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Summary

This thesis is broadly concerned with developing statistical methodology for
causal inference based on longitudinal data. In particular it focuses on causal
mediation analysis for longitudinal data, and on the application of causal in-
ference methodology to time-to-event analysis.

The thesis consists of a synopsis containing five chapters, followed by three
manuscripts. Chapters 1-3 of the synopsis provide the necessary background
knowledge for better understanding the methodological contributions of the
manuscripts. Chapter 4 contains a summary of the manuscripts. Chapter 5
discusses limitations of the proposed methods and outlines possible directions
for future research. The contributions of the manuscripts can be summarized
as follows:

- Manuscript I proposes a method for estimating the extent to which the
effect of a baseline exposure on a terminal time-to-event outcome (e.g.
death) is mediated through a non-terminal time-to-event outcome (e.g.
onset of disease). The method extends the concept of ‘separable’ direct
and indirect effects to the illness-death setting.

- Manuscript II is motivated by a data application from the NASH clinical
trial conducted by Novo Nordisk. We propose a method for estimating
the extent to which the effects of Semaglutide on NASH is mediated
through weight loss which is a repeatedly measured covariate. The pro-
posed method builds upon work on ‘randomized interventional’ direct
and indirect effects.

- Manuscript III is concerned with the estimation of concordance measures
for right censored time-to-event data. Many widely used estimators will
depend on the censoring distribution under model misspecification. Our
contribution is that we view the concordance measures as model-free
estimands and propose non-parametric estimators.
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Resumé

Denne afhandling beskæftiger sig i bred forstand med at udvikle statistiske
metoder til kausal inferens baseret på longitudinelle data. I særdeleshed
forkuseres der på kausal mediationsanalyse for longitudinelle data og på at
anvende kausale metoder indenfor overlevelsesanalyse.

Afhandlingen består af en synopsis indeholdende fem kapitler efterfulgt af
tre manuskriper. Kapitel 1-3 i synopsen giver den nødvendige baggrundsviden
for bedre at forstå de metodiske bidrag i manuskripterne. Kapitel 4 indeholder
et resumé af artiklerne. Kapitel 5 diskuterer begrænsningerne ved de forelåede
metoder og skitserer mulige retninger for fremtidig forskning. Bidragene i
manuskripterne kan opsummeres som følger:

- Manuskript I foreslår en metode til at estimere, i hvilket omfang effekten
af en baseline eksponering på en terminal levetid (f.eks tid til død) me-
dieres gennem en ikke-terminal levetid (f.eks. tid til sygdomsdiagnose).
Metoden udvider begrebet ‘separable’ direkte og indirekte effekter til en
‘illness-death’ model.

- Manuskript II er motiveret af en dataapplikation fra det kliniske studie
‘NASH’ udført af Novo Nordisk. Vi foreslår en metode til at estimere, i
hvilket omfang virkningerne af Semaglutid på NASH medieres gennem
vægttab, som er en kovariat der er målt gentagne gange over tid. Den
foreslåede metode bygger på arbejde omhandlene ‘randomiserede inter-
ventionelle’ direkte og indirekte effekter.

- Manuskript III beskæftiger sig med estimation af konkordans mål for
højre censureret overlevelses data. Mange udbredte estimatorer afhænger
af censurerings fordelingen hvis modellen er misspecificeret. Vores bidrag
er, at vi formulerer ‘concordance’ målene som modelfri estimander og
foreslår ikke-parametriske estimatorer.
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Chapter 1

Introduction

The aim of this thesis is to develop statistical methods for causal inference
and mediation analysis for longitudinal and time-to-event data that account
intrinsic features such as censoring and time-dependent confounding. This
chapter serves as a broad introduction to the thesis.

The chapter is organized as follows. In Section 1.1 we give some in-depth
motivation behind the topics explored in this thesis. Section 1.2 provides an
overview of the organization of the thesis and a reading guide. Section 1.3
introduces some notation that will be used throughout the synopsis.

1.1 Motivation

Causality lies at the heart of many scientific questions in public health re-
search, particularly those that involve evaluating policies or exposures. Over
the past decades a formal framework for causal inference has been developed
pioneered by Robins, Pearl, van der Laan and many others [Robins, 1986,
Robins et al., 2000, van der Laan and Robins, 2003, Pearl, 2000]. These
methods, when integrated into applied research, makes it possible to be very
precise about the causal question and the assumptions required to answer the
causal questions with observed data. The process of applying formal causal
methods to applied research in a systematic way is sometimes referred to as
the ‘roadmap’ for causal inference [Petersen and van der Laan, 2014]. The
roadmap can be boiled down to the following steps

(i) Translate the scientific question into a clearly defined target causal es-
timand stated in the language of potential outcomes [Neyman, 1923,
Rubin, 1978].

(ii) Assess identifiability, i.e. derive the assumptions which are necessary
to to identify the target causal estimand from the observed data. The
identification result defines the target statistical estimand.

2



1.1. MOTIVATION 3

(iii) Given the target statistical estimand choose an estimator that respects
the causal knowledge in the data. This may require flexible estimators
that allow for parts of the data-generating process to be unrestricted.
Such estimators can be constructed using tools from semiparametric
theory and empirical process theory [van der Vaart, 2000, Tsiatis, 2006,
van der Laan and Rose, 2011, 2018, Chernozhukov et al., 2018].

Causal inference is a large field of research. In this thesis we focus specif-
ically on two areas of causal inference.

The first of these areas is mediation analysis for longitudinal data. Me-
diation analysis is a popular tool in epidemiological and medical research for
describing the mechanisms by which an exposure or treatment affects an out-
come. More specifically, the methods attempt to decompose a total treat-
ment effect into a so-called ‘indirect effect’ which is mediated by a particular
intermediate variable (or set of variables), and a remaining unmediated ‘di-
rect effect’ [VanderWeele, 2015]. An early technique inspired by Baron and
Kenny [1986] is to estimate mediation effects using parametric structural equa-
tion models without using explicitly causal language and notation. Robins
and Greenland [1992] and Pearl [2001] introduced counterfactual based non-
parametric definitions of the direct and indirect effects, which has led to an
improved understanding of eg. confounding adjustment and allows for in-
teractions and non-linearity. However the existence and identification of the
so-called natural direct and indirect effects of Robins and Greenland [1992]
and Pearl [2001] is somewhat controversial because they rely on independence
assumptions ‘across worlds’, that may be unrealistic and are impossible to em-
pirically verify. Particularly these cross-world assumptions imply that natural
(in)direct effects are generally not identified in the presence of a confounder
of the mediator-outcome relationship which is affected by the exposure. This
limits their practical applicability, and means that they do not immediately
generalize to the longitudinal setting. This have led several researchers to pro-
pose alternative causal mediation estimands that do not rely on cross-world
assumptions. This topic will be explored further in Chapter 2 of the synopsis.

The second area that we will focus on is the use of causal inference method-
ology in survival analysis. The development of formal causal inference frame-
works over the past decades has sparked an interest in clarifying the causal
interpretation of well-known estimands from time-to-event analysis such as
the Cox hazard ratio [Hernán, 2010, Aalen et al., 2015, Martinussen et al.,
2020] and the ‘net risk’ and ‘crude risk’ from the competing event literature
[Young et al., 2020]. Moreover the use of model-free (non-parametric) defi-
nitions of statistical target estimand is becoming increasingly popular in the
survival literature. For instance nonparametric definitions of hazard ratio type
estimands [Uno and Horiguchi, 2023, Vansteelandt et al., 2022] have been pro-
posed as an alternative to the Cox HR which is known to depend on the study
specific censoring distribution when the model is misspecified [Struthers and
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Chapter 1:
Introduction

Chapter 2:
Mediation analysis

Chapter 3:
(Causal) estimands in

survival analysis

Chapter 4:
Overview of manuscripts

Manuscript IIManuscript I Manuscript III

Chapter 5:
Discussion and perspectives

Figure 1.1: Suggested reading order.

Kalbfleisch, 1986]. These topics will be explored further in Chapter 3 of the
synopsis.

1.2 Overview of thesis
This thesis consists of five introductory chapters and three article manuscripts.
The manuscripts are:

Manuscript I: Breum, M. S., Munch, A., Gerds, T. A. and Martinussen, T.
(2023). Estimation of separable direct and indirect effects in a continuous-
time illness-death model. Lifetime Data Analysis, 1-38. https://doi.
org/10.1007/s10985-023-09601-y

Manuscript II: Breum, M. S. and Palle, M. S. (2023). Estimation of data-
dependent (in)direct effects with a repeatedly measured mediator and
missing outcome data. To be submitted to Statistics in Medicine.

Manuscript III: Breum, M. S. and Martinussen, T. (2023). Efficient non-
parametric estimators of discrimination measures with censored survival
data. Under preparation.

In Chapter 2 we introduce causal mediation analysis with an emphasis
on causal mediation estimands which do not rely on cross-world assumptions.

https://doi.org/10.1007/s10985-023-09601-y
https://doi.org/10.1007/s10985-023-09601-y
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This serves as background for the contributions in manuscripts I and II. The
topic of Chapter 3 is the use of (causal) estimands survival analysis which
serves as background for manuscripts I and III. In Chapter 4 we provide a
summary of the three manuscripts, and in Chapter 5 we discuss the chal-
lenges and limitations of the proposed methods and provide ideas for future
research. The three manuscripts are printed in the back of the thesis. A sug-
gested reading order of this thesis is given in Figure 1.1.
In addition to the background provided in the introductory chapters of this
thesis we assume that the reader is familiar with basic concepts of semi-
parametric theory. Many excellent overviews of this topic exist e.g. Hines
et al. [2022], Kennedy [2016], Kennedy [2023] and Fisher and Kennedy [2021],
among others.

1.3 Notation
For any random variables X and Y we use X to denote the support of X
and the Cartesian product X × Y to denote the support of (X,Y ). We let
pX(x) denote the marginal distribution of X and pY |X(y | x) the conditional
distribution of Y given X.

Throughout the synopsis we will use counterfactual or ‘potential outcomes’
notation where Y (x) denotes the value of Y that would have been observed
had X, possibly contrary to the fact, been set to the value x [Neyman, 1923,
Rubin, 1978]. Unless otherwise stated we will assume consistency i.e. that the
potential outcome Y (x) corresponds to the observed outcome Y if the actual
level of X is x. For further discussion on this assumption see Hernán and
Taubman [2008].



Chapter 2

Mediation analysis

This chapter provides a review of causal mediation estimands. The chapter is
organized as follows. In Section 2.1 we introduce the notion of natural direct
and indirect effects and present the identification assumptions of Pearl [2001].
In Section 2.2 we will give examples of settings where the so-called cross-world
assumption is violated. In Section 2.3 we introduce the notion of path specific
effects which provides a more general definition of mediated effects than the
notion of natural (in)direct effect, but still relies on cross-world assumptions.
In Section 2.4 we review some alternative causal mediation estimands that
have been proposed to circumvent the cross-world assumptions.

2.1 Natural direct and indirect effects

We consider a data structure given by O = (W,A,M, Y ) whereW is a vector of
baseline covariates, A is a binary treatment, M is the potential mediator and
Y is the outcome of interest. We assume that W is not affected by treatment
A, and thatM is measured after the exposure and before the outcome. A DAG
representing the assumed causal structure is given in Figure 2.1. The observed
data is assumed to be a sample of independent observations O1, ..., On which
are identically distributed according to some unknown probability distribution
denoted P , which is assumed to lie in a statistical model P.

W A M Y

Figure 2.1: DAG representing the causal structure in the setting in Section
1.1.

We let Y (a,M(a∗)) the cross-world (nested) counterfactual outcome that

6



2.1. NATURAL DIRECT AND INDIRECT EFFECTS 7

would have been oberved had A been set to the value a and M been set to
the value that it would naturally have taken under A = a∗. In addition to the
usual consistency assumptions we need the so-called composition assumption
that Y (a) = Y (a,M(a)). We refer to VanderWeele and Vansteelandt [2009]
for further discussion on this assumption.

Pearl [2001] define the natural direct effect (NDE) as the counterfactual
contrast

NDE : E {Y (a,M(a∗))− Y (a∗,M(a∗)} , (2.1)

that is, as the average difference in the outcome Y under A = a and A = a∗

when the mediator fixed to what it would have been had A = a∗.
The natural indirect effect (NIE) is defined as

NIE : E {Y (a,M(a))− Y (a,M(a∗))} , (2.2)

ie. as the average difference in outcome if the exposure was fixed at A = a,
but mediator was set to what it would have been if exposure had been a versus
if exposure had been a∗.

Together the NDE and NIE provide a decomposition of the total effect
(TE)

TE : E{Y (a)} − E{Y (a∗)}

The natural direct and indirect effects are identifiable from the data under
the following assumptions

A.1: Y (a,m) ⊥⊥ A | W

A.2: Y (a,m) ⊥⊥ M | (A,W )

A.3: M(a) ⊥⊥ A | W

A.4: Y (a,m) ⊥⊥ M(a∗) | W

Assumptions A.1 and A.2 state that there are no unmeasured confounders of
the exposure-outcome and mediator outcome relationship, respectively. As-
sumption A.3 states that there is no unmeasured confounding of the exposure-
mediator relationship. Note that if A is randomized then A.1 and A.3 hold
automatically. Assumption A.4 is the so-called cross-world assumption, which
states that the counterfactual outcome and mediator values are independent
”across worlds” with one being a world in which the exposure is set to A = a
for the outcome and the other being a world in which it is set to A = a for the
mediator. This assumption is impossible to verify as this does not correspond
to any feasible experiment. We will further discuss the implications of the
cross-world assumption, and when it may be violated in the next section.
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LetΨa,a∗(P ) = E {Y (a,M(a∗))}. If assumptions A.1-A.4 hold Pearl [2001]
show that Ψa,a∗(P ) is (non-parametrically) identified via the so-called media-
tional G-formula

Ψa,a∗(P )

=

∫
W

∫
M

E {Y | A = a,m,w} pM |A,W (m | a∗, w)pW (w) dµM (m) dµW (w),

(2.3)

where µM and µW are some dominating measures.
This leads to the following identifying formulas for the natural direct and

indirect effects

NDE(a, a∗)(P ) =Ψa,a∗(P )−Ψa∗,a∗(P ),

NIE(a, a∗)(P ) =Ψa,a(P )−Ψa,a∗(P ).

Note that while the identification assumptions in (A1)-(A4) are sufficient for
identification of natural (in)direct effects they are not necessary conditions.
In Section 2.3 we give a brief description of complete identification strategy
using so-called recanting district conditions [Avin et al., 2005].

Natural direct and indirect effect have many advantages including adding
up to the total treatment effect and allowing for interactions and non-linearities.
Moreover they allow for the use natural effect models which directly param-
eterize the nested counterfactuals using marginal structural models [Lange
et al., 2012, Vansteelandt et al., 2012]. However the cross-world assumptions
limits the practical applicability of natural (in)direct effects as we will demon-
strate in the following section.

2.2 Examples of cross-world independence
violations

Below we give some examples where the cross world assumption in A.4 is
violated.

Example 1: Intermediate confounding

Under the assumption that the data is generated from a non-parametric struc-
tural equation model (NPSEM) [Pearl, 2000], the cross-world assumption is
violated in the presence of a confounder of the mediator outcome relationship
which is affected by exposure.

To see this let W,A,M, Y be defined as in Section 2.1 and let L be a post-
treatment confounder. The corresponding DAG is depicted in Figure 2.2, and
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the corresponding NPSEM is

W = fW (εW ),

A = fA(W, εA),

L = fL(A,W, εL),

M = fM (A,W,L, εM ),

Y = fY (A,W,L,M, εY ),

where fW , fA, fL, fM and fY are deterministic mappings and εW , εA, εL, εM , εY
are exogenous random variables.

W A M Y

L

Figure 2.2: DAG representing example 1.

The corresponding counterfactuals can be represented as

L(a) = fL(a,W, εL),

L(a∗) = fL(a
∗,W, εL),

M(a∗) = fM (a∗,W,L(a∗), εM ) = fM (a∗,W, fL(a
∗,W, εL), εM ),

Y (a,m) = fY (a,W,L(a),m, εY ) = fY (a,W, fL(a,W, εL),m, εY ).

We see that Y (a,m) 6⊥ M(a∗) since Y (a,m) and M(a∗) share the common
error term εL.

Example 2: Mediation with a survival outcome

When the outcome is a time-to-event variable then natural (in)direct effects
are only identified if the mediator is measured immediately after exposure
[Lange and Hansen, 2011].

To illustrate this let T be survival time and assume no censoring. Let
Nt = I(T ≤ t) be a counting process which jumps when an event occurs and
let dNt = I(T = t) be the event indicator. Suppose we observe survival status
at time t = 1 and t = 2, and that the mediator M is measured in between
these time-points. The data structure is illustrated in Figure 2.3 below, and
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the following NPSEM encodes the time-ordering of the variables

A = fA(εA),

dN1 = fdN1(A, εdN1),

M = fM2(A, dN1, εM ),

dN2 = fdN2(A,M, dN1, εdN2).

Clearly N1 acts as a post-treatment confounder of survival status at t = 2 and
the mediator. It follows from Example 1 that the cross-world assumption is
violated.

A M dN2

dN1

Figure 2.3: DAG representing example 2.

Another issue when the mediator is not measured immediately after expo-
sure, as pointed out in Didelez [2019], is that the cross-world counterfactual
T (a,M(a∗)) is not well-defined. This is because the patient may live longer
under A = a than under A = a∗, i.e. setting the mediator to what it would
have been under A = a∗ is not a well defined intervention if the patient would
not have lived long enough under A = a∗ for the mediator to be measured.

Example 3: Latent cross-world confounders

The cross-world assumption can also be violated by other causes than inter-
mediate confounding. We will show this with an example due to Robins and
Richardson [2011]. Suppose A is a binary treatment variable, M is a potential
mediator and Y is the outcome. Let U be a latent variable that affects M(0)
and Y (1,m), as depicted in Figure 2.4 below.

The corresponding structural equations are

U = fU (εU ),

A = fA(εA),

M =

{
f1,M (εM ) if A = 1

f0,M (U, εM ) if A = 0
,

Y =

{
f1,Y (M,U, εY ) if A = 1

f0,Y (M, εY ) if A = 0
,
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where U is unobserved, fU , fA, f0,M , f1,M , f0,Y and f1,Y are deterministic
mappings and εU , εA, εM , εY are exogenous random variables.

A M

Y

M(1) M(0)

εM
U

εY

Y(1,1) Y(1,0)

Y(0,1) Y(0,0)

Figure 2.4: Causal diagram representing Example 3. This figure is based
on Figure 3 in Andrews and Didelez [2021] and Figure 11 in Robins and
Richardson [2011].

The counterfactuals are then

M(1) = f1,M (εM )

M(0) = f0,M (ε̃M )

Y (0,m) = f0,Y (m, εY )

Y (1,m) = f1,Y (m, ε̃Y )

where ε̃M is a combination of εM and the unobserved U , and similarly ε̃Y
is a combination of εY and U . It is seen that the cross-world assumption is
violated due to the lack of independence between ε̃M and ε̃Y .

2.3 Path-specific effects

The natural direct and indirect effects defined in Section 2.1 are special cases
of path specific effects. Using standard graph theory notation, let V be a set
of random variables with state space XV, and G(V) the corresponding DAG.

The literature on path specific effects defines the mediated effect as a set
of directed paths π in G(V) from the exposure to the outcome [Steen and
Vansteelandt, 2018, Shpitser, 2018]. If we let (W,A,M, Y ) be defined as in
Section 2.1 then the natural indirect effect can be fined as the set of paths
from A to Y through M . That is π = {A → M → Y }. The natural direct
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effect can be as the set of paths from A to Y not in π, i.e. the set of paths in
π̄ = {A → Y }.

Complete graphical conditions for identifiability of path-specific effects un-
der NPSEMs are given in Avin et al. [2005] and Shpitser [2013]. These identi-
fiability conditions rely on the notion of ‘recantation’. Specifically a variable L
is called a recanting witness for π if there exists a directed path from treatment
A to outcome Y of the form A → L → ... → Y in both π and π̄. Note that L
in Example 1 of Section 2.2 is a recanting witness. It was shown in Avin et al.
[2005] that if an only if there is no recanting witness then the path-specific
effect can be identified from the NPSEM representation of a specific DAG.
The result of Avin et al. [2005] holds for DAGs with no hidden variables. It
was extended models with unmeasured confounding by Shpitser [2013] using
a more general notion ‘recantation’ called a ‘recanting district’. In a hidden
variable DAG the complete graphical identification strategy states that when
E{(Y (a)} is identifiable, then every path specific effect for which there is no
recanting district is also identifiable.

In addition to providing a complete identification strategy for natural
(in)direct effect this graphical criterion can help identify alternative effect
decompositions which are identified from the data under a NPSEM repre-
sentation of a specific DAG. For instance in Example 1 of Section 2.2 while
the natural (in)direct effects are not identified, the π-specific effect with π =
{A → M → Y } can still be identified [Vanderweele et al., 2014]. The identifi-
cation strategy is also applicable to more complicated effect decompositions in
settings with multiple mediators or a repeatedly measured mediator Vanstee-
landt et al. [2019]. However like the natural (in)direct effects the definition of
path-specific effects rely on nested counterfactuals whose existence and iden-
tification remains controversial.

2.4 Alternative estimands

As we have seen in the section above, in addition to being impossible to empir-
ically verify, the cross-world independence assumption is often problematic to
justify, and in some situations the cross world quantity may not be well-defined
since it is not possible to set the mediator to a specific value.

In the following section will consider alternative approaches to causal medi-
ation analysis that redefine the causal estimand and thereby avoid cross-world
counterfactuals.

Interventionist direct and indirect effects

The concept of interventionist effects is based on the extended graphical ap-
proach by Robins and Richardson [2011], which was revisited by Robins et al.
[2021]. Instead of considering manipulations of the mediator independently of
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the treatment given, the method ‘extends the story’ by considering an inter-
vention that decomposes treatment into separate components.

More explicitly, suppose that treatment A has two separate components
that act through different causal pathways

- one component AM which only affects the outcome through it’s effect
on the mediator

- and one component AY which affects the outcome directly (not through
the mediator)

These treatment component are not observed, but we assume that, at least in
principle, an intervention exists where AY 6= AM .

In the setting considered in Section 2.1 this corresponds to the assumptions

S.1 M ⊥ AY | AT = a,W ,

S.2 Y ⊥ AM | M = m,AY = a,W ,

which are illustrated in Figure 2.5.

A

AY

AM

Y

M

Figure 2.5: Extended graph illustrating assumptions S.1 and S.2. Thick arrows
indicate deterministic relations.

Robins et al. [2021] define the separable direct effect (SDE) as

SDE : E
{
Y (AY = a,AM = a∗)− Y (AY = a∗, AM = a∗)

}
, (2.4)

and the separable indirect effect (SIE) as

SIE : E
{
Y (AY = a∗, AM = a)− Y (AY = a∗, AM = a∗)

}
. (2.5)

That is, the separable direct effect (2.4) is defined as the average difference in
outcome under AY = a and AY = a∗ when AM is fixed at a∗. Similarly the
separable indirect effect (2.5) is defined as the average difference in outcome
under AM = a and AM = a∗ when AY is fixed at a∗. Under assumptions
(A.1)-(A.3) of Section 2.1 and assumptions (S.1) and (S.2) the SDE and the
SIE are identified via the mediational g-formula in (2.3).
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As opposed to the natural (in)direct effects this definition of mediated
effects avoids reference to cross-world counterfactuals, and indentification re-
quires only single-world assumptions. However this comes at the cost the
separability assumption which may not always be appropriate.

This approach has been extended to settings with a survival outcome and
a repeatedly measured mediator by Didelez [2019] and Aalen et al. [2020]. It
was moreover extended to the competing risk setting by Stensrud et al. [2022,
2021] which we shall return to in Chapter 3.

Randomized interventional direct and indirect effects

A different approach defines the direct and indirect effect in terms of stochas-
tic interventions on the mediator distribution [Robins, 2003, van der Laan
and Petersen, 2008]. These types of effects have many names in the litter-
ature e.g. ‘standardized’ [Didelez et al., 2006, Geneletti, 2007], ‘randomized
interventional’ [Vanderweele et al., 2014, Vansteelandt and Daniel, 2017] or
‘stochastic’ [Rudolph et al., 2018] direct and indirect effects. We will use the
term randomized interventional (in)direct effects to decribe them. There are
subtle differences between the definitions that we will not dive into.

In general randomized interventional (in)direct effects are defined in terms
of potential outcomes where the exposure A is assigned to a level a and the
mediator is drawn from a distribution Γ.

Specifically consider the setting from Section 2.1 and let Γa∗(m | w) =
P (M(a∗) = m | W = w) be the conditional distribution of the mediator if
the exposure had been set to A = a∗. Consider an intervention where A is
set to a and we randomly draw M ∼ Γa∗ . Let Y (a,M ∼ Γa∗) denote the
resulting counterfactual outcome. Then the randomized interventional direct
effect (RDE) may be defined as

RDE : E
{
Y (a,M ∼ Γa∗)− Y (a∗,M ∼ Γa∗)

}
, (2.6)

and the randomized interventional indirect effect (RIE) as

RIE : E
{
Y (a∗,M ∼ Γa)− Y (a∗,M ∼ Γa∗)

}
. (2.7)

The RDE and RIE are identified under assumption A.1-A.3 of Section 2.1 via
the mediational g-formula (2.3).

Vanderweele et al. [2014] define and identify interventional (in)direct ef-
fects in the presence of an exposure induced mediator-outcome confounder.
Vansteelandt and Daniel [2017] extended this to the setting with multiple
mediators where the effects through each mediator are of interest.

VanderWeele and Tchetgen Tchetgen [2017] and Zheng and van der Laan
[2017] both proposed extensions of the interventional effects of Vanderweele
et al. [2014] to the setting with time-varying mediators and exposures. The
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proposals differ in their definitions of the interventional mediator distribu-
tions, and thus capture different effects. VanderWeele and Tchetgen Tchetgen
[2017] consider random draws from a marginal mediator distribution (condi-
tional on only baseline covariates) at a certain exposure level, whereas Zheng
and van der Laan [2017] consider random draws from a conditional media-
tor distribution at a certain exposure level. A limitation of the proposal of
VanderWeele and Tchetgen Tchetgen [2017] is that it does not immediately
generalize to time-to-event data because a person who is still alive would be
allowed to draw the mediator value of someone who has died.

Organic direct and indirect effects

A different approach by Lok [2016, 2020], Lok and Bosch [2011] consider so-
called ‘organic’ interventions that cause the mediator under treatment level a
to have the same distribution as the mediator under treatment level a∗ .

Specifically let I indicate an intervention on the mediator M . The inter-
vention is organic if

O.1: M(a, I = 1) ∼ M(a∗) ,

O.2: Y (a, I = 1) | M(a, I = 1) = m ∼ Y (a) | M(a) = m.

Assumption O.1 states that the distribution of the mediator under treatment
level a combined with the intervention I is the same as the distribution of the
mediator under A = a∗. Assumption O.2 says that the intervention I does
not affect the outcome directly. Then Lok [2016] defines the organic direct
effect (ODE) and organic indirect effects (OIE) as respectively

ODE : E {Y (a, I = 1)− Y (a∗)} , (2.8)

and

OIE : E {Y (a)− Y (a, I = 1)} . (2.9)

Under assumptions O.1-O.2 and A.1-A.3 the organic (in)direct effects are
identifiable from the data, and their identifying functional will can be obtained
via the mediational g-formula in (2.3).

In appendix F of Lok [2016] it is shown that the conditions in O.1-O.2
may also be expressed as conditional independence statements

O.1*: M ⊥ R | R 6= 1,

O.2*: Y ⊥ R | M = m,R 6= 0,

where R is an extended treatment variable described as follows: R = 0: treat-
ment 0, R = 1: treatment 1 and R = 2: treatment 1 combined with an



16 CHAPTER 2. MEDIATION ANALYSIS

organic intervention I on the mediator. Then the organic direct effect (ODE)
and organic indirect effects (OIE) can be defined as respectively

ODE : E {Y (R = 1)− Y (R = 2)} , (2.10)

and

OIE : E {Y (R = 2)− Y (R = 0)} . (2.11)

As with the previous approaches organic effects avoid cross-world assump-
tions, and the cross world independence assumption is replaced by another
structural assumption, namely that of the intervention being ‘organic’. The
organic effects are very similar to randomized interventionial effects in that
they are defined in terms of interventions on the mediator distributions. They
also share a lot of similarities with interventionist effects in that they can be
interpreted in terms of interventions on a hypothetical treatment variable.

Other approaches

The literature on causal mediation analysis is large and ever expanding. Many
interesting and useful approaches did not make it into this chapter.

Among those are the population intervention direct and indirect effects
[Díaz and Hejazi, 2020, Hejazi et al., 2022]. This method allows for stochastic
interventions on treatment such as incremental propensity score interventions
[Kennedy, 2019] which alter the odds of receiving the treatment. Such stochas-
tic interventions are sometimes more realistic than static interventions. More-
over this method is applicable to both categorical and continuous exposure
variables.

Another interesting approach is causal bounds [Cai et al., 2008, Kaufman
et al., 2005, Tchetgen Tchetgen and Phiri, 2014, Miles et al., 2015], which give
a range of possible values for the NDE and NIE without relying on the cross-
world assumption. Dukes et al. [2023] propose a proximal mediation method
which uses proxy variables to identify natural (in)direct effect when the no
unmeasured confounding assumptions in A.1-A.3 fail.





Chapter 3

(Causal) estimands in
survival analysis

In this chapter we give a short overview of the use of estimands in survival
analysis. This chapter is organized as follows. In Section 3.1 we give a brief
introduction to survival analysis. In Section 3.2 we discuss the causal inter-
pretation of the hazard ratio computed from the Cox regression model and
alternative model-free hazard-ratio estimands. In Section 3.3 we give an in-
troduction to competing risk analysis and in Section 3.4 we discuss the causal
interpretation of common estimands from the competing risks literature. We
also introduce the novel separable effects estimand of Stensrud et al. [2022]
which solves some of the interpretational problems of the classical estimands.

3.1 Survival analysis
Let T ∈ R+ be the survival time, and assume that we only observe the mini-
mum of T and C where C ∈ R+ is a censoring time. The survival time T can
also be represented through the counting process N(t) = I(T ≤ t) [Andersen
et al., 2012, Martinussen and Scheike, 2006, Aalen et al., 2008]. Let T̃ = T ∧C
denote the observed survival time and ∆ = I(T ≤ C) the failure indicator.
Let X ∈ Rq be a vector of covariates.

Let fT |X be the conditional density of T and let S(t | X) = P (T > t | X)
denote the conditional survival function. The distribution of T given X can
be characterized through the conditional hazard function

α(t | X) =
fT |X(t | X)

S(t | X)
= lim

dt→0

P (t ≤ T < t+ dt | T ≥ t,X)

dt
,

which can be interpreted as the instantaneous risk of failure at time t, given
that the individual survives up to t.

The most commonly used model in survival analysis is the proportional
hazards model of Cox [1972], which assumes that the conditional hazard rate
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has the form

α(t | X) = λ0(t) exp(β
TX)

where the baseline hazard function is left unspecified. The underlying assump-
tion is that the covariates have a proportional effect on the conditional hazard
where the strength of the association is measured by β.

3.2 Interpretation of the hazard ratio
Suppose X = (A,W ) where A is a treatment indicator and W is a vector of
baseline covariates. To evaluate treatment effects, the hazard ration (HR),
which is the ratio of hazard rates in the treatment group and the placebo
group, is typically reported

λ(t | A = 1,W )

λ(t | A = 1,W )
= exp(βA).

The Cox HR is a convenient summary measure of the treatment effect.
However there are several drawbacks regarding the interpretation of the Cox
HR.

One issue is that when the proportional hazards assumption does not hold,
the result depends on the underlying study-specific censoring distribution,
which is of no scientific interest [Struthers and Kalbfleisch, 1986, Whitney
et al., 2019]. To address this concern Vansteelandt et al. [2022] propose a
model-free hazard ratio estimand using an assumption-lean approach Vanstee-
landt and Dukes [2022]. This estimand is defined as

θ(P ) =
cov [g {S(t | X)} , X]

var(X)
.

If we use the link function g(x) = log{− log(x)} and S(t | X) is estimated from
a correctly specified Cox regression model then θ(P ) reduces to the standard
Cox HR, but it remains well-defined otherwise. Other model-free alternatives
to the Cox HR are the ‘average’ hazard ratio [Kalbfleisch and Prentice, 1981,
Schemper, 1992, Xu and O’Quigley, 2000, Uno and Horiguchi, 2023].

Another major drawback of the Cox HR is that, even in the absence of
model misspecification, it cannot be causally interpreted as a hazard ratio.
This was pointed out in Hernán [2010] and shown mathematically by Mart-
inussen et al. [2020]. This is partly due to the non-collapsability of the Cox
hazard ratio, and partly due to an underlying selection process making sub-
jects more and more frail as time progresses.

While the Cox HR cannot be interpreted as a hazard ratio it can has other
interpretations as shown in e.g. De Neve and Gerds [2020]. Moreover effect
measures derived from survival curves, e.g. survival differences or restricted
mean survival times, are easier to interpret causally.
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3.3 Competing risk model
A competing event is an event whose occurrence precludes the occurrence of
the primary event of interest. Let T ∈ R+ be an event time and let ε ∈
{1, ...,K} be the event type. For simplicity we consider a competing risk
setting with K = 2 causes where ε = 1 denotes the event of interest (Y) and
ε = 2 the competing event (D). Because of loss to follow-up, we only observe
the failure indicator ∆ = I(T ≤ C) and T̃ = T ∧C, where C denotes the right
censoring time. We assume that (T, ε) and C are conditionally independent
given the covariate vector X.

The competing risk model can be fully characterized by the cause-specific
conditional hazard functions

αk(t | X) = lim
dt→0

P (t ≤ T < t+ dt, ε = k | T ≥ t,X)

dt
, k ∈ {0, 1} (3.1)

This is the instantaneous risk of experiencing an event of type k given that
the individual has not yet experienced any event prior to time t.

A common summary measure is the so-called ‘crude risk’ or cumulative
incidence function P1(t | X) = P (T ≤ t, ε = 1 | X) which is related to the
cause-specific hazard function trough

P1(t | X) =

∫ t

0
α1(s | X)S(s− | X) ds, (3.2)

where S(t | X) = exp(−
∫ t
0

∑
k αk(s | X) ds).

We also have the relation

P1(t | X) = 1− exp(−
∫ t

0
λ∗
1(s | X) ds),

where λ∗
1 is the subdistribution hazard which defined as

λ∗
1(s | X) = lim

dt→0

P (t ≤ T < t+ dt, ε = 1 | (T ≥ t) ∪ (T ≤ t, ε 6= 1), X)

dt
.

(3.3)

Another summary measure is the ‘net risk’ or marginal cumulative inci-
dence defined as S1(t | X) = P (Y > t | X) which is related to the marginal
hazard

λ1(t | X) = lim
dt→0

P (t ≤ Y < t+ dt | Y ≥ t,X)

dt
, (3.4)

through the relation S1(t | X) = exp(−
∫ t
0 λ1(d | X) ds). The marginal hazard

function describes the instantaneous risk of experiencing the event of interest
given that a subject has not yet experienced the event of interest at time t.
Note that identification of the ‘net risk’ and the marginal hazard requires that
Y and D are conditionally independent given X.
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3.4 Causal interpretation of statistical estimands
in competing event settings

In a recent paper Young et al. [2020] discuss the causal interpretation of com-
mon estimands from the competing risk literature, and show that there are
many similarities between the competing event setting and the mediation set-
ting. In particular they clarify that the contrasts of the cumulative incidence
in (3.2) under different treatment levels can be interpreted as the total effect of
treatment on the event of interest. When the treatment affects the competing
event then the total effect includes the effect mediated through the compet-
ing event which makes the interpretation difficult. Young et al. [2020] also
clarify that the contrasts of the marginal cumulative incidence function un-
der different treatment levels can be interpreted as a controlled direct effects.
However this controlled direct effect is not well defined because it relies on an
unspecified intervention which eliminates the competing event. Furthermore
estimands derived from the cause-specific hazard (3.1) or the subdistribution
hazard (3.3) do not have a causal interpretation [Young et al., 2020, Hernán,
2010], and thus do not solve this interpretational problem.

A

AY

AD {N1(t)}

{N2(t)}

Figure 3.1: Causal diagram illustrating the separability assumptions. N1(t)
is a counting process which jumps when a subject experiences the event of
interest and N2(t) is a counting process which jumps at the competing event
time. Thick lines indicate a deterministic relationship.

To address these limitations of classical competing risk estimands Stensrud
et al. [2022] propose a novel estimand based on the concept of separable effects.
Inspired by the interventionist approach to mediation analysis of Robins and
Richardson [2011], Robins et al. [2021] decribed in Chapter 2 they propose
to consider a decomposition of the baseline treatment A into two separable
components AY and AD such that AY is the component which affects the
event of interest Y and AD the the component which only affect Y through
its effect on the competing event D.

Letting T (aY , aD) and ε(aY , aD) denote the counterfactual event time and
event type respectively under an intervention that sets AY to aY and AD to
aD we can define

P1(t, aY , aD) = P (T (aY , aD) ≤ t, ε(aY , aD) = 1),
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and we can define the separable direct effect (SDE) and separable indirect
effecr (SIE) as

SDE = P1(t, 1, 1)− P1(t, 0, 1), (3.5)

and
SIE = P1(t, 0, 1)− P1(t, 0, 0). (3.6)

That is, the SDE is the effect of treatment on the event of interest outside of
its effect on the competing event, and the separable indirect effect is the effect
of treatment on the event time of interest only through the competing event.

This method was extended to continuous time by Martinussen and Sten-
srud [2023] and to the setting with time-varying confounders of the event
of interest and the competing event in Stensrud et al. [2021]. Moreover it
has been applied to settings with recurrent events [Janvin et al., 2023] and
intercurrent events [Stensrud and Dukes, 2022].





Chapter 4

Overview of manuscripts

In this chapter we provide a brief overview of the three manuscripts, and relate
them to the methods presented in Chapters 2 and 3.

4.1 Manuscript I

Manuscript I: Breum, M. S., Munch, A., Gerds, T. A. and Marti-
nussen, T. (2023). Estimation of separable direct and indirect
effects in a continuous-time illness-death model. Lifetime Data
Analysis, 1-38.

In this manuscript we consider the problem of defining and estimating
(in)direct effects when both the outcome and the potential mediator are time-
to-event variables. In particular we assume that the mediator is a non-terminal
event (T1) corresponding to the time a subject enters the ‘illness’ state of the
illness-death model, and that the outcome is a terminal event time (T2) cor-
responding to the time a subject enter the ‘death’ state of an ‘illness-death’
model [Andersen et al., 2012]. The main challenge in defining causal media-
tion estimands in this setting is that the potential mediator is truncated by
the outcome, meaning that manipulations of the mediator are inconceivable.
The contribution of this manuscript is that we use the separable (interven-
tionist) effects approach [Robins and Richardson, 2011, Stensrud et al., 2022,
2021] described in Chapters 2 and 3 to define meaningful causal estimands.
Particularly we will assume that the baseline treatment indicator A can be
separated into two binary components which we will denote AI and AD, where
the component AI only affects the terminal event through it’s effect on the
intermediate event, and the component AD only affects the terminal event
directly. This is depicted in Figure 4.1.

Letting T2(a
D, aI) denote the counterfactual event times under an inter-

vention that sets AD to aD and AI to aI we can define the separable direct
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A

AI

AD {N13(t) +N23(t)}

{N12(t)}

Figure 4.1: Causal diagram illustrating the separability assumptions. N12(t)
is a counting process which jumps when a subject experiences the intermediate
event and N13(t) +N23(t) is a counting process which jumps at the terminal
event time. Thick lines indicate a deterministic relationship. This is a simpli-
fied version of Fig 2 in manuscript I.

effect
E {I(T2(1, 0) ≤ τ)} − E {I(T2(0, 0) ≤ τ)} ,

and the separable indirect effect

E {I(T2(1, 1) ≤ τ)} − E {I(T2(1, 0) ≤ τ)} .

In the manuscript we derive the identification assumptions which are neces-
sary to identify the separable (in)direct effects from the observed data. This
builds upon work by Martinussen and Stensrud [2023] who consider similar
causal estimands for the continous-time competing risk model. For estimation
we propose a one-step estimator based on the efficient influence function. We
show the robustness properties of the one-step estimator theoretically and we
verify it in a simulation study. In addition to being multiply robust the one-
step estimator is compatible with data-adaptive estimators of the transition
intensity functions, provided certain rate conditions hold. This was not ex-
plored further in Manucript I. In Munch et al. [2023] a method is presented for
estimating the transition intensity functions of the illness-death model based
on penalized Poisson regression.

4.2 Manuscript II

Manuscript II: Breum, M. S. and Palle, M. S. (2023). Estimation
of data-dependent (in)direct effects with a repeatedly measured
mediator and missing outcome data. To be submitted to Statistics
in Medicine.

In manuscript II we are motivated by the NASH phase II clinical trial con-
ducted by Novo Nordisk. The NASH trial was a randomized trial constructed
to evaluate the effect of Semaglutide on liver histology for patients suffering
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from non-alcoholic steatohepatitis (NASH), which is an advanced form of non-
alcoholic fatty liver disease. We were interested in decomposing the overall
effect of Semaglutide into the part which arises indirecly by inducing body
weight loss and the remaining direct effect of the drug. This is an example
of a longitudinal mediation problem as the potential mediator is measured
at multiple schedule visits during the study period. Particularly we expect
feedback between certain time-varying covariates and the mediator, and these
time-varying covariates may in turn be affected by treatment. As described in
Chapter 2 there are many approaches to defining causal mediation estimands
in the presence of post-treatment confounders. In this paper we take an ap-
proach based on interventional (in)direct effects which has been extended to
the longitudinal setting by VanderWeele and Tchetgen Tchetgen [2017] and
Zheng and van der Laan [2017]. We consider the effect decomposition pro-
posed by Zheng and van der Laan [2017] since we want to define the mediated
effect to include only paths directly from treatment to the mediator.

The contribution of our method compared to Zheng and van der Laan
[2017] is that we consider data-adaptive versions of the randomized interven-
tional (in)direct effects. That is we assume that the interventional mediator
distribution is known and estimated from the data. This somewhat alters
the interpretation of the (in)direct effects in the sense that it will depend on
the estimated mediator distribution in the specific study. Moreover the direct
and (in)direct effects are not guaranteed to provide a decomposition of the
total treatment effect. An advantage of the data-adaptive method that we
propose is that the effects are identified under slightly weaker identification
assumptions than the non-data-adaptive version. Moreover the efficient influ-
ence function does not depend on the conditional densities of the covariates.
For estimation we propose a longitudinal targeted minimum loss-based esti-
matior (LTMLE)[van der Laan and Rose, 2011, 2018]. We apply the method
to the NASH trial where we find no evidence of a direct effect of Semaglutide
on the primary endpoint not mediated through weight loss.

4.3 Manuscript III

Manuscript III: Breum, M. S. and Martinussen, T. (2023). Efficient
nonparametric estimators of discrimination measures with cen-
sored survival data. Under preparation.

The topics of manuscript III is estimation of concordance measures for
survival outcomes. Particularly we shall consider risk scores of the type Y =
βT (P )X where X are the available markers and β(P ) some estimand, that we
wish to evaluate in terms of their discriminatory power.

Some of the most widely used concordance measures in the medical liter-
ature are the C-index [Harrell et al., 1982, Harrell Jr et al., 1996], which, for
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to random subjects indexed by i and j, can be informally defined as

C = Pr(Y (i) ≥ Y (j) | i has event before j),

and concordance probability of Gönen and Heller [2005] which is informally
defined as

K = Pr(i has event before j | Y (i) ≥ Y (j)).

If one is interested in t-year predicted risk rather than overall risk a more
appropriate concordance measure is the t-year area under the receiver operat-
ing characteristic (ROC) curve (AUCt) [Heagerty et al., 2000, Heagerty and
Zheng, 2005, Blanche et al., 2013] which is informally defined as

AUCt = Pr(Yt(i) ≥ Yt(j) | i has event before t and j has event after t),

where Yt = βT
t (P )X.

We note that these concordance measures are not causal per se, but
this manuscript ties in with the rest of the thesis in that we use the ‘esti-
mand’ framework from causal inference. Particularly the contribution of the
manuscript is that we consider model free (non-parametric) definitions of the
three concordance measures above and derive the efficient influence functions.
We propose estimators based on the efficient influence function, which have
advantages over existing estimators in that they do not assume independent
censoring or rely on proportional hazards assumptions.

In addition to the concordance measures being defined non-parametrically
so should βt(P ). In the manuscript we define βt(P ) using the assumption lean
approach Vansteelandt and Dukes [2022], Vansteelandt et al. [2022] described
in Chapter 3.



Chapter 5

Discussion and perspectives

In this chapter, we discuss limitations of the methods proposed in manuscripts
I-III and we outline some possible topics for future research.

5.1 Separable direct and indirect effects with
time-varying covariates

One of the main weaknesses in manuscript I is that we do not allow for time-
varying covariates. Below we sketch how we believe that we can generalize
our results to allow for covariates measured at random times on a continuous
scale similar to the setting considerin in Rytgaard et al. [2022]:

Let N`,1(t) denote the counting process which jumps when we observe
changes of a covariate vector L(t) for patients in state 1, and similarly N`,2(t)
the counting process which jumps when we observe changes of L(t) for patients
in state 2. Further we let T (1)

`,1 < T
(2)
`,1 < ... < T

(N`,1(τ))
`,1 be the random times at

which the covariate process changes for patients in state 1 and T
(1)
`,2 < T

(2)
`,2 <

... < T
(N`,2(τ))
`,2 the random times at which the covariate process changes for

patients in state 2. Let µt() be the conditional density of covariates L(t)
at any time where N`,1(t) or N`,2(t) jumps, and let λ`,1() and λ`,2() be the
intensities of times where the covariates change for patients in state 1 and
state 2 respectively. To identify the target we will need the following modified
dismissible components conditions

λaD=1,aI

12 (t | Lt−) = λaD=0,aI

12 (t | Lt−) for aI ∈ {0, 1}

λaD,aI=1
13 (t | Lt−) = λaD,aI=0

13 (t | Lt−) for aD ∈ {0, 1}

λaD,aI=1
23 (t, t− r | Lt−) = λaD,aI=0

23 (t, t− r | Lt−) for aD ∈ {0, 1}

where Lt− is the history of the observed covariate process up to time t.
Some identification results for separable effects with time-varying con-

founding have been given in Stensrud et al. [2021] who define separable direct
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and indirect effects in a discrete-time competing risk model with time-varying
common causes of the event of interest and the competing event. We believe
that similar identification results may be relevant to our setting.

Particularly in the case where the covariate vector L(t) is affected by treat-
ment we need to decide whether L is directly affected by component AI or
AD or by something else like a third component. This means that the separa-
ble indirect effect will not necessarily reflect the effect mediated through the
intermediate event and nothing else.

5.2 Mediation analysis without overlap
One of the weaknesses of the method presented in manuscript II is that when
there no or limited overlap between the conditional mediator distributions in
the control and treatment arms the weights/clever covariates for the TMLE
algorithm may become very extreme.

In this case it might be of interest to estimate the following ‘generalized’
stochastic direct effect (GSDE)

GSDE(a, a′) =
{
Y (a,g∗)− Y (a′,g∗)

}
,

where g∗t is a stochastic mediator distribution that does not condition on A.
For instance we could consider

g∗t (Mt | L̄t, M̄t−1) =
∑
a

P (Mt | A = a, C̄t = 0, L̄t, M̄t−1)P (A = a | L0),

where we marginalize over A. The GSDE is the effect of treatment on the
outcome under an intervention that assigns the mediator to a random draw
from the same distribution in both treatment arms. Similar to the controlled
direct effect the GSDE does not have a complementary indirect effect. When
g∗ is assumed to be known and estimated from the data, then the GSDE can
be estimated using the framework developed in manuscript II.

A further extension of this is to identify the target with most support in
the data by choosing g∗ to minimize the dissimilarity

var
{
D∗(P )(a, g∗)(P )(O)−D∗(P )(a, gobs)(P )(O)

}
,

where gobs is the observed mediator distribution and D∗(P ) is the efficient
influence function derived in manuscript II.

5.3 Alternative concordance measures
One of the main criticisms of the concordance index (c-index) [Harrell et al.,
1982, Harrell Jr et al., 1996, Uno et al., 2011] apart from it not being proper
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[Blanche et al., 2019], is that it is not a very useful measure for evaluating
predictive accuracy when there are many low risk patients with similar risk
scores. This is because these patients will attenuate the concordance value
event when their difference in risk score is not clinically meaningful [Hartman
et al., 2023].

A possible extension of the c-index that addresses this criticism is the
modified concordance probability

κτ,ν(P ) = P (T2 > T1, T1 ≤ τ | FY (Y1) ≥ ν > FY (Y2)), (5.1)

for 0 < ν ≤ 1. By choosing a high value of ν we avoid making many compar-
isons between subjects with near average risk scores which could potentially
deflate the value of the concordance probability. Since it is not evident how
to best choose ν we suggest plotting κτ,ν for different values of ν.

The modified concordance probability can be written as

κτ,ν(P ) =
P (T2 > T1, T1 ≤ τ, FY (Y1) ≥ ν > FY (Y2))

P (FY (Y1) ≥ ν > FY (Y2)))

=

∫
y2<cν

∫
y1≥cν

hτ (y1, y2)dFY (y1)dFY (y2)∫
y2<cν

∫
y1≥cν

dFY (y1)dFY (y2)
,

where cν = F−1(ν) and hτ (y1, y2) =
∫ τ
0 S(t | y2)S(t | y1) dΛ(t | y1).

Using that the efficient influence function of cν is−f−1
Y (cν) {I(Y ≤ cν)− ν}

(see e.g. Hines et al. [2022] Appendix B) we can derive the efficient influence
function of κτ,ν(P ) similar to the approach in manuscript III.

The usefulness of this estimator in practice remains to be explored, and is
the topic of future research.

5.4 Mediation analysis in continous time
In important topic for future research is the extension of mediation analysis to
a a more general setting where we allow for the values of the time-dependent
exposure, mediator and confounders to be updated at random follow-up times.
An example of this type of data structure is cohort studies based on the
Danish Nationwide registries which contain daily updated vital status and
medical records on all persons residing in Denmark. Such settings have been
considered elsewhere (e.g. Rytgaard et al. [2022], Røysland et al. [2022] and
Lok et al.) but to our knowledge not in a mediation context.

One of the main challenges in the continuous-time setting is that subjects
potentially have different number of measurements of the mediator process.
Subjects with many measurements are likely different than subjects with few
measurements (e.g. more sick). More research is needed to explore which
assumptions are necessary to be able to distinguish between the effect of having
many measurements and the true mediated effect.
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Abstract
In this article we study the effect of a baseline exposure on a terminal time-to-
event outcome either directly or mediated by the illness state of a continuous-time 
illness-death process with baseline covariates. We propose a definition of the cor-
responding direct and indirect effects using the concept of separable (intervention-
ist) effects (Robins and Richardson in Causality and psychopathology: finding the 
determinants of disorders and their cures, Oxford University Press, 2011; Robins 
et al. in arXiv:​2008.​06019, 2021; Stensrud et al. in J Am Stat Assoc 117:175–183, 
2022). Our proposal generalizes Martinussen and Stensrud (Biometrics 79:127–139, 
2023) who consider similar causal estimands for disentangling the causal treatment 
effects on the event of interest and competing events in the standard continuous-
time competing risk model. Unlike natural direct and indirect effects (Robins and 
Greenland in Epidemiology 3:143–155, 1992; Pearl in Proceedings of the seven-
teenth conference on uncertainty in artificial intelligence, Morgan Kaufmann, 2001) 
which are usually defined through manipulations of the mediator independently of 
the exposure (so-called cross-world interventions), separable direct and indirect 
effects are defined through interventions on different components of the exposure 
that exert their effects through distinct causal mechanisms. This approach allows us 
to define meaningful mediation targets even though the mediating event is truncated 
by the terminal event. We present the conditions for identifiability, which include 
some arguably restrictive structural assumptions on the treatment mechanism, and 
discuss when such assumptions are valid. The identifying functionals are used to 
construct plug-in estimators for the separable direct and indirect effects. We also 
present multiply robust and asymptotically efficient estimators based on the efficient 
influence functions. We verify the theoretical properties of the estimators in a simu-
lation study, and we demonstrate the use of the estimators using data from a Danish 
registry study.

Keywords  Separable effects · Illness-death model · Survival analysis · Mediation 
analysis · Causal inference
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1  Introduction

Mediation analysis is an important tool in medical and epidemiological research for 
understanding the mechanisms that contribute to the overall effect of a treatment or 
exposure on an outcome of interest. Within the causal inference literature on media-
tion analysis, the target estimands of interest are often the natural (pure) direct and 
indirect effects (Robins and Greenland 1992; Pearl 2001), which together provide a 
nonparametric decomposition of the total treatment effect. A comprehensive over-
view of mediation analysis methods from a causal inference perspective can be 
found in VanderWeele (2015).

In this paper we study a continuous-time illness-death process where the potential 
mediator is the illness state. We are interested in the direct and indirect effect of a 
baseline exposure on the terminal event, adjusted for a set of pre-exposure covari-
ates. This type of target estimand is often relevant when analysing real world data. 
We shall illustrate our method using a Danish registry study investigating the effects 
of dual antiplatelet therapy (DAPT) after myocardial infarction (MI) or stroke on 
mortality. DAPT is a treatment that combines aspirin and a second antiplatelet agent, 
which is often prescribed to MI or stroke patients to prevent blood clotting. It is well 
known that DAPT is associated with a lower risk of a recurrent cardiovascular event 
(Wallentin et al. 2009) which in turn is associated with increased mortality; this is 
the indirect effect of interest. At the same time DAPT has other effects that are asso-
ciated with increased mortality, most notably it increases the risk of gastrointestinal 
bleeding (Kazi et  al. 2015; Dinicolantonio et  al. 2013); this is the direct effect of 
interest.

The conventional definition of natural direct and indirect effects is based on so-
called cross-world quantities which require that we manipulate the mediator for each 
exposed individual to what would have occurred under non-exposure. Such quan-
tities are not well defined in the illness-death setting since the mediator is effec-
tively undefined when the terminal event occurs before the mediating event. This 
has implications for formulating the causal mediation targets of interest.

The term ‘semi-competing risks’ is often used in the literature when the outcome 
of interest is a non-terminal event that competes with a terminal time-to-event (Fine 
et al. 2001). We find that the definition of this term is unclear as discussed in Sten-
srud et al. (2021), and will refrain from using it in this paper. We will use the term 
"truncation" to describe the phenomenon when occurrence of the terminal event 
renders the intermediate event undefined, and the term "illness-death process" to 
describe the underlying data structure.

The challenges that arise when defining mediation targets for the illness-death 
models are similar to the well known challenges that arise when defining mediation 
targets for a survival outcome with a time-dependent mediator. Recent approaches in 
the literature redefine the target of interest beyond that of natural direct and indirect 
effects using randomized interventions (Zheng and van der 2017; Lin et al. 2017), 
path-specific effects (Vansteelandt et al. 2019) or separable effects (Didelez 2019; 
Aalen et  al. 2020). While the setting in these papers is more general in that they 
allow for adjustment for time-varying covariates, they assume that the mediator 
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process is measured at discrete time-points, and are thus not directly applicable to 
our setting where we allow the mediator process to change in continuous time.

Similar to Didelez (2019) and Aalen et al. (2020) we propose a definition of the 
direct and indirect effects using a treatment separation approach which is commonly 
referred to as the ‘separable effects’ approach (Stensrud et al. 2022, 2021) or ‘inter-
ventionist’ approach (Robins and Richardson 2021) to causal mediation analysis. 
Based on an idea by Robins and Richardson (2011) this approach considers a hypo-
thetical treatment decomposition under which it is possible to consider manipula-
tions of the mediator independently of the treatment given. This is done by assuming 
that treatment has two binary components, a ‘direct’ one which is thought to affect 
the terminal event directly, and an ‘indirect’ one which only affects survival through 
it’s effect on the intermediate event, and that the two components can be intervened 
upon separately. This makes it possible to define meaningful mediation targets even 
when the mediating event is truncated by death. The aim of this paper is to show 
how this approach can be applied to the continuous-time illness-death setting, and to 
derive estimators using semiparametric theory. In particular, the identifiability con-
ditions and estimators we propose in this paper are an extension of Martinussen and 
Stensrud (2023), who consider similar causal targets and estimators in a continuous-
time competing risk model.

The paper is organized as follows: In Sect.  2 we introduce the irreversible ill-
ness-death model as a stochastic process and describe the observed data structure. 
In Sect. 3 we formulate the targets of interest and present the identifiability condi-
tions. In Sect. 4 we derive the efficient influence functions and establish their multi-
ple robustness properties. We also suggest two estimators: a plug-in estimator based 
on the identifying functional and a one-step estimator based on using the efficient 
influence function as an estimating equation. We examine the performance of the 
estimators in a simulation study in Sect. 5. Section 6 illustrates the methods in the 
Danish registry data application. In Sect.  7 we provide further discussion. Proofs 
and additional technical details are given in the Appendices.

2 � Setting and notation

2.1 � Illness‑death model

We consider an irreversible illness-death model, as depicted in Fig.  1. Following 
Andersen et  al. (2012) the illness-death model is a stochastic process {X(t)}t∈[0,∞) 
with right-continuous sample paths and state space {1, 2, 3} , where state 1 is the ini-
tial ‘healthy’ state, state 2 is the intermediate ‘illness’ state and state 3 corresponds 
to the absorbing state ‘death’. We assume that X(0) = 1 , i.e. all subjects start in the 
initial ‘healthy’ state. We further assume that 2 → 1 transitions are not possible, i.e. 
the process is irreversible. In our DAPT example a patient enters state 1 when expe-
riencing a myocardial infarction (MI) for the first time. The patient stays in state 1 
until they either die or experience a recurrent cardiovascular event. In the latter case 
the patient moves to state 2 where they remain until death.
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We define time until the subject leaves state 1 T1 = inft>0{X(t) ≠ 1} and time 
until death T2 = inft>0{X(t) = 3} . In addition to T1 and T2 we define the indicator

That is, � = 1 corresponds to X(T1) = 2 and X(T2) = 3 , and � = 0 corresponds to 
X(T1) = X(T2) = 3.

Then the hazards for the transitions between states 1 → 2 , 1 → 3 and 2 → 3 , 
respectively, are defined as follows

2.2 � Data structure

Let A ∈ {0, 1} be a baseline treatment indicator, and W ∈ W = ℝ
d a vector of base-

line covariates. The full uncensored data are Z = {T2, T1, �,A,W} ∼ Q where Q is a 
probability distribution belonging to a non-parametric statistical model Q . Let � be 
the density of W and �(⋅ ∣ W) be the conditional distribution of A given W which we 
will refer to as the propensity score. The underlying density q of the data Z under Q 
factorizes as follows

where

𝜂 =

{
1 if T1 < T2
0 if T1 = T2

.

𝜆12(t) = lim
dt→0

Pr(T1 ≤ t + dt, 𝜂 = 1 ∣ T1 > t)

dt
,

𝜆13(t) = lim
dt→0

Pr(T1 ≤ t + dt, 𝜂 = 0 ∣ T1 > t)

dt
,

𝜆23(t, t − r) = lim
dt→0

I(r ≤ t)
Pr(T2 ≤ t + dt ∣ T2 > t, T1 = r)

dt
.

(1)

q(t, r, �, a,w) =
{
�12(r ∣ a,w)�23(t, t − r ∣ a,w)S2(t− ∣ r, a,w)

}�{
�13(r ∣ a,w)

}1−�

× S1(r− ∣ a,w)�(a ∣ w)�(w),

Fig. 1   Illness-death model without recovery
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for

That is, S1 is the survival probability for the patients in state 1 and S2 is the survival 
probability for patients in state 2.

We also let N13(s) = I(T2 ≤ s, � = 0) , N12(s) = I(T1 ≤ s, � = 1) and 
N23(s) = I(T2 ≤ s, � = 1) denote the full-data counting processes corresponding to 
the transitions between states 1 → 3 , 1 → 2 and 2 → 3 , respectively. In our DAPT 
example N13 is the counting process which jumps when a patient in the study dies 
without having a recurrent cardiovascular event. Further N12 jumps when a patient 
experiences a recurrent cardiovascular event, and N23 jumps when when a patient in 
the study dies having experienced a recurrent cardiovascular event.

2.3 � Right censoring

We allow for right censoring with C̃ denoting the censoring variable cor-
responding to the time that an individual would be lost to followup. Under 
right censoring we only observe T̃1 = T1 ∧ C̃ , T̃2 = T2 ∧ C̃ and the indicators 
𝛿 = I(T2 < C̃) and 𝜂̃ = I(T̃1 < T̃2) . The observed data may then be represented as 
O = {T̃2, 𝛿, T̃1, 𝜂̃,A,W} ∼ P where P belongs to a non-parametric statistical model P.

We may also define the observed-data counting processes Ñ13(s) = I(T̃2 ≤ s, 𝜂̃ = 0, 𝛿 = 1) , 
Ñ12(s) = I(T̃1 ≤ s, 𝜂̃ = 1) and Ñ23(s) = I(T̃2 ≤ s, 𝜂̃ = 1, 𝛿 = 1) corresponding to the 
observed transitions between states 1 → 3 , 1 → 2 and 2 → 3 , respectively.

We make the coarsening at random (CAR) assumption, i.e., we assume that the 
coarsening probabilities only depend on the data as a function of the observed data. 
This assumption is stated more formally in Appendix A. Under CAR we can define 
the increments of the censoring martingale

where

is the censoring counting process corresponding to the observed censored observa-
tions up to and including time s, and

S1(t ∣ a,w) = exp
{
−Λ12(t ∣ a,w) − Λ13(t ∣ a,w)

}
,

S2(t ∣ r, a,w) = exp
{
−Λ23(t, t − r ∣ a,w)

}
,

Λ12(t ∣ a,w) = ∫
t

0

�12(s ∣ a,w) ds, Λ13(t ∣ a,w) = ∫
t

0

�13(s ∣ a,w) ds,

Λ23(t, t − r ∣ a,w) = ∫
t

r

�23(s, s − r ∣ a,w) ds.

dMC̃{u,O} = dNC̃(u) − 𝜆C̃{s;O}I(C̃ > s) ds,

dNC̃(s) = I(s ≤ C̃ < s + ds, T1 > C̃) + I(s ≤ C̃ < s + ds, T1 < C̃ ≤ T2)

𝜆C̃{s;O}I(C̃ > s) = I(T̃1 > s)𝛼C̃,1(s ∣ A,W) + I(T1 ≤ s < T̃2)𝛼C̃,2(s ∣ T1,A,W)



	 M. S. Breum et al.

1 3

is the corresponding censoring intensity. We also define

which are the probabilities of being uncensored for patients in state 1 and state 2, 
respectively.

3 � Separable direct and indirect effects

To define our estimand of interest we will use the concept of separable effects (Rob-
ins and Richardson 2011; Robins et al. 2021; Stensrud et al. 2022), which was briefly 
introduced in Sect.  1. This approach to mediation analysis moves the focus from 
intervening on the mediator process, which is conceptually problematic in the illness-
death setting, to interventions on different components of the treatment A. To make 
the treatment decomposition more explicit we will think of the treatment A as having 
two binary components which we will denote AI and AD . As depicted in Fig. 2 we 
will assume that the component AI only affects the terminal event through it’s effect 
on the intermediate event, and that the component AD only affects the terminal event 
directly. We will think of the corresponding four-arm trial as our ‘target trial’ and 
will define our target parameters based on the counterfactual variables defined by this 
target trial. In the observed data we have either AD = AI = 1 or AD = AI = 0 , but we 
presume that an intervention is possible where AD ≠ AI , i.e. the components could be 
set to different values. If such treatment components are assumed to exist and appro-
priate identification assumptions hold, then it is not necessary to conduct the four arm 
target trial. In fact the target parameters may be identified from the observed two-arm 
trial under the assumptions stated in Lemma 1 below.

This way of thinking about mediation analysis in terms of ‘separable effects’ can 
be useful when investigators want to know whether a specific mechanism of exposure 
is associated with the outcome. Often the hypothesis of interest concerns a specific 
‘active ingredient’ of the exposure which may be difficult or impossible to measure.

In our example from Sect. 1 DAPT has been shown to have a protective effect 
on recurrent cardiovascular events, and is therefore often prescribed to MI or stoke 

KC̃,1(u ∣ a,w) = exp

{
−∫

u

0

𝛼C̃,1(s ∣ a,w) ds

}
,

KC̃,2(v ∣ u, a,w) = exp

{
−∫

v

u

𝛼C̃,2(s ∣ u, a,w) ds

}
,

Fig. 2   An informal causal 
diagram illustrating the relation-
ship between the treatment 
components and the counting 
processes. The thick edges indi-
cate a deterministic relationship
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patients. However DAPT is also associated with an increased risk of major bleed-
ing (Wallentin et al. 2009). One of the primary forms of bleeding is gastrointestinal 
bleeding due to ulcers (Kazi et al. 2015; Dinicolantonio et al. 2013). We can then 
imagine a hypothetical treatment component AD which has the same effect as DAPT 
on mortality, but lacks any effect on cardiovascular events, and a hypothetical treat-
ment component AI which has the same effect as DAPT on cardiovascular events 
but no direct effect on mortality. These treatment components do not necessarily 
correspond to meaningful real-world quantities. However, it can sometimes be use-
ful to imagine them as hypothetical combination treatments. Assuming that gastro-
intestinal bleeding is the main effect of DAPT besides it’s effect on cardiovascular 
outcomes, the AI component would correspond to a modified treatment that does 
not promote ulcers. In practice, a drug that combines DAPT with an additional drug 
that promotes healing of ulcers and thereby nullifies the harmful effect DAPT may 
resemble this hypothetical treatment. For instance a recent Danish registry study has 
shown that proton pump inhibitors (PPI’s) can induce ulcer healing among patients 
treated with DAPT (Sehested et al. 2019).

It is important to note that the validity of the approach does not depend on whether 
the treatment components correspond to meaningful real life quantities. The validity of 
the approach does however depend crucially on the assumption that the two treatment 
components can be manipulated separately which is a strong assumption.

3.1 � Parameter of interest

For j = 1, 2 we let TaD,aI

j
 denote the counterfactual event times under an intervention 

that sets AD to aD and AI to aI and let Ta
j
 denote the counterfactual event times under 

an intervention that sets A = a in the observed two-arm trial.
Then, the separable direct effect (SDE) and separable indirect effect (SIE) of the 

illness-death model are respectively defined as

and

where E(⋅) denotes expectations computed under the data-generating distribution.
That is, the SDE is the counterfactual contrast under AD = 1 and AD = 0 when 

AI is fixed at some level aI . The SIE is the counterfactual contrast under AI = 1 and 
AI = 0 when AD is fixed at aD.

Note that the separable direct and indirect effect add up to the total treatment 
effect

(2)SDE(�, aI) = E
{
I(T1,aI

2
≤ �)

}
− E

{
I(T0,aI

2
≤ �)

}
for aI ∈ {0, 1},

(3)SIE(�, aD) = E
{
I(TaD,1

2
≤ �)

}
− E

{
I(TaD,0

2
≤ �)

}
for aD ∈ {0, 1}.

(4)
TE(�, a) =SDE(�, a) + SIE(�, 1 − a) = E

{
I(T1,1

2
≤ �)

}

− E
{
I(T0,0

2
≤ �)

}
for a ∈ {0, 1}.
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3.2 � Identifiability conditions

In order to identify the parameters of the target trial given in Eqs. (2)–(3) from the 
observed two-arm trial we need the following assumptions

Lemma 1  (Identifiability) Suppose the following assumptions hold 

A.0	� We assume that the interventions are such that 

A.1	� Conditional exchangeability: 

A.2	� Consistency: If an individual is observed to receive treatment A = a , then 

A.3	� Positivity: 

 and 

 and 

A.4	� Dismissible components conditions: for all t ∈ ℝ, r ∈ ℝ

 where �a
D,aI

ij
(⋅) denotes the transition hazards of the counterfactual illness-death 

process under an intervention that sets AD = aD and AI = aD.

Under assumptions A.1–A.4 we have,

T
AD=a,AI=a

j
= Ta

j
for j = 1, 2

Ta
j
= Tj for j = 1, 2

𝜇(w) > 0 ⇒ 𝜋(a ∣ W = w) > 0 for a ∈ {0, 1} and w ∈ W,

P(T1 > t ∣ W = w) > 0 ⇒

P(T̃1 > t,A = a ∣ W = w) > 0 for a ∈ {0, 1}, t < 𝜏 and w ∈ W,

P(T2 > t > T1, T1 = r ∣ W = w) > 0 ⇒

P(T̃2 > t > T1,T1 = r,A = a ∣ W = w) > 0 for a ∈ {0, 1}, r < t < 𝜏 and w ∈ W.

�a
D=1,aI

12
(t ∣ W = w) = �a

D=0,aI

12
(t ∣ W = w) for aI ∈ {0, 1}, Δ1

�a
D,aI=1

13
(t ∣ W = w) = �a

D,aI=0

13
(t ∣ W = w) for aD ∈ {0, 1}, Δ2

�a
D,aI=1

23
(t, t − r ∣ W = w) = �a

D,aI=0

23
(t, t − r ∣ W = w) for aD ∈ {0, 1}. Δ3

(5)E
{
I(TaD,aI

2
≤ �)

}
= �(P;�, aD, aI) ∶= E

{
P13(�, a

D, aI ,W)

}
,
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where

for

Consequently, the separable direct and indirect effects are identified to

and

Proof  In Appendix B. 	�  ◻

Assumption A.0 is a separable effects analog of the consistency assumption. 
Assumption A.1–A.3 are standard assumptions for causal inference. Assump-
tion A.4 is the so-called dismissible components conditions, which is an exten-
sion of the dismissible components conditions in Martinussen and Stensrud 
(2023) to the illness-death setting. In particular, assumption ( Δ1 ) states that 
the counterfactual hazards of the 1 → 2 transition are equal under all values 
of aD , and assumption ( Δ2 ) states that the counterfactual hazards of the 1 → 3 
transition are equal under all values of aI . Lastly assumption ( Δ3 ) states that 
the counterfactual hazards of the 2 → 3 transition are equal under all values 
of aI . When the treatment components correspond to meaningful real-world 
treatments, the dismissible components conditions are empirically verifiable 
in future trials.

The dismissible components conditions are violated if the AD and AI compo-
nents cannot be manipulated separately. In our DAPT example this would be the 
case if the biological pathways through which the medication affects MI or stroke 
is intertwined with the pathways through which it affects bleeding. The dismissible 
components conditions are also violated if there is an unmeasured common cause 
of the risk the intermediate and the terminal event. This is similar to the classi-
cal ‘no unmeasured mediator-outcome confounding’ assumption which is needed 
to identify natural (in-)direct effects. In our DAPT example this would be the case 
if there is an unmeasured common cause of cardiovascular events such as MI or 
stroke, and death.

4 � Estimation

In this section we address the question of how to construct estimators of the esti-
mand in Eq. (5). Efficient influence functions (EIFs) are an important concept in 
statistical theory for constructing estimators of causal parameters with desirable 
properties. In particular estimators based on the EIF are locally efficient (Bickel 

P13(�, a
D, aI ,W) =1 − Ω�(a

D, aI ,w) − ∫
�

0

S2(�|r, aD,W)Ωr(a
D, aI ,w) dΛ12(r|aI ,W),

Ωr(a
D, aI ,w) = exp

{
−Λ12(r ∣ a

I ,w) − Λ13(r ∣ a
D,w)

}
.

(6)SDE(�, aI) = �(P;�, 1, aI) − �(P;�, 0, aI),

(7)SIE(�, aD) = �(P;�, aD, 1) − �(P;�, aD, 0).
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et  al. 1993). Moreover they often exhibit multiple robustness properties in the 
sense that consistency of the estimator is preserved under misspecification of one 
or more components of the data distribution. Further, they are compatible with 
data adaptive estimation of nuisance parameters provided certain rate conditions 
hold.

In this paper we focus on the first two properties and assume (semi-)para-
metric models for the nuisance parameters. In particular, in what follows, we let 
Λ̂12,n , Λ̂13,n , Λ̂23,n , Λ̂C̃,n , 𝜋̂n denote (semi-)parametric estimators for the relevant 
components of the data distribution, and we let Λ∗

12
 , Λ∗

13
 , Λ∗

23
 , Λ∗

C̃
 , �∗ and denote 

the large sample limits in probability of the (possibly misspecified) estimators. 
We let Q∗ and P∗ denote the corresponding distributions of Z and O respec-
tively. If our working model for Λ12 is correctly specified then Λ∗

12
= Λ12 and 

the same holds for Λ13 , Λ23 , ΛC̃ and �.
In Sect. 4.1 we derive the efficient influence function. In Sect. 4.2 we propose two 

types of estimators. The first is a ‘plug-in’ type estimator constructed by substituting 
estimators for the relevant part of the data distribution directly into (5). The second is 
a multiply robust estimator which uses the efficient influence function as an estimat-
ing equation. In Sect. 4.3 we provide details on how to construct estimators of their 
asymptotic variance.

4.1 � Efficient influence function

Below we derive the EIF of the separable direct and indirect effects under a non-
parametric model. We first derive the full-data efficient influence function and then, 
assuming CAR and Assumptions A.0–A.4 hold, map it to the observed data efficient 
influence function using results given in Tsiatis (2006). We also establish general 
multiple robustness properties that will be satisfied by any estimator which solves 
the EIF estimating function.

Full-data efficient influence function
Let � ∶ Q → ℝ , where Q∗

→ �(Q∗;�, aD, aI) = E∗
{
I(TaD,aI

2
≤ �)

}
 and E∗(⋅) 

denotes the expectation computed under Q∗ . In Appendix C we show that the effi-
cient influence function for � at Q∗ is given by

(8)

𝜓̃(Q∗)(Z;𝜏, aD, aI ) =
I(A = a

I )

𝜋∗(aI ∣ W) ∫
𝜏

0

h
∗
12,𝜏

(s, aD, aI ,W) dMF∗
12
(s, aI ,W)

S
∗
1
(s ∣ aI ,W)

+
I(A = a

D)

𝜋∗(aD ∣ W)

{
∫

𝜏

0

h
∗
13,𝜏

(s, aD, aI ,W) dMF∗
13
(s, aD,W)

S
∗
1
(s ∣ aD,W)

+
𝜂h∗

23,𝜏
(T1, a

D, aI ,W)

S
∗
1
(T1 ∣ a

D,W) ∫
𝜏

T1

dMF∗
23
(s, T1, a

D,W)

S
∗
2
(s ∣ T1, a

D,W)

}

+ P
∗
13
(𝜏, aD, aI ,W) − 𝜓(Q∗;𝜏, aD, aI ),
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with

and

and where dMF∗
ij

 denote the full-data martingale increments under Q∗

Lemma 2  (Multiple robustness) The full-data efficient influence function admits a 
multiple robust structure in the sense that E{𝜓̃(Q∗)(Z)} = 𝜓(Q) − 𝜓(Q∗) if one of 
the following holds 

	 (i)	 �∗(a ∣ w) = �(a ∣ w),Λ∗
12
(r ∣ a,w) = Λ12(r ∣ a,w) and 

Λ∗
23
(t, t − r ∣ a,w) = Λ23(t, t − r ∣ a,w) for all t, r ∈ [0, �] , a ∈ {0, 1} and almost 

all w,
	 (ii)	 �∗(a ∣ w) = �(a ∣ w),Λ∗

13
(t ∣ a,w) = Λ13(t ∣ a,w) and 

Λ∗
23
(t, t − r ∣ a,w) = Λ23(t, t − r ∣ a,w) for all t, r ∈ [0, �] , a ∈ {0, 1} and almost 

all w,
	 (iii)	 �∗(a ∣ w) = �(a ∣ w),Λ∗

12
(t ∣ a,w) = Λ12(t ∣ a,w) and 

Λ∗
13
(t ∣ a,w) = Λ13(t ∣ a,w) for all t ∈ [0, �] , a ∈ {0, 1} and almost all w.

Proof  In Appendix E. 	�  ◻

The multiple robustness properties stated in the lemma above imply that 
the full-data influence function 𝜓̃(Q∗)(Z) is a consistent estimating function of 
�(Q) when at most one of the transition intensities is inconsistently estimated.

Observed-data efficient influence function Let � ∶ P → ℝ , where 
P∗

→ �(P∗;�, aD, aI) = E∗
{
I(TaD,aI

2
≤ �)

}
 . In Appendix D we show that the 

observed data efficient influence function is given by

h∗
1j,�

(s, aD, aI ,w) =Ω∗
�
(aD, aI ,w) + ∫

�

s

S∗
2
(� ∣ r, aD,w)Ω∗

r
(aD, aI ,w) dΛ∗

12
(r ∣ aI ,w)

+

{
−S∗

2
(� ∣ s, aD,w)Ω∗

s
(aD, aI ,w), when j = 2

0, when j = 3
,

h∗
23,�

(s, aD, aI ,w) =
�∗
12
(s ∣ aI ,w)

�∗
12
(s ∣ aD,w)

Ω∗
s
(aD, aI ,w)S∗

2
(� ∣ s, aD,w),

dMF∗
13
(s,A,W) = dN13(s) − 𝜆∗

13
(s ∣ A,W)I(T1 > s) ds,

dMF∗
12
(s,A,W) = dN12(s) − 𝜆∗

12
(s ∣ A,W)I(T1 > s) ds,

dMF∗
23
(s,T1,A,W) = dN23(s) − 𝜆∗

23
(s, s − T1 ∣ A,W)I(T1 ≤ s < T2) ds.
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with dM∗
ij
(⋅) denoting the observed-data martingale increments under P∗

Lemma 3  (Multiple robustness) The observed-data efficient influence function 
admits a multiple robust structure in the sense that E{𝜓̃(P∗)(O)} = 𝜓(P) − 𝜓(P∗) if 
one of the following holds 

	 (i)	 𝜋∗(a ∣ w) = 𝜋(a ∣ w),Λ∗

C̃
{t ∣ Gs(z)} = Λ

C̃
{t ∣ Gs(z)},Λ

∗
12
(r ∣ a,w) = Λ12(r ∣ a,w)  a n d 

Λ∗
23
(t, t − r ∣ a,w) = Λ23(t, t − r ∣ a,w) for all t, r ∈ [0, �] , a ∈ {0, 1} and 

almost all w,
	 (ii)	 𝜋∗(a ∣ w) = 𝜋(a ∣ w),Λ∗

C̃
{t ∣ G

s
(z)} = Λ

C̃
(t ∣ G

s
(z)),Λ∗

13
(t ∣ a,w) = Λ13(t ∣ a,w) and 

Λ∗
23
(t, t − r ∣ a,w) = Λ23(t, t − r ∣ a,w) for all t, r ∈ [0, �] , a ∈ {0, 1} and 

almost all w,
	 (iii)	 𝜋∗(a ∣ w) = 𝜋(a ∣ w),Λ∗

C̃
{t ∣ G

s
(z)} = Λ

C̃
{t ∣ G

s
(z)},Λ∗

12
(t ∣ a,w) = Λ12(t ∣ a,w) and 

Λ∗
13
(t ∣ a,w) = Λ13(t ∣ a,w) for all t ∈ [0, �] , a ∈ {0, 1} and almost all w,

	 (iv)	 Λ∗
12
(r ∣ a,w) = Λ12(r ∣ a,w),Λ

∗
13
(t ∣ a,w) = Λ13(t ∣ a,w) and Λ∗

23
(t, t − r ∣ a,w) =

Λ23(t, t − r ∣ a,w) for all t, r ∈ [0, �] , a ∈ {0, 1} and almost all w.

Proof  In Appendix F. 	�  ◻

This means that when the censoring distribution is correctly specified the same 
multiple robustness properties hold as in the full-data case. The censoring model 
and propensity score are allowed to be misspecified when all three transition 
intensites are correctly specified.

Efficient influence functions of the separable direct and indirect effects

(9)

𝜓̃(P∗)(O;𝜏, aD, aI)

=
I(A = aI)

𝜋∗(aI ∣ W) ∫
𝜏

0

h∗
12,𝜏

(s, aD, aI ,W)

K∗

C̃,1
(s ∣ aI ,W)

dM∗
12
(s, aI ,W)

S∗
1
(s ∣ aI ,W)

+
I(A = aD)

𝜋∗(aD ∣ W)

{
∫

𝜏

0

h∗
13,𝜏

(s, aD, aI ,W)

K∗

C̃,1
(s ∣ aD,W)

dM∗
13
(s, aD,W)

S∗
1
(s ∣ aD,W)

+
𝜂̃h∗

23,𝜏
(T̃1, a

D, aI ,W)

S∗
1
(T̃1 ∣ a

D,W)K∗

C̃,1
(T̃1 ∣ a

D,W) ∫
𝜏

T̃1

dM∗
23
(s, T̃1, a

D,W)

S∗
2
(s ∣ T̃1, a

D,W)K∗

C̃,2
(s ∣ T̃1, a

D,W)

}

+ P∗
13
(t, aD, aI ,W) − 𝜓(P∗;t, aD, aI),

dM∗
12
(s,A,W) = dÑ12(s) − 𝜆∗

12
(s ∣ A,W)I(T̃1 > s) ds,

dM∗
13
(s,A,W) = dÑ13(s) − 𝜆∗

13
(s ∣ A,W)I(T̃1 > s) ds,

dM∗
23
(s, T̃1,A,W) = dÑ23(s) − 𝜆∗

23
(s, s − T̃1 ∣ A,W)I(T̃1 ≤ s < T̃2) ds.
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Consider the mappings P∗
→ �SDE(P∗;�, aD, aI) = �(P∗;�, 1, aI) − �(P∗;�, 0, aI) 

for aI ∈ {0, 1} and P → �SIE(P∗;�, aD, aI) = �(P∗;�, aD, 1) − �(P∗;�, aD, 0) for 
aD ∈ {0, 1} . It follows by the functional delta method that the efficient influence 
functions of the separable direct and indirect effects in (6) and (7) are given by 
respectively

and

and will inherit the multiple robustness properties established in Lemma 3.

4.2 � Estimators

Plug-in (G-computation) estimator
A plug-in estimator estimates the relevant part of the distribution of O, in this 

case the empirical distribution of W and appropriate estimators Λ̂12,n, Λ̂13,n and 
Λ̂23,n of the transition intensities, and substitutes them in place of the unknown 
quantities in Eq. (5). Then one obtains the estimator

where

Equation (5) is also known as the G-computation formula (Robins 1986), and the 
estimator in (10) is also referred to as a G-computation estimator. Note that consist-
ency of Ψ̂Plug-in

n (t, aD, aI) depends on consistency of the estimators of all three transi-
tion intensities.

One-step estimator 
As mentioned above the efficient influence function is useful for constructing 

multiply robust efficient estimators. One way of doing this is to use the influence 
function directly as an estimating equation (van der and Robins 2003). Since the 
EIF in equation (9) is linear in the parameter of interest, this results the estimator:

where

𝜓̃SDE(P∗)(O;𝜏, aI) = 𝜓̃(P∗)(O;𝜏, 1, aI) − 𝜓̃(P∗)(O;𝜏, 0, aI), for aI ∈ {0, 1},

𝜓̃SIE(P∗)(O;𝜏, aD) = 𝜓̃(P∗)(O;𝜏, aD, 1) − 𝜓̃(P∗)(O;𝜏, aD, 0), for aD ∈ {0, 1},

(10)Ψ̂Plug-in
n

(𝜏, aD, aI) = n−1
n∑
i=1

P̂13(𝜏, a
D, aI ,Wi),

P̂13(𝜏, a
D, aI ,W) = P13(𝜏, a

D, aI ,W;Λ̂12,n, Λ̂13,n, Λ̂23,n).

(11)Ψ̂one-step
n

(𝜏, aD, aI) = n−1
n∑
i=1

𝜑(𝜋̂n, Λ̂12,n, Λ̂13,n, Λ̂23,n, Λ̂C̃,n)(Oi;𝜏, a
D, aI),
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The estimator in (11) is multiply robust. In particular it is consistent under misspeci-
fication of (i) Λ12 , (ii) Λ13 , (iii) Λ23 or (iv) � and ΛC̃ as shown in Lemma 3.

Note that we can write:

This approach is also referred to as a so-called ‘one-step’ bias correction approach 
(Ibragimov and Has’minskii 1981; Pfanzagel and Wefelmeyer 1985), and we will 
refer to the estimator in (11) as a ‘one-step’ estimator.

4.3 � Asymptotic variance

If all nuisance models are correctly specified, then a consistent estimator of the 
asymptotic variance can be obtained from the variance of the influence function. 
However if one or more of the nuisance models are misspecified then this variance 
estimator is no longer consistent, and other techniques must be used.

Suppose we are willing to assume fully parametric models for all nuisance param-
eters. Then we can derive the asymptotic distribution of the estimators in (10) and 
(11) by stacking the corresponding unbiased estimating equations for the target and 
nuisance parameters, and applying standard estimating equation theory (Stefanski 
and Boos 2002). In particular, let 𝜃̂n be the estimators of the parameters of interest 
and nuisance parameters that solves

n−1
∑n

i=1
m(Oi, 𝜃̂n) = 0 where m(O, �) are the stacked estimating equations of both 

the parameter of interest and nuisance parameters. For the plug-in estimator in (10) 
this would be 𝜃̂n = (Ψ̂Plug-in, Λ̂12,n, Λ̂13,n, Λ̂23,n) and m(O, �) = (P13, SΛ12

, SΛ13
, SΛ23

) 
where SΛ12

, SΛ13
, SΛ23

 are appropriate estimating equations for the transition hazards. 
Under suitable regularity conditions (Newey and McFadden 1994; van der Vaart 
2000; Tsiatis 2006), we have

It is then possible to derive an analytic expression for the asymptotic variance of the 
estimators in (10) and (11) using the sandwich variance estimator.

When the nuisance models are e.g. Cox regression models we need to take into 
account the variability of the baseline hazards which may be nonparametrically esti-
mated. Then the asymptotic distribution can be derived using the functional delta 
method (van der Vaart 2000). This expression becomes very complicated, especially 
for the one-step estimator, and deriving an explicit estimator of the variance goes 
beyond the scope of this paper.

𝜑(P)(O;𝜏, aD, aI) = 𝜓̃(P)(O;𝜏, aD, aI) + 𝜓(P;t, aD, aI)

𝜑(𝜋̂n, Λ̂12,n, Λ̂13,n, Λ̂23,n, Λ̂C̃,n)(O;𝜏, a
D, aI)

= 𝜓̃(𝜋̂n, Λ̂12,n, Λ̂13,n, Λ̂23,n, Λ̂C̃,n)(O;𝜏, a
D, aI) + Ψ̂G-comp

n
(𝜏, aD, aI).

n1∕2(𝜃̂ − 𝜃∗) ⇝ N

(
0,E

{
−
𝜕m(O, 𝜃∗)

𝜕𝜃T

}−1

var{m(O, 𝜃∗)}E

{
−
𝜕m(O, 𝜃∗)

𝜕𝜃T

}−1T
)
.
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5 � Simulation study

5.1 � Simulation study 1: empirical performance

Below, we report the results from a simulation study where the aim is to compare 
the finite sample performance of the plug-in estimator and the one-step estimator.

The data was generated by the following simulation procedure:

W ∼ Uniform(0, 1)

A ∣ W ∼ Bernoulli(expit(−0.5 +W + �W2))

T1 ∣ A,W ∼ Exponential(�12 + �13) with �12 = 0.039 ⋅ exp(log(2)W + A + �12AW) 
and �13 = 0.026 ⋅ exp(log(2)W + 0.5A + �13(1 − A)W)

� ∣ A,W ∼ Bernoulli(�1∕(�1 + �2))

T2 = T1 + � ⋅ U with U ∼ Exponential(�23) where �23 = 0.052 ⋅ exp (log(2)W+

0.5A + �23(1 − A)W)

C̃ ∣ W ∼ Exponential(𝜆C̃) with 𝜆C̃ = 0.035 ⋅ exp(𝜃W)

where expit(x) = {1 + exp(x)}−1 . Note that this corresponds to a scenario where 
treatment has a protective effect on both disease and death, and where the treatment 
effect on death is the same in diseased and disease-free subjects.

An estimator for the propensity score was constructed using a logistic regression 
model with main effects only. For the transition hazards we constructed estimators 
using a Cox regression model with main effects only and for the censoring hazard 
we used a Cox model with no covariate effects. The dependency of Λ23 on the time 
of reaching state 2 was handled by delayed entry. We considered 8 different sce-
narios: in scenario (i) all nuisance models were correctly specified which is the case 
when (� , �12, �13, �23, �) = 0 , and in scenarios (ii)–(viii) we considered misspecifi-
cations of different combinations of the nuisance models by varying the values of 
(� , �12, �13, �23, �) accordingly. Additional details on the misspecified scenarios are 
given in Appendix G.

For each scenario we generated 1000 datasets from the simulation procedure with 
a sample size of 400. For each dataset we computed the plug-in estimator and the 
one-step estimator for the SDE along with the bootstrap variance for each estima-
tor based on 250 replicates. The results of our simulation study are summarized in 
Figs. 3 and 4 where for all scenarios we report bias, empirical standard error, cover-
age of the 95 % Wald confidence interval and accuracy of the standard error estima-
tor computed at time points t ∈ {1, 5, 10, 15, 20, 25}.

As expected both the plug-in estimator and the one-step estimator are consist-
ent in scenario (i) where all nuisance models are correctly specified and scenario 
(ii) were the propensity score and censoring models are misspecified. Moreover the 
coverages are close the nominal level. In scenarios (iii)–(v) where we consider mis-
specifications of at most one of the transition hazard models the one-step estimator 
provides a bias reduction over the plug-in estimator, as predicted by the multiple 
robustness properties in Lemma 3. In scenarios (vi)–(viii) where we consider mis-
specifications that go beyond the robustness properties of lemma 3 both the plug-in 
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estimator and the one-step estimator are biased, except in scenario (vi) where the 
plug-in estimator surprisingly appears unbiased. The one-step estimator is more var-
iable than the plug-in estimator throughout all scenarios.

This simulation study confirms the double robustness properties of the one-step 
estimator derived in Sect.  4.1, which, along with the potential compatibility with 
data-adaptive estimation of nuisance parameters, highlights the real-word utility of 
the one-step estimator.

Fig. 3   Comparison of the G-computation (white rectangles) and one-step (black triangles) estimators of 
the SDE computed at time points t ∈ {2, 5, 10, 15, 20, 25} in terms of bias, empirical standard error, cov-
erage of 95% confidence intervals and accuracy of the standard error estimator. This figure contains sce-
narios (i)–(iv) (Color figure online)
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5.2 � Simulation study 2: violation of assumptions

The dismissible components conditions in Lemma 1 are violated in the presence of 
an unmeasured common risk factor for illness and death. Below, we study such vio-
lations in a simulation study.

The data was generated by the following simulation procedure:

Fig. 4   Comparison of the G-computation (white rectangles) and one-step (black triangles) estimators of 
the SDE computed at time points t ∈ {2, 5, 10, 15, 20, 25} in terms of bias, empirical standard error cov-
erage of 95% confidence intervals and accuracy of the standard error estimator. This figure contains sce-
narios (v)–(vii) (Color figure online)
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W ∼ Bernoulli(0.5)

AD ∣ W ∼ Bernoulli(expit(−0.5 +W))

AI ∣ W ∼ Bernoulli(expit(−0.5 +W))

U ∼ Bernoulli(0.6)

T1 ∣ A
D,AI ,W ∼ Exponential(�12 + �13) with 

�12 = 0.039 ⋅ exp(log(2)W + �12
A
AI + �UU) and 

�13 = 0.026 ⋅ exp(log(2)W + �13
A
AD + �UU)

� ∣ AD,AI ,W ∼ Bernoulli(�1∕(�1 + �2))

T2 = T1 + � ⋅ V  with V ∼ Exponential(�23) with 
�23 = 0.052 ⋅ exp(log(2)W + �13

A
AD + �UU)

C̃ ∼ Exponential(𝜆C̃) with 𝜆C̃ = 0.035

We varied �U along the grid {−1,−0.9, ..., 0.9, 1} and considered the four cases: (I) 
Protective treatment effect on disease and death, (II) Protective effect on disease 
and harmful effect on death, (III) Harmful effect on disease and protective effect on 
death and (IV) Harmful treatment effect on disease and death.

We constructed an estimator for the propensity score using a correctly specified 
logistic regression model. The censoring hazard was estimated using a Cox model 
with no covariate effects. The remaining nuisance models were estimated using Cox 
regression models adjusted for main effects of the observed variables. We gener-
ated 1000 datasets with a sample size of n = 1000 . For each dataset we computed 
the plug-in estimator and the one-step estimator for the SDE evaluated at time point 
t = 15 . The results are depicted in Fig. 5. It is seen that the bias increases with the 
magnitude of the association with the unmeasured common risk factor U. The direc-
tion of the bias depends on the effect of treatment on illness: when the treatment has 
a protective effect on disease the estimator is downwards biased, and when the treat-
ment has a harmful effect on disease the bias is positive.

6 � Real data application

Using data from the Danish nationwide registries we identified all hospital admis-
sions for first time acute myocardial infarction (MI) between 2010 and 2014. To 
get a more homogeneous study population we only included patients who were 
treated with a Percutaneous Coronary Intervention (PCI). We also excluded 
patients with a preexisting alcohol abuse diagnosis or chronic kidney disease 
diagnosis and patients younger than 30 years or older than 100 years of age. 
We set the index date for inclusion at 30 days following discharge and excluded 
patients who died prior to the index data. We defined the treatment arm as those 
patients who picked up a prescription for DAPT before the index date and the 
placebo group as those who did not. Patients who were still alive by the end of 
2019 were administratively censored. Among the 16,081 patients in the study 
population 3856 patients had a recurrent cardiovascular event (defined as a hospi-
tal diagnosis of MI, stroke or heart failure) and were subsequently censored, 968 
patients died within follow-up without having a recurrent cardiovascular event 
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and 1385 patients experienced a recurrent cardiovascular event and subsequently 
died within followup.

The cumulative hazard curves in Fig. 6 suggest that treatment reduces both risk of 
recurrent cardiovascular event, overall mortality and death without recurrent cardio-
vascular event. To access how much of the effect of DAPT on mortality was mediated 
through recurrent cardiovascular events we estimated the separable direct and indi-
rect effects. That is, we assume that the treatment has two components that could in 
principle be manipulated separately: one component AI which only affects the risk of 
recurrent cardiovascular event directly and another component AD which affects mor-
tality through other pathways. A possible interpretation of these treatment components 
was discussed in Sect. 3. We can then define the separable indirect effect as the effect 
under an intervention that fixes the treatment component affecting affecting mortal-
ity through other pathways than recurrent cardiovascular events but varies the treat-
ment component affecting cardiovascular events. Similarly we can define the separable 
direct effect as the effect that fixes the treatment component affecting cardiovascular 
events and varies the component affecting mortality through other pathways.

We estimated the separable effects using the plug-in estimator and the one-step 
estimator presented in Sect.  4.2. Both estimators used semi-parametric working 
models for the nuisance parameters. In particular, we used Cox regression models 
for the three transition hazards. The models were adjusted for baseline age, sex, 
hypertension diagnosis, prior gastrointestinal bleeding, diabetes, chronic liver dis-
ease, cancer, atrial fibrillation, Anemia, prior heart failure or stroke. We computed 
Wald-type point-wise confidence intervals based on 500 bootstrap data sets.

Fig. 5   Bias of the plug-in (white rectangles) and one-step (black triangles) estimators of the SDE com-
puted at time points t = 15 under violation of the identification assumption
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The results of our analysis are presented in Figs.  7 and 8. In addition to the 
separable direct and indirect effects we have also depicted the total effect, c.f., 
Eq. (4).

Our results suggest that the treatment reduces mortality both through recurrent 
cardiovascular events and through other pathways. That is, within the limitations 
of our study, we can conclude that the modified treatment that fixes the com-
ponent affecting mortality through other pathways than recurrent cardiovascular 
events does not capture the entire protective effect of the treatment. In fact a sub-
stantial fraction of the protective effect of DAPT on mortality is a direct effect.

We recognize several potential limitations with our study. First, we likely have 
confounding by indication in that frail individuals are less likely to be prescribed 
the treatment. Therefore the drug will appear more effective than it actually is, 
also on non-cardiovascular mortality. This phenomenon is notoriously difficult 
to adjust for because of unmeasured confounding. Second, comorbidities such 
as diabetes status are essentially time-varying covariates. It is a major limita-
tion of our method that we only adjust for baseline covarites. Third, a potential 
issue is that many cardiovascular events go undetected or are not entered into 

Fig. 6   Nelson–Aalen estimates of the cumulative hazards of MI (top left), overall mortality (top right) 
and death without recurrent MI (bottom) in our cohort. The red curves are the treatment arm and the 
black curves are the placebo arm. Along with the hazards (solid lines) are shown 95% confidence inter-
vals (dashed lines) (Color figure online)
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the registries e.g. when a patient dies suddenly without prior hospital admission. 
Finally, the overall risk of bleeding, which is the main side effect of DAPT, is 
very low.

7 � Discussion

7.1 � Relation to other approaches

The main difficulty when formulating causal mediation targets in the illness-death 
model is that the mediating event is truncated by the terminal event. In this paper we 
proposed causal mediation estimands using the concept of separable effects, which 
considers interventions on separate components of the treatment instead of interven-
tions on the mediator. This approach avoids the conceptual issues that arise when 
the terminal event occurs before the mediator, rendering the mediator undefined. 

Fig. 7   Estimates of the separable direct effect (SDE), separable indirect effect (SIE) and total effect (TE) 
using the one-step estimator. Solid lines represent effect estimates and dashed lines the corresponding 95 
% point-wise confidence intervals

Fig. 8   Estimates of the separable direct effect (SDE), separable indirect effect (SIE) and total effect (TE) 
using the plug-in estimator. Solid lines represent effect estimates and dashed lines the corresponding 95 
% point-wise confidence intervals
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However, this comes at the cost of assuming that the treatment components can be 
manipulated separately, which may not always be appropriate.

Depending on the causal question at hand there are other approaches in the lit-
erature that may be useful for defining mediation targets in the illness-death model.

Valeri et al. (2021) propose randomized interventional direct and indirect effects. 
Instead of considering manipulations of the mediator, they consider stochastic inter-
ventions on the intermediate time-to-event distribution conditional on baseline 
covariates. The authors then define the ‘stochastic direct effect’ as the difference in 
survival across exposure groups under a stochastic intervention that fixes the inter-
mediate time-to-event distribution to be the same in both exposure groups. The ‘sto-
chastic indirect effect’ is defined as the difference in survival within an exposure 
group when the intermediate time-to-event distribution is varied. Their approach 
result in the same identifying functionals as in our paper, but under different identifi-
ability conditions. Thus the target parameter in our paper can also be interpreted as 
an interventional effect.

A different alternative is principal stratification which has often been advocated in 
the presence of truncation (Zhang and Rubin 2003; Comment et al. 2019). A recent 
paper by Gao et al. (2021) proposes a principal stratification approach for defining 
causal mediation effects in the subgroup where the intermediate event will happen 
before the potential terminal event when given either of two treatment options. This 
strata corresponds to a multistate model where only the transition from the ‘healthy’ 
state to the ‘illness’ state and from the ‘illness’ state to ‘death’ are involved, an thus 
their approach leads to a different identifying functional than the one in our paper. 
This method avoids the issues that arise when death occurs prior to the non-terminal 
event. However a limitation is that the empirical usefulness of the estimand is debat-
able since the subgroup for which the estimand is defined can never be observed.

Huang (2021) proposes a method for causal mediation with ‘semicompeting risk 
data’, based on counterfactual counting processes for the latent intermediate event 
and the terminal event. To circumvent the undefinability of the intermediate event 
the author assumes that if the intermediate event does not occur before the terminal 
event it would never occur within follow-up. The paper was accompanied by a num-
ber of commentaries (Stensrud et al. 2021; Fulcher et  al. 2021; Chan et al. 2021) 
which argue that the identification assumptions are too restrictive for most practical 
contexts. As the authors do not use a classical illness-death model framework, it is 
not clear to us how their identifying functional is connected to ours.

7.2 � Conclusion and possible extensions

In this paper we proposed causal estimands for the separable direct and indirect 
effects of a baseline exposure on a terminal time-to-event outcome mediated by the 
illness state of a continuous-time illness-death process. We proposed a plug-in esti-
mator based on the identifying functional, and a one-step estimator which solves 
the efficient influence function. We showed that the one-step estimator is multiply 
robust under appropriate regularity conditions, and we confirmed these theoretical 
properties in a simulation study which showed an impressive performance of the 
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one-step estimator. To illustrate our method we applied the estimators to a Danish 
registry data set to study how much of the effect of DAPT on mortality was medi-
ated through stroke or MI.

As mentioned in Sect. 6 a major limitation of our work is that we have only con-
sidered the case of baseline covariates, ignoring the possibility of changes during 
the followup period. Such changes are present in most real-word data including the 
DAPT example. Extending the method to handle time-varying covariates is thus an 
important topic for future research. We believe that our method can be generalized 
to allow for covariates measured at random times on a continuous scale similar to 
the setting considered in Rytgaard et al. (2022). Since the time-varying confound-
ers are potentially affected by treatment one would need to consider a more general 
notion of separable effects as described in Stensrud et al. (2021) who define sepa-
rable direct and indirect effects in a discrete-time competing risk model with time-
varying common causes of the event of interest and the competing event.

Another important topic for future research is the use of data-adaptive estimation 
of the nuisance parameters in the illness-death model. Our focus in this paper has 
been on (semi-)parametric models for the nuisance parameters. However, to avoid 
misspecification of the nuisance models one may wish to use estimators that are 
more flexible. The one-step estimator derived in this article is compatible with such 
data-adaptive estimators, provided certain rate conditions hold.

Finally, in this paper we have limited our attention to the illness-death model 
where the terminal event death is the outcome of interest. Often the outcome of 
interest is not a terminal event, and both the mediator and the outcome are subject 
to competing risk from death. A natural extension of our work is to consider an 
‘extended illness-death model’ with a fourth state representing the competing event.

Appendices

Appendix A: CAR​
Appendix B: Proof of Lemma 1 (identifiability)
Appendix C: Derivation of full-data EIF
Appendix D: Derivation of observed-data EIF
Appendix E: Proof of Lemma 2 (multiple robustness of full-data EIF)
Appendix F: Proof of Lemma 3 (multiple robustness of observed-data EIF)
Appendix G: Simulation details

A CAR​

This censoring mechanism induces monotone coarsening (Gill et al. 1997; Tsia-
tis 2006). Building upon the continuous-time monotone coarsening framework of 
Tsiatis (2006) Chapter  9.3 we introduce a so-called coarsening variable C . The 
coarsening variable is a continuous random variable which is equal to the censor-
ing time when C̃ < T1 or T1 < C̃ ≤ T2 , and equal to ∞ when the data is uncensored. 



	 M. S. Breum et al.

1 3

Let � be a time horizon chosen such that there exists 𝜖 > 0 with P(C̃ > 𝜏) > 𝜖 > 0 . 
For any time r ∈ [0, �] we define the set

In particular, when C = r we observe the many-to-one mapping

and the observed data may be expressed as

The coarsening mechanism is monotone since Gr(Z) ⊆ Gr� (Z) for r > r′ . Following 
Tsiatis (2006) Chapter 9.3 the CAR assumption is formally defined by

where the coarsening hazard may be written

That is, if we assume (12),

{r ≤ C < r + dr} = {r ≤ C̃ < r + dr, C̃ < T1} ∪ {r ≤ C̃ < r + dr, 𝜂 = 1, T1 < C̃ ≤ T2}.

Gr(Z) =

⎧⎪⎨⎪⎩

(T1 ≥ r, T2 ≥ r,A,W) if r < T1
(𝜂 = 1, T1, T1 < r, T2 ≥ r,A,W) if 𝜂 = 1 and T1 < r ≤ T2
(T1, 𝜂, T2,A,W) if r = ∞

,

O =
{
C,GC(Z)

}
.

(12)�C(r;Gr(Z)) = �C(r;Z),

𝜆C(r;Z) = lim
dr→0

P(r ≤ C ≤ r + dr ∣ C ≥ r, Z)

dr

= lim
dr→0

P(C̃ ≤ r + dr, T1 > C̃ ∣ (C̃ ≥ r, T1 > C̃) ∪ (C̃ ≥ r, T1 < C̃ ≤ T2) ∪ (T2 < C̃), Z)

dr

+ lim
dr→0

P(C̃ ≤ r + dr, T1 < C̃ ≤ T2 ∣ (C̃ ≥ r, T1 > C̃) ∪ (C̃ ≥ r, T1 < C̃ ≤ T2) ∪ (T2 < C̃), Z)

dr

=I(T1 > r) lim
dr→0

P(C̃ ≤ r + dr, T1 > C̃ ∣ C̃ ≥ r, Z)

dr
���������������������������������������������������������

∶=𝛼
C̃,1(r;Z)

+ I(T1 < r ≤ T2) lim
dr→0

P(C̃ ≤ r + dr, T1 < C̃ ≤ T2 ∣ T1 < r ≤ C̃, Z)

dr
�����������������������������������������������������������������������������

∶=𝛼
C̃,2(r;Z)

.

I(T1 > r)𝛼C̃,1(r;Z) = I(T1 > r)𝛼C̃,1(r ∣ A,W),

I(T1 < r ≤ T2)𝛼C̃,2(r;Z) = I(T1 < r ≤ T2)𝛼C̃,2(r ∣ T1,A,W),
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where

B Proof of Lemma 1

All transition probabilities of the illness-death model can be expressed in terms of the 
hazards for the transitions (see e.g. Putter et al. (2007)). For instance, the probability of 
going from state 1 directly to state 3, within a time interval (s, t], can be expressed as

where we have omitted the baseline covariates for now.
The probability of going from state 1 to state 3 moving through state 2, within a time 

interval (s, t], can be expressed as

Then

where the last equality follows using ∫ t

r
exp

{
− ∫ s

r
�23(u, u − r) du

}
�23(s, s − r) ds

= 1 − exp
{
− ∫ t

r
�23(u, u − r) du

}
.

Then

𝛼C̃,1(r ∣ A,W) = lim
dr→0

P(C̃ ≤ r + dr, T1 > C̃ ∣ T̃2 ≥ r,A,W)

dr
,

𝛼C̃,2(r ∣ T1,A,W) = lim
dr→0

P(C̃ ≤ r + dr, T1 < C̃ ≤ T2 ∣ T1 < r ≤ T̃2, T1,A,W)

dr
.

Pr(T2 ≤ t, 𝜂 = 0 ∣ T1 > s) = �
t

s

exp

[
−�

r

s

{
𝜆12(u) + 𝜆13(u)

}
du

]
𝜆13(r) dr,

Pr(T2 ≤ t, 𝜂 = 1 ∣ T1 > s) = �
t

s

[
�

t

r

exp

{
−�

s

r

𝜆23(u, u − r) du

}
𝜆23(s, s − r) ds

]

exp

[
−�

r

s

{
𝜆12(u) + 𝜆13(u)

}
du

]
𝜆12(r) dr.

(13)

Pr(T2 ≤ t) =Pr(T2 ≤ t, 𝜂 = 0 ∣ T1 > 0) + Pr(T2 ≤ t, 𝜂 = 1 ∣ T1 > 0)

=�
t

0

exp

[
−�

r

0

{
𝜆12(u) + 𝜆13(u)

}
du

]{
𝜆12(r) + 𝜆13(r)

}
dr

− �
t

0

exp

{
−�

t

r

𝜆23(u, u − r) du

}
exp

[
−�

r

0

{
𝜆12(u) + 𝜆13(u)

}
du

]
𝜆12(r) dr

=1 − exp

[
−�

t

0

{
𝜆12(u) + 𝜆13(u)

}
du

]

− �
t

0

exp

{
−�

t

r

𝜆23(u, u − r) du

}
exp

[
−�

r

0

{
𝜆12(u) + 𝜆13(u)

}
du

]
𝜆12(r) dr.



	 M. S. Breum et al.

1 3

The first equality is by the law of iterated expectations. The second equality follows 
by using the representation in Eq. (13) under an intervention that sets AD = aD and 
AI = aI . The third equality follows by applying the dismissible components condi-
tions. The last equality follows by applying A.0–A.3.

C Full data EIF

Let Q� be a parametric submodel with parameter � ∈ ℝ which passes through Q at 
� = 0 . The corresponding tangent space TF is the closure of the linear span of the 
scores of the parametric submodels. Due to the factorization of the probability dis-
tribution of the full-data density in (1) we can write this as the orthogonal sum

where

In particular the score on the parametric submodel can be written

E

{
I(Ta

D ,aI

2
≤ �)

}
=E

[
E

{
I(Ta

D ,aI

2
≤ �) ∣ W

}]

=E

[
1 − exp

{
−Λa

D ,aI

12
(�|W) − Λa

D ,aI

13
(�|W)

}

− �
�

0

exp
{
−Λa

D ,aI

23
(�, � − r|W)

}
exp

{
−Λa

D ,aI

12
(r|W) − Λa

D ,aI

13
(r|W)

}
dΛa

D ,aI

12
(r|W)

]

=E

[
1 − exp

{
−Λa

I ,aI

12
(�|W) − Λa

D ,aD

13
(�|W)

}

− �
�

0

exp
{
−Λa

D ,aD

23
(�, � − r|W)

}
exp

{
−Λa

I ,aI

12
(r|W) − Λa

D ,aD

13
(r|W)

}
dΛa

I ,aI

12
(r|W)

]

=E

[
1 − exp

{
−Λ12(�|aI ,W) − Λ13(�|aD,W)

}

− �
�

0

S2(� ∣ r, aD,W) exp
{
−Λ12(r|aI ,W) − Λ13(r|aD,W)

}
dΛ12(r|aI ,W)

]
.

TF = TF
1
⊕ TF

2
⊕ TF

3
⊕ TF

4

TF
1
=

{
∫ �(u,A,W)dMF

13
(u,A,W) for all functions �(u, a,w)

}

T
F
2
=

{
∫ �(u,A,W)dMF

12
(u,A,W) for all functions �(u, a,w)

}

T
F
3
=

{
� ∫ �(u, T1,A,W)dMF

23
(u, T1,A,W) for all functions �(u, r, a,w)

}

TF
4
= {�(A,W) ∈ H ∶ E[�(A,W)] = 0}

�
�
Z
(z;0) = � log q(z;�)∕�� ∣�=0=�

�
W
(w;0) + �

�
A∣W

(a ∣ w;0) + �
�
13
(t1, � ∣ a,w;0)

+ �
�
12
(t1, � ∣ a,w;0) + �

�
23
(t2, t2 − t1, � ∣ a,w;0)
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where ��
W
(w;�) = �∕�� log�(w;�) , ��

A∣W
(w ∣ a;�) = �∕�� log �(a ∣ w;�) and

and

and

By Riesz’ representation theorem the efficient influence function can be character-
ized as any element 𝜓̃ ∈ T

F which is a pathwise derivative of the target parameter in 
the sense that

for any one-dimensional submodel Q� with corresponding score �′
Z
.

Note that under the nonparametric model we have that the full-data tangent space is 
the entire Hilbert space L2

0
(Q) of measurable, mean-zero functions of Z equipped with 

the covariance inner product. Then any pathwise derivate will trivially be contained in 
T
F . Hence we only need to check that the proposed EIF in (8) satisfies (14).

Consider first the left-hand side of (14). We may write

�
�
12
(T1, 𝜂 ∣ A,W;0) =

𝜕

𝜕𝜀

{
𝜂 log 𝜆12(T1 ∣ A,W;𝜀) − ∫

T1

0

𝜆12(u ∣ A,W;𝜀) du

}|||||𝜀=0
=𝜂

𝜕

𝜕𝜀

{
𝜆12(T1 ∣ A,W, 𝜀)

}
∣𝜀=0

𝜆12(T1 ∣ A,W;0)

− ∫
𝜕

𝜕𝜀

{
𝜆12(T1 ∣ A,W, 𝜀)

}
∣𝜀=0

𝜆12(T1 ∣ A,W;0)
𝜆12(u ∣ A,W)I(T1 > u) du

=∫
𝜕

𝜕𝜀

{
𝜆12(s ∣ A,W, 𝜀)

}
∣𝜀=0

𝜆12(s ∣ A,W;0)
dMF

12
(s,A,W),

�
�
13
(T1, � ∣ A,W;0) =

�

��

{
(1 − �) log �13(T1 ∣ A,W;�) −∫

T1

0

�13(u ∣ A,W;�) du

}|||||�=0
= ∫

�

��

{
�13(s ∣ A,W, �)

}
∣�=0

�13(s ∣ A,W;0)
dMF

13
(s,A,W),

�
�
23
(T2, T2 − T1, � ∣ A,W;0) =

�

��

{
� log �23(T2, T2 − T1 ∣ A,W;�)

−� ∫
T2

T1

�23(u, u − T1 ∣ A,W;�) du

}|||||�=0
=� ∫

�

��

{
�23(s, s − T1 ∣ A,W, �)

}
∣�=0

�23(s, s − T1 ∣ A,W;0)
dMF

23
(s,T1.A,W).

(14)
𝜕𝜓(Q𝜀)

𝜕𝜀

|||||𝜀=0
= E

[
𝜓̃ ,��

Z

]



	 M. S. Breum et al.

1 3

 where the second equality follows by changing the order of integration.
Consider now the right-hand side of (14). We have by iterated expectations, 

and the properties of score functions that

��(Q�)

��

|||||�=0
=∫

W

P13(�, a
D, aI ,w)��

W
(w;0)d�(w)

+ ∫
W

Ω
t
(aD, aI ,w)

{
∫

�

0

�

��
dΛ12(r ∣ a

I ,w;�) ∣�=0

}
d�(w)

+ ∫
W

Ω
t
(aD, aI ,w)

{
∫

�

0

�

��
dΛ13(r ∣ a

D,w;�) ∣�=0

}
d�(w)

− ∫
W
∫

�

0

S2(� ∣ r, aD,w)Ω
r
(aD, aI ,w)

�

��
dΛ12(r ∣ a

I ,w;�) ∣�=0 d�(w)

+ ∫
W
∫

�

0

S2(� ∣ r, aD,w)Ω
r
(aD, aI ,w)

{
∫

r

0

�

��
dΛ12(s ∣ a

I ,w;�) ∣�=0

}
dΛ12(r ∣ a

I ,w) d�(w)

+ ∫
W
∫

�

0

S2(� ∣ r, aD,w)Ω
r
(aD, aI ,w)

{
∫

r

0

�

��
dΛ13(s ∣ a

D,w;�) ∣�=0

}
dΛ12(r ∣ a

I ,w) d�(w)

− ∫
W
∫

�

0

S2(� ∣ r, aD,w)

{
∫

�

r

�

��
dΛ23(s, s − r ∣ aD,w;�) ∣�=0

}
Ω

r
(aD, aI ,w) dΛ12(r ∣ a

I ,w) d�(w)

=∫
W

P13(�, a
D, aI ,w)��

W
(w;0)d�(w)

+ ∫
W
∫

�

0

h12,� (r, a
D, aI ,w)

�

��
dΛ12(r ∣ a

I ,w;�) ∣�=0 d�(w)

+ ∫
W
∫

�

0

h13,� (r, a
D, aI ,w)

�

��
dΛ13(r ∣ a

D,w;�) ∣�=0 d�(w)

+ ∫
W
∫

�

0

h23,� (r, a
D, aI ,w)∫

�

r

dΛ12(r ∣ a
D,w)

�

��
dΛ23(u, u − r ∣ aD,w;�) ∣�=0 d�(w)

(15)E
{
𝜓̃(Z;𝜏, aD, aI)��

Z
(Z;0)

}
= E

{
P13(𝜏, a

D, aI ,W)��
W
(w;0)

}

(16)
+ E

[
I(A = aI)

P(A = aI ∣ W) ∫
�

0

h12,�(s, a
D, aI ,W)

dMF
12
(s, aI ,W)

S1(s ∣ a
I ,W)

×
{
�
�
12
(T1 ∣ A,W;0) + �

�
13
(T1, � ∣ A,W;0)

}]

(17)
+ E

[
I(A = aD)

P(A = aD ∣ W) ∫
�

0

h13,�(s, a
D, aI ,W)

dMF
13
(s, aD,W)

S1(s ∣ a
D,W)

×
{
�
�
12
(T1 ∣ A,W;0) + �

�
13
(T1, � ∣ A,W;0)

}]

(18)

+ E

{
I(A = aD)

P(A = aD ∣ W)

�h23,� (T1, a
D, aI ,W)

S1(T1 ∣ a
D,W) ∫

�

T1

dMF
23
(s,T1, a

I ,W)

S2(s ∣ a
D,W)

× �
�
23
(T2, � ∣ T1,A,W;0)

}
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Du to the representation of the scores �12 and �13 in terms of the full-data martin-
gales, the expectations in (16)–(18) are the covariances of martingale stochastic 
integrals. They be computed by finding the expectation of the corresponding pre-
dictable covariation processes (Fleming and Harrington 1991). In particular, the pre-
dictable covariation process of MF

ij
 with itself is the compensator part of the martin-

gale. The predictable covariation process of MF
12

 and MF
13

 is zero because the 
counting processes N12 and N13 by definition do not jump simultaneously.

Then we may write (16) as

and similarly for (17)

Finally we may rewrite (18) as

Hence we have shown that the proposed influence function is in fact the efficient 
full-data influence function.

E

[
I(A = a

I )

𝜋(aI ∣ W) ∫
𝜏

0

h12,𝜏 (s, a
D, aI ,W)

S1(s ∣ a
I ,W)

𝜕

𝜕𝜀

{
𝜆12(s ∣ a

I ,W, 𝜀)
}
∣𝜀=0

𝜆12(s ∣ a
I ,W;0)

I(T1 > s)𝜆12(s ∣ a
I ,W) ds

]

= E

[
E
{
I(A = a

I ) ∣ W
}

𝜋(aI ∣ W) ∫
𝜏

0

h12,𝜏 (s, a
D, aI ,W)

S1(s ∣ a
I ,W)

𝜕

𝜕𝜀

{
𝜆12(s ∣ a

I ,W, 𝜀)
}
∣𝜀=0 E

{
I(T1 > s) ∣ aI ,W

}
ds

]

= E

[
∫

𝜏

0

h12,𝜏 (s, a
D, aI ,W)

d

d𝜀

{
dΛ12(s ∣ a

I ,W;𝜀)
}
∣𝜀=0

]
,

E

[
I(A = aD)

𝜋(aD ∣ W) ∫
𝜏

0

h13,𝜏(s, a
D, aI ,W)

S1(s ∣ a
D,W)

𝜕

𝜕𝜀

{
𝜆13(T1 ∣ A,W, 𝜀)

}
∣𝜀=0

𝜆13(T1 ∣ A,W;0)
I(T1 > s)𝜆13(s ∣ a

D,W) ds

]

= E

[
∫

𝜏

0

h13,𝜏(s, a
D, aI ,W)

d

d𝜀

{
dΛ13(s ∣ a

D,W;𝜀)
}
∣𝜀=0

]
.

E

[
I(A = aD)

𝜋(aD ∣ W)

𝜂h23,𝜏 (T1, a
D, aI ,W)

S1(T1 ∣ a
D,W)

∫
𝜏

T1

I(T1 < s < T2)

S2(s ∣ T1, a
D,W)

𝜕

𝜕𝜀

{
𝜆23(s, s − T1 ∣ a

D,W, 𝜀)
}
∣𝜀=0

𝜆23(s, s − T1 ∣ a
D,W;0)

𝜆23(s, s − T1 ∣ a
D,W) ds

]

= E

[
E
{
I(A = aD) ∣ W

}
𝜋(aD ∣ W)

E

{
𝜂h23,𝜏 (T1, a

D, aI ,W)

S1(T1 ∣ a
D,W)

∫
𝜏

T1

E
{
I(T1 < s < T2) ∣ T1, 𝜂, a

D,W
}

S2(s ∣ T1, a
D,W)

×
𝜕

𝜕𝜀

{
𝜆23(s, s − T1 ∣ a

D,W, 𝜀)
}
∣𝜀=0 ds ∣ a

D,W

}]

= ∫
𝜏

0

h23,𝜏(r, a
D, aI ,W)∫

𝜏

r

d

d𝜀

{
dΛ23(u, u − r ∣ aD,w;𝜀)

}
∣𝜀=0 dΛ12(r ∣ a

D,W).
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D Observed‑data EIF

By Tsiatis (2006) theorem  10.1 and 10.4 we can map the full-data EIF to the 
observed-data EIF using the linear operator J ∶ L2

0
(Q) → L2

0
(P) which is defined by

where

Using the following lemma we can rewrite the efficient influence function in terms 
of the observed-data martingales

Lemma A.1  for any element ∫ h(u, Z) dMF(u, Z) ∈ T
F

i
 , for i = 1, 2, 3 , it holds that

Proof  We prove the lemma for i = 1 . The remaining cases follow by similar 
calculations.

First note that given (T1 ∧ T2 ≥ u,A,W) , MF
12
(v,A,W) is zero-mean martingale 

for v ≥ u , and hence E

[
dMF

12
(v,A,W)

|||||
T1 ∧ T2 ≥ u,A,W

]
= 0 for v ≥ u . For v < u 

we have that, given (T1 ∧ T2 ≥ u,A,W) , N12(v) = 0 and 
E[I(T1 > v,T2 > v) ∣ T1 ∧ T2 ≥ u,A,W] = 1 , and hence we can write

Also, for the second term we note that MF
12

 is fixed given T1 and A, W, so

Then, using (20) and (21), we can write

(19)J(𝜓̃(Z;𝜏, aD, aI)) =
𝛿𝜓̃(Z;𝜏, aD, aI)

K
C̃
{T̃2,GT̃2

(Z)}
+ ∫

E{𝜓̃(Z;, aD, aI) ∣ G
u
(Z)}

K
C̃
{u,G

u
(Z)}

dM
C̃
{u,G

u
(Z)}.

KC̃{u,Gu(Z)} ∶= exp

[
−∫

u

0

𝜆C̃
{
u;Gu(Z)

}
du

]
.

J

{
∫ h(u, Z) dMF(u, Z)

}
= ∫ h(u, Z)

dM(u, Z)

KC̃(u, Z)
.

(20)E

[
dMF

12
(v,X)

|||||
T1 ∧ T2 ≥ u,A,W

]
= −I(v < u)𝜆12(v ∣ A,W) dv.

(21)E

[
dMF

12
(v,X)

|||||
𝜂 = 1, T1 < u < T2, T1,A,W

]
= dM12(v,A,W).

(22)

�
E

[
∫ h(v, Z) dMF

12
(v, Z)

|||||
G

u
(Z)

]
dM

C̃
(u, Z)

K
C̃
(u, Z)

=�
T̃1

0

E

[
∫ h(v, Z) dMF

12
(v, Z)

|||||
G

u
(Z)

]
dM

C̃
(u, Z)

K
C̃
(u,G

u
(Z))

+ 𝜂 �
T̃2

T1

E

[
∫ h(v, Z) dMF

12
(v, Z)

|||||
G

u
(Z)

]
dM

C̃
(u, Z)

K
C̃
(u,G

u
(Z))

= − �
T̃1

0
�

v

0

h(v,X) dΛ12(v,X)
dM

C̃
(u, Z)

K
C̃
(u,G

u
(Z))

+ 𝜂̃ � h(u,X) dMF

12
(u, Z)�

T̃2

T1

dM
C̃
(u, Z)

K
C̃
(u,G

u
(Z))

.
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With similar calculations as in Lu and Tsiatis (2008) Lemma A.2 the first term 
equals

The second term in (22) equals

Using that T̃1 = T̃2 and Λ12 = −MF
12

 when 𝛿(1 − 𝜂̃) = 1 and T1 = T̃1 when � = 1 , add-
ing the two final lines of the two previous displays gives

which is the desired result. 	�  ◻

E Proof of Lemma 2

By iterated expectations, it follows that

−
(1 − 𝜂̃)(1 − 𝛿)

KC̃(T̃1GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X) + ∫
T̃1

0 ∫
T̃1

u

dΛC̃(s;Gs(Z))

KC̃(s,Gs(Z))
h(u,X) dΛ12(u,X)

= −
(1 − 𝜂̃)(1 − 𝛿)

KC̃(T̃1GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X)

+
1

KC̃(T̃1,GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X) − ∫
T̃1

0

h(u,X)

KC̃(u,Gu(Z))
dΛ12(u,X)

=
𝜂̃

KC̃(T̃1,GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X) − ∫
T̃1

0

h(u,X)

KC̃(u,Gu(Z))
dΛ12(u,X)

+
𝛿(1 − 𝜂̃)

KC̃(T̃1,GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X)

= −
𝜂̃

KC̃(T̃1,GT̃1
(Z)) ∫

T̃1

0

h(u,X) dMF
12
(u,X) + ∫

T̃1

0

h(u,X)

KC̃(u,Gu(Z))
dM12(u,X)

+
𝛿(1 − 𝜂̃)

KC̃(T̃1,GT̃1
(Z)) ∫

T̃1

0

h(u,X) dΛ12(u,X)

𝜂̃ ∫ h(u,X) dMF
12
(u, Z)∫

T̃2

T1

dMC̃(u, Z)

KC̃(u,Gu(Z))

= 𝜂̃ ∫ h(u,X) dMF
12
(u, Z)

[
1 − 𝛿

KC̃(T̃2,GT̃2
(Z))

−

(
1

KC̃(T̃2,GT̃2
(Z))

−
1

KC̃(T1,GT1
(Z))

)]

= 𝜂̃ ∫ h(u,X) dMF
12
(u, Z)

[
1

KC̃(T1,GT1
(Z))

−
𝛿

KC̃(T̃2,GT̃2
(Z))

]
.

∫
T̃1

0

h(u,X)

KC̃(u,Gu(Z))
dM12(u,X) −

𝛿

KC̃(T̃2,GT̃2
(Z)) ∫

T̃2

0

h(u,X) dMF
12
(u,X),
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and

Suppose � , Λ13 and Λ23 are correctly specified, but Λ12 is not. Then the terms (24) 
and (25) are zero, and we have

(23)

E

[
I(A = aI)

�∗(aI ∣ W) ∫
�

0

h∗
12
(s, aD, aI ,W)dMF∗

12
(s, aI ,W)

S∗
1
(s ∣ aI ,W)

]

= E

[
�(aI ∣ W)

�∗(aI ∣ W)

∫
�

0

h∗
12
(s, aD, aI ,W)S1(s ∣ a

I ,W)

S∗
1
(s ∣ aI ,W)

{
dΛ12(s ∣ a

I ,W) − dΛ∗
12
(s ∣ aI ,W)

}]
,

(24)

E

[
I(A = aD)

�∗(aD ∣ W) ∫
�

0

h∗
13
(s, aD, aI ,W)dMF∗

13
(s, aD,W)

S∗
1
(s ∣ aD,W)

]

= E

[
�(aD ∣ W)

�∗(aD ∣ W)

∫
�

0

h∗
13,
(s, aD, aI ,W)S1(s ∣ a

D,W)

S∗
1
(s ∣ aD,W)

{
dΛ13(s ∣ a

D,W) − dΛ∗
13
(s ∣ aD,W)

}]
,

(25)

E

[
I(A = a

D)

�∗(aD ∣ W)

�h∗
23
(T1, a

D, aI ,W)

S
∗
1
(T1 ∣ a

D,W) ∫
�

T1

dM
F∗
23
(s, aD, T1,W)

S
∗
2
(s ∣ T1, a

D,W)

]

= E

[
�(aD ∣ W)

�∗(aD ∣ W)
E

{
h
∗
23
(T1, a

D, aI ,W)

S
∗
1
(T1 ∣ a

D,W) ∫
�

T1

S2(s ∣ T1, a
D,W)

S
∗
2
(s ∣ T1, a

D,W)

{
dΛ23(s ∣ T1, a

D,W)

− dΛ∗
23
(s ∣ T1, a

D,W)
}|||a

D,W

}]

= E

[
�(aD ∣ W)

�∗(aD ∣ W) ∫
�

0

h
∗
23
(s, aD, aI ,W)

S
∗
1
(s ∣ aD,W)

{
1 −

S2(� ∣ s, aD,W)

S
∗
2
(� ∣ s, aD,W)

}

S1(s ∣ a
D,W) dΛ12(s ∣ a

D,W)
]



1 3

Estimation of separable direct and indirect effects in a…

 Similarly, suppose � , Λ12 and Λ23 are correctly specified, but Λ13 is not. Then (23) 
and (25) are 0, and

E
[
𝜓̃(Q∗)(Z, aD, aI ,W)

]

= E

[
e−Λ

∗
12
(𝜏∣aI ,W)−Λ13(𝜏∣a

D,W) ∫
𝜏

0

e−Λ12(s∣a
I ,W)+Λ∗

12
(s∣aI ,W)

{
dΛ12(s ∣ a

I ,W)

− dΛ∗
12
(s ∣ aI ,W)

}]

− E

[
∫

𝜏

0

S2(𝜏 ∣ s, aD,W)Ωs(a
D, aI ,W)

{
dΛ12(s ∣ a

I ,W) − dΛ∗
12
(s ∣ aI ,W)

}]

+ E

[
∫

𝜏

0

{
∫

s

0

e−Λ12(s∣a
I ,W)+Λ∗

12
(s∣aI ,W)

{
dΛ12(s ∣ a

I ,W) − dΛ∗
12
(s ∣ aI ,W)

}}

S2(𝜏 ∣ saD,W)

× e−Λ
∗
12
(s∣aI ,W)−Λ13(s∣a

D,W) dΛ∗
12
(s ∣ aI ,W)

]

+ E

[
1 − e−Λ

∗
12
(𝜏∣aI ,W)−Λ13(𝜏∣a

D,W)

− ∫
𝜏

0

S2(𝜏 ∣ s, aD,W)e−Λ
∗
12
(s∣aI ,W)−Λ13(s∣a

D,W) dΛ∗
12
(s ∣ aI ,W)

]

− 𝜓(Q∗;𝜏, aD, aI)

= E

[
e−Λ

∗
12
(𝜏∣aI ,W)−Λ13(𝜏∣a

D,W)
{
1 − e−Λ12(𝜏∣a

I ,W)+Λ∗
12
(𝜏∣aI ,W)

}]

− E

[
∫

𝜏

0

S2(𝜏 ∣ s, aD,W)Ωs(a
D, aI ,W)

{
dΛ12(s ∣ a

I ,W) − dΛ∗
12
(s ∣ aI ,W)

}]

+ E

[
∫

𝜏

0

{
1 − e−Λ12(s∣a

I ,W)+Λ∗
12
(s∣aI ,W)

}

S2(𝜏 ∣ s, aD,W)e−Λ
∗
12
(s∣aI ,W)−Λ13(s∣a

D,W) dΛ∗
12
(s ∣ aI ,W)

]

+ E

[
1 − e−Λ

∗
12
(𝜏∣aI ,W)−Λ13(𝜏∣a

D,W)

− ∫
𝜏

0

S2(𝜏 ∣ s, aD,W)e−Λ
∗
12
(s∣aI ,W)−Λ13(s∣a

D,W) dΛ∗
12
(s ∣ aI ,W)

]

− 𝜓(Q∗;𝜏, aD, aI)

= E

[
1 − Ωt(a

D, aI ,W) + ∫
𝜏

0

S2(𝜏 ∣ s, aD,W)Ωs(a
D, aI ,W) dΛ12(s ∣ a

I ,W)

]

− 𝜓(Q∗;𝜏, aD, aI)

= 𝜓(Q;𝜏, aD, aI) − 𝜓(Q∗;𝜏, aD, aI)
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 Finally, suppose � , Λ12 and Λ13 are correctly specified, but Λ23 is not. Then (23) and 
(24) are 0, and

F Proof of Lemma 3

Using the representation of the full-data influence function in (19) we need to show

when either ΛC̃ is correctly specified or the entire outcome distribution, that is Λ12 , 
Λ13 and Λ23 , are correctly specified.

By iterated expectations (26) holds if we show 

(a)	 E
[
dM∗

C̃
(s,Gs(Z)) ∣ Z

]
= 0 when ΛC̃ is correctly specified

E
[
𝜓̃(Q∗)(Z, aD, aI ,W)

]

= E

[
e
−Λ12(𝜏∣a

I ,W)−Λ∗
13
(𝜏∣aD ,W)

{
1 − e

−Λ13(𝜏∣a
I ,W)+Λ∗

13
(𝜏∣aI ,W)

}]

+ E

[
∫

𝜏

0

{
1 − e

−Λ13(s∣a
I ,W)+Λ∗

13
(s∣aI ,W)

}

S2(𝜏 ∣ s, aD,W)e−Λ12(s∣a
I ,W)−Λ∗

13
(s∣aD ,W) dΛ12(s ∣ a

I ,W)

]

+ E

[
1 − e

−Λ12(𝜏∣a
I ,W)−Λ∗

13
(𝜏∣aD ,W)

− ∫
𝜏

0

S2(𝜏 ∣ s, aD,W)e−Λ12(s∣a
I ,W)−Λ∗

13
(s∣aD ,W) dΛ12(s ∣ a

I ,W)

]

− 𝜓(Q∗;𝜏, aD, aI )

= E

[
1 − Ω

t
(aD, aI ,W) + ∫

𝜏

0

S2(𝜏 ∣ s, aD,W)Ω
s
(aD, aI ,W) dΛ12(s ∣ a

I ,W)

]
− 𝜓(Q∗;𝜏, aD, aI )

= 𝜓(Q;𝜏, aD, aI ) − 𝜓(Q∗;𝜏, aD, aI )

E
[
𝜓̃(Q∗)(Z, aD, aI ,W)

]

= E

[
∫

𝜏

0

S∗
2
(𝜏 ∣ s, aD,W)

{
1 −

S2(𝜏 ∣ s, aD,W)

S∗
2
(𝜏 ∣ s, aD,W)

}
Ωs(a

D, aI ,W) dΛ12(s ∣ a
I ,W)

]

+ E

[
1 − Ωt(a

D, aI ,W) − ∫
𝜏

0

S∗
2
(𝜏 ∣ s, aD,W)Ωs(a

D, aI ,W) dΛ12(s ∣ a
I ,W)

]

− 𝜓(Q∗;𝜏, aD, aI)

= 𝜓(Q;𝜏, aD, aI) − 𝜓(Q∗;𝜏, aD, aI)

(26)

E

[
∫

{
𝜓̃(Z;𝜏, aD, aI) − E∗{𝜓̃(Z;𝜏, aD, aI) ∣ Gs(Z)}

}
K∗

C̃
(s ∣ Gs(Z))

dM∗

C̃
(s,Gs(Z))

]
= 0
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(b)	 E{𝜓̃(Z;𝜏, aD, aI) ∣ Gu(Z)} − E∗{𝜓̃(Z;𝜏, aD, aI) ∣ Gu(Z)} = 0 if Λ12 , Λ13 and Λ23 
are correctly specified

(a)
Note that, under CAR, we have

and

Then

which is zero when the censoring distribution is correctly specified.
(b)
Note that for any ∫ h(u;Z) dMF(u;Z) ∈ Ti for i = 1, 2, 3

Consider first the 1 → 2 terms. Note that

and

E
{
dNC̃(u) ∣ T1, T2, 𝜂,A,W

}

= E
{
I(C̃ = u, T1 ≥ u) ∣ T1, T2, 𝜂,A,W

}
+ E

{
𝜂I(C̃ = u, T1 ≤ u < T2) ∣ T1, T2, 𝜂,A,W

}

= I(u ≤ T1)KC̃,1(u ∣ A,W)𝛼C̃,1(u ∣ A,W)

+ I(T1 ≤ u < T2)KC̃,2(u ∣ T1,A,W)𝛼C̃,2(u ∣ T1,A,W),

E
{
I(u ≤ T̃2) ∣ Z

}
= I(u ≤ T1)KC̃,1(u ∣ A,W),

E
{
I(T1 ≤ u < T̃2) ∣ Z

}
= I(T1 ≤ u < T2)KC̃,2(u ∣ T1,A,W).

E
{
dM∗

C̃
(u,Gu(Z)) ∣ Z

}
= I(u ≤ T1)KC̃,1(u ∣ A,W)

{
𝛼C̃,1(u ∣ A,W) − 𝛼∗

C̃,1
(u ∣ A,W)

}

+ I(T1 ≤ u < T2)KC̃,2(u ∣ T1,A,W)
{
𝛼C̃,2(u ∣ T1,A,W)

−𝛼∗
C̃,2

(u ∣ T1,A,W)
}
,

E

{
∫ h(u;Z) dMF(u;Z) ∣ Gr(Z)

}
− E∗

{
∫ h(u;Z) dMF(u;Z) ∣ Gr(Z)

}

= ∫ h(u;Z)
[
E
{
dMF(u;Z) ∣ Gr(Z)

}
− E∗

{
dMF(u;Z) ∣ Gr(Z)

}]

E∗
{
dM12(u ∣ A,W) ∣ Gs(Z)

}

= I(T1 > s)

[
I(u ≥ s)

S∗
1
(u ∣ A,W)

S∗
1
(s ∣ A,W)

{
dΛ∗

12
(u ∣ A,W)

− dΛ12(u ∣ A,W)
}
− I(u < s) dΛ12(u ∣ A,W)

]

+ I(T1 ≤ s < T2) dM12(u ∣ A,W)

+ I(s > T2) dM12(u ∣ A,W),
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so,

By similar calculations it holds for the 1 → 3 term that

and for the 2 → 3 term that

G Simulation details

The following simulation scenarios were considered: 

	 (i)	 all models are correctly specified: � = �12
AW

= �13
AW

= �23
AW

= � = 0

	 (ii)	 censoring and propensity score mis-specified: � = 2 , � = 0.8 and 
�12
AW

= �13
AW

= �23
AW

= 0

	 (iii)	 Λ12 misspecified: �12
AW

= 4 and � = �13
AW

= �23
AW

= � = 0

	 (iv)	 Λ13 misspecified: �13
AW

= 1 and � = �12
AW

= �23
AW

= � = 0

	 (v)	 Λ23 misspecified: �23
AW

= 1 and � = �12
AW

= �13
AW

= � = 0

	 (vi)	 Λ12 and Λ13 misspecified: �12
AW

= 4 �13
AW

= 1 and � = �23
AW

= � = 0

	(vii)	 ΛC̃ and Λ23 misspecified: � = 0.8 , �23
AW

= 1 and � = �12
AW

= �12
AW

= �13
AW

= 0

	(viii)	 � and Λ23 misspecified: � = 2 , �23
AW

= 1 and �12
AW

= �12
AW

= �13
AW

= � = 0

Acknowledgements  The authors thank Thomas Sehested and Christian Torp-Pedersen for sharing the 
data used in Sect. 6.

E
{
dM12(u ∣ A,W) ∣ Gs(Z)

}

= I(s < T1)

[
− I(u < s) dΛ12(u ∣ A,W)

]
+ I(T1 ≤ s < T2) dM12(u ∣ A,W)

+ I(s > T2) dM12(u ∣ A,W),

E
{
dM12(u ∣ A,W) ∣ Gs(Z)

}
− E∗

{
dM12(u ∣ A,W) ∣ Gs(Z)

}

= I(s < T1)

[
I(u ≥ s)

S∗
1
(u ∣ A,W)

S∗
1
(s ∣ A,W)

{
dΛ12(u ∣ A,W) − dΛ∗

12
(u ∣ A,W)

}]
.

E
{
dM13(u ∣ A,W) ∣ Gs(Z)

}
− E∗

{
dM13(u ∣ A,W) ∣ Gs(Z)

}

= I(s < T1 ∧ T2)

[
I(u ≥ s)

S∗
1
(u ∣ A,W)

S∗
1
(s ∣ A,W)

{
dΛ13(u ∣ A,W) − dΛ∗

13
(u ∣ A,W)

}]
.

E
{
dM23(u ∣ T1,A,W) ∣ Gs(Z)

}
− E∗

{
dM23(u ∣ T1,A,W) ∣ Gs(Z)

}

= I(T1 ≤ s < T2)

[
I(u ≥ s)

S∗
2
(u ∣ T1,A,W)

S∗
2
(s ∣ T1,A,W)

{
dΛ23(u, u − T1 ∣ A,W)

− dΛ∗
23
(u, u − T1 ∣ A,W)

}]
.
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Abstract

In this paper we present a method for estimating the extent to which the effect of a
(randomized) baseline treatment on an outcome of interest is mediated through a re-
peatedly measured continuous covariate. The causal estimand that we will consider is
an interventional (in)direct effect which intervenes stochastically on the potential me-
diator using a known distribution which is estimated from the data. For estimation we
propose a longitudinal targeted minimum loss-based estimation (LTMLE) method
based on the sequential regression technique. We verify the theoretical properties of
the estimator in a simulation study, and we illustrate the method by an application to
data from the NASH clinical trial.

KEYWORDS:
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1 INTRODUCTION

Causal mediation analysis is an increasingly important tool in epidemiological and medical research, enabling researchers to
examine and quantify the mechanisms through which a treatment or exposure exerts it’s effects on an outcome of interest1. When
the potential mediator is assessed at a single time point the causal estimands of choice are often the natural direct and indirect
effects2,3 which are defined in terms of so-called nested or ‘cross-world’ counterfactual outcomes, i.e. counterfactual outcomes
in a world where the exposure is assigned to a particular value and the mediator is assigned to its counterfactual value under
a possibly different treatment assignment. Natural (in)direct effects have many appealing properties including adding up to the
total treatment effect. However a major limitation is that they are generally not identified in the presence of mediator-outcome
confounders that are affected by the exposure4,5. In addition to limiting the practical applicability of natural direct and indirect
effects in the non-longitudinal setting, this means that they do not immediately generalize to the longitudinal setting that we are
considering in this paper where such confounders are inherent.

Much recent work on causal mediation analysis has addressed this limitation of natural (in)direct effects either by proposing
causal bounds6,7,8,9,10 or by proposing alternative causal mediation estimands like randomized interventional effects11,12,13,5,14

or separable (interventionist) effects6,15,16 that avoid cross-world notions. In this paper we will focus on the concept of random-
ized interventional (in)direct effects. Randomized interventional (in)direct effects, also referred to simply as ‘interventional’
(in)direct effects or ‘stochastic’ (in)direct effects, are defined in terms of hypothetical outcomes in a world where the exposure
is assigned to a particular value and the mediator is drawn from a distribution which is either known (e.g. based on the observed
data) or is defined based the potential mediator distribution. Interventional (in)direct effects are identifiable in the presence
of post-treatment confounder5,17 and can therefore be generalized to the longitudinal setting where the mediator is measured
repeatedly over time and we expect feedback between certain time-varying covariates and the mediator18,19. The presence of
time-varying confounders however means that different total effect decompositions are possible with different interpretations
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and identifiability assumptions. Two distinct extensions of interventionist effects to the longitudinal setting were proposed by
Zheng & van der Laan (2017)18 and VanderWeele and Tchetgen Tchetgen (2017)19.

Since in our motivating application we are interested in an indirect effect that includes only paths directly from treatment to
the mediator, we focus on the effect decomposition of Zheng & van der Laan (2017)18 where the stochastic mediator distribution
conditions on the entire past. The contribution of this paper is that we will consider data-dependent versions of the mediation
target parameters where the stochastic conditional mediator distributions are assumed to be known and estimated from the data.
We will show that the data-adaptive interventionist (in)direct effects can be identified under weaker identification assumptions
than the interventionist (in)direct effects which assume that the stochastic mediator distribution is the true unknown distribution.
This comes at the cost of the direct and indirect effects not necessarily providing a decomposition of the total treatment effect.

We derive the efficient influence function and propose a longitudinal targeted minimum loss-based estimation (LTMLE)20,21

method based on the sequential regression technique of Bang & Robins (2005)22. The TMLE is a multiply robust and locally
efficient estimator which allows for the use of data-adaptive nuisance parameter estimation provided certain rate conditions
hold23,24.

1.1 NASH trial
The motivating application in this paper is the NASH clinical trial conducted by Novo Nordisk. Non-alcoholic steatohepatitis
(NASH) is an advanced form of nonalcoholic fatty liver disease which is defined by presence of steatosis, ballooning, inflam-
mation and varying degrees of fibrosis in the liver25. NASH is very prevalent in patients with obesity and type II diabetes26.
If allowed to progress it can lead to cirrhosis and liver failure, in which case liver transplantation is the only treatment op-
tion27,28,29,30. There are currently no approved drugs for NASH, and first line of treatment is weight management and treatment
of comorbidities31. NASH is typically asymptomatic and is diagnosed by liver biopsy32.

The NASH phase II clinical trial is a double-blind randomized six-arm trial which compared three different doses of semaglu-
tide (0.1, 0.2 and 0.4 mg) with placebo in subjects with NASH and obesity (BMI>25). A total of 320 subjects were randomized,
stratified on region (Japanese/non-japanese), diabetes status (type II/non-type II) and fibrosis stage (1, 2 or 3) at an initial screen-
ing 6 weeks before baseline. The subjects were followed for a maximum of 72 weeks and attended a number of scheduled
post-baseline visits. A liver biopsy was performed at the final assessment 72 weeks after baseline. The primary endpoint was
histological resolution of NASH after 72 weeks (yes/no). Due to the invasive nature of the procedure a some patients refused to
get a biopsy at the final assessment resulting in missing outcome data.
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Figure 1 Average weight loss over time in the NASH trial by treatment arm

Semaglutide, which is sold under the brand names Ozempic, Wegovy and Rybelsus, is a once-daily injected glucagon-like
peptide-1 (GLP-1) which is used for the treatment of type II diabetes and as anti-obesity medication. As illustrated in Figure 1
patients in the treatment arms loose a lot of weights while patients in the placebo arm do not. The question that motivated this



Breum ET AL 3

research was whether the causal pathways through which Semaglutide exerts it’s effect on the primary endpoint are different
from the pathways through which weight management, which is current first-line treatment, exerts it’s effect.

1.2 Organization of paper
This paper is organized as follows. In the following section we describe the setting and notation that we will use throughout
the paper. In Section 3 we introduce the the data-dependent causal mediation estimand and provide the necessary identification
assumptions. In Section 4 we propose a longitudinal targeted minimum loss-based estimation (LTMLE)23,21 method based on
the sequential regression technique22 and describe it’s implementation in detail. In Section 5 we conduct a simulation study
to demonstrate the estimator’s finite sample performance and robustness properties. Section 6 illustrates the method by an
application to data from the NASH clinical trial. Some final remarks and further discussion is provided in Section 7. Proofs and
technical details are given in the Appendix.

2 SETTING AND NOTATION

We assume that the trial data is a sample of independent observations (𝑂1, ..., 𝑂𝑛) which are identically distributed according to
some unknown probability distribution denoted 𝑃0, which is assumed to lie in a non-parametric model  .

Let 𝑘 = 1, ..., 𝐾 be discrete time-points representing the 𝐾 follow-up visits. We can write the observed data vector 𝑂 as
𝑂 = (𝐿0, 𝐴, 𝐶1, 𝐿1,𝑀1, ..., 𝐶𝑘, 𝐿𝑘,𝑀𝑘, ..., 𝐶𝐾 , 𝐿𝐾 ,𝑀𝐾 , 𝑅𝑌 , 𝑅𝑌 𝑌 ), where𝐿0 ∈ ℝ𝑞 represents the vector of baseline covariates,
𝐴 ∈  is the baseline treatment randomization, 𝐶𝑡 ∈ {0, 1} is the censoring indicator representing whether a subject has
discontinued treatment or has dropped out by time 𝑡, 𝐿𝑡 ∈ ℝ𝑑 is a vector of time-varying covariates collected at each follow-up
visit and 𝑀𝑡 ∈ ℝ is the potential mediator. Note that we can also define 𝐶𝑡 = (𝐶𝐷

𝑡 , 𝐶
𝐴
𝑡 ) to distinguish between censoring due

to drop-out and censoring due to non-adherence. Finally 𝑌 ∈ {0, 1} represents the outcome and 𝑅𝑌 ∈ {0, 1} is the outcome
missingness indicator. If a subject is censored then subsequent 𝐶𝑡, 𝐿𝑡, 𝑀𝑡 and (𝑅𝑌 , 𝑅𝑌 𝑌 ) are encoded with default values.

Let 𝑋𝑚∶𝑘 = (𝑋𝑚, ..., 𝑋𝑘) and let 𝑋̄𝑘 denote the history of a random variable up to time 𝑘. We assume that the outcome is
coarsened at random (CAR) i.e. 𝑌 ⟂⟂ 𝑅𝑌 ∣ 𝐴, 𝐶̄𝐾 , 𝐿̄𝐾 , 𝑀̄𝐾 . We further assume that the data can be represented using the
following Structural Causal Model33

𝐿0 = 𝑓𝐿0
(𝑈𝐿0

),
𝐴 = 𝑓𝐴(𝐿0, 𝑈𝐴),
𝐶𝑘 = 𝑓𝐶𝑘(𝐴, 𝐶̄𝑘−1, 𝐿̄𝑘−1, 𝑀̄𝑘−1, 𝑈𝐶𝑘), 𝑘 = 1, ..., 𝐾,
𝐿𝑘 = 𝑓𝐿𝑘(𝐴, 𝐶̄𝑘, 𝐿̄𝑘−1, 𝑀̄𝑘−1, 𝑈𝐿𝑘), 𝑘 = 1, ..., 𝐾,
𝑀𝑘 = 𝑓𝑀𝑘

(𝐴, 𝐶̄𝑘, 𝐿̄𝑘, 𝑀̄𝑘−1, 𝑈𝑀𝑘
), 𝑘 = 1, ..., 𝐾,

𝑅𝑌 = 𝑓𝑅𝑌 (𝐴, 𝐶̄𝐾 , 𝐿̄𝐾 , 𝑀̄𝐾 , 𝑈𝑅𝑌 ),
𝑅𝑌 𝑌 = 𝑅𝑌 𝑓𝑌 (𝐴, 𝐶̄𝐾 , 𝐿̄𝐾 , 𝑀̄𝐾 , 𝑈𝑌 ),

(1)

where 𝑈 = (𝑈𝐿0
, 𝑈𝐴, (𝑈𝐶𝑘 ∶ 𝑘 = 1, ...𝐾), (𝑈𝐿𝑘 ∶ 𝑘 = 1, ...𝐾), (𝑈𝑀𝑘

∶ 𝑘 = 1, ...𝐾), 𝑈𝑅𝑌 , 𝑈𝑌 ) are exogenous random variables,
and 𝑓𝐿0

, 𝑓𝐴,(𝑓𝐶𝑘 ∶ 𝑘 = 1, ...𝐾), (𝑓𝐿𝑘 ∶ 𝑘 = 1, ...𝐾), (𝑓𝑀𝑘
∶ 𝑘 = 1, ...𝐾), 𝑓𝑅𝑌 and 𝑓𝑌 are deterministic mappings. Note that we

do not require for the baseline treatment to be randomized.

3 CAUSAL ESTIMAND(S)

The causal estimand that we consider is an randomized interventional (in)direct effect11,12,13,5. Let

𝑔𝑎𝑡 (𝑀𝑡 ∣ 𝐿̄𝑡, 𝑀̄𝑡−1) = 𝑃 (𝑀𝑡 ∣ 𝐴 = 𝑎, 𝐶𝑡 = 0, 𝐿̄𝑡, 𝑀̄𝑡−1),

be the stochastic distribution of 𝑀𝑡 under an intervention that sets 𝐴 = 𝑎 and 𝐶𝑡 = 0. We assume that this distribution is known
and estimated from data, and we denote it by 𝑔̂𝑎𝑡 .

Consider an intervention on the Structural Causal Model (SCM) in (1) to set 𝐴 = 𝑎 for 𝑎 ∈ , and set 𝐶𝑡 = 0 and randomly
draw 𝑀𝑡 ∼ 𝑔̂𝑎𝑡 for 𝑡 = 1, ..., 𝐾 . Let 𝐠̂𝑎 = (𝑔̂𝑎𝑡 ∶ 𝑡 = 1, ..., 𝐾) and let 𝑌 (𝑎, 𝐠̂𝑎) denote the resulting counterfactual outcome.
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We can then define the data-dependent stochastic interventional direct and indirect effects as

𝑆𝐷𝐸(𝑎, 𝑎′) = 𝐸
{

𝑌 (𝑎, 𝐠̂𝑎) − 𝑌 (𝑎′, 𝐠̂𝑎)
}

, (2)

and

𝑆𝐼𝐸(𝑎, 𝑎′) = 𝐸
{

𝑌 (𝑎′, 𝐠̂𝑎) − 𝑌 (𝑎′, 𝐠̂𝑎′)
}

. (3)

That is, the stochastic interventional indirect effect (SIE) is the effect of fixing the mediator to a random draw from the observed
distribution of the mediator in the population when given treatment 𝐴 = 𝑎, versus a random draw from the distribution of the
population when given treatment 𝐴 = 𝑎′ while assigning treatment to the value 𝑎. The stochastic interventional direct (SDE)
effect is the effect of setting treatment 𝐴 = 𝑎 versus 𝐴 = 𝑎′ under an intervention that fixes the mediator to a random draw from
the observed distribution of the mediator in the populationn when given treatment 𝐴 = 𝑎.

The stochastic direct and indirect effect defined in (2) and (3) do not necessarily provide a decomposition of the total treatment
effect. Instead they provide a decomposition of the so-called overall effect

𝑂𝐸(𝑎, 𝑎′) = 𝐸
{

𝑌 (𝑎, 𝐠𝑎) − 𝑌 (𝑎′, 𝐠𝑎′)
}

= 𝑆𝐼𝐸(𝑎′, 𝑎) + 𝑆𝐷𝐸(𝑎′, 𝑎). (4)

This overall effect (OE) can be interpreted as the difference in expected outcome between being in treatment arm𝐴 = 𝑎with the
mediator randomly drawn from the distribution of the population when given treatment 𝐴 = 𝑎, and the expected outcome when
being in treatment arm 𝐴 = 𝑎′ with the mediator randomly drawn from the distribution of the population when given treatment
𝐴 = 𝑎′.

Note that

𝑂𝐸(𝑎′, 𝑎) = 𝐸
{

𝑌 (𝑎) − 𝑌 (𝑎′)
}

+ 𝐸 {𝑌 (𝑎, 𝐠̂𝑎) − 𝑌 (𝑎)} + 𝐸
{

𝑌 (𝑎′) − 𝑌 (𝑎′, 𝐠̂𝑎′)
}

,

where the first term is the total effect and the two last terms are related to the difference between drawing the mediator from the
observed distribution and setting the mediator to it’s natural level.

3.1 Identifiability
Suppose the following assumptions hold for all 𝑡 = 1, ..., 𝐾

A.0 𝐿1∶𝐾 (𝑎), 𝐿1∶𝐾 (𝑎, 𝑚̄), 𝑌 (𝑎, 𝑚̄) ⟂⟂ 𝐴 ∣ 𝐿0,

A.1 𝐿𝑡∶𝐾 (𝑎), 𝐿𝑡∶𝐾 (𝑎, 𝑚̄), 𝑌 (𝑎, 𝑚̄) ⟂⟂ 𝐶𝑡 ∣ 𝐴 = 𝑎, 𝐶𝑡−1 = 0, 𝑀̄𝑡−1, 𝐿𝑡−1,

A.2 𝐿(𝑡+1)∶𝐾 (𝑎, 𝑚̄), 𝑌 (𝑎, 𝑚̄) ⟂⟂𝑀𝑡 ∣ 𝐴 = 𝑎, 𝐶𝑡 = 0, 𝐿̄𝑡, 𝑀̄𝑡−1,

A.3 Positivity/overlap:

(i) 𝑝0(𝑙0) > 0 ⇒ 𝑝0(𝑎 ∣ 𝑙0) > 0,

(ii) 𝑝0(𝑎, 0̄, 𝑚̄𝑡−1, 𝑙𝑡−1) > 0 ⇒ 𝑝0(𝑐𝑡 = 1 ∣ 𝑎, 0̄, 𝑚̄𝑡−1, 𝑙𝑡−1) < 1,

(iii) sup𝑚𝑡
𝑔̂𝑎′𝑡 (𝑚𝑡∣𝑙𝑡,𝑚̄𝑡−1)
𝑝0(𝑚𝑡∣𝑎,0̄,𝑙𝑡,𝑚̄𝑡−1)

<∞.

Assumption A.0 is the treatment randomization assumption, which holds by construction in a randomized trial such as the
NASH trial. Assumptions A.1 is a sequential exchangeability assumption for censoring. In the NASH trial assumption A.1
requires that treatment randomization and histories of weight loss and covariates are sufficient to adjust for confounding between
current censoring, and current and future covariate values and the outcome. Assumptions A.2 is a sequential exchangeability
assumption for the mediator. Assumption A.2 requires that treatment randomization and histories of weight loss and covariates
are sufficient to adjust for confounding between current weight loss, and current and future covariate values and the outcome.

The conditions in assumption A.3 are the positivity assumptions which ensure that the identifying formula below is well-
defined. Condition (i) states that there should be a positive probability of being assigned to all treatment arms. Condition (ii)
requires that within all strata in the data the probability of being censored should be less than one. Condition (iii) states that the
stochastic distribution from which the mediator values are drawn should be supported in the data. Conditions A.3 (i) and A.3
(ii) are both unproblematic in the NASH trial. Condition A.3 (iii) requires further scrutiny as subjects in the placebo-arm do not
loose weight while most subjects in the treatment arms loose weight. We discuss this further in Section 6.
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Under assumptions (A.0-A.3) we have

Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) ≡ 𝐸

{

𝑌 (𝑎, 𝐠̂𝑎′)
}

= ∫
0

𝐾
∏

𝑘=1
∫

𝑘×𝑘

∑

𝑎,𝑦

{

𝑦𝑝0,𝑌 (𝑦 ∣ 𝑎, 0̄, 𝑚̄𝐾 , 𝑙𝐾 )𝑝0,𝐿0
(𝑙0)

× 𝑝0,𝐿𝑘(𝑙𝑘 ∣ 𝑎, 0̄, 𝑚̄𝑘−1, 𝑙𝑘−1)𝑔̂
𝑎′
𝑘 (𝑚𝑘 ∣ 𝑙𝑘, 𝑚̄𝑘−1) d𝜇𝐿𝑘(𝑙𝑘) d𝜇𝑀𝑘

(𝑚𝑘)
}

d𝜇𝐿0
(𝑙0). (5)

where 𝑘 is the support of 𝐿𝑘, 𝑘 is the support of 𝑀𝑘 and 𝜇𝐿𝑘(𝑙𝑘), 𝜇𝑀𝑘
(𝑚𝑘) are some dominating measures. The proof is

given in Appendix A. Note that Ψ(𝑃 )(𝑎, 𝐠̂𝑎′) is data-dependent target parameter mapping because it depends on the data through
𝑔̂𝑎(𝑃𝑛).

Then the SDE and the SIE respectively identifies to

𝑆𝐷𝐸(𝑎, 𝑎′) = Ψ(𝑃 )(𝑎, 𝐠̂𝑎) − Ψ(𝑃 )(𝑎′, 𝐠̂𝑎),

and

𝑆𝐷𝐸(𝑎, 𝑎′) = Ψ(𝑃 )(𝑎′, 𝐠̂𝑎) − Ψ(𝑃 )(𝑎′, 𝐠̂𝑎′).

As mentioned the identification assumptions above are weaker than the assumptions required for identifying stochastic
(in)direct effect when assuming that the stochastic mediator distribution is the true unknown distribution. In particular this
would require the additional sequential exchangeability assumptions (A.0*) 𝑀̄𝐾 (𝑎) ⟂⟂ 𝐴 ∣ 𝐿0 and (A.1*) 𝑀𝑡∶𝐾 (𝑎) ⟂⟂ 𝐶𝑡 ∣ 𝐴 =
𝑎, 𝐶𝑡−1 = 0, 𝑀̄𝑡−1, 𝐿̄𝑡−1, and the additional positivity assumption that covariate values supported under one treatment arm is also
supported under the other treatment arm.

4 ESTIMATION

In this section we propose a longitudinal targeted minimum loss-based estimation (LTMLE)23,24 method based on the sequential
regression technique of Bang & Robins (2005)22.

In particular we note that the target parameter in (5) can also be represented as a nested expectation

Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) = 𝐸

{

𝑄𝑎,𝐠̂𝑎′

𝐿1
(𝑃0)(𝐿0)

}

, (6)

where for 𝑡 = 1, ...𝐾 and 𝑃 ∈ 

𝑄𝑎,𝐠̂𝑎′

𝑌 (𝑃 )(𝐿̄𝐾 , 𝑀̄𝐾 ) = 𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1
(𝑃 )(𝐿̄𝐾 , 𝑀̄𝐾 ) = 𝐸𝑃

{

𝑌 ∣ 𝐴 = 𝑎, 𝐶𝐾 = 0, 𝐿̄𝐾 , 𝑀̄𝐾 , 𝑅𝑌 = 1
}

,

𝑄𝑎,𝐠̂𝑎′

𝑀𝑡
(𝑃 )(𝐿̄𝑡, 𝑀̄𝑡−1) = ∫

𝑡

𝑄𝑎,𝐠̂𝑎′

𝐿𝑡+1
(𝑃 )(𝐿̄𝑡, 𝑚𝑡, 𝑀̄𝑡−1)𝑔̂𝑎

′

𝑡 (𝑚𝑡 ∣ 𝐴, 𝐿̄𝑡, 𝑀̄𝑡−1) d𝜇𝑀𝑡
(𝑚𝑡),

𝑄𝑎,𝐠̂𝑎′

𝐿𝑡
(𝑃 )(𝐿̄𝑡−1, 𝑀̄𝑡−1) = 𝐸𝑃

{

𝑄𝑎,𝐠̂𝑎′

𝑀𝑡
(𝑃 )(𝐿̄𝑡, 𝑀̄𝑡−1) ∣ 𝐴 = 𝑎, 𝐶𝑡 = 0, 𝐿̄𝑡−1, 𝑀̄𝑡−1

}

.

We show in Appendix B that the efficient influence function for the target in (6) is given as follows

𝐷∗
𝑎,𝐠̂𝑎′ (𝑃 )(𝑂) =𝐻

𝑎,𝐠̂𝑎′

𝐾+1 (𝐿̄𝐾 , 𝑀̄𝐾 )
{

𝑌 −𝑄𝑎,𝐠̂𝑎′

𝑌 (𝐿̄𝐾 , 𝑀̄𝐾 )
}

+
𝐾
∑

𝑘=1
𝐻𝑎,𝐠̂𝑎′

𝑘 (𝐿̄𝑘−1, 𝑀̄𝑘−1)
{

𝑄𝑎,𝐠̂𝑎′

𝑀𝑘
(𝐿̄𝑘, 𝑀̄𝑘−1) −𝑄

𝑎,𝐠̂𝑎′

𝐿𝑘
(𝐿̄𝑘−1, 𝑀̄𝑘−1)

}

+𝑄𝑎,𝐠̂𝑎′

𝐿𝑘
(𝐿0) − Ψ(𝑃 )(𝑎, 𝐠̂𝑎′), (7)

where

𝐻𝑎,𝐠̂𝑎′

𝐾+1 (𝐿̄𝐾 , 𝑀̄𝐾 ) =
𝐼(𝐴 = 𝑎)
𝑝𝐴(𝑎 ∣ 𝐿0)

𝐼(𝐶𝐾 = 0)
𝛿𝐾 (𝑎, 𝐿̄𝐾−1, 𝑀̄𝐾−1)

𝐼(𝑅𝑌 = 1)
𝑝𝑅𝑌 (𝑅𝑌 = 1 ∣ 𝑎, 0̄, 𝐿̄𝐾 , 𝑀̄𝐾 )

𝐾
∏

𝑗=1

𝑔̂𝑎′𝑗 (𝑀𝑗 ∣ 𝐿̄𝑗 , 𝑀̄𝑗−1)

𝑝𝑀𝑗
(𝑀𝑗 ∣ 𝑎, 0̄, 𝐿̄𝑗 , 𝑀̄𝑗−1)

, (8)

and

𝐻𝑎,𝐠̂𝑎′

𝑘 (𝐿̄𝑘−1, 𝑀̄𝑘−1) =
𝐼(𝐴 = 𝑎)
𝑝𝐴(𝑎 ∣ 𝐿0)

𝐼(𝐶𝑘 = 0)
𝛿𝑘(𝑎, 𝐿̄𝑘−1, 𝑀̄𝑘−1)

𝑘−1
∏

𝑗=1

𝑔̂𝑎′𝑗 (𝑀𝑗 ∣ 𝐿̄𝑗 , 𝑀̄𝑗−1)

𝑝𝑀𝑗
(𝑀𝑗 ∣ 𝑎, 0̄, 𝐿̄𝑗 , 𝑀̄𝑗−1)

, 𝑘 = 1, ..., 𝐾 (9)
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for

𝛿𝑘(𝐴, 𝐿̄𝑘−1, 𝑀̄𝑘−1) =
𝑘
∏

𝑗=1
𝑝𝐶𝑗 (𝐶𝑗 = 0 ∣ 𝐴,𝐶𝑗−1 = 0, 𝐿̄𝑗−1, 𝑀̄𝑗−1), 𝑘 = 1, ..., 𝐾.

4.1 LTMLE algorithm
We will use the loss functions

(𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1
) = −

{

𝑌 log
(

𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1

)

+ (1 − 𝑌 ) log
(

1 −𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1

)}

,

(𝑄𝑎,𝐠̂𝑎′

𝐿𝑡
) = −

{

𝑄𝑎,𝐠̂𝑎′

𝑀𝑡
log

(

𝑄𝑎,𝐠̂𝑎′

𝐿𝑡

)

+ (1 −𝑄𝑎,𝐠̂𝑎′

𝑀𝑡
) log

(

1 −𝑄𝑎,𝐠̂𝑎′

𝐿𝑡

)}

,

and the least favorable submodels

𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1
(𝜀) = expit

(

logit
(

𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1
+ 𝜀

))

,

𝑄𝑎,𝐠̂𝑎′

𝐿𝑡
(𝜀) = expit

(

logit
(

𝑄𝑎,𝐠̂𝑎′

𝐿𝑡
+ 𝜀

))

.

Then the implementation of the LTMLE algorithm can be described as follows

1. Obtain initial estimates 𝐻̂𝑎,𝐠̂𝑎′

𝑡,𝑛 of 𝐻𝑎,𝐠̂𝑎′

𝑡 for 𝑡 = 1, ..., 𝐾 + 1.

2. Regress 𝑌 on (𝐴, 𝐿̄𝐾 , 𝑀̄𝐾 ) among those who are uncensored at time𝐾 with𝑅𝑌 = 1. Evaluate the fitted function at𝐴 = 𝑎
and the observed covariates (𝐿̄𝐾 , 𝑀̄𝐾 ) to obtain an estimate 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝐾+1
(𝐿̄𝐾 , 𝑀̄𝐾 ) of 𝑄𝑎,𝐠̂𝑎′

𝐿𝐾+1
(𝐿̄𝐾 , 𝑀̄𝐾 ). Update the estimate

by setting 𝑄∗,𝑎,𝑔
𝑛,𝐿𝐾+1

= 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝐾+1
(𝜀𝑛,𝐿𝐾+1

), where

𝜀𝑛,𝐿𝐾+1
= argmin

𝜀
𝑃𝑛𝐻̂

𝑎,𝐠̂𝑎′

𝐾+1,𝑛
(

𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝐾+1
(𝜀)

)

,

is the coefficient of a weighted logistic regression of 𝑌 onto the intercept model with an offset logit
(

𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝐾+1
(𝐿̄𝐾 , 𝑀̄𝐾 )

)

and weights 𝐻̂𝑎,𝐠̂𝑎′

𝐾+1,𝑛(𝐿̄𝐾 , 𝑀̄𝐾 ).

3. For t=K,...,1

(a) Compute an estimate 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝑀𝑡
(𝐿̄𝑡, 𝑀̄𝑡−1) =

∑

𝑗 𝑄̂
∗,𝑎,𝐠̂𝑎′

𝑛,𝐿𝑡+1
(𝐿̄𝑡, 𝑚𝑡,𝑗 , 𝑀̄𝑡−1)𝑔(𝑚𝑡,𝑗 ∣ 𝐿̄𝑡, 𝑀̄𝑡−1)Δ𝑚𝑡,𝑗 of 𝑄𝑎,𝐠̂𝑎′

𝑀𝑡
(𝐿̄𝑡, 𝑀̄𝑡−1),

where Δ𝑚𝑡,𝑗 = 𝑚𝑡,𝑗 − 𝑚𝑡,𝑗−1 and the 𝑚𝑡,𝑗’s are some appropriately chosen discretization of the support of 𝑀𝑡.
Alternatively the integral can be computed using Monte Carlo integration.

(b) Regress 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝑀𝑡
(𝐿̄𝑡, 𝑀̄𝑡−1) on (𝐴, 𝐿̄𝑡−1, 𝑀̄𝑡−1) among those who are uncensored at time 𝑡. Evaluate the fitted function

at 𝐴 = 𝑎 the observed covariates (𝐿̄𝑡−1, 𝑀̄𝑡−1) to obtain an estimate 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝑡
(𝐿̄𝑡−1, 𝑀̄𝑡−1) of𝑄𝑎,𝐠̂𝑎′

𝐿𝑡
(𝐿̄𝑡−1, 𝑀̄𝑡−1). Update

the estimate by setting 𝑄∗,𝑎,𝑔
𝑛,𝐿𝑡

= 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝑡
(𝜀𝑛,𝐿𝑡) where

𝜀𝑛,𝐿𝑡 = argmin
𝜀
𝑃𝑛𝐻̂

𝑎,𝐠̂𝑎′

𝑡,𝑛 
(

𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝑡
(𝜀)

)

is the coefficient of a weighted logistic regression of 𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝑀𝑡
(𝐿̄𝑡, 𝑀̄𝑡−1) onto the intercept model with an offset

logit
(

𝑄̂𝑎,𝐠̂𝑎′

𝑛,𝐿𝑡
(𝐿̄𝑡−1, 𝑀̄𝑡−1)

)

and weights 𝐻̂𝑎,𝐠̂𝑎′

𝑡,𝑛 (𝐿̄𝑡−1, 𝑀̄𝑡−1).

4. Then the TMLE is

𝜓̂ tmle
𝑛 = 1

𝑛

𝑛
∑

𝑖=1

{

𝑄∗,𝑎,𝐠̂𝑎′

𝑛,𝐿1
(𝐿0,𝑖)

}

. (10)

4.2 Inference
Let 𝛿 = (𝛿𝑘, 𝑘 = 1, ..., 𝐾), 𝑝𝑀 = (𝑝𝑀𝑘

∶ 𝑘 = 1, ..., 𝐾) and 𝑄𝑎,
𝐿 = (𝑄𝑎,𝐠̂𝑎′

𝐿𝑘
∶ 𝑘 = 1, ..., 𝐾 + 1). We show in Appendix C that the

TMLE in (10) is a consistent estimator of Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) if either of the following conditions hold
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(i) 𝑝𝐿 and 𝑝𝑌 are correctly specified,

(ii) 𝑝𝑅𝑌 , 𝛿 and 𝑝𝑀 are correctly specified,

(iii) 𝑝𝑌 , 𝛿𝑛 and 𝑝𝑀 are correctly specified.

Provided certain rate conditions hold21,34,24 the TMLE is an asymptotically efficient estimator of 𝜓0 = Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′). In

particular,
√

𝑛(𝜓̂ tmle
𝑛 − 𝜓0) → 𝑁(0, 𝜎20), where 𝜎20 = 𝐸𝐷∗

𝑎,𝐠̂𝑎′
(𝑃0)(𝑂)2 is the variance of the efficient influence curve. We can

estimate 𝜎20 with the empirical sample variance of the estimated efficient influence curve.

5 SIMULATION STUDY

In this section we conduct a simulation study to demonstrate the estimator’s finite sample performance and robustness properties.

5.1 Data generating distribution
We consider the following data-generating mechanism

𝐿0 ∼ 𝑁(4, 1),

𝐴 ∼ 𝐵𝑒𝑟𝑛(0.5),

𝐶1 ∼ 𝐵𝑒𝑟𝑛 (expit(−2 − 0.5𝐴),

𝐿1 ∼ 𝑁(0.5 + 0.85𝐿0 + 𝛽𝐴𝐿1
𝐴, 1),

𝑀1 ∼ 𝑁(2.3 + 𝛽𝐴𝑀1
𝐴 − 0.2𝐿1, 1),

𝐶2 ∼ 𝐵𝑒𝑟𝑛
(

expit(−2 − 0.5𝐴 − 0.05𝑀1
)

,

𝐿2 ∼ 𝑁(0.5 + 0.1𝐿0 + 0.75𝐿1 + 𝛽𝐴𝐿2
𝐴 + 0.2𝑀2, 1),

𝑀2 ∼ 𝑁(0.5 + 0.9𝑀1 + 𝛽𝐴𝑀2
𝐴 − 0.2𝐿2, 1),

𝑅𝑌 ∼ 𝐵𝑒𝑟𝑛
(

expit(2.5 + 0.2𝐴 + 0.1𝑀2 − 0.1𝐿2)
)

,

𝑌 ∼ 𝐵𝑒𝑟𝑛
(

expit(−1 + 𝛽𝐴𝑌 𝐴 + 𝛽𝑀𝑌 𝑀2 + 𝛽𝐿𝑌 𝐿2)
)

,

where expit(𝑥) = 1∕(1 + exp(−𝑥)).

5.2 Results
In Table 1 we consider four simulation scenarios. In the first scenario (i) we consider the case where there is no direct effect
because exposure has no effect on the covariates or on the outcome, and we set (𝛽𝐴𝐿1

, 𝛽𝐴𝐿2
) equal to (0.00, 0.00), (𝛽𝐴𝑀1

, 𝛽𝐴𝑀2
) equal

to (0.75, 1.00) and (𝛽𝐴𝑌 , 𝛽
𝑀
𝑌 , 𝛽

𝐿
𝑌 ) equal to (0.00, 0.20,−0.15). In scenario (ii) we consider the case where both a direct and an

indirect effect is present and we set (𝛽𝐴𝐿1
, 𝛽𝐴𝐿2

) equal to (0.75, 1.00) ,(𝛽𝐴𝑀1
, 𝛽𝐴𝑀2

) equal to (0.75, 1.00) and (𝛽𝐴𝑌 , 𝛽
𝑀
𝑌 , 𝛽

𝐿
𝑌 ) equal to

(0.75, 0.20,−0.15). In the third scenario (iii) we consider the case where there is no indirect effect and we set (𝛽𝐴𝐿1
, 𝛽𝐴𝐿2

) equal to
(0.75, 1.00) (𝛽𝐴𝑀1

, 𝛽𝐴𝑀2
) equal to (0.75, 1.00) and (𝛽𝐴𝑌 , 𝛽

𝑀
𝑌 , 𝛽

𝐿
𝑌 ) equal to (0.75, 0.00,−0.15).
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n 400 4000
setting mean bias sd se cov mean bias sd se cov

(i)
SDE 0.44 0.437 7.02 6.55 94.0 -0.09 -0.088 2.27 2.20 94.6
SIE 4.67 -0.595 5.38 4.74 92.2 5.23 -0.032 1.76 1.68 93.6
OE 5.10 -0.158 4.67 4.78 95.3 5.14 -0.119 1.50 1.52 96.2

(ii)
SDE 7.52 -0.112 8.25 7.25 90.1 7.54 -0.104 2.50 2.47 94.2
SIE 5.56 -0.769 6.45 5.42 89.7 6.26 -0.093 2.04 1.95 92.4
OE 13.1 -0.881 5.11 5.02 93.3 13.8 -0.197 1.61 1.59 94.3

(iii)
SDE 8.28 -0.184 8.13 7.38 90.6 8.44 -0.016 2.52 2.56 95.1
SIE 0.39 0.035 6.67 5.64 87.4 -0.45 -0.024 2.16 2.07 94.5
OE 7.89 -0.149 4.55 4.65 95.6 8.00 -0.040 1.45 1.47 94.9

Table 1 setting refers to the simulation scenarios described in the body of the text; mean is the average estimate across simulations
(×100); bias is the average bias across simulations (×100); sd is the standard deviation (×100); se is the average of the estimated
influence function based standard error across simulations (×100); cov is the coverage probability of a 95% Wald type confidence
interval (×100). Each entry is based on 1000 replicates.

In all four scenarios models for 𝑌 ,𝑅𝑌 and 𝐶𝑡 were fitted using correctly specified logistic regression models. The regressions
in the targeting step in 3b) of the algorithm were fitted with a quasibinomial regression adjusted for all relevant covariates. The
conditional density of 𝑀𝑡 was estimated from a normal density with homoscedastic variance. The results in Table 1 show that
as expected the estimator is unbiased when all models are correctly specified. We see that the coverage is close to 95% for the
larger sample size 𝑛 = 4000 and close to 90% for the smaller sample size 𝑛 = 400.

n 400 4000
mean bias sd se cov mean bias sd se cov

(a) 𝑄𝑎,𝐠̂𝑎′

𝐿 and 𝑝𝑌 misspec
SDE 7.52 -0.113 8.26 7.43 90.7 7.53 -0.117 2.54 2.53 94.3
SIE 5.86 -0.480 6.55 5.62 91.7 6.31 -0.035 2.09 2.02 93.1
OE 13.4 -0.592 5.10 5.08 94.1 13.8 -0.151 1.61 1.61 94.7

(b) 𝑄𝑎,𝐠̂𝑎′

𝐿 and 𝑝𝑅𝑌 misspec
SDE 7.48 -0.150 8.14 7.18 89.6 7.53 -0.113 2.48 2.45 93.9
SIE 5.67 -0.670 6.36 5.35 89.6 6.28 -0.073 2.02 1.92 92.2
OE 13.1 -0.821 5.10 5.06 93.8 13.8 -0.186 1.61 1.60 94.5

(c) 𝑄𝑎,𝐠̂𝑎′

𝐿 , 𝑝𝑌 and 𝑝𝑅𝑌 misspec
SDE 6.11 -1.53 8.40 9.89 95.0 5.85 -1.80 2.59 3.42 94.9
SIE 7.28 0.94 6.88 8.04 94.5 8.02 1.67 2.17 2.91 94.3
OE 13.4 -0.58 5.11 5.10 94.2 13.9 -0.13 1.62 1.61 95.0

Table 2 mean is the average estimate across simulations (×100); bias is the average bias across simulations (×100); sd is the
standard deviation (×100); se is the average of the estimated influence function based standard error across simulations (×100);
cov is the coverage probability of a 95% Wald type confidence interval (×100). Each entry is based on 1000 replicates.

In Table 2 we consider the simulation setting as in (iii) where both a direct and indirect effect is present, and we demonstrate
the robustness properties of the estimator. In (a) we consider misspecification of the models for 𝑄𝐿 and 𝑝𝑌 , in (b) we consider
misspecification of the models for 𝑄𝐿 and 𝑝𝑅𝑌 and in (c) we consider misspecification of the models for 𝑄𝐿, 𝑝𝑌 and 𝑝𝑅𝑌 . In
all cases we misspecify the models by only including a term for 𝐴. We see that as expected from the robustness properties in
Section 4.2 the estimator remains unbiased in (a)-(b) but is biased in (c).
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6 ANALYSIS OF THE NASH TRIAL

We now apply our proposed method to the NASH clinical trial described in Section 1.1. The potential mediator is weight loss (kg)
which was measured at the follow-up visits at weeks 4, 12, 20, 28, 36, 44, 52, 63 and 72. To fulfill the sequential exchangeability
assumptions described in Section 3.1 we include the time-varying covariates Alanine Aminotransferase (ALT) and Aspartate
Aminotransferase (AST) measured at the same visits as weight loss, Serum Enhanced Liver Fibrosis (ELF) measured at weeks
28, 52 and 72, FIB4 score measured at weeks 4, 12, 28, 36, 52 and 72 and triglycerides (TG) measured at weeks 4, 12, 28, 52 and
72 AST, ALT and TG values were all log transformed. Missing covariate values were imputed by carrying forward last recorded
value. Note that there are very few missing values and this is unlikely to affect the results. We included sex, age, baseline weight,
diabetes type and baseline fibrosis stage as baseline covariates, as well as baseline values of ALT, AST, ELF, FIB4 and TG.
Table 3 shows the number of subjects who are in the study and on treatment across treatment arms at the follow-up visit where
weight loss was measured, along with the number of biopsies performed at the end of follow-up.

week 0 4 12 20 28 36 44 52 62 72 biopsy
Placebo 80 80 78 78 75 75 75 73 73 72 67
Sema 0.1 mg OD 80 80 77 76 76 76 76 76 75 74 72
Sema 0.2 mg OD 78 77 75 70 69 68 68 67 67 66 61
Sema 0.3 mg OD 82 81 78 76 75 74 73 73 73 73 66
total 320 318 308 300 295 293 292 289 288 285 266

Table 3 Number of subjects who are in the study and on treatment across treatment arms, along with the number of non-missing
biopsies among those that are still in the study and on treatment at the final visit.

Models for 𝑝𝑌 and 𝑝𝑅𝑌 as well as the regression in step 3b) were estimated using an ensemble Super Learner35,36 which
included glm with and without AIC based stepwise covariate selection, bayes glm, generalized additive model, penalized re-
gression and tree based methods. Each algorithm was coupled with both a variable importance-based covariate screener, a
correlation-based covariate screener and a coefficient threshold-based covariate screener. Finally 𝑝𝐶 was estimated via logistic
regression and the conditional density 𝑝𝑀 was estimated from a normal density.
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Figure 2 Boxplots of the clever covariates/weights.
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The baseline treatment variable has four levels corresponding to placebo, Semaglutide 0.1mg, Semaglutide 0.2mg and
Semaglutide 0.4mg respectively. We will focus on the comparison Semaglutide 0.4mg versus placebo. To investigate the positiv-
ity assumption in A.3 (iii) we compute the weights/clever covariates in (9) both with 𝑎=placebo and 𝑎′=Sema 0.4 mg, and with
𝑎=Sema 04.mg and 𝑎′=placebo. A boxplot of the weights is presented in Figure 2 below. We see that letting 𝑎=Sema 04.mg and
𝑎′=placebo results in some very extreme outliers in the weights. This was expected since there are no subjects in the placebo
group who loose weight resulting in severe violations of assumption in A.3 (iii). Letting 𝑎=placebo and 𝑎′=Sema 0.4 mg still
results in some outliers but not as extreme. This is because there are some subjects in the treatment arm who do not loose weight.

Based on the distribution of the weights we let 𝑎=placebo and 𝑎′=Sema 0.4 mg when computing the direct and indirect effects.
This means that the direct effect can be interpreted as the difference in expected outcomes of assigning treatment to placebo
versus Sema 0.4mg while fixing the mediator to a random draw from the observed distribution of weight loss when assigned to
placebo. The indirect effect can be interpreted as the difference in expected outcome of assigning the mediator to a random draw
from the observed distribution of the weight loss when given placebo versus assigning the mediator to a random draw from the
observed distribution of the weight loss when given Sema 0.4mg, while fixing the treatment to placebo.

est se CI lower CI upper

a=placebo, a’=Sema 0.4 mg OD
SDE -0.0447 0.0774 -0.196 0.107
SIE -0.121 0.0538 -0.226 -0.0152
OE -0.165 0.0794 -0.321 -0.00958

Table 4 NASH analysis results. est is the targeted maximim likelihood estimate; se is the influence function based standard error
estimate; CI lower and CI upper are the upper and lower bounds respectively of a Wald-type confidence interval.

The results of the analysis are summarized in Table 4. The indirect effect is estimated to be -0.121 (95% CI [-0.226; -0.015])
and the direct effect is estimated to be -0.045 with a confidence interval that includes zero. That is, we find no evidence of a
direct effect of Semaglutide on the primary endpoint not mediated through weight loss. We note that the results should only be
considered hypothesis generating. Further research is needed to asses the effect of near-violations of the positivity assumption
A.3 (iii).

7 DISCUSSION

In this paper we have proposed class of data-dependent interventional (in)direct effects for estimating the extent to which the
effect of a (randomized) baseline treatment on an outcome of interest is mediated through a repeatedly measured continuous
covariate. For estimation we proposed a longitudinal targeted minimum loss-based estimation (LTMLE) method based on the
sequential regression technique.

We argued that the data-dependent interventional (in)direct effects may sometimes be preferred by researchers because they
are identified under weaker assumptions than the interventionist (in)direct effects which assume that the stochastic mediator
distribution is the true unknown distribution. Moreover the estimation procedure is simpler than the TMLE algorithm of Zheng
& van der Laan (2017)18 as there is only one targeting step in each iteration, and the clever covariates do not depend on the
conditional density of the covariates. This makes the implementation barriers lower.

We applied the method to the NASH clinical trial where we found no evidence of a direct effect of Semaglutide on NASH
resolution not mediated through weight loss.

A weakness of the method is that when there no or limited overlap between the conditional mediator distributions in the
control and treatment arms the weights for the TMLE algorithm may become very extreme. To address this a possible extension
of the method is to consider interventional direct effects where the stochastic mediator distribution 𝑔∗ marginalizes over the
treatment variable. That is

𝑔∗𝑡 (𝑀𝑡 ∣ 𝐿̄𝑡, 𝑀̄𝑡−1) =
∑

𝑎
𝑃 (𝑀𝑡 ∣ 𝐴 = 𝑎, 𝐶̄𝑡 = 0, 𝐿̄𝑡, 𝑀̄𝑡−1)𝑃 (𝐴 = 𝑎 ∣ 𝐿0),
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A further extension of this is to identify the target with most support in the data by choosing 𝑔∗ to minimize the dissimilarity

var
{

𝐷∗(𝑃 )(𝑎, 𝑔∗)(𝑃 )(𝑂) −𝐷∗(𝑃 )(𝑎, 𝑔𝑜𝑏𝑠)(𝑃 )(𝑂)
}

,

where 𝑔𝑜𝑏𝑠 is the observed mediator distribution. This will be the topic of future research.
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APPENDIX

A IDENTIFICATION

Let 𝐺𝑎′
𝑘 denote a variable drawn from the known distribution 𝑔𝑎′𝑘 (𝑚𝑘 ∣ 𝑙𝑘, 𝑚̄𝑘−1). By definition we have

𝐸
{

𝑌 (𝑎, 𝐠𝑎′)
}

=∫
0

𝐾
∏

𝑘=1
∫

𝑘×𝑘

[

𝐸
{

𝑌 (𝑎, 𝐠𝑎′) ∣ 𝐺̄𝑎′
𝐾 = 𝑚̄𝐾 , 𝐿̄𝐾 (𝑎, 𝐠𝑎

′) = 𝑙𝐾
}

𝑔𝑎′𝑘 (𝑚𝑘 ∣ 𝑙𝑘, 𝑚̄𝑘−1)

× 𝑃 (𝐿𝑘(𝑎, 𝐠𝑎
′) = 𝑙𝑘 ∣ 𝐺̄𝑎′

𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎
′) = 𝑙𝑘−1)𝑝(𝐿0 = 𝑙0)

]

d𝜇𝑀𝑘
(𝑚𝑘) d𝜇𝐿𝑘(𝑙𝑘) d𝜇𝐿0

(𝑙0).

We first demonstrate how to identify the conditional probability of 𝐿𝑘(𝑎, 𝐠𝑎
′). We have

𝑃 (𝐿𝑘(𝑎, 𝐠𝑎
′) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐺

𝑎′
𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎

′) = 𝑙𝑘−1)
(𝑖)
= 𝑃 (𝐿𝑘(𝑎, 𝑚𝑘) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐺

𝑎′
𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎

′) = 𝑙𝑘−1)
(𝑖𝑖)
= 𝑃 (𝐿𝑘(𝑎, 𝑚𝑘) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐴 = 𝑎, 𝐺𝑎′

𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎
′) = 𝑙𝑘−1)

(𝑖𝑖𝑖)
= 𝑃 (𝐿𝑘(𝑎, 𝑚𝑘) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐴 = 𝑎, 𝐶1 = 0, 𝐺𝑎′

𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎
′) = 𝑙𝑘−1)

(𝑖𝑣)
= 𝑃 (𝐿𝑘(𝑎, 𝑚𝑘) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐴 = 𝑎, 𝐶1 = 0, 𝐺𝑎′

2∶𝑘−1 = 𝑚̄2∶𝑘−1, 𝐿̄𝑘−1(𝑎, 𝐠𝑎
′) = 𝑙𝑘−1)

(𝑣)
= 𝑃 (𝐿𝑘(𝑎, 𝑚𝑘) = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐴 = 𝑎, 𝐶1 = 0,𝑀1 = 𝑚1, 𝐺

𝑎′
2∶𝑘−1 = 𝑚̄2∶𝑘−1, 𝐿1 = 𝑙1, 𝐿̄2∶𝑘−1(𝑎, 𝐠𝑎

′) = 𝑙2∶𝑘−1)
= 𝑃 (𝐿𝑘 = 𝑙𝑘 ∣ 𝐿0 = 𝑙0, 𝐴 = 𝑎, 𝐶̄𝑘 = 0̄, 𝑀̄𝑘−1 = 𝑚̄𝑘−1, 𝐿̄𝑘−1 = 𝑙𝑘−1),

where the first equality follows from the definition of 𝐿(𝑎, 𝐠𝑎′), the second equality follows from (A.0) and the third equality
from (A.1). The fourth equality follows because by definition 𝐿𝑘(𝑎, 𝑚𝑘) ⟂⟂ 𝐺𝑎′

1 ∣ 𝐿0 = 𝑙0, 𝐿1(𝑎) = 𝑙1 and the fifth equality
follows from (A.2). The last equality follows from iteratively repeating the arguments in steps (iii)-(v).

Analogously assumptions (A.0)-(A.2) imply that the conditional expectation of 𝑌 (𝑎, 𝐠𝑎′) identifies to

𝐸
{

𝑌 (𝑎, 𝐠𝑎′) ∣ 𝐺̄𝑎′
𝐾 = 𝑚̄𝐾 , 𝐿̄𝐾 (𝑎, 𝐠𝑎

′) = 𝑙𝐾
}

= 𝐸
{

𝑌 ∣ 𝐴 = 𝑎, 𝐶̄𝐾 = 0̄, 𝑀̄𝐾 = 𝑚̄𝐾 , 𝐿̄𝐾 = 𝑙𝐾
}

.

B DERIVATION OF THE EFFICIENT INFLUENCE FUNCTION

There are several ways to derive efficient influence functions. We here use the Gâteaux derivative approach37,38. Specifically we
will compute the so-called Gâteaux derivative39 of the target parameter in the direction of a point mass at single observation 𝑜̃,
defined as

𝑑
𝑑𝜀

|

|

|

|𝜀=0
𝜓
(

𝑃𝜀
)

,
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where 𝑃𝜀 = (1 − 𝜀)𝑃 + 𝜀𝛿𝑜̃ and 𝛿𝑜̃ is the Dirac measure at 𝑂 = 𝑜̃.
For simplicity we derive the efficient influence function for the special case of 𝐾 = 2 and we do the calcultions assuming all

variables are continuous. It follows from the chain rule that

𝑑
𝑑𝜀

|

|

|

|𝜀=0
Ψ(𝑃𝜀)(𝑎, 𝐠𝑎

′ ) =𝐸

⎛

⎜

⎜

⎜

⎝

∫
⨘

𝐸

⎡

⎢

⎢

⎢

⎣

∫
2

⎧

⎪

⎨

⎪

⎩

∫


𝑦 𝑑
𝑑𝜀

|

|

|

|𝜀=0
𝑝𝑌 ,𝜀(𝑦 ∣ 𝑎, 0̄, 𝑚̄2, 𝐿̄2, 𝑅𝑌 = 1) d𝜇𝑌 (𝑦)

⎫

⎪

⎬

⎪

⎭

𝑔𝑎′2 (𝑚2 ∣ 𝐿̄2, 𝑚1) d𝜇𝑀2
(𝑚2)

|

|

|

|

|

𝐴 = 𝑎, 𝐿̄1, 𝑚1

⎤

⎥

⎥

⎥

⎦

𝑔𝑎′1 (𝑚1 ∣ 𝐿̄1) d𝜇𝑀1
(𝑚1)

⎞

⎟

⎟

⎟

⎠

+ 𝐸

⎡

⎢

⎢

⎢

⎣

∫
1

⎧

⎪

⎨

⎪

⎩

∫
2

𝑄𝑎,𝐠𝑎′

𝑀2
(𝑙2, 𝐿̄1,𝑀1)

𝑑
𝑑𝜀

|

|

|

|𝜀=0
𝑝𝐿2 ,𝜀(𝑙2 ∣ 𝑎, 𝐿̄1,𝑀1) d𝜇𝐿2

(𝑙2)

⎫

⎪

⎬

⎪

⎭

𝑔𝑎′1 (𝑚1 ∣ 𝐿̄1) d𝜇𝑀1
(𝑚1)

⎤

⎥

⎥

⎥

⎦

+ 𝐸

⎧

⎪

⎨

⎪

⎩

∫
1

𝑄𝑎,𝐠𝑎′

𝑀1
(𝑙1, 𝐿0)

𝑑
𝑑𝜀

|

|

|

|𝜀=0
𝑝𝐿1 ,𝜀(𝑙1 ∣ 𝑎, 𝐿̄0) d𝜇𝐿1

(𝑙1)

⎫

⎪

⎬

⎪

⎭

+ ∫
0

𝑄𝐿1
(𝑙0)

𝑑
𝑑𝜀

|

|

|

|𝜀=0
𝑝𝐿0 ,𝜀(𝑙0) d𝜇𝐿0

(𝑙0)

=
𝛿𝑎̃(𝑎)

𝑝𝐴(𝑎 ∣ 𝑙0)

𝛿𝑟𝑦 (1)

𝑝𝑅𝑌 (1 ∣ 𝑙0∶2, 𝑚̃1∶2)

2
∏

𝑘=1

𝛿𝑐𝑘 (0)

𝑝𝐶𝑘 (0 ∣ 𝑙0∶𝑘−1, 𝑚̃1∶𝑘−1)

𝑔𝑎′𝑘 (𝑚̃𝑘 ∣ 𝑙0∶𝑘, 𝑚̃1∶𝑘−1)

𝑝𝑀𝑘
(𝑚̃𝑘 ∣ 𝑎̃, 0̄, 𝑙0∶𝑘, 𝑚̃1∶𝑘−1)

{

𝑦̃ −𝑄𝑎,𝑔𝑎′

𝑌 (𝑚̃1∶2, 𝑙0∶2)
}

+
𝛿𝑎̃(𝑎)

𝑝𝐴(𝑎 ∣ 𝑙0)

𝑔𝑎′1 (𝑚̃1 ∣ 𝑙0∶1)

𝑝𝑀1
(𝑚̃1 ∣ 𝑎̃, 0, 𝑙0∶1)

2
∏

𝑘=1

𝛿𝑐𝑘 (0)

𝑝𝐶𝑘 (0 ∣ 𝑙0∶𝑘−1, 𝑚̃1∶𝑘−1)

{

𝑄𝑎,𝑔𝑎′

𝑀2
(𝑚̃1, 𝑙0∶2) −𝑄

𝑎,𝑔𝑎′

𝐿2
(𝑚̃1, 𝑙0∶1)

}

+
𝛿𝑎̃(𝑎)

𝑝𝐴(𝑎 ∣ 𝑙0)

𝛿𝑐1 (0)

𝑝𝐶1 (0 ∣ 𝑙0)

{

𝑄𝑎,𝑔𝑎′

𝑀1
(𝑙0∶1) −𝑄

𝑎,𝑔𝑎′

𝐿1
(𝑙0)

}

+𝑄𝑎,𝑔𝑎′

𝐿1
(𝑙0) − ∫ 𝑄𝑎,𝑔𝑎′

𝐿1
(𝑙0)𝑝𝐿0

(𝑙0) d𝜇𝐿0
(𝑙0)

Since 𝐴, 𝑅𝑌 and 𝐶𝑘 are discrete we can replace the dirac delta functions with the indicator functions to obtain the efficient
influence function

𝐷∗(𝑃 )(𝑂) =
𝐼(𝐴 = 𝑎)
𝑝𝐴(𝑎 ∣ 𝐿0)

𝐼(𝑅𝑌 = 1)
𝑝𝑅𝑌 (1 ∣ 𝑎, 0, 𝐿̄2, 𝑀̄2)

2
∏

𝑘=1

𝐼(𝐶𝑘 = 0)
𝛿𝑘(𝑎, 𝐿̄𝑘−1, 𝑀̄𝑘−1)

𝑔𝑎′𝑘 (𝑀̃𝑘 ∣ 𝐿̄𝑘, 𝑀̄𝑘−1)

𝑝𝑀𝑘
(𝑀𝑘 ∣ 𝑎, 0̄, 𝐿̄𝑘, 𝑀̄𝑘−1)

{

𝑌 −𝑄𝑎,𝑔𝑎′

𝑌 (𝑀̄2, 𝐿̄2)
}

=
𝐼(𝐴 = 𝑎)
𝑝𝐴(𝑎 ∣ 𝐿0)

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)
𝑝𝑀1

(𝑀1 ∣ 𝐿0, 𝑎, 0, 𝐿1)

2
∏

𝑘=1

𝐼(𝐶𝑘 = 0)
𝛿𝑘(𝑎, 𝐿̄𝑘−1, 𝑀̄𝑘−1)

{

𝑄𝑎,𝑔𝑎′

𝑀2
(𝑀1, 𝐿̄2) −𝑄

𝑎,𝑔𝑎′

𝐿2
(𝑀1, 𝐿̄1)

}

+
𝐼(𝐴 = 𝑎)
𝑝𝐴(𝑎 ∣ 𝐿0)

𝐼(𝐶1 = 0)
𝛿1(𝑎, 𝐿0)

{

𝑄𝑎,𝑔𝑎′

𝑀1
(𝐿̄1) −𝑄

𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

+𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0) − Ψ(𝑃 )(𝑎, 𝐠̂𝑎′). (B1)

The generalization to arbitrary 𝐾 follows immediately.

C MULTIPLE ROBUSTNESS

We here prove the robustness conditions stated in Section 4.2. We again consider the case of𝐾 = 2 where the influence function
can be written as in (B1).

(i)
Suppose 𝑝𝐿 and 𝑝𝑌 are correctly specified. Then it follows by a simple application of iterated expectations that

𝐸 {𝐷∗(𝑃 )(𝑂)} = Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) − Ψ(𝑃 )(𝑎, 𝐠̂𝑎′)
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(ii)
Suppose 𝑝𝑌 𝛿 and 𝑝𝑀 are correctly specified. Then

𝐸 {𝐷∗(𝑃 )(𝑂)} =𝐸

(

𝐸

[

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝐸
{

𝑄𝑎,𝑔𝑎′

𝑀2
(𝑀1, 𝐿̄2)

|

|

|

|

𝐴 = 𝑎, 𝐶̄2 = 0, 𝐿̄1, 𝑀̄1

}

∣ 𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

])

− 𝐸

[

𝐸

{

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝑄𝑎,𝑔𝑎′

𝐿2
(𝑀1, 𝐿̄1)

|

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

}]

+ 𝐸
[

𝐸
{

𝑄𝑎,𝑔𝑎′

𝑀1
(𝐿̄1)

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿0

}

]

− 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

+ 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

− Ψ(𝑃 )(𝑎, 𝐠̂𝑎′)

=Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) − 𝐸

[

𝐸

{

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝑄𝑎,𝑔𝑎′

𝐿2
(𝑀1, 𝐿̄1)

|

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

}]

+ 𝐸
[

𝐸
{

𝑄𝑎,𝑔𝑎′

𝑀1
(𝐿̄1)

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿0

}

]

− 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

+ 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

− Ψ(𝑃 )(𝑎, 𝐠̂𝑎′)

=Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′) − Ψ(𝑃 )(𝑎, 𝐠̂𝑎′).

(iii)
Suppose 𝑝𝑅𝑌 𝛿 and 𝑝𝑀 are correctly specified. Then we again get a telescoping sum

𝐸 {𝐷∗(𝑃 )(𝑂)} =Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′ )

− 𝐸

(

𝐸

[

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝐸

{

𝑔𝑎′2 (𝑀2 ∣ 𝐿̄2,𝑀1)

𝑝0,𝑀2
(𝑀2 ∣ 𝑎, 0̄, 𝐿̄2,𝑀1)

𝑄𝑎,𝑔𝑎′

𝑌 (𝑀̄2, 𝐿̄2)
|

|

|

|

|

𝐴 = 𝑎, 𝐶̄2 = 0,𝑀1, 𝐿̄2

}

|

|

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

])

+ 𝐸

(

𝐸

[

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝐸
{

𝑄𝑎,𝑔𝑎′

𝑀2
(𝑀1, 𝐿̄2)

|

|

|

|

𝐴 = 𝑎, 𝐶̄2 = 0, 𝐿̄1, 𝑀̄1

}

∣ 𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

])

− 𝐸

[

𝐸

{

𝑔𝑎′1 (𝑀1 ∣ 𝐿̄1)

𝑝0,𝑀1
(𝑀1 ∣ 𝑎, 0̄, 𝐿̄1)

𝑄𝑎,𝑔𝑎′

𝐿2
(𝑀1, 𝐿̄1)

|

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿̄1

}]

+ 𝐸
[

𝐸
{

𝑄𝑎,𝑔𝑎′

𝑀1
(𝐿̄1)

|

|

|

|

𝐴 = 𝑎, 𝐶1 = 0, 𝐿0

}

]

− 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

+ 𝐸
{

𝑄𝑎,𝑔𝑎′

𝐿1
(𝐿0)

}

− Ψ(𝑃 )(𝑎, 𝐠̂𝑎′ )

=Ψ(𝑃0)(𝑎, 𝐠̂𝑎
′ ) − Ψ(𝑃 )(𝑎, 𝐠̂𝑎′ ).

D ADDITIONAL SIMULATIONS

In Table D1 below we report the results from a simulation study investigating the effect of the number of cutpoints used for the
numerical integration in step 3a) of the algorithm in Section 4. The simulation setting is identical to setting (iii) of Section 5
and we report only estimates of Ψ(1, 𝑔̂0)(𝑃 ).
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n 400 4000
bins bias sd se cov bias sd se cov
10 -0.775 6.91 6.18 88.2 -0.194 2.27 2.22 92.4
20 -0.619 6.91 6.18 88.6 -0.144 2.27 2.22 92.7
40 -0.620 6.89 6.18 88.7 -0.144 2.27 2.22 92.8
80 -0.634 6.89 6.18 88.6 -0.146 2.27 2.22 92.8
160 -0.642 6.88 6.18 88.6 -0.148 2.27 2.22 92.8

Table D1 Estimates of Ψ(1, 𝑔̂0)(𝑃 ). bins is the number of cutpoints used for the numerical integration; bias is the average bias
across simulations (×100); sd is the standard deviation (×100); se is the average of the estimated standard error across simulations
(×100); cov is the coverage propbability of a 95% Wald type confidence interval (×100). Each entry is based on 1000 replicates.
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Abstract

Both the concordance index (C-index) and the concordance probability of Gönen and Heller are
widely used in the medical literature for evaluating predictive accuracy of survival regression mod-
els. In this paper we propose novel estimators of these two discrimination measures based on the
efficient influence functions. The proposed estimators are non-parametric and locally efficient, and
allow for covariate-dependent censoring. Another much used discrimination measure is the t-year
area under the receiver operating characteristic (ROC) curve (AUCt). Since the AUCt is proper,
as opposed to the C-index, it has been recommended as a better discrimination measure than the
C-index if t-years risk prediction is the main goal rather than a global assessment of the fitted
model. We also develop a novel estimator for the AUCt with similar desirable properties. We
verify the theoretical properties of the proposed estimators in a simulation study, and illustrate
the method by an application to data from the German Breast Cancer Study Group.

Key words: concordance probability, efficient influence function, predictive accuracy, right-
censoring, survival data.

1 Introduction

A popular tool in the medical literature for evaluating the predictive accuracy of a time-to-event model
is to look at concordance measures such as the C-index [Harrell et al., 1982, Harrell Jr et al., 1996,
Heagerty and Zheng, 2005, Uno et al., 2011] or the concordance probability of Gönen and Heller [2005].
These measures are used to quantify how well an estimated risk score discriminates between subjects
with different event times. Considering two random subjects (i, j) from the population of interest the
C-index is informally defined as

C = Pr(risk(i) ≥ risk(j) | i has event before j), (1)

while the concordance probability of Gönen and Heller [2005] is informally defined as

K = Pr(i has event before j | risk(i) ≥ risk(j)). (2)

The C-index and the concordance probability both range from 0.5 to 1 and share the interpretation
that a value of 1 represents a model that perfectly discriminates between subjects with different event
times while a value of 0.5 represents a model with no discriminatory power. Note than when the event
time and risk score are both continuous and we do not truncate the event-time then the measures are
identical. If, as is commonly done, we restrict to a specific time horizon (i.e we only observe up to a
given point in time) then two measures are proportional.

An early estimator of the C-index for survival data was proposed by Harrell Jr et al. [1996].
However as noted by Gönen and Heller [2005] and Uno et al. [2011] the limiting value of Harell’s
C-index depends on the censoring distribution. To address this limitation Uno et al. [2011] develop an
ICPW estimator assuming independent censoring which was extended by Gerds et al. [2013] to allow
for covariate-dependent censoring. Hartman et al. [2023b] similarly note that the limiting value of the
c-index depends on the distribution of the truncation times and propose an IPW estimator for left-
truncated data. Gönen and Heller [2005] propose a plug-in estimator of the concordance probability
assuming that data are generated by is a proportional hazards model. If this is not the case then their
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estimator will be biased, and moreover it depends on the censoring distribution in the specific study
which clearly is of no scientific interest.

The contribution of this paper is that we propose an estimator of the concordance probability that
does not require data to be generated from a Cox model. This is done by viewing the concordance
probability as an estimand and then deriving the corresponding efficient influence function. The
so-called one-step estimator based on this efficient influence function has a term identically to the
estimator proposed by Gönen and Heller [2005] but also a debiasing term reflecting the fact that data
might not be generated from a Cox model. The estimator we propose makes efficient use of data and
at the same time possess some desirable robustness properties. In the same vein we also propose a
novel estimator of the C-index with the same desirable properties.

Recently, it was pointed out by [Blanche et al., 2019] that the C-index is not proper for the
evaluation of t-year predicted risks. They recommended instead to look at the so-called cumulative-
dynamic time-dependent area under the ROC-curve (AUCt) [Heagerty et al., 2000, Heagerty and
Zheng, 2005, Blanche et al., 2013] that is proper in this scenario. The AUCt is informally defined as

AUCt = Pr(risk(i) ≥ risk(j) | i has event before t and j has event after t). (3)

For this estimand, we derive similarly its corresponding efficient influence function and exploit this to
propose a novel estimator of the AUCt.

The three discrimination measures mentioned above all rely on a given scoring rule, which we
denote by βTX with X being the available markers that we wish to use to form the scoring rule. It
turns out to be important how the coefficient vector β is chosen. We use a well defined estimand that
does not rely on data being generated from any specific model such as the Cox-model. To estimate
β we first calculate its efficient influence function as use the corresponding one-step estimator. This
turns out to be crucial in order to obtain simple estimators for the three discrimination measures of
interest.

This paper is organized as follows. In Section 2 we define the concordance measures more formally.
In Section 3 we propose locally efficient non-parametric estimators of the truncated versions of K
and C based on the efficient influence function and we discuss estimation of β(P ). In Section 4 we
define AUCt more formally and we propose an estimator based on the efficient influence function. In
Section 5 we conduct a simulation study to illustrate the large sample properties of the estimators and
in Section 6 we apply the proposed novel estimators to data from the German Breast Cancer Study
Group (GBCSG). Some final remarks are provided in Section 7.

2 Concordance measures

Let T denote the continuous failure time and X the d-dimensional vector of markers. Let C denote
the censoring time so that we observe T̃ = T ∧ C and ∆ = I(T ≤ C), and assume that T and C are
conditionally independent given X. Let O = (T̃ ,∆, X) and Z = (T,X) with the latter corresponding
to the case where there is no censoring which we informally refer to as full data. We observe data in
the time interval [0, τ ] with τ < ∞. We let No(t) = I(T̃ ≤ t,∆ = 1) denote the counting process that
jumps when an event time of interest is observed, and also define N(t) = I(T ≤ t) corresponding to
the counting process in the case without censoring. Let β(P ) be some estimand and define the scoring
rule

Y = βTX,

that we wish to evaluate in terms of predictive power. Here β is short for β(P ). We return to how
β(P ) can be chosen. We further assume that the covariate vector X contains at least one continuous
covariate that we call W , and we write X = (V,W ) with V denoting the remaining covariates. Also,

βTX = βT
V V + βWW

and for now assume βW > 0. The concordance probability of Gönen and Heller [2005] is

Kτ (P ) = P (T2 > T1, T1 ≤ τ | Y1 ≥ Y2), (4)

where Tj is shorthand notation for a draw of the event time from the population where we restrict to Yj .
In Gönen and Heller [2005], the truncation by τ is left out and the resulting concordance probability is
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calculated assuming the data are generated by a Cox-model which further makes estimation possible.
However, without the finite maximum follow-up time τ , the concordance probability is not in general
identifiable. The concordance index, also known as the C-index [Harrell et al., 1982, Harrell Jr et al.,
1996, Pencina and D’agostino, 2004], for survival data is in the truncated form given by

Cτ (P ) = P (Y1 ≥ Y2 | T2 > T1, T1 ≤ τ), (5)

see [Uno et al., 2011, Heagerty and Zheng, 2005]. Clearly, these two concordance measures are pro-
portional to

Ψτ (P ) = P (T2 > T1, T1 ≤ τ, Y1 ≥ Y2), (6)

in the considered setting, where both Y and T are continuous. Specifically,

Kτ (P ) = 2Ψτ (P ) and Cτ (P ) = 2Ψτ (P )/
{
1− S2(τ)

}
.

In the following we develop doubly robust nonparametric estimators of both Kτ (P ) and Cτ (P ) miti-
gated by calculating the efficient influence function of Ψτ (P ). We will write Kτ for Kτ (P ) and likewise
for the other esitmands unless we wish to stress the dependence on P .

3 Doubly robust nonparametric estimators of Kτ and Cτ

The key to develop the novel estimators of the two discrimination measures is to calculate the efficient
influence function (EIF) of Ψτ (P ) without any reference to a specific statistical model such as the Cox
model. For yj = βTxj , j = 1, 2, define

hτ (y1, y2) =

∫ τ

0

S(t|y2)S(t|y1)λ(t|y1)dt, (7)

where S(t|y) = P (T > t|Y = y) and λ(t|y) is the corresponding conditional hazard function. Thus,

Ψτ =

∫ ∫
y1>y2

hτ (y1, y2)dFY (y1)dFY (y2),

where FY denotes the distribution function for Y . We show in the Appendix that the efficient influence
function corresponding to Ψτ and based on full data is

D∗
Ψτ

(Z,P ) = gτ (X;P ) +Gτ (Z, β̇, P ), (8)

where

gτ (X;P ) =

∫
I(y > Y )hτ (Y, y)dFY (y) +

∫
I(y < Y )hτ (y, Y )dFY (y)− 2Ψτ

and

Gτ (Z, β̇, P ) =

∫ ∞

Y

∫ τ

0

S(t|Y )

∫ t

0

dM(u|Y )

S(u|Y )
S(t|y)dΛ(t|y)dFY (y)

+

∫ Y

−∞

[∫ τ

0

S(t|y)dM(t|Y )−
∫ τ

0

S(t|y)S(t|Y )

∫ t

0

dM(u|Y )

S(u|Y )
dΛ(t|Y )

]
dFY (y)

+ H̃(β)β̇(P ),

with H̃(β) a constant (given in the Appendix) and β̇ is the efficient influence function of β. Fur-
ther, dM(t|Y ) denotes the martingale (increment) corresponding to the full data counting process

N(t) and conditioning on Y , and Λ(t|y) =
∫ t

0
λ(u|y)du. The only term in the full data EIF that is

affected when moving to the observed data case is the term Gτ (Z, β̇, P ). If we were willing to assume
conditionally independent censoring given Y then we get the wanted observed data Gτ (O, β̇, P ) by
replacing dM(·|Y ) in Gτ (Z, β̇, P ) with dMo(·|Y )/KC(·|Y ) where dMo(t|X) denotes the martingale
(increment) corresponding to the observed counting process No(t) and conditioning on Y , and with
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KC(u | Y ) = P (C > u|Y ). Under the earlier stated conditionally independent censoring assumption
given X we need first to rewrite

dM(v|Y ) = dM(v|X) + S(v|X)d{Λ(v|X)−Λ(v|Y )} − S(v|X)

∫ v

0

dM(r|X)

S(r|X)
d{Λ(v|X)−Λ(v|Y )} (9)

We then obtain Gτ (O, β̇, P ) by replacing dM(·|X) in Gτ (Z, β̇, P ) with dMo(·|X)/KC(·|X). The
explicit expression for Gτ (O, β̇, P ) is given in the Appendix. Finally, this gives us the wanted efficient
influence function based on the observed data

D∗
Ψτ

(O,P ) =gτ (X) +Gτ (O, β̇, P ). (10)

3.1 One-step estimator

The one-step estimator of Ψτ is obtained by setting the empirical mean of D∗
Ψτ

(O,P ) equal to zero and
solve for Ψτ . This will obviously depend on unknown quantities, however. To this end we replace β
with some estimator β̂, which we give in a moment, and FY is replaced with its empirical counterpart.
Since Kτ = 2Ψτ , this results in the following one-step estimator of the concordance probability Kτ

K̂τ =
2

n(n− 1)

∑
i̸=j

I
(
β̂TXi > β̂TXj

)
hτ

(
β̂TXj , β̂

TXi

)
+

1

n

n∑
i=1

Gτ (Oi, β̇, P̂ ). (11)

It is interesting to note that the first term in (11) corresponds to the estimator of Gönen and Heller
[2005] (GH-estimator) had we used the Cox partial likelihood estimator of β. The remaining part of
(11) is a debiasing term in case the data are not generated from a Cox model (given X). Note also that
we have used the notation P̂ to indicate that we further need to replace all other unknown quantities,
such as S(·|X), by working estimates. We will be more specific about this later but leave a bit vague
for now. If data were in fact generated by a Cox model and we use the Cox partial likelihood estimator
of β then the debiasing term is negligble. In the more likely case where data are not generated by
the Cox model the above one-step estimator can in principle be used to correct the bias of the GH-
estimator. However, we do not recommend to use this procedure as it would require estimation of the
constant H̃(β), which is not attractive due to the complicated structure of the constant. However, this
can be avoided all together if we use the one-step estimator that solves the (empirical) version of the
eif corresponding to the estimand β(P ). Put in other words, by doing so, the term H̃(β)β̇(P ) can be
dropped from the above eif. Since Cτ = Kτ/

{
1− S2(τ)

}
this suggest the estimator

Ĉτ = K̂τ/
[
1− {Ŝ(τ)}2

]
, (12)

where Ŝ(τ) is its corresponding one-step estimator based on the observed data:

Ŝ(t) = n−1
∑
i

Sn(t|Xi)

{
1−

∫ t

0

dMo
n(u|Xi)

Sn(u|Xi)Kn
C(u|Xi)

}
, (13)

evaluated at t = τ , and where Sn(u|x) means an estimator of S(u|x), and similarly with dMo
n(u|Xi) =

dNo
i (u)− I(u ≤ T̃ )dΛn(u|Xi) and Kn

C .

3.2 The estimand β(P ) and its corresponding EIF

As mentioned earlier, the GH-estimator ofKτ relies on the scoring rule β̌TX, where β̌ is the Cox partial
likelihood estimator that converges to a well defined coefficient vector β̃ even if the Cox model is not
correctly specified, but β̃ has the undesirable feature that it depends on the censoring distribution
in the actual study in case the Cox model is misspecified. Their proposed scoring rule may thus
reflect properties of the specific censoring distribution, which is of no scientific interest. We take
a different approach defining the scoring rule in the setting where there is no censoring so it only
reflects the association between survival and the markers. Inspired by the assumption-lean approach
by Vansteelandt and Dukes [2022], we propose to use the coefficient βτ (P ) defined as

βt(P ) = {var(X)}−1cov[g{S(t|X)}, X], (14)
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where g is some pre-specified link function. If we take g(x) = log {− log (x)} and if in fact S(t|X) =

exp {−Λ0(t)e
θTX} (ie the Cox model is correctly specified) then βt(P ) = θ, but βt(P ) remains well

defined otherwise. The EIF of βt(P ) is conveniently calculated by calculating the EIF of var(X) and
of cov[g{S(t|X)}, X] separately. One can show that

EIF[cov[g{S(t|X)}, X]] ={g(S(t|X))− Eg}{X − EX} − E{g(S(t|X))− Eg}{X − EX}

− {X − EX}g′{S(t|X)}S(t|X)

∫ t

0

dMo(u | X)

KC(u|X)S(u|X)
.

Similarly one can develop the EIF for var(X) giving the estimator v̂ar(X) = Pn{(X − PnX)(X −
PnX)T }. This results in the desired estimator of β(P ):

β̂t(P ) = {v̂ar(X)}−1Pn

[
{g(Sn(t|X))− Eng}{X − EnX}

− {X − EnX}g′{Sn(t|X)}Sn(t|X)

∫ t

0

dMo
n(u | X)

Kn(u|X)Sn(u|X)

]
(15)

that solves the (empirical version) of the EIF of βt(P ) equal to zero.

4 Estimation of AUCt

The C-index is much used in practise, but it was recently argued by [Blanche et al., 2019] that
the cumulative-dynamic time-dependent area under the ROC-curve (AUCt) [Heagerty et al., 2000,
Heagerty and Zheng, 2005, Blanche et al., 2013] defined for all t ≤ τ by

AUCt = P (Y1 ≥ Y2 | T1 ≤ t, T2 > t) (16)

should be preferred if the aim is to predict risk of an event for a specific time horizon, [0, t], say. For
the same reason, we redefine β(P ) to be βt(P ). Specifically, [Blanche et al., 2019] showed that the
C-index is not proper while the AUCt is proper. Define

vt(y1, y2) = {1− S(t|y1)}S(t|y2)

and

Θt = P (Y1 ≥ Y2, T1 ≤ t, T2 > t) (17)

so that AUCt = Θt/[{1−S(t)}S(t)]. As we know how to estimate S(t) using (13), we can concentrate
on the estimand Θt. By similar calculations as in Section 3, we get

D∗
Θt
(Z,P ) = g̃t(X;P ) + G̃t(Z, β̇, P ),

where

g̃t(X;P ) =

∫
I(y < Y )vt(Y, y)dFY (y) +

∫
I(y > Y )vt(y, Y )dFY (y)− 2Θt

and

G̃t(Z, β̇, P ) = {FY (Y )− FT (t)}S(t|Y )

∫ t

0

dM(u|Y )

S(u|Y )
+ Ȟ(β)β̇

with Ȟ(β) a constant (given in the Appendix) and β̇ is the efficient influence function of β. This leads
to the following one-step estimator of Θt

Θ̂t =
1

n(n− 1)

∑
i ̸=j

I
(
β̂TXi > β̂TXj

)
v̂t
(
β̂TXj , β̂

TXi

)
+

1

2n

n∑
i=1

G̃t(Oi, β̇, P̂ ) (18)

where G̃t(O, β̇, P̂ ) is obtained as in Section 3 using (9) and where the part involving the complicated

constant Ȟ(β) can be dropped as long as we use the estimator β̂t given in the previous subsection.
We thus propose the following estimator

ÂUCt = Θ̂t/[{1− Ŝ(t)}Ŝ(t)]. (19)
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5 Simulation study

5.1 Set-up

In this section we illustrate the proposed method in a simulation study based on the German Breast
Cancer Study (GBCS) data from Section 6. We simulate a covariate vector X = (X1, X2, X3) mim-
icking the covariates log(prog recp), tumor grade and nodes from the GBCS data. Event times are
generated from a Weibull regression model λ(t | X) = kλ−1(t/λ)k−1 exp(βTX) where the parameters
k, λ and β are estimated from the GBCS data. In the real data the censoring times do not appear
to depend on the covariates. However to illustrate our method for covariate dependent censoring we
generate censoring time from a Weibull regression model λC(t | X1) = kCλ

−1
C (t/λC)

kC−1 exp(γX1)
where X1 is the covariate log(prog recp) and kC and λC are estimated from the data. We choose γ
so that the effect of log(prog recp) on the censoring times is similar to the effect of log(prog recp) on
the event times (i.e. γ ≈ β1kk

−1
C ). To illustrate the performance of our method in settings where the

proportional hazards assumption does not hold we also consider event times generated from a stratified
Weibull regression model λj(t | X1, X3) = kjλ

−1(t/λ)kj−1 exp((X1, X3)
Tϕ) where we stratify on the

covariate tumor grade. We set end of follow-up τ to be equal to 2192 days (approx 6 years) across
simulations.

5.2 Results

In Table 1 we consider the setting where the proportional hazards assumption holds and we simulate
data with a sample size of n ∈ {300, 600, 1200, 2400} . For each simulated data set we compute the
one-step estimator of the concordance propbability K̂τ defined in Equation (11) as well as the plug-in
estimator of the concordance probability K̂plug-in

τ which is equal to (11) without the debiasing term.
We also compute the one-step estimator of the c-index Ĉτ defined in Equation (12) and the one-step
estimator of AUCt defined in (19) with t equal to 1096 days. To estimate the working models we
considered both a penalized Poisson regression approach which was implemented using the R-package
glmnet [Friedman et al., 2010], as well as correctly specified Cox proportional hazards regression using
the coxph function from the survival package [Therneau, 2023]. This was repeated 500 times and we
computed the bias, standard deviation (sd), and mean squared error (mse) across simulations.

Penalized Poisson Cox PH
n 300 600 1200 2400 300 600 1200 2400

K̂τ

bias 4.56 2.89 1.93 1.20 1.03 0.42 0.20 0.07
sd 2.56 1.83 1.37 1.02 2.92 1.83 1.36 1.04
mse 2.73 1.17 0.56 0.25 0.96 0.35 0.19 0.11

K̂plug-in
τ

bias 7.17 4.52 3.09 2.02 1.31 0.57 0.28 0.11
sd 3.01 2.07 1.51 1.12 2.96 1.83 1.24 1.01
mse 6.04 2.47 1.18 0.53 1.05 0.37 0.19 0.10

Ĉτ

bias 2.83 1.92 1.64 1.14 1.00 0.43 0.33 0.15
sd 2.70 1.87 1.14 0.89 2.76 1.73 1.24 0.81
mse 1.53 0.72 0.46 0.21 0.86 0.32 0.17 0.07

ÂUCt

bias 2.46 1.97 1.17 1.08 −0.46 −0.34 −0.02 −0.05
sd 3.68 2.48 2.00 1.13 2.85 2.06 1.63 1.10
mse 1.95 1.00 0.70 0.29 0.83 0.43 0.27 0.12

Table 1: Simulation results under proportional hazards. bias is the average bias across simulations
(×100); sd is the empirical standard deviation (×100); mse is the mean squared error (×1000). Each
entry is based on 500 replicates.

The results summarized in Table 1 show that for all estimators the bias and the mse decrease with
sample size. The bias and mse are generally smaller when the nuisance models are estimated using
a correctly specified Cox proportional hazards model than when using penalized Poisson regression,
while the sd is similar. When using the penalized Poisson regression approach the one-step estimator
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K̂τ provides a bias reduction compared to the plug-in estimator K̂plug-in
τ . When the working models

are estimated using a correctly specified Cox model the plug-in estimator K̂plug-in
τ , which then is equal

to a stratified version of the Gönen and Heller estimator, is very similar to K̂τ in terms of bias and
mse. This was expected as the debiasing term should be close to zero in this setting.

In Table 2 we consider the setting where the proportional hazards assumption does not hold and
we compute K̂τ and K̂plug-in

τ for each simulated data set. We estimate the working models using both
a penalized Poisson regression approach and using a misspecified Cox proportional hazards regression.

Penalized Poisson Cox PH
n 300 600 1200 2400 300 600 1200 2400

K̂τ

bias 2.79 1.37 0.33 -0.66 -0.50 -1.03 -1.43 -1.58
sd 2.85 2.06 1.48 1.04 3.72 2.80 1.59 1.19
mse 1.59 0.89 0.23 0.15 1.41 0.85 0.46 0.39

K̂plug-in
τ

bias 5.19 2.87 1.43 0.16 -0.05 -0.71 -1.22 -1.41
sd 3.20 2.28 1.69 1.10 3.77 2.78 1.57 1.16
mse 3.72 1.34 0.49 0.12 1.42 0.82 0.39 0.33

Table 2: Simulation results under non-proportional hazards. bias is the average bias across simulations
(×100); sd is the empirical standard deviation (×100); mse is the mean squared error (×1000). Each
entry is based on 500 replicates.

The results show that, as expected, the bias descreases with sample size when using penalized
Poisson regression and increases with sample size when using (misspecified) Cox proportional hazards
regression. The one-step estimator K̂τ still provides a bias reduction compared to the plug-in estimator
K̂plug-in

τ when using penalized Poisson regression. This is not the case when using (misspecified) Cox
proportional hazards regression.

6 Empirical study: German Breast Cancer Study Data

We now illustrate our method through an analysis of a trial conducted by the German Breast Cancer
Study Group (GBSG) [Schumacher et al., 1994, Schmoor et al., 1996, Sauerbrei and Royston, 1999].
The main objective of the trial was to investigate the effect of different adjuvant therapies on recurrence-
free survival in node-positive breast cancer patients. In the original study a total of 720 patients
were recruited between 1984 and 1989. We will be using the data for the 686 patients who had
complete data for the predictors age, tumour size, number of positive lymph nodes, progesterone and
oestrogen receptor status, menopausal status and tumour grade. The data is publicly available in the
R-package condSURV [Meira-Machado and Sestelo, 2023]. Figure 1 shows the Kaplan-Meier curves of
the recurrence-free survival probability and the censoring probability, as well as the number of people
at risk and the cummulative number of events.

We shall focus on the predictors ‘prog recp’ which is the progesterone receptor concentration,
‘nodes’ which is the number of positive lymph nodes and tumor grade which takes the values I, II and
III. We discretize the ‘nodes’ variable such that it has three levels corresponding to < 3 nodes, 3 − 5
nodes and ≥ 6 nodes.

We want to compare the discriminatory power of the following risk scores

Yt,A = β̂A
t,1 log(prog recp + 1) + β̂A

t,2I(nodes = 2) + β̂A
t,3I(nodes = 3),

Yt,B = β̂B
t,1 log(prog recp + 1) + β̂B

t,2I(nodes = 2) + β̂B
t,3I(nodes = 3) + β̂B

t,4I(grade = 2) + β̂B
t,5I(grade = 3),

where βA
t,j and βB

t,j are the assumption lean Cox regression coefficient described in Section 3.2 for
respectively a model “A” which includes only the covariates log(prog recp) and nodes, and a model “B”
which includes the covariates log(prog recp), nodes and tumor grade. The estimates of the coefficients
for t equal to 1 year, 3 years, 5 years and at the maximum follow-up time (2659 days) respectively are
given in Table 3 below.

Tumor grade is believed to be an important predictor of recurrence-free survival. This is corrobo-
rated by Figure 2 which shows the estimated survival probabilities stratified on tumor grade. Moreover
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Figure 1: Kaplan-Meier estimates of (a) the survival probability and (b) the censoring probability.
The numbers at risk at the cummulative number of events are given below.

the estimated assumption lean coefficients in Table 3 are very large. Therefore we would expect model
B to have better discriminatory power than model A.

Penalized Poisson Cox PH

t model β̂t,1 β̂t,2 β̂t,3 β̂t,4 β̂t,5 β̂t,1 β̂t,2 β̂t,3 β̂t,4 β̂t,5

365
A

est −0.23 0.47 1.50 - - −0.25 0.39 1.65 - -
se 0.098 0.39 0.40 - - 0.12 0.43 0.44 - -

B
est −0.18 0.42 1.40 0.73 1.26 −0.17 0.43 1.50 1.64 2.12
se 0.097 0.38 0.41 0.36 0.45 0.11 0.41 0.41 0.40 0.47

1096
A

est −0.18 0.53 1.29 - - −0.16 0.44 1.13 - -
se 0.047 0.22 0.19 - - 0.051 0.22 0.19 - -

B
est −0.14 0.50 1.21 0.48 0.79 −0.12 0.48 1.11 0.44 0.67
se 0.049 0.22 0.20 0.21 0.24 0.054 0.23 0.19 0.23 0.22

1826
A

est −0.15 0.55 0.96 - - −0.13 0.45 0.81 - -
se 0.044 0.21 0.18 - - 0.049 0.21 0.19 - -

B
est −0.11 0.53 0.88 0.69 0.78 −0.095 0.49 0.80 0.66 0.72
se 0.046 0.22 0.18 0.19 0.20 0.049 0.21 0.18 0.20 0.19

2659
A

est −0.12 0.24 0.70 - - −0.12 −0.06 0.55 - -
se 0.062 0.27 0.23 - - 0.10 0.47 0.32 - -

B
est −0.12 0.25 0.72 0.49 0.28 −0.14 −0.12 0.56 −0.55 −0.81
se 0.057 0.25 0.21 0.23 0.22 0.12 0.49 0.36 0.53 0.34

Table 3: Estimates of regression coefficients for models A and B; est is the estimates of the regression
coefficients; se is the influence function based standard error estimate.

Table 4 shows the estimated AUCt for t ∈ {365, 731, 1096, 1461, 1826, 2192, 2555} as well as the
estimated Cτ and Kτ , for both models A and B. As in the simulation study we compute the esti-
mators using both the penalized Poisson regression method and Cox proportional hazards regression.
The estimates of the overall discrimination measures Cτ and Kτ computed using penalized Poisson
regression suggest that the discriminatory abilities of the two models are similar while the estimates
computed using Cox proportional hazards regression suggest that model A is slightly better. The
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Figure 2: Kaplan-Meier estimates of the survival probability stratified by tumor grade. The numbers
at risk in each strata are given below.

Penalized Poisson Cox PH
model A model B model A model B

AUC365 0.632 0.636 0.630 0.641
AUC731 0.668 0.677 0.662 0.671
AUC1096 0.700 0.713 0.699 0.708
AUC1461 0.716 0.713 0.718 0.726
AUC1826 0.738 0.734 0.755 0.764
AUC2192 0.801 0.791 0.800 0.808
AUC2555 0.891 0.887 0.974 0.939
C2659 0.621 0.625 0.615 0.579
K2659 0.596 0.595 0.597 0.562

Table 4: Estimates of AUCt for t ∈ {365, 731, 1096, 1461, 1826, 2192, 2555}, as well as Cτ and Kτ with
τ equal to end of follow-up (2659 days).

estimates of AUCt suggest that the discriminatory ability of the two models is very similar for t-year
predicted risk. The estimates of AUCt computed using penalized Poisson regression are very similar
to those computed using Cox proportional hazards regression.

7 Concluding remarks

In this paper we have proposed novel estimators of the C-index, the concordance probability of Gönen
and Heller [2005], and the t-year area under the receiver operating characteristic (ROC) curve (AUCt)
based on the efficient influence function. The estimators are non-parametric and locally efficient, and
allow for covariate-dependent censoring. We conducted a simulation study to examine the finite sample
performace of the estimators. The simulation study showed that the proposed estimators are unbiased
under covariate-dependent censoring, and that the one-step estimator of Kτ provides a bias reduction
compared to the plug-in estimator. We illustrated the method by an application the data from the
German Breast Cancer Study Group where we compared the discriminatory power of a model (model
A) which included the progesterone receptor concentration and the number of positive lymph nodes as
predictors to a model (model B) which included the predictors from model A as well as the additional
predictor tumor grade. The analysis showed that the discriminatory ability of the two models were
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similar both in terms of overall risk and t-year predicted risk.
The clinical utility of concordance measures such as the C-index for survival outcomes is very much

up for debate. As discussed in Hartman et al. [2023a] the C-index will be deflated if there are many low
risk patients with similar risk scores. This means that a clinically useful model may have a very low
concordance. This could be a possible explanation as to why we don’t see a difference in discriminatory
power between the two models in our data application. A potential solution to this limitation is to
construct alternative concordance measures which only make comparisons between subjects with either
high or low risk scores. This will be the topic of future research.
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A Derivation of the efficient influence function

In this section we derive the efficient influence function (EIF) of the target parameters in (6), (17)
and (14). There are many ways of deriving efficient influence functions. As advocated by e.g. Hines
et al. [2022] and Kennedy [2023] we will derive the EIF by computing the so-called Gâteaux derivative
[van der Vaart, 2000] which is defined as

d

dε

∣∣∣∣
ε=0

Ψ(Pε),

where Pε = (1− ε)P + εδz̃ and δz̃ is the Dirac measure at Z = z̃. We will start by deriving the EIF for
the ‘full’ data and then use Tsiatis [2006] Theorem 10.1 and Theorem 10.4 to map the full-data EIF
to the observed-data EIF.

A.1 Efficient influence function of Ψτ (P )

We first note that

FY (y) = P (Y ≤ y) =

∫ ∫ y−βT
V v

βW

fW |V (w)dwfV (v)dv,

so that by the chain rule and the Leibniz integral rule we have

d

dε

∣∣∣∣
ε=0

FY,ε(y) = FW |V (
y − βT

V V

βW
)− FY (y) +H(β; y)β̇(P ) + I(βT

V V + βWW ≤ y)− FW |V (
y − βT

V V

βW
)

= I(βT
V V + βWW ≤ y)− FY (y) +H(β; y)β̇(P ), (20)

where

H(β; y) = − 1

βW

∫
fW |V (

y − βT
V v

βW
)

[
vT ,

y − βT
V v

βW

]
fV (v)dv,

is a non-stochastic constant and β̇(P ) is the influence function for β.
We further note that

d

dε

∣∣∣∣
ε=0

Λ(t | y) = δỹ(y)

fY (y)

∫ t

0

dM(u, y)

S(u | y)
,

and that

d

dε

∣∣∣∣
ε=0

Sε(t | y) = − δỹ(y)

fY (y)
S(t | y)

∫ t

0

dM(u, y)

S(u | y)
,

so that by the chain rule

d

dε

∣∣∣∣
ε=0

hτ,ε(y1, y2) =

∫ τ

0

d

dε

∣∣∣∣
ε=0

Sε(t | y2)S(t | y1)dΛ(t | y1) +
∫ τ

0

S(t | y2)
d

dε

∣∣∣∣
ε=0

Sε(t | y1)dΛ(t | y1)

+

∫ τ

0

S(t | y2)S(t | y1)
d

dε

∣∣∣∣
ε=0

dΛε(t | y1)

=− δỹ(y1)

fY (y1)

∫ τ

0

S(t | y2)S(t | y2)
∫ t

0

dM(u, y1)

S(u | y1)
dΛ(t | y1) +

δỹ(y1)

fY (y1)

∫ τ

0

S(t | y2)dM(t | y1)

− δỹ(y2)

fY (y2)

∫ τ

0

S(t | y2)
∫ t

0

dM(u, y2)

S(u | y2)
S(t | y1)dΛ(t | y1).
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Then

d

dε

∣∣∣∣
ε=0

Ψτ (Pε) =

∫ ∫
y1>y2

hτ (y1, y2)dFY (y1)
d

dε

∣∣∣∣
ε=0

FY,ε(y2) +

∫ ∫
y1>y2

hτ (y1, y2)
d

dε

∣∣∣∣
ε=0

FY,ε(y1)dFY (y2)

+

∫ ∫
y1>y2

d

dε

∣∣∣∣
ε=0

hτ,ε(y1, y2)dFY (y1)dFY (y2)

=

∫
I(y < ỹ)hτ (ỹ, y)dFY (y) +

∫
I(y > Y )hτ (y, ỹ)dFY (y) + H̃(β)β̇(P )− 2Ψτ (P )

−
∫ ∞

ỹ

∫ τ

0

S(t|ỹ)
∫ t

0

dM(u|ỹ)
S(u|ỹ)

S(t|y)dΛ(t|y)dFY (y)

+

∫ ỹ

−∞

[∫ τ

0

S(t|y)dM(t|ỹ)−
∫ τ

0

S(t|y)S(t|ỹ)
∫ t

0

dM(u|ỹ)
S(u|ỹ)

dΛ(t|ỹ)
]
dFY (y),

where

H̃(β) =

∫
I(y < ỹ)hτ (ỹ, y)H(β; y)dFY (y) +

∫
I(y > ỹ)hτ (y, ỹ)H(β; y)dFY (y).

We note that the martingale increment dM(t, Y ) can be written as follows

dM(t, Y ) =dN(t)− I(T ≥ t)dΛ(t | Y )

=dN(t)− I(T ≥ t)dΛ(t | X) + I(T ≥ t) {dΛ(t | X)− dΛ(t | Y )}
=dM(t,X) + I(T ≥ t) {dΛ(t | X)− dΛ(t | Y )}

=dM(t,X)− S(t | X)

∫ t

0

dM(u,X)

S(u | X)
{dΛ(t | X)− dΛ(t | Y )}

+ S(t | X) {dΛ(t | X)− dΛ(t | Y )} , (21)

where in the last equality we have used that

I(T ≥ t) = I(T ≥ t)− S(t | X) + S(t | X) = S(t | X)− S(t | X)

∫ t

0

dM(u,X)

S(u | X)
.

Then it follows by Tsiatis equation (10.76) that the eif under censoring is.

D∗
Ψτ

(Z)(P ) =

∫
I(y < Y )hτ (Y, y)dFY (y) +

∫
I(y > Y )hτ (y, Y )dFY (y) + H̃(β)β̇(P )− 2Ψτ (P )

−
∫ ∞

Y

∫ τ

0

S(t | Y )

∫ t

0

dMo(u|X)

KC(u | X)S(u | Y )
S(t | y)dΛ(t | y)dFY (y)

−
∫ ∞

Y

∫ τ

0

S(t | Y )

∫ t

0

S(u | X)

S(u | Y )
{dΛ(u | X)− dΛ(u | Y )}S(t | y)dΛ(t | y)dFY (y)

+

∫ ∞

Y

∫ τ

0

S(t | Y )

∫ t

0

S(u | X)

S(u | Y )

∫ u

0

dM(v,X)

KC(v | X)S(v | X)
{dΛ(v | X)− dΛ(v | Y )}S(t | y)dΛ(t | y)dFY (y)

+

∫ Y

−∞

∫ τ

0

S(t | y)dM
o(u|X)

KC(u | X)
dFY (y)

+

∫ Y

−∞

∫ τ

0

S(t | y)S(t | X) {dΛ(t | X)− dΛ(t | Y )} dFY (y)

−
∫ Y

−∞

∫ τ

0

S(t | y)S(u | X)

∫ u

0

dMo(v,X)

KC(v | X)S(v | X)
{dΛ(u | X)− dΛ(u | Y )} dFY (y)

−
∫ Y

−∞

∫ τ

0

S(t | y)
∫ t

0

dMo(u|X)

KC(u | X)S(u | Y )
S(t | Y )dΛ(t | Y )dFY (y)

−
∫ Y

−∞

∫ τ

0

S(t | y)
∫ t

0

S(u | X)

S(u | Y )
{dΛ(u | X)− dΛ(u | Y )}S(t | Y )dΛ(t | Y )dFY (y)

+

∫ Y

−∞

∫ τ

0

S(t | y)
∫ t

0

S(u | X)

S(u | Y )

∫ u

0

dM(v,X)

KC(v | X)S(v | X)
{dΛ(v | X)− dΛ(v | Y )}S(t | Y )dΛ(t | Y )dFY (y).

(22)
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A.2 Efficient influence function of Θt(P )

Note that

d

dε

∣∣∣∣
ε=0

vt,ε(y1, y2) =
d

dε

∣∣∣∣
ε=0

Sε(t | y2) {1− Sε(t | y1)} =− δỹ(y2)

fY (y2)
S(t | y2)

∫ t

0

dM(u, y2)

S(u | y2)
{1− S(t | y1)}

+ S(t | y2)
δỹ(y1)

fY (y1)
S(t | y1)

∫ t

0

dM(u, y1)

S(u | y1)
.

Then by the chain rule and (20) we have

d

dε

∣∣∣∣
ε=0

Θt(Pε) =

∫
I(y < ỹ)vt(ỹ, y)dFY (y) +

∫
I(y > ỹ)vt(y, ỹ)dFY (y)

−
∫ ∞

ỹ

vt(y, ỹ)

∫ t

0

dM(u, ỹ)

S(u | ỹ)
dFY (y) +

∫ ỹ

−∞
S(t | y)S(t | ỹ)

∫ t

0

dM(u, ỹ)

S(u | ỹ)
dFY (y)

+ H̄(β)β̇(P )− 2Θt(P ),

where

H̄(β) =

∫
I(y < ỹ)vt(ỹ, y)H(β; y)dFY (y) +

∫
I(y > ỹ)vt(y, ỹ)H(β; y)dFY (y).

From (21) and Tsiatis equation (10.76) the EIF under censoring is

D∗
Θt
(Z)(P ) =

∫
I(y < Y )vt(Y, y)dFY (y) +

∫
I(y > Y )vt(y, Y )dFY (y)

−
∫ ∞

Y

vt(y, Y )

∫ t

0

dMo(u,X)

KC(u | X)S(u | Y )
dFY (y)

+

∫ ∞

Y

vt(y, Y )

∫ t

0

S(u | X)

S(u | Y )

∫ u

0

dMo(v,X)

KC(v | X)S(v | X)
{dΛ(u | X)− dΛ(u | Y )} dFY (y)

−
∫ ∞

Y

vt(y, Y )

∫ t

0

S(u | X)

S(u | Y )
{dΛ(u | X)− dΛ(u | Y )} dFY (y)

+

∫ Y

−∞
S(t | y)S(t | Y )

∫ t

0

dMo(u,X)

KC(u | X)S(u | Y )
dFY (y)

−
∫ Y

−∞
S(t | y)S(t | Y )

∫ t

0

S(u | X)

S(u | Y )

∫ u

0

dMo(v,X)

KC(v | X)S(v | X)
{dΛ(u | X)− dΛ(u | Y )} dFY (y)

+

∫ Y

−∞
S(t | y)S(t | Y )

∫ t

0

S(u | X)

S(u | Y )
{dΛ(u | X)− dΛ(u | Y )} dFY (y)

+H(β)β̇(P )− 2Θt(P ). (23)
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