𝑦𝑖2 (𝑡) =



𝑧𝑖4 (𝑐1 (𝑥) − 𝑐3 (𝑥)) + 𝑐3 (𝑥) + 𝑧𝑖5 (𝑐2 (𝑥) − 𝑐4 (𝑥)) + 𝑐4 (𝑥),
𝑡 ∈ [0, 6), 𝑥 = 𝑡 − 3,

𝑧𝑖6 (𝑐1 (𝑥) − 𝑐3 (𝑥)) + 𝑐3 (𝑥) + 𝑧𝑖7 (𝑐2 (𝑥) − 𝑐4 (𝑥)) + 𝑐4 (𝑥),
𝑡 ∈ [6, 12), 𝑥 = 𝑡 − 9,

𝑧𝑖8 (𝑐1 (𝑥) − 𝑐3 (𝑥)) + 𝑐3 (𝑥) + 𝑧𝑖9 (𝑐2 (𝑥) − 𝑐4 (𝑥)) + 𝑐4 (𝑥),
𝑡 ∈ [12, 18], 𝑥 = 𝑡 − 15,

where

𝑐1 (𝑥) = 𝑒−(𝑥−4.5)2/2, 𝑐2 (𝑥) = 𝑒−(𝑥−1.5)2/2,

𝑐3 (𝑥) =
𝑒−

4.52
2 − 𝑒− 1.52

2

6
𝑥 + 𝑒

− 4.52
2 + 𝑒− 1.52

2

2
, 𝑐4 (𝑥) =

𝑒−
1.52

2 − 𝑒− 4.52
2

6
𝑥 + 𝑒

− 4.52
2 + 𝑒− 1.52

2

2
.

This transformation is applied to ensure that 𝑦𝑖2 (0) = 𝑦𝑖2 (6) = 𝑦𝑖2 (12) = 𝑦𝑖2 (18), al-
lowing continuity at the limits of the periods. The common template is therefore 𝜇2 (𝑡) =
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Functions Observed Aligned % ↓ Mean Observed Aligned % ↓
1 0.506 0.038 92.54 1 0.148 0.001 99.03
2 0.571 0.144 74.76 2 0.194 0.003 98.23
3 0.420 0.033 92.06 3 0.126 0.002 98.75

TABLE I.2. Cumulative cross-sectional variance of the observed and aligned simulated multivariate
data, where columns “% ↓” show the reduction of the cumulative cross-sectional variance in %. In
addition, we calculate the square of the L2 distance between the cross-sectional means and the true
templates.

𝑒−(𝑡−4.5)2/2 + 𝑒−(𝑡−1.5)2/2, 𝑡 ∈ [−3, 3]. Finally, functions 𝑦𝑖3 were generated as

𝑦𝑖3 (𝑡) =



𝑧𝑖10𝑝2 (𝑥) − 𝑧𝑖11 (𝑝1 (𝑥) − 𝑝1 (0)), 𝑡 ∈ [0, 0.5), 𝑥 = 𝑡
𝑧𝑖10𝑝2 (𝑥) + 𝑧𝑖12 (𝑝3 (𝑥) − 𝑝3 (0)), 𝑡 ∈ [0.5, 1), 𝑥 = 𝑡
𝑧𝑖13𝑝2 (𝑥) − 𝑧𝑖14 (𝑝1 (𝑥) − 𝑝1 (0)), 𝑡 ∈ [1, 1.5), 𝑥 = 𝑡 − 1
𝑧𝑖13𝑝2 (𝑥) + 𝑧𝑖15 (𝑝3 (𝑥) − 𝑝3 (0)), 𝑡 ∈ [1.5, 2), 𝑥 = 𝑡 − 1
𝑧𝑖16𝑝2 (𝑥) − 𝑧𝑖17 (𝑝1 (𝑥) − 𝑝1 (0)), 𝑡 ∈ [2, 2.5), 𝑥 = 𝑡 − 2
𝑧𝑖16𝑝2 (𝑥) + 𝑧𝑖18 (𝑝3 (𝑥) − 𝑝3 (0)), 𝑡 ∈ [2.5, 3), 𝑥 = 𝑡 − 2,

where 𝑝1 is the probability density function ofN(0.25, 0.12), 𝑝2 is the probability density
function ofN(0.5, 0.152) and 𝑝3 is the probability density function ofN(0.75, 0.12). The
template function is then

𝜇3 (𝑡) =
{
𝑝2 (𝑡) − (𝑝1 (𝑡) − 𝑝1 (0)), 𝑡 ∈ [0, 0.5],
𝑝2 (𝑡) + (𝑝3 (𝑡) − 𝑝3 (0)), 𝑡 ∈ [0.5, 1],

In addition, functions 𝑦𝑖2 and 𝑦𝑖3 were further transformed with an affine transformation
so that the image of the template functions 𝜇2 and 𝜇3 is in the interval [−1, 1]. Finally, the
domains of all functions 𝑦𝑖 𝑗 , as well as the extensions of the template functions, ext𝐾L2 𝜇 𝑗 ,
were scaled to the interval [0, 1], and sampled at 𝑃 = 193 equidistant points. The functions
were then warped as 𝑓𝑖 𝑗 (𝑡) =

(
𝑦𝑖 𝑗 ◦ ext𝐾

Γ
𝛾𝑙
𝑖
◦ 𝛾𝑔

𝑖

)
(𝑡).

The optimized architecture consists of an input layer with 193 nodes and three channels,
followed by 14 convolutional layers with a kernel of size 60. The hidden layers have 56
filters, while the output layer has only one filter. The learning rate was chosen to be
9.35 · 10−6.

Figure I.5 shows the observed and aligned test functions. We can see that we achieved
nearly perfect phase alignment. The functions were simulated with amplitude variability,
which is retained in the aligned data. Notice how the cross-sectional means of the observed
data misrepresent the intrinsic shape of the underlying data generating model. Further-
more, the periodicity is also lost, especially for the cross-sectional mean of the functions
{ 𝑓𝑖2}. The cumulative cross-sectional variance of the simulated multivariate data can be
found in Table I.2.
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FIGURE I.5. Result of the DeepJAM algorithm. Figures a), b) and c) show random 25 observed
functions from the test data. The observed functions are the functions 𝑓𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, 2, 3, as
described in Section I.3.2. Figures d), e) and f) show the same functions, but aligned using the Deep-
JAM neural network. The thick red lines are the true common templates extended to three periods,
and the thick black full/dashed lines represent the cross-sectional means of the full observed/aligned
test data.

I.4. APPLICATION

For the application, we chose 12-lead 10s ECG recordings. The ECG study population
consisted of participants in the Copenhagen General Population Study randomly sampled
from the general population in Copenhagen, Denmark (Fuchs et al., 2023; Kühl et al.,
2019). All ECGs were recorded with the study participant at rest and in supine position
prior to a cardiac computed tomography scan. Written informed consent was obtained
from all participants, and the study was approved by the local ethics committee (H-KF-01-
144/01). The ECGs were preprocessed using the neurokit2 python module (Makowski
et al., 2021). First, the ECGs were filtered to remove noise and to improve the detection
of peaks using the function ecg clean with default settings for the method. Afterward,
the function ecg peaks was used to detect the location of R-peaks, and for the purpose
of this application, we only selected a subset of the ECGs between the second and fifth
R-peak, giving rise to a three-period time series, with each period between two subsequent
R-peaks. The ECGs were then resampled to 𝑃 = 301 equidistant points. Furthermore, be-
cause of the position of the electrodes, four leads can be derived from other leads (Horáček,
2010), thus we will only consider eight leads: I, II, V1–V6. We also only study a subset
of the ECGs, resulting in 9,645 ECG recordings. From these, we used 5, 511 for training,
1, 378 for hyperparameter tuning, 1, 378 as the validation data and 1, 378 as the test data.

The optimized architecture consists of an input layer with 301 nodes and eight channels,
followed by 17 convolutional layers with a kernel of size 101. The hidden layers have 30
filters, while the output layer has only one filter. The learning rate was chosen to be
2.84 · 10−5.

Figure I.6 shows the observed and aligned ECG recordings, as well as the correspond-
ing estimated local and global warping functions. In addition, we present a comparison
of the cross-sectional means of the observed and aligned data. Table I.3 shows the cu-
mulative cross-sectional variance of the observed and aligned data per lead. We can see
that alignment using the DeepJAM neural network reduced the cumulative cross-sectional
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FIGURE I.6. Result of the DeepJAM algorithm. Figures a) and b) show the observed and aligned
lead V3, respectively, of random 25 test ECGs, where the thick black lines represent the cross-
sectional means of the full observed and aligned data, respectively. Figure c) shows again the
cross-sectional means of the full observed data (black) and the full aligned data (red), where we
only present one period. Figures d), e) and f) show the local, global, and total warping of the 25
random test ECGs, with the thick black lines representing the identity line.

Lead Observed Aligned % ↓
I 0.005 0.003 32.87
II 0.017 0.010 41.08
V1 0.010 0.007 27.46
V2 0.024 0.017 29.50
V3 0.029 0.020 30.68
V4 0.026 0.015 41.23
V5 0.020 0.011 45.57
V6 0.014 0.007 46.32

TABLE I.3. Cumulative cross-sectional variance of the observed and aligned ECG data, where
column “% ↓” shows the reduction of the cumulative cross-sectional variance in %.

variance by 27.46%–46.32%.

I.5. CONCLUSION

In this paper, we have presented a novel method for joint alignment of multivariate quasi-
periodic functional data, addressing the phase variability in the data that is often over-
looked by traditional approaches. We applied a convolutional neural network with a
unique activation function based on the unit simplex transformation to achieve effective
phase-amplitude separation. To extend our approach to multivariate functions, we incor-
porated a convolutional layer with multiple channels in the input layer. The output layer,
on the other hand, provides a single warping function per subject, which simultaneously
aligns all dimensions of the observed function. We also incorporated the multiscale warp-
ing model to accommodate quasi-periodic functions. To train our model, we used a loss
function based on the Fisher-Rao distance between the square-root slope representations
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of functions. Notably, our approach is unsupervised and capable of generating common
and subject-specific template functions.

We conducted experiments on two simulated datasets as well as a real dataset of 12-
lead 10 second electrocardiogram recordings and demonstrated that our method could ac-
curately separate the phase variability from the amplitude variability with nearly perfect
phase alignment in the simulated data and a substantial reduction in cumulative cross-
sectional variance in the real dataset. We only used very simple convolutional neural net-
works as a proof of concept. The best models selected using Bayesian optimization were
of varying complexity but yielded similar performances. The optimal model architecture
depends very much on the data.

Future work could focus on exploring potential enhancements to the neural network
architecture, such as including dropout layers, batch normalization layers, skip layers, as
well as different optimizers, and activation functions of the hidden layers. In addition,
architectures handling input of various length could be relevant for future work.

We have shown that using DeepJAM for aligning multivariate quasi-periodic functional
data decrease the cumulative cross-sectional variance and yields a better representation
of the salient features present in multivariate functional data. The implication of this on
the analysis of ECG data in more complicated regression or prediction settings is beyond
the scope of this paper. Nevertheless, the results show that DeepJAM retains the peaks
and valleys of the ECG, and we thus conjecture, that incorporating our method in a larger
statistical model could enhance accurate identification of particular ECG characteristics,
such as the PR interval or the QRS complex. The argument behind this conjecture is that
the conditional mean in any prediction model, e.g., E(𝑌𝑖 | 𝑓𝑖) = 𝑃 𝑓𝑖 for some prediction
functional 𝑃 will be first-order biased when 𝑓𝑖 is not properly aligned. This can be seen
from a Taylor expansion around the identity warp, 𝛾id (𝑡) = 𝑡, as in E(𝑌𝑖 | 𝑓𝑖 ◦ 𝛾𝑖) ≈
𝑃 𝑓𝑖 + 𝑃[ ¤𝑓𝑖 (𝛾𝑖 − 𝛾id)]. This bias is subject-specific and can be severe depending on the
magnitude of the predictor velocities.

The contribution of our research extends beyond the specific dataset analyzed in this
paper. The joint alignment of multivariate functional data with quasi-periodic characteris-
tics has extensive applications in various fields such as signal processing, computer vision,
and medical applications such as neuroscience and data from wearable devices.
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A.1. OBSERVED AND ALIGNED ECG TEST DATA

Refer to Figure A.1 to see the performance of the DeepJAM algorithm on 8 leads of the
ECGs.

Lead I Lead I

Lead II Lead II

Lead III Lead III

Lead V1 Lead V1

Lead V2 Lead V2

Lead V3 Lead V3

Lead V4 Lead V4

Lead V5 Lead V5

Lead I

Lead II

Lead III

Lead V1

Lead V2

Lead V3

Lead V4

Lead V5

FIGURE A.1. Result of the DeepJAM algorithm. The first column shows individual leads of random
25 ECG measurements, while the second column shows the same ECGs, but aligned. Finally, the
third column shows the cross-sectional means of the full observed dataset (black) and the full aligned
dataset (red), where we only show one period.
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ABSTRACT

Functional data analysis is a powerful framework for interpreting data characterized by
smooth, continuous processes. Recent advancements in deep learning have enhanced the
ability to identify intricate patterns within complex datasets. This paper explores the use
of functional neural networks for analyzing multivariate quasi-periodic functional data,
with a focus on 12-lead electrocardiogram (ECG) recordings. We propose an adaptive
basis model that extends the capabilities of existing neural networks to handle multivari-
ate functional data and additional scalar variables. Our approach integrates a functional
alignment module, enhancing the accuracy of subsequent analyses by reducing variabil-
ity caused by misalignment. We demonstrate the effectiveness of our method on ECG
data from the Copenhagen General Population Study and the results indicate that our
model outperforms traditional convolutional neural networks. Additionally, we introduce
the instantaneous contribution to the total probability for improved interpretability of the
model’s predictions.

Keywords: Deep Learning; Multivariate Functional Data; Time warping; Quasi-Periodic
Functions.
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II.1. INTRODUCTION

Functional data analysis (FDA, Ramsay & Silverman, 2005) is a powerful framework
for understanding and interpreting data characterized by underlying smooth, continuous
processes. From analyzing growth curves to deciphering brain imaging data, the applica-
tions of FDA span diverse scientific domains. Recent advancements in deep learning have
transformed data analysis methodologies, demonstrating the capability to identify intricate
patterns within complex datasets (Anbarasi et al., 2024; Archana & Jeevaraj, 2024; Li et
al., 2023).

Functional data traditionally consists of samples at discrete time points of underlying
random functions, typically one or more curves per individual subject in the dataset, mea-
sured on an interval. Multivariate functional data arises when multiple functions are mea-
sured simultaneously on each individual. Examples of such functions are 12-lead elec-
trocardiogram (ECG) recordings (Gregg et al., 2008) that are typically sampled with a
frequency of of 500 samples per second. ECGs are diagnostic tests that record the elec-
trical activity of the heart over a period of time. This process usually involves attaching
electrodes to the skin to monitor electrical changes that occur due to the heart muscle’s
depolarization pattern during each heartbeat. ECGs provide valuable information about
the heart’s rate and rhythm, as well as various cardiac abnormalities such as arrhythmias,
ischemia, and myocardial infarction (heart attacks). It is a non-invasive and essential tool
used by healthcare professionals in diagnosing and monitoring heart conditions.

In this article, we explore the possibility of using ECGs as a screening method for heart
calcification using functional neural networks together with joint alignment of multivariate
quasi-periodic functional data (Pham et al., 2023), and in addition, we provide a method
for interpretability and explainability of the results.

Aligning functional data before analysis is important for several reasons. Measurements
over time can be affected by temporal shifts or misalignment. Aligning the data ensures
that similar events or features are compared at the same time point, which is essential for
accurate analysis or prediction. Misaligned data can lead to incorrect conclusions because
the same features may appear at different time points in different datasets, and even within
the same dataset. Aligning functional data can enhance the statistical power of subsequent
analyses by reducing variability caused by misalignment, leading to more accurate and re-
liable results. In functional data, specific features (e.g. peaks in an ECG) may correspond
to salient events or patterns. Proper alignment ensures that these features are correctly
matched, facilitating meaningful comparisons and interpretations. Misaligned data can in-
troduce artifacts or distortions that compromise the integrity of the analysis. Aligning data
also allows for a clearer and more intuitive interpretation of patterns and trends, ensur-
ing that any observed differences or similarities are due to actual phenomena rather than
misalignment artifacts.

While our application primarily targets ECG analysis, our method holds promise for
broader applications in other domains involving time series, including data from health
apps and wearable sensors, data from weather stations and environmental sensors, or utili-
ties and energy grid data. Many of these domains contain quasi-periodic data, see (Pham et
al., 2023). Quasi-periodic data arise from inherently periodic processes affected by noise,
both in the temporal domain and in the amplitude.

In this paper, we use neural networks (NN) for the alignment of the data, as well as for
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subsequent prediction. Neural networks excel at handling high-dimensional data, which
is particularly useful for functional data. The ability to manage complexity allows NNs to
model intricate, non-linear relationships effectively. Moreover, they have the flexibility to
adapt to a wide range of data patterns and structures, providing robust modeling capabil-
ities across diverse functional data scenarios. A significant strength of neural networks is
their capacity for automatic feature extraction (Archana & Jeevaraj, 2024).

II.1.1. Related work

The use of deep neural networks for analyzing functional data and time series has grown,
particularly with the introduction of convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) as highlighted by LeCun et al. (2015). These and many other
methods use discretized functions as input.

ECGs have been analyzed using deep learning in numerous studies. Sannino and De
Pietro (2018) proposed a fully connected NN to detect abnormal heartbeats, combining
ECG heartbeats sampled uniformly at 50 sampling times, and four derived temporal fea-
tures of each heartbeat. ECGs have also been analyzed using CNNs as in Uchiyama et
al. (2022), where the signal from the individual ECG leads was converted to a grayscale
image. More commonly, ECGs have been analyzed using a one-dimensional (temporal)
CNN for predicting age and sex, see Attia, Friedman, et al. (2019), or for detecting atrial
fibrillation, see Attia, Noseworthy, et al. (2019). An extensive overview was presented by
Roopa and Harish (2017).

The above-mentioned NNs use discretized signals as inputs, while Thind et al. (2023)
proposed a functional neural network for when the inputs are functions. Their methodol-
ogy introduces functional weights, that are smooth functions of time. The relationship be-
tween functional weights, input functions, and neurons inside the neural network is repre-
sented by the formula 𝑏𝑢 = 𝑔

(
𝑏𝑢 +

∫
T 𝛽𝑢 (𝑡) 𝑓 (𝑡) 𝑑𝑡

)
, where 𝑏𝑢 is the value of the neuron,

𝑔 is a (usually) nonlinear activation function, T is the time interval under consideration,
𝛽𝑢 (𝑡) is the functional weight, 𝑓 (𝑡) is the univariate functional input, and 𝑢 is the index of
the neuron in the first hidden layer. The functional weights are represented by their basis
expansion as 𝛽𝑢 (𝑡) =

∑𝐽
𝑗=1 𝑐𝑢 𝑗𝜙𝑢 𝑗 (𝑡) = c𝑇𝑢𝝓𝑢 (𝑡), where 𝝓𝑢 (𝑡) = (𝜙𝑢1 (𝑡), . . . , 𝜙𝑢𝐽 (𝑡)) is a

vector of pre-defined basis functions such as the B-splines or the Fourier basis functions,
and c𝑢 = (𝑐𝑢1, . . . , 𝑐𝑢𝐽 ) is the vector of corresponding basis coefficients, that are learned
by the network. With the addition of scalar covariates 𝑧𝑚, 𝑚 = 1, . . . , 𝑀 , the neurons in
the first hidden layer can be represented as

𝑏𝑢 = 𝑔
©­«𝑏𝑢 +

𝑀∑︁
𝑚=1

𝑤𝑢𝑚𝑧𝑚 +
𝑃∑︁
𝑝=1

𝐽∑︁
𝑗=1
𝑐𝑢𝑝 𝑗

∫
T
𝜙𝑢𝑝 𝑗 (𝑡) 𝑓𝑝 (𝑡) 𝑑𝑡ª®¬ ,

where 𝑃 is the dimension of the multivariate input data, 𝑓 (𝑡) = ( 𝑓1 (𝑡), . . . , 𝑓𝑃 (𝑡)) ∈ R𝑃 .
As opposed to pre-specifying the basis functions, Yao et al. (2021) introduced the Adap-

tive Basis Functional Neural Network (AdaFNN), a neural network that estimates the func-
tional weights adaptively. AdaFNN utilizes a technique similar to the Network in Network
approach (NiN) introduced in Lin et al. (2013). Unlike NiN which replaces linear convo-
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lutions in Lin et al. (2013) by multilayer perceptrons, AdaFNN produces the first hidden
layer (called the basis layer in AdaFNN) by implementing a basis micro network which
takes a fixed time point 𝑡 and outputs the value of the functional weight at this time point,
𝛽(𝑡). The neurons in the basis layer are then obtained by the integral

∫
T 𝛽(𝑡) 𝑓 (𝑡) 𝑑𝑡. In all

the applications, the authors showcased the performance of AdaFNN on univariate func-
tional data with no additional variables.

II.1.2. Proposed approach

In this paper, we propose a functional neural network, that uses the adaptive basis ap-
proach, similar to AdaFNN by Yao et al. (2021), but we extend the network to handle
multivariate functional data, with the addition of scalar/tabular variables. Finally, we ex-
pand the model to account for misalignment in quasi-periodic data.

The paper is structured as follows. Section II.2 introduces the notation and extension of
the AdaFNN model with a general architecture that can accommodate multivariate func-
tional data and additional covariates. Additionally, this section describes the integration of
another NiN, specifically a functional alignment module, an extension of DeepJAM (the
Deep Joint Alignment of Multivariate functional data, Pham et al. (2023)). Finally, this
section also presents an interpretability method: the Instantaneous Contribution to the total
Probability (ICP). In Section II.3 we apply our method to 12-lead 10 second ECG data. To
conclude, in Section II.4 we discuss the results of our method.

II.2. METHODS

This section details the proposed method. First, Section II.2.1 describes the notation of
a standard, fully connected feed-forward neural networks, together with the algorithm for
forward propagation. Section II.2.2 builds on the notation and presents the extension of
the AdaFNN model for prediction, together with an interpretability tool, the ICP.

II.2.1. Fully connected feed-forward neural network

A neural network with 𝐿 layers is a model consisting of an input layer 𝑙 = 0, hidden layers
𝑙 = 1, . . . , 𝐿 − 1, and an output layer 𝑙 = 𝐿, referred to by a superscript (𝑙). Each layer
has a dimension 𝑑 (𝑙) , which denotes the 𝑑 (𝑙) + 1 nodes in this layer, 𝑙 < 𝐿. The nodes in
each layer are labeled 0, 1, . . . , 𝑑 (𝑙) , where the bias node (intercept) is labeled as 0. The
bias node is set to have an output 1 and has no incoming signal. The nodes in each layer
𝑙 > 0, have an incoming signal W(𝑙)x(𝑙−1) from the previous layer, activation function
𝜎 (𝑙) , and output signal x(𝑙) = (1, 𝜎 (𝑙) (W(𝑙)x(𝑙−1) ))𝑇 , where W(𝑙) is a 𝑑 (𝑙) × (𝑑 (𝑙−1) + 1)
dimensional matrix of weights (parameters) and x(0) is the input including a bias node.
We can collect all weight matrices to a single parameter 𝑤 = {W(1) , . . . ,W(𝐿) }. The NNs
are usually depicted by a diagram as in Figure II.1. The output layer is then iteratively
calculated from the previous layers and this process is termed the forward propagation,
see Algorithm II.1.
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𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

hiddeninput output

FIGURE II.1. Example of an NN diagram, with an input layer with three nodes, three hidden layers
with five, six, and four nodes, and an output layer with two nodes.

Algorithm II.1 Forward propagation for one observation

Input: input data x, number of layers 𝐿, weight matrices 𝑤, activation functions 𝜎 (𝑙) ,
𝑙 = 1, . . . , 𝐿

Output: prediction ŷ

1: x(0) ←
(
1
x

)
2: for 𝑙 = 1, . . . , 𝐿 do

3: x(𝑙) =
(

1
𝜎 (𝑙) (W(𝑙)x(𝑙−1) )

)
4: end for
5: ŷ← x(𝐿) = 𝜎 (𝐿) (W(𝐿)x(𝐿−1) )

II.2.2. Adaptive basis model

The standard fully connected feed-forward neural network takes scalar variables as input,
and therefore, some adjustments are necessary to account for functional data as inputs.
This is done by using a basis layer, which is the first hidden layer in the network, following
the functional input. Let’s denote the number of nodes in the basis layer as 𝑈. Each node
𝑏𝑢, 𝑢 = 1, . . . ,𝑈, is calculated as a projection of the input function 𝑓 on some basis
function 𝛽𝑢 as

𝑏𝑢 =

∫
T
𝛽𝑢 (𝑡) 𝑓 (𝑡) 𝑑𝑡,

which is in practice approximated using numerical integration. The basis functions are
parametrized by an NiN model that takes a scalar input 𝑡 and outputs the value of the basis
function at 𝑡, 𝛽𝑢 (𝑡) = 𝑁𝑖𝑁𝑢 (𝑡). Note that the output signals of the nodes in the basis
layer are scalars, hence after the basis layer, the rest of the network has the same structure
as the standard feed-forward neural network. An example of the model architecture is
represented in Figure II.2. In this example, there is one input function 𝑓 and four nodes in
the basis layer. Algorithm II.2 shows the forward propagation in the adaptive basis model.

In the case of multiple functional inputs or multivariate functional data, we propose to
calculate a separate basis layer for each functional input, and then we concatenate these
basis layers and additional scalar covariates to obtain an input layer for the subsequent



82 Manuscript II

𝑓

hiddeninput basis output

𝑡 𝑁𝑖𝑁𝑢 (𝑡 )

FIGURE II.2. Example of an architecture of a functional neural network with one input function and
four basis layer nodes.

neural network. An example of such a network architecture is shown in Figure II.3, with
the forward propagation represented in Algorithm II.3.

𝑓1

𝑓2

𝑧1

𝑧2

𝑧3

𝑦1

𝑦2

separate models

basis layer

concatenated layer

shared model

FIGURE II.3. Example of a neural network with multivariate functional data and adaptive basis.
Here, there are two functional inputs 𝑓1 and 𝑓2, three scalar covariates 𝑧1, 𝑧2 and 𝑧3, and two
outputs 𝑦1 and 𝑦2.

Joint alignment of multivariate functional data - JAM AB. Additionally, functional
data is often quasi-periodic, which means that the data exhibits patterns that are almost,
but not exactly periodic in time. Examples of such data are the tidal rise and fall of sea
levels and seasonal temperatures, and in medicine, we can think of the ECG data or the
menstrual cycle. We assume that the underlying processes generating the data are peri-
odic, but due to noise stemming from other external processes, we only observe distorted
signals, both in amplitude and time domains.

It is crucial to align the data in their temporal domain to facilitate the identification of
trends and patterns over time. Alignment not only helps reduce noise and anomalies that
can arise from misaligned data but also improves the validity of the results of standard
statistical methods.

Various architectures can accommodate multivariate quasi-periodic functional data and
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Algorithm II.2 Forward propagation for one observation in the adaptive basis model

Input: sampling times t, data 𝑓 (𝑡), number of basis nodes𝑈, number of layers in the NiNs
𝐵𝑢, number of layers in the subsequent NN 𝐿, weight matrices in the NiNs 𝑤𝑢, weight
matrices in the subsequent NN 𝑤, activation functions 𝜎 (𝑏𝑢 )𝑢 and 𝜎 (𝑙) , 𝑢 = 1, . . . ,𝑈,
𝑏𝑢 = 1, . . . , 𝐵𝑢, 𝑙 = 1, . . . , 𝐿, time interval T

Output: prediction ŷ

1: for 𝑢 = 1, . . . ,𝑈 do
2: for 𝑡 in t do
3: Algorithm II.1 with
4: Input: data 𝑡, number of layers 𝐵𝑢, weight matrices 𝑤𝑢, activation

functions 𝜎 (𝑏𝑢 )𝑢 , 𝑏𝑢 = 1, . . . , 𝐵𝑢
5: Output: weight functions 𝛽𝑢
6: end for
7: 𝑏𝑢 ←

∫
T 𝛽𝑢 (𝑡) 𝑓 (𝑡)

8: end for
9: x← (𝑏1, . . . , 𝑏𝑈)𝑇

10: Algorithm II.1 with
11: Input: data x, number of layers 𝐿, weight matrices 𝑤, activation functions 𝜎 (𝑙)

𝑙 = 1, . . . , 𝐿
12: Output: prediction ŷ

account for additional variables at the same time. A general approach used in this paper is
as follows. First, we use the DeepJAM warping module to jointly align multivariate quasi-
periodic functions (Pham et al., 2023). The DeepJAM module is based on an unsupervised
algorithm that aligns data based on a Fisher-Rao loss and additionally provides an adaptive
estimation of a common and subject-specific template. Second, we use the adaptive basis
layer approach, with a micro neural network per node. Then, we concatenate this basis
layer with additional tabular covariates to propagate this concatenated layer through a
standard fully-connected NN. At training time, the parameters of the warping module and
the parameters of the subsequent neural network are learned jointly, which is achieved by
utilizing a loss that is a weighted average of the Fisher-Rao loss of the DeepJAM module
and the classification stemming from the subsequent fully-connected NN. Since the Fisher-
Rao loss and the classification loss can vary in magnitude, we adjust the scale of each loss
during every epoch of model training to ensure that they are of comparable magnitude
before computing the weighted average. For an example of such a network, see Figure II.4.
We call the full model combining the Joint Alignment of Multivariate functional data and
the Adaptive Basis layer as JAM AB.

Instantaneous contribution to the total probability. To better understand the NN model
predictions for classification tasks, we introduce the Instantaneous Contribution to the
total Probability (ICP). This technique can help with the interpretability of the model and
highlight the key areas of the input signal that were critical for the model output.

We define the ICP in the following way. Let 𝜋(𝑡) be the output of an NN model with an
adaptive basis layer, where the input is a multivariate function 𝑓 (𝑡) = ( 𝑓1 (𝑡), . . . , 𝑓𝑃 (𝑡)) ∈
R𝑃 . We can represent it as some complicated function of the input and the weight functions



84 Manuscript II

Algorithm II.3 Forward propagation for one observation in the adaptive basis model with
multivariate functional data
Input: sampling times t, number of functions 𝑃, data 𝑓𝑝 (𝑡), number of basis nodes 𝑈,

number of layers in the NiNs 𝐵𝑝𝑢, number of layers in the subsequent NN 𝐿, weight
matrices in the NiNs 𝑤𝑝𝑢, weight matrices in the subsequent NN 𝑤, activation func-
tions 𝜎 (𝑏𝑝𝑢 )𝑝𝑢 and 𝜎 (𝑙) , 𝑝 = 1, . . . , 𝑃, 𝑢 = 1, . . . ,𝑈, 𝑏𝑝𝑢 = 1, . . . , 𝐵𝑝𝑢, 𝑙 = 1, . . . , 𝐿,
time interval T

Output: prediction ŷ

1: for 𝑝 = 1, . . . , 𝑃 do
2: for 𝑢 = 1, . . . ,𝑈 do
3: for 𝑡 in t do
4: Algorithm II.1 with
5: Input: data 𝑡, number of layers 𝐵𝑝𝑢, weight matrices 𝑤𝑝𝑢, activation

functions 𝜎 (𝑏𝑝𝑢 )𝑝𝑢 , 𝑏𝑝𝑢 = 1, . . . , 𝐵𝑝𝑢
6: Output: weight functions 𝛽𝑝𝑢
7: end for
8: 𝑏𝑝𝑢 ←

∫
T 𝛽𝑝𝑢 (𝑡) 𝑓𝑝 (𝑡)

9: end for
10: end for
11: x← (𝑏11, . . . , 𝑏1𝑈 , . . . , 𝑏𝑝1, . . . , 𝑏𝑃𝑈)𝑇
12: Algorithm II.1 with
13: Input: data x, number of layers 𝐿, weight matrices 𝑤, activation functions 𝜎 (𝑙)

𝑙 = 1, . . . , 𝐿
14: Output: prediction ŷ

as

𝜋(𝑡) = ℎ
(∫ 𝑡

𝑡1

𝛽11 (𝑠) 𝑓1 (𝑠) 𝑑𝑠, . . . ,
∫ 𝑡

𝑡1

𝛽𝑃𝑈𝑃 (𝑠) 𝑓𝑃 (𝑠) 𝑑𝑠, 𝜃
)
,

where ℎ is a function representing the NN functional, and 𝛽𝑝𝑢, for 𝑝 = 1, . . . , 𝑃 and
𝑢 = 1, . . . ,𝑈𝑝 , are the functional weights included in the model. 𝑈𝑝 is the number of
basis nodes corresponding to the 𝑝-th element of the multivariate function 𝑓 . The output
of the NN, 𝜋(𝑡2), can be decomposed as

𝜋(𝑡2) = 𝜋(𝑡1) +
∫ 𝑡2

𝑡1

𝜋′ (𝑡) 𝑑𝑡 =
∫ 𝑡2

𝑡1

(
𝜋(𝑡1)
𝑡2 − 𝑡1

+ 𝜋′ (𝑡)
)
𝑑𝑡,

where the last integrand can be interpreted the instantaneous contribution to the total prob-
ability.

For a classification NN with a binary outcome, the output is usually a probability of the
positive label. We can then interpret the ICP in the following way. First, we extract the
ICP for each observation, and then we calculate the cross-sectional means for each class.
Comparing the cross-sectional means of the two classes, we can on average determine
which regions of the data that are the most different, and which areas contribute positively
to the predicted probability.

In the context of ECG, incorporating interpretability techniques can enhance model
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FIGURE II.4. Example of a neural network with joint alignment of multivariate quasi-periodic
functional data and adaptive basis (JAM AB). There are 3 observed multivariate functions on the
left side of the diagram that are passed through a DeepJAM warping module, which outputs aligned
multivariate functions together with the corresponding warping function represented in black. Sub-
sequently, a multivariate subject-specific mean is propagated through a functional neural network
together with the warping functions and additional covariates 𝑥𝑖 , obtaining outputs 𝑦𝑖 . The gray
dashed lines split the data into three periods.

transparency. When a clear association exists between a specific heart disease and ECG
measurements, interpretability methods, including ICP, facilitate validation. They allow
us to verify whether the neural network’s output is influenced by relevant regions within
the ECG data. Conversely, in cases where no established association exists between the
ECG and the studied heart condition, ICP can pinpoint critical areas within the ECG mea-
surements.

II.3. APPLICATION

We demonstrate the use of our method on 12-lead 10 second ECG recordings. The study
population comprised individuals from the Copenhagen General Population Study, who
were randomly selected from the general population in Copenhagen, Denmark (Fuchs
et al., 2023; Kühl et al., 2019). All ECGs were obtained with participants at rest and
in a supine position, prior to undergoing a cardiac computed tomography scan. Written
informed consent was secured from all participants, and the study received approval from
the local ethics committee (H-KF-01-144/01).

A common characteristic of ECGs is that the number of heartbeats within a 10 second
interval varies among participants. With some exceptions, standard NN methods can only
handle input data with fixed length. We adapted the JAM AB algorithm described in
Section II.2.2 to account for data with varying lengths. Knowing the number of heartbeats
for each participant, the observed data can be easily scaled, so that we can use the methods
for quasi-periodic data as defined in Pham et al. (2023). Figure II.5 shows an example
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FIGURE II.5. Example of univariate data with signals of varying length, where each row represents
the recorded ECG of one participant. The observed quasi-periodic data is shown in column 1,
their scaled versions in column 2, and the underlying periodic data with amplitude variability is
represented in column 3. The gray vertical dashed lines represent isometric periods.

of such data with varying number of heartbeats, namely the observed data (column 1),
scaled data (column 2), and the aligned data (column 3). In this example, the maximum
number of heartbeats on the interval T , which can without loss of generality be considered
[0, 1], is 𝐾 = 6. Let 𝐻𝑖 denote the number of heartbeats for each observation. The signals
are then linearly scaled so that they lie in intervals [0, 𝐻𝑖/𝐾], yielding the scaled data.
This scaled data then enters the DeepJAM module to produce the aligned data. In the
application, we examine two scenarios. First, we limit the analysis to a fixed number of
heartbeats per participant, constrained by the minimum number of heartbeats, which is six
in our case. Second, we allow for a varying number of heartbeats per subject, resulting in a
functional input of 12 heartbeats in our datasets, with the input data represented as shown
in column 2 of Figure II.5.

As an outcome, we use the calcification score (CAC) which is calculated using a spe-
cialized CT scan that measures the amount of calcium in the coronary arteries. This score
helps predict the risk of cardiovascular diseases, such as heart attacks and strokes. We
used the dichotomized version of the CAC, specifically

𝑦 =

{
1 𝐶𝐴𝐶 > 0,
0 𝐶𝐴𝐶 = 0.

We compare our method to four other architectures. The first architecture is the convolu-
tional neural network (CNN, LeCun et al., 1989), because it has been one of the standards
for time series analysis, and especially ECG analysis (Roopa & Harish, 2017). In this case,
we did not align the data before using the functions as an input. The second architecture
builds on CNNs, and uses the DeepJAM warping module first to align the quasi-periodic
data. The third considered architecture is a functional neural network with an adaptive ba-
sis without the alignment module. All these models consider both the ECG measurements
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as functional predictors and additional covariates such as age and sex. Finally, we also
compare our method to a fully connected neural network without the ECG predictors.

For a fair comparison of the various model architectures, we used Bayesian optimization
(Snoek et al., 2015) for hyperparameter tuning. For the convolutional layers, the tuned
hyperparameters were the number of layers, filters, and kernel size. For fully connected
parts of the CNN and the functional neural network, the tuned parameters were the number
of layers and units.

Due to computational constraints, all the convolutional layers share the number of filters
and size of the kernels, all fully connected layers share the number of units, and all basis
nodes in the adaptive basis share the number of layers and the number of units in each
layer. In the DeepJAM warping module, all the layers share the number of filters and the
kernel size. In addition to these parameters, we tuned the initial learning rate used in the
Adam optimizer (Kingma & Ba, 2015).

Table II.1 shows the performance of the various architectures. The functional neural
network with an adaptive basis and alignment module with inputs of varying number of
heartbeats performs the best regarding the binary cross-entropy, the mean squared error,
and AUC. Figure II.6 illustrates the ICP of this model as well as the aligned data. The

architecture alignment heartbeats binary cross-entropy MSE AUC

AB yes varying 0.552 0.187 0.791
CNN yes varying 0.555 0.188 0.791
AB no fixed 0.555 0.188 0.789
AB yes fixed 0.555 0.188 0.787
CNN no varying 0.555 0.188 0.790
AB no varying 0.555 0.188 0.790
FNN 0.558 0.189 0.786
CNN no fixed 0.560 0.189 0.786
CNN yes fixed 0.561 0.190 0.784

TABLE II.1. Performance of the neural network models. The architecture represents the type of
network, namely the functional neural network with an adaptive basis layer (AB), convolutional
neural network (CNN), and fully connected neural network (FNN). The models are sorted based on
the binary cross-entropy (lowest to highest), which was used as the loss function. Additionally, we
present the mean squared error (MSE), and the area under the ROC curve (AUC). The heartbeats
column informs about whether only a fixed number of heartbeats was considered, or whether all the
heartbeats per participant were considered, leading to a varying number of heartbeats.

largest difference between the two classes are located at the beginning and end of the T
wave of the ECG.

II.4. DISCUSSION

This study demonstrates the potential of functional neural networks with adaptive basis
layers for analyzing multivariate quasi-periodic functional data, specifically focusing on
12-lead electrocardiogram (ECG) recordings. Our proposed method integrates a functional
alignment module, which enhances the accuracy of subsequent analyses by reducing vari-
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FIGURE II.6. Aligned heartbeats and ICP difference. The top shows the aligned heartbeats (lead
V5). The bottom shows the difference between the average ICP (black) for the two classes, 𝑦 = 1 and
𝑦 = 0. The difference is amplified for the sake of illustration and the horizontal gray line is added
for reference and represents the difference of zero.

ability caused by misalignment. This approach not only improves the interpretability of
the results but also ensures that the observed patterns are due to actual phenomena rather
than artifacts introduced by misalignment.

The results from our experiments indicate that the functional neural network with an
adaptive basis and alignment module outperforms traditional convolutional neural net-
works in terms of cross-entropy, mean squared error, and AUC.

One of the key contributions of this work is the introduction of instantaneous contribu-
tion to the total probability for improved interpretability (ICP) of the model’s predictions.
The ICP allows us to identify critical areas of the input signal that influence the model’s
output, thereby providing valuable insight into the underlying mechanisms of the data-
generating process.

Despite the promising results, there are several areas for future research, First, the com-
putational complexity of the proposed model, particularly the alignment module, can be a
limiting factor for large-scale applications. Optimizing the computational efficiency of the
model will be essential for its practical deployment. Second, further validation on diverse
datasets from different domains will be necessary to establish its generalizability.

In conclusion, this study presents an approach for the analysis of multivariate quasi-
periodic functional data using deep learning techniques. The integration of functional
alignment and adaptive basis layers in neural networks offers a powerful framework for
extracting meaningful patterns from complex datasets.
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ABSTRACT

This paper proposes a novel approach using neural networks to predict time-to-event out-
comes in continuous time with competing risks. The method leverages two alternative
approximations of the hazard functions, one based on piecewise constant hazard func-
tions, and the other based on the Weibull distribution. These models can handle various
types of input data, including functional, and image data, and can simultaneously predict
the risk of the event of interest, competing risks, and the probability of censoring.

The proposed continuous-time neural network approach offers several advantages over
traditional methods, such as not requiring pre-specified interactions or non-linear terms
and being capable of estimating complex functional relationships. However, they also
come with challenges like overfitting and computational expense, which can be mitigated
through techniques such as weight decay and increasing sample size.

The application of these models is demonstrated using data from a study on Prostate-
Specific Antigen (PSA) kinetics in patients with localized prostate cancer. The results
show that the neural network models perform well in terms of time-dependent AUC and
time-dependent Brier score, particularly for long-term predictions.

Keywords: Deep Learning; Time-to-event outcome; Competing risks.
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III.1. INTRODUCTION

Time-to-event analysis focuses on understanding the time until a specific event occurs.
In medical applications, this event could be anything related to health, such as disease
recurrence, remission or death. Survival analysis is characterized by censored data, where
only partial information about the event time is observed.

The fundamental concepts in survival analysis include the survival function, hazard
function, and cumulative hazard function. The survival function, 𝑆(𝑡), represents the prob-
ability of the event occurring at or after time 𝑡. The hazard function, ℎ(𝑡), describes the
instantaneous rate at which events occur, given that the individual has survived until time
𝑡. The cumulative hazard function, 𝐻 (𝑡), accumulates the hazard over time.

Competing risks and multi-state models extend traditional survival analysis to scenarios
where individuals may experience multiple types of events or transition through several
states over time (Andersen & Keiding, 2002; Andersen et al., 2002).

We propose using neural networks for the prediction of time-to-event outcomes in con-
tinuous time with competing risks. Some advantages of using neural networks is the possi-
bility of using complex inputs, such as functional data and image data. Our implementation
uses the negative log-likelihood of the observed censored data as the loss function, hence
this extension can be easily incorporated to existing neural network architectures. In ad-
dition, our neural network implementation can be used for simultaneous prediction of the
risk of the event of interest, the competing risks, as well as the probability of censoring.

An advantage of using neural networks compared to more traditional models, such as
Cox regression, is that we do not need to pre-specify interactions between variables nor
non-linear terms of continuous variables, because with a complex enough architecture, the
neural network should be able to estimate any functional relationship (Hastie et al., 2009,
chap. 11). However, increasing the complexity of neural networks comes at a cost, such
as overfitting and computational expense. Overfitting neural networks can be mitigated
by introducing constraints on the model parameters and/or using weight decay, which is
comparable to LASSO or ridge regression.

III.1.1. Related Work

Recently, there has been a surge of machine learning and deep learning methods for sur-
vival data. In the deep learning world, some architectures try to imitate Cox regression
by using the Cox partial likelihood as the loss function (Ching et al., 2018), some use the
event time as one of the input covariates (E. Biganzoli et al., 1998; E. M. Biganzoli et al.,
2006), and some use discrete time scales with multiple outputs to predict the risk of event
in the pre-specified time intervals (Wright et al., 2021). Wiegrebe et al. (2023) present an
extensive review of existing deep learning methods for survival analysis. Our aim is to
analyze time-to-event data in continuous time and in the presence of competing risks, and
in addition, we want to incorporate high-dimensional data.

Additionally, due to the complexity of interpreting hazard rates, our goal is to predict
the cause-specific risk. To achieve this, we have worked out two alternative approxima-
tions of the cause-specific and censoring-specific hazard function. The first approximation
uses Weibull parametrizations, as demonstrated Bennis et al. (2020, 2021), Nagpal et al.
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(2021), and Paolucci et al. (2023). Notably, only Nagpal et al. (2021) address compet-
ing risks. The second approximation uses the piecewise constant hazard functions. For
both approximations of the hazard functions, we then derive the cause-specific cumulative
incidence functions based on the hazard functions.

III.1.2. Proposed approach

The proposed method introduces a class of neural networks, that can simultaneously pre-
dict cause-specific risks, as well as the censoring distribution. We introduce “parametric”
neural network models, which assume the Weibull distribution of the underlying generat-
ing processes, and output the parameters (shape and scale) of the distribution, and “non-
parametric” models, which parameterize the (cause-specific) hazard functions directly.

III.2. METHOD

Let (𝑇,Δ, 𝐷,X) be right-censored data, where 𝑇 = min{𝑇, 𝐶} is the observed time, the
minimum of the event time 𝑇 and the censoring time 𝐶, Δ is the censoring indicator,
Δ = 1 (𝑇 ≤ 𝐶), 𝐷 = Δ𝐷 ∈ {0, 1, . . . , 𝐽} is the censored event type, where 𝐷 ∈ {1, . . . , 𝐽}
represents one of the 𝐽 events, and 0 represents censoring, and finally, X is the set of scalar
and functional covariates. Further, let 𝑆(𝑡 | x) = P(𝑇 > 𝑡 | X = x) be the conditional sur-
vival function of the uncensored event time, and let 𝑆(𝑡 | x) = P(𝑇 > 𝑡 | X = x) be the con-
ditional survival function of the observed time. Let 𝐹𝑗 (𝑡 | x) = P(𝑇 ≤ 𝑡, 𝐷 = 𝑗 | X = x),
𝑗 = 1, . . . , 𝐽 be the conditional cause-specific distribution functions in the uncensored set-
ting, and 𝐹𝑗 (𝑡 | x) = P(𝑇 ≤ 𝑡, 𝐷 = 𝑗 | X = x), 𝑗 = 0, . . . , 𝐽 be the conditional
cause- and censoring-specific distribution functions in the censored setting. Further, let
𝐺 (𝑡 | x) = P(𝐶 ≤ 𝑡 | X = x) be the conditional distribution function of the censoring time,
and let 𝑆0 (𝑡 | x) = P(𝐶 > 𝑡 | X = x) be the conditional survival function of the cen-
soring time. Furthermore, we assume that the event time 𝑇 and the censoring time 𝐶 are
conditionally independent given X, that is 𝑇 ⊥ 𝐶 | X.

Under this assumption, we have the following relationship between the cause-specific
hazard functions in the uncensored and censored settings. For an event of cause 𝑗 the
hazard functions ℎ 𝑗 and ℎ̃ 𝑗 are equal:

ℎ 𝑗 (𝑡 | x) =
𝑑𝐹𝑗 (𝑡 | x)/𝑑𝑡
𝑆(𝑡− | x) =

𝑑𝐹𝑗 (𝑡 | x)/𝑑𝑡
𝑆(𝑡− | x)

= ℎ̃ 𝑗 (𝑡 | x). (III.1)

Similarly, the hazard rate for censoring is

ℎ0 (𝑡 | x) =
𝑑𝐺 (𝑡 | x)/𝑑𝑡
𝑆0 (𝑡− | x)

=
𝑑𝐹0 (𝑡 | x)/𝑑𝑡
𝑆(𝑡− | x)

= ℎ̃0 (𝑡 | x). (III.2)

In this paper, we explore two approaches for the neural network architecture to es-
timate the hazard rates. One approach, we call it the “parametric” approach, approx-
imates the unknown cause-specific hazard functions and the censoring hazard function
with Weibull parametrization (Weibull, 1951) and uses the fully connected neural network
(Abu-Mostafa et al., 2012) to estimate the parameters of this Weibull distribution. The



96 Manuscript III

second approach, we call it the “non-parametric” approach, uses the convolutional neu-
ral network (LeCun et al., 2015) to approximate the cause- and censoring-specific hazard
functions by piecewise constant hazard functions. Both approaches use the negative partial
log-likelihood of the observed data to simultaneously estimate the hazard functions of the
competing events and the censoring.

Loss function. Given observed data
(
𝑇,Δ, 𝐷,X

)
, the likelihood is defined as

L
(̃
𝑡, 𝑑, x; h

)
= 𝑆

(̃
𝑡− | x

) 𝐽∏
𝑗=0

(
ℎ 𝑗

(̃
𝑡 | x

)1{𝑑= 𝑗}
)
𝜇(x)

= exp−
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=
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0 ℎ 𝑗 (𝑠 |x) 𝑑𝑠
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𝑗=0

(
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𝑡 | x

)1{𝑑= 𝑗}
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𝜇(x)

=

𝐽∏
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∫ 𝑡̃−
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where h = (ℎ0, ℎ1, . . . , ℎ𝐽 ) and 𝜇(x) = P(X ∈ 𝑑𝑥). This yields the following log-
likelihood

ℓ

(̃
𝑡, 𝑑, x; h

)
=

𝐽∑︁
𝑗=0

(
−

∫ 𝑡̃−

0
ℎ 𝑗 (𝑠 | x) 𝑑𝑠 + 1{

𝑑= 𝑗

} log
(
ℎ 𝑗

(̃
𝑡 | x

) ))
+ log (𝜇(x)) ,

and the estimator of the hazard functions is obtained by solving

h∗ = argminh

𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=0

(∫ 𝑇𝑖−

0
ℎ 𝑗 (𝑠 | x𝑖) 𝑑𝑠 − 1{

𝑑𝑖= 𝑗

} log
(
ℎ 𝑗

(
𝑇𝑖 | x𝑖

)))
. (III.3)

Cause-specific risk. Using the negative partial log-likelihood in Equation (III.3),
we obtain the cause- and censoring-specific hazard functions, and thus the cause- and
censoring-specific distribution functions of observed time, 𝐹𝑗 (𝑡 | x), 𝑗 = 0, . . . , 𝐽. To
calculate the Brier score (BS), we need the cause-specific distribution functions of event
time, 𝐹𝑗 (𝑡 | x), 𝑗 = 1, . . . , 𝐽, and the survival function of censoring time, 𝑆0 (𝑡 | x). We
obtain the survival function of the censoring time as 𝑆0 (𝑡 | x) = exp(−𝐻0 (𝑡 | x)), the
event-free survival function and the cause-specific cumulative distribution function as

𝑆(𝑡 | x) = exp ©­«−
𝐽∑︁
𝑗=1

𝐻 𝑗 (𝑡 | x)ª®¬ and 𝐹𝑗 (𝑡 | x) =
∫ 𝑡

0
𝑆(𝑠 | 𝑥)ℎ 𝑗 (𝑠 | 𝑥) 𝑑𝑠, 𝑗 = 1, . . . , 𝐽,

where 𝐻 𝑗 , 𝑗 = 0, . . . , 𝐽, are the cumulative hazard functions.
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III.2.1. “Parametric” neural network

The first approach, the “parametric” neural network, assumes the Weibull distribution for
the censoring and all events and outputs the shape and scale of these distributions. The
shape 𝑘 > 0 and scale 𝜆 > 0 parameters define the hazard function of a Weibull distribution

ℎ(𝑡; 𝑘, 𝜆) = 𝑘

𝜆

( 𝑡
𝜆

) 𝑘−1
, (III.4)

and the cumulative hazard function of a Weibull distribution

𝐻 (𝑡; 𝑘, 𝜆) =
∫ 𝑡

0
ℎ(𝑡; 𝑘, 𝜆) =

∫ 𝑡

0

𝑘

𝜆

( 𝑠
𝜆

) 𝑘−1
𝑑𝑠 =

[( 𝑠
𝜆

) 𝑘 ] 𝑡
0
=

( 𝑡
𝜆

) 𝑘
.

The parameters 𝑘𝑖 and 𝜆𝑖 can depend on the subject 𝑖 through the covariates, and we use a
neural network to describe this relationship. Let 𝜂 represent the neural network functional,
such that (

𝑘𝑖0 𝑘𝑖1 · · · 𝑘𝑖𝐽

𝜆𝑖0 𝜆𝑖1 · · · 𝜆𝑖𝐽

)
= 𝜂(x𝑖; 𝜽),

where 𝜽 is the set of all parameters/weights of the neural network model, and 𝑘𝑖 𝑗 and 𝜆𝑖 𝑗
are the shape and scale parameters of the distributions, respectively, for the 𝑖-th observation
and the 𝑗-th cause, 𝑗 = 0, . . . , 𝐽. Thus, the cause- and censoring-specific hazard functions
are functions of time 𝑡, covariates x𝑖 , and parameters 𝜽 as follows

ℎ 𝑗 (𝑡 | x𝑖) =
𝑘𝑖 𝑗

𝜆𝑖 𝑗

(
𝑡

𝜆𝑖 𝑗

) 𝑘𝑖 𝑗−1
=
𝜂(x𝑖; 𝜽)1 𝑗
𝜂(x𝑖; 𝜽)2 𝑗

(
𝑡

𝜂(x𝑖; 𝜽)2 𝑗

) 𝜂 (x𝑖 ;𝜽 )1 𝑗−1
.

The corresponding cumulative hazard functions have the form

𝐻 𝑗 (𝑡 | x𝑖) =
(
𝑡

𝜆𝑖 𝑗

) 𝑘𝑖 𝑗−1
=

(
𝑡

𝜂(x𝑖; 𝜽)2 𝑗

) 𝜂 (x𝑖 ;𝜽 )1 𝑗
.

Figure III.1 represents the general idea of the proposed “parametric” neural network ap-
proach.

x𝑖 FCNN
(
𝑦𝑖0 𝑦𝑖1 · · · 𝑦𝑖𝐽
𝑦𝑖0 𝑦𝑖1 · · · 𝑦𝑖𝐽

)
output

(
𝑘𝑖0 𝑘𝑖1 · · · 𝑘𝑖𝐽
𝜆𝑖0 𝜆𝑖1 · · · 𝜆𝑖𝐽

)
input response

activation

FIGURE III.1. Illustration of the proposed neural network for the “parametric” approach. The
input x𝑖 is passed through a fully connected neural network (FCNN) and outputs the subject-specific
shape, 𝑘𝑖 𝑗 , and scale, 𝜆𝑖 𝑗 parameters of the Weibull distributions for the censoring, event of interest
and competing event, respectively. The output is the neural network’s output before any activation
function is applied, and the response is the output after an activation function is applied. The
activation function is usually a non-linear function of the inputs, and it can be different for the
various 𝑘 and 𝜆.
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III.2.2. “Non-parametric” neural network

The second approach, the “non-parametric” neural network, parametrizes the hazard func-
tions based on a discrete time scale. This model is termed “non-parametric” not due to the
absence of parameters, but in contrast to “parametric” neural networks, which generate
parameters for Weibull distributions.

Given times T = {𝑇0 = 0, 𝑇1, 𝑇2, ..., 𝑇𝑀 , 𝑇𝑀+1 = ∞}, 𝑇𝑖 < 𝑇𝑖+1, the “non-parametric”
neural network approach models the piecewise constant cause- and censoring-specific haz-
ard functions as ©­­­­«

ℎ𝑖00 ℎ𝑖01 · · · ℎ𝑖0𝐽
ℎ𝑖10 ℎ𝑖11 · · · ℎ𝑖1𝐽
...

...
. . .

...

ℎ𝑖𝑀0 ℎ𝑖𝑀1 · · · ℎ𝑖𝑀𝐽

ª®®®®¬
= 𝜂(x𝑖; 𝜽), (III.5)

where 𝜂 represents the neural network functional, 𝜽 is the set of all parameters/weights
of the neural network model, and ℎ𝑖𝑚 𝑗 hazards for the 𝑖-th observation, the 𝑗-th cause,
𝑗 = 0, . . . , 𝐽 at time point 𝑇𝑚, 𝑚 = 1, . . . , 𝑀 . Thus, the cause- and censoring-specific
hazards are a function of time 𝑡, covariates x𝑖 , and parameters 𝜽 parametrized as

ℎ 𝑗 (𝑡 | x𝑖) = 𝜂(x𝑖; 𝜽)𝑚𝑗 , for 𝑚 s. t.𝑇𝑚 ≤ 𝑡 < 𝑇𝑚+1,

such that the corresponding cumulative hazard functions have the form

𝐻 𝑗 (𝑡 | x𝑖) =
∑︁

𝑚 : 𝑇𝑚+1≤𝑡
(𝑇𝑚+1 − 𝑇𝑚) ℎ𝑖𝑚 𝑗 + (𝑡 − 𝑇𝑛) ℎ𝑖𝑛 𝑗 ,

where ℎ𝑖𝑚 𝑗 is the piecewise constant hazard between 𝑇𝑚 and 𝑇𝑚+1, and 𝑛 is the index for
which 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1. The neural network output in Equation III.5 is achieved by using
a 1D convolutional neural network with a kernel of size one. Figure III.2 represents the
general idea of the proposed “non-parametric” neural network approach.

x𝑖 CNN

©­­­­«
𝑦𝑖00 𝑦𝑖01 · · · 𝑦𝑖0𝐽
𝑦𝑖10 𝑦𝑖11 · · · 𝑦𝑖1𝐽
...

...
. . .

...

𝑦𝑖𝑀0 𝑦𝑖𝑀1 · · · 𝑦𝑖𝑀𝐽

ª®®®®¬
output
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ℎ𝑖00 ℎ𝑖01 · · · ℎ𝑖0𝐽
ℎ𝑖10 ℎ𝑖11 · · · ℎ𝑖1𝐽
...

...
. . .

...

ℎ𝑖𝑀0 ℎ𝑖𝑀1 · · · ℎ𝑖𝑀𝐽

ª®®®®¬
input response

activation

FIGURE III.2. Illustration of the proposed neural network for the “non-parametric” approach. The
input x𝑖 is passed through a 1D convolutional neural network (CNN) with a kernel size of one, and
outputs the subject-specific piecewise constant cause- and censoring-specific hazards at pre-defined
times 𝑡 ∈ T . The output is the neural network’s output before any activation function is applied, and
the response is the output after an activation function is applied.
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III.3. ILLUSTRATION OF THE METHOD

We use the data studied by Thomsen et al. (2016) to demonstrate our method. The study
was aimed to investigate the prognostic value of Prostate-Specific Antigen (PSA) kinetics
in patients with localized prostate cancer, who were managed by active surveillance. The
primary objective was to determine how PSA kinetics, specifically PSA velocity, were as-
sociated with prostate-cancer-related mortality in these patients. The study demonstrated
that the prognostic value of PSA kinetics in predicting prostate cancer mortality varies de-
pending on the initial PSA levels. PSA kinetics were more predictive for patients with in-
termediate PSA levels, but not for those with low or high PSA levels. The PSA kinetics are
summaries of the underlying data. Here we use the raw PSA measurements as time series
input to the neural network and in this way demonstrate the use of our method on func-
tional data. The time series of the PSA measurements consists of 24 PSA measurements
carried out over a period of 2 years, corresponding to approximately one measurement per
month. For the sole purpose of illustration, we have replaced missing PSA measurements
by linear interpolation.

Our architecture utilized a convolutional NN (CNN) to process the PSA measurements.
The output from the CNN module was subsequently concatenated with the other covariates
to serve as input for a standard fully connected feed-forward NN (FNN, LeCun et al.,
2015). To optimize the hyperparameters and evaluate the performance of the NNs, we
employed nested cross-validation (nCV, Bates et al., 2024). This process involved 10
folds in the outer loop and 10 folds in the inner loop. The inner loop was dedicated to
hyperparameter tuning, while the outer loop was used for model evaluation.

The hyperparameters subject to tuning included the number of layers (1, 2, 3), the num-
ber of filters (1, 2, 3) in each layer, and the kernel size (3, 5, 7) of the CNN. Additionally,
for the FNN, we tuned the number of layers (1, 2, 3), the number of nodes (1, 2, 3) in
each layer. We also tuned the learning rate (0.1, 0.01, 0.001). The values in parentheses
represent the options considered for each hyperparameter. Given that each inner loop it-
eration could yield different optimal parameters, the final model may differ across folds.
Consequently, the reported performance reflects the average performance of the prediction
modeling algorithm rather than a single model’s performance.

To evaluate the performance of our NN method, we used the outer loop to calculate the
time-point specific AUC, as illustrated in Figure III.3, and the time-point specific Brier
score, as illustrated in Figure III.4 which shows the time-point specific index of prediction
accuracy (IPA, Kattan & Gerds, 2018). Note that IPA = 1 − 𝐵𝑆model

𝐵𝑆null model
. We compared the

results to two cause-specific Cox models (Ozenne et al., 2017) with (1) other covariates but
no PSA measurements, and (2) other covariates and PSA velocity. For the cause-specific
Cox models, we employed standard 10-fold cross-validation, utilizing the same folds as
those in the outer loop for the NNs.

Both NN methods perform well in terms of AUC, Figure III.3. However, compared to
the null model (the combination of the cause-specific Cox models without covariates), all
models perform worse for prediction horizons until nine years. All models were perform-
ing better than the null model for long-term predictions (after 9 years) in terms of the IPA,
Figure III.4. In terms of the AUC, the “non-parametric” NN shows superior performance,
while the “parametric” NN performs only slightly better than the cause-specific Cox mod-
els with PSA measurements. However, in terms of the Brier score, or specifically the IPA,
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for prediction horizons up to 9 years our models and the cause-specific Cox models with
PSA velocity perform worse than the cause-specific Cox models without PSA measure-
ments. In the later years of follow-up, both NN models outperform the cause-specific Cox
models.

AUC

Time

2 3 4 5 6 7 8 9 10 11 12 13 14 15

50 %

60 %

70 %

80 %

90 %

100 % CSC no PSA
CSC PSA velocity
NN parametric
NN hazard

FIGURE III.3. Comparison of the AUC between the “parametric” NN (NN parametric), “non-
parametric” NN (NN hazard), a combination of cause-specific Cox models with only tabular covari-
ates (CSC no PSA), and a combination of cause-specific Cox models with tabular covariates and
PSAvel. The reported AUC was obtained using 10-fold nCV for the NN models, and 10-fold CV for
the cause-specific Cox models, with the same data split in the folds.

III.4. DISCUSSION

The results of our study demonstrate the potential of neural networks in predicting time-
to-event outcomes in continuous time with competing risks. Our proposed models offer
advantages over traditional methods such as the Cox proportional hazards model. These
advantages include the ability to handle high-dimensional data, incorporate various types
of input data, and estimate complex functional relationships without the need for pre-
specified interactions or non-linear terms. Additionally, our method allows for joint esti-
mation of the (competing) events as well as the censoring.

Our neural network models were evaluated using data from a study on Prostate-Specific
Antigen (PSA) kinetics in patients with localized prostate cancer. The results indicate that
our method performs well in terms of the AUC and Brier score, particularly after the initial
years of follow-up.

When compared to cause-specific Cox models, our neural network models showed im-
proved performance in the later years of follow-up. This improvement could be attributed
to the neural network’s ability to model complex interactions and non-linear relationships
in the data. However, it is important to note that in the early years of follow-up, the neu-
ral network models performed worse than the null model (the combination of the cause-
specific Cox models without covariates). This discrepancy highlights the need for further
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Index or prediction accuracy (IPA)

Time

2 3 4 5 6 7 8 9 10 11 12 13 14 15

−0.2

−0.1
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CSC no PSA
CSC PSA velocity
NN parametric
NN hazard

FIGURE III.4. Comparison of the IPA between the “parametric” NN (NN parametric), “non-
parametric” NN (NN hazard), a combination of cause-specific Cox models without PSA (CSC no
PSA), and a combination of cause-specific Cox models with covariates and PSA velocity. The re-
ported IPA was obtained using 10-fold nCV for the NN models, and 10-fold CV for the cause-specific
Cox models, with the same data split in the folds.

refinement of the models to improve their performance across all time periods.
Neural networks come with further challenges such as overfitting and computational

expense. Overfitting is particularly problematic with small sample sizes, especially when
high-dimensional covariates are involved. We employed nested cross-validation to opti-
mize hyperparameters and evaluate model performance, ensuring that the models were not
overfitted to the training data.

This study has also several limitations that should be acknowledged. Firstly, we did
not conduct simulation studies to demonstrate the behavior and robustness of our models
under various conditions. Such simulations could provide further insights into the model’s
performance in different scenarios. Secondly, we did not compare the performance of
our models to existing neural network models for time-to-event outcomes. Benchmarking
against established models is crucial for validating the competitiveness of our approach.
Additionally, our study is limited by the scope of the data used, which does not fully repre-
sent high-dimensional data. Future research should address these limitations by incorpo-
rating simulation studies, performing comprehensive comparisons with existing models,
and utilizing more diverse datasets to improve the generalizability of the findings.

The findings of this study have several implications for future research. First, the ability
of neural networks to handle high-dimensional and complex data makes them suitable for
a wide range of applications in survival analysis. Future studies could explore the use of
neural networks in other medical and engineering domains, where time-to-event data is
prevalent. Second, the integration of different types of data, such as functional and image
data, could further enhance the predictive power of neural network models.

In conclusion, our study demonstrates that NNs are a promising tool for predicting
time-to-event outcomes in continuous time with competing risks.
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