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Summary

Transforming Maersk into a data-driven company hinges on successfully lever-
aging historical data to initiate decision policies wherever applicable. Estimat-
ing optimal policies is a causal problem that promotes new ways of collecting,
documenting, and generating data. Policy learning is a vast research field
across many disciplines. However, the recent development of nonparametric
and doubly robust policy learning techniques in statistics and economics has
yet to find applications in logistics and other industries. We see massive po-
tential for these assumption-lean techniques to leverage the vast amounts of
historical data in Maersk and initiate a data-driven operation and business
culture.

The primary objective of this project is to ease the practical application of
the latest theoretical developments. A key contribution is the comprehensive
R package polle, which unifies existing policy learning methods, introduces
new functionality, and ensures consistent policy evaluation.

To illustrate the usefulness of this implementation, we present a novel
application aimed at optimizing maintenance and repair policies to maximize
the long-term utility of reefers. A central challenge in this application is to
address practical positivity violations arising from limited variation in the
decision process. We advocate for a solution involving an action probability
threshold restriction, resulting in an estimate for the optimal realistic work
order policy. Our findings indicate a significant gain in value, amounting to
an estimated $7.5 million increase in annual profits.

For cases involving extended follow-up periods, obtaining an early indica-
tion of the effectiveness of an action or treatment using a post-randomization
response indicator is highly valuable. The final contribution of this project
focuses on studying the treatment effect among responders, defined as a prin-
cipal stratum. For a survival analysis setup, we make novel contributions to
dealing with right censoring and construct a nonparametric efficient estimator
for the target parameter. This target parameter is applicable for subgroup
analysis or for designing optimal treatment-switching policies when combined
with policy learning techniques.
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Dansk resumé

Realiseringen af Mærsk’s ambition om at blive en datadreven virksomhed
er betinget af, at man successfuldt kan omsætte historisk data til forbedrede
beslutningsregler i alle omr̊ader af forretningen. At estimere en optimal beslut-
ningsregel er et kausalt problem, der fordrer ny m̊ader at samle, dokumentere
og generere data. Optimering af beslutningsregler er et stort forskningsfelt
p̊a tværs af mange discipliner. Dog har nylige fremskridt inden for ikke-
parametrisk og dobbelt robust estimation af den optimale beslutningsregel
endnu ikke fundet anvendelse inden for logistik og andre industrier. Vi ser et
enormt potentiale af disse teknikker, som beror p̊a et minimum af antagelser.
Maersk kan s̊aledes udnytte sin kæmpe mængde historisk data til at p̊abegynde
en datadreven arbejdskultur i alle dele af virksomheden.

Det primære form̊al med dette projekt er at lette den praktiske anvendelse
af de senest udviklede metoder. Et centralt bidrag er den omfattende R pakke
polle, som forener eksisterende metoder, introducerer nye funktioner og sikrer
konsistent evaluering af den estimerede beslutningsregel.

For at illustrere nyttigheden af vores implementering præsenterer vi en
original anvendelse med henblik p̊a at optimere den langsigtede nytte ved
vedligehold og reparationer af kølecontainere. En central udfordring ved denne
anvendelse er at h̊andtere praktiske krænkelser af positivitetsantagelsen, der
opst̊ar pga. begrænset variation i den eksisterende beslutningsproces. Vi
foresl̊ar at benytte en grænseværdi for sandsynligheden af den anbefalede
beslutning s̊aledes, at vi kun optimerer over sættet af realistiske beslutningsre-
gler. Analysen angiver en signifikant gevinst p̊a årligt $7.5 millioner.

I sager med lange opfølgningsperioder er det være værdigfuldt at f̊a en
tidlig indikation, om beslutningen eller behandlingen har haft den ønskede
virkning. Det sidste bidrag af dette projekt omhandler identifikation og esti-
mation af behandlingseffekten blandt de responderende enheder defineret som
et postrandomiseringsstratum. I forbindelse med overlevelsesanalyser intro-
ducerer vi en ny m̊ade at h̊andtere højrecensurering og konstruerer samtidigt
en effektiv ikke-parametrisk estimator. Metoden er relevant for undergrup-
peanalyser og for at designe individualiserede beslutningsregler p̊a baggrund
responsindikatorerne.
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Chapter 1

Introduction

As pointed out in an essay by Susan Athey in Science [2], there are several
gaps between making predictions and making decisions. In Maersk and across
logistics, investments in technology have facilitated the use of machine learn-
ing prediction methods. As a result, an increasing number of models are being
put into production to continuously produce demand forecasts, estimate cus-
tomer churn, predict asset component failures, etc. These predictions are then
utilized to allocate and reposition containers, initiate customer care actions,
and conduct inspections. While significant attention has been given to the
development of data infrastructure, model deployment, and computational
resources, there remains a lack of understanding of the assumptions needed
to make meaningful data-driven decisions.

For example, freight rates are positively correlated with demand for freight
due to limited supply. Thus, a naive interpretation of a simple demand forecast
with the freight rate as input would suggest that higher rates increase demand.
However, in reality, actively raising prices would likely decrease demand in a
given situation.

Similarly, customer churn models can successfully predict the churn propen-
sity of customers based on their booking history. However, it is not clear how
to effectively use such models to prioritize customer care initiatives [1]. Should
Maersk spend resources targeting customers who are most likely to churn? It
would probably be more sensible to target customers who are likely to churn
and who are likely to respond positively to being contacted by Maersk.

All of these considerations are even more complicated for sequential deci-
sion problems. It is unclear how to adjust for confounding in these cases using
standard prediction models. With the vast amount of historical data available
at Maersk, documenting decisions across the entire organization, the question
is:

How can we effectively utilize existing historical data at Maersk to
improve decision policies?

1
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Online methods in reinforcement learning are designed to optimize sequen-
tial decision processes. However, these methods rely on a model of the en-
vironment or require iterative experiments. Conducting experiments can be
extremely costly and impractical, especially for extended follow-up periods.
Offline reinforcement learning addresses this problem for Markov decision
problems. Similarly, statistical policy learning has experienced significant
development in economics and health sciences, where it is employed to es-
timate optimal dynamic treatment regimes. This industrial PhD project was
scoped based on these advancements, mainly focusing on doubly robust policy
learning methods. From our perspective, these assumption-lean methods hold
substantial potential for the industry, especially for companies like Maersk.

Firstly, these methods are tailored to have a causal interpretation while
relying on a minimal set of structural assumptions. Secondly, the methods are
focused on constructing non-parametric efficient estimators, enabling the use
of flexible machine learning nuisance models without sacrificing valid perfor-
mance guarantees or inference for the estimated value gain when implementing
the learned policy. Furthermore, reinforcement learning formulations have of-
ten lacked an understanding of the impact of nuisance model estimation, which
is an area where these doubly robust policy learning methods can offer valu-
able insights. By leveraging these advantages, we believe that applying and
adapting these methods to Maersk’s historical data will help transform the
company into being truly data-driven in many aspects of operations and busi-
ness. Still, we see some clear challenges that need to be solved before these
methods can be applied on a large scale in a company like Maersk.

Research Objective 1: Software implementation

In our view, there exists a considerable lack of software implementations fo-
cusing on the latest developments within statistical policy learning that can
effectively evaluate and compare a range of different policy learners while pro-
viding a flexible setup for specifying each of the model components. The
first major contribution of the project is thus a comprehensive software im-
plementation resulting in the R package polle and the associated Paper A.
The package is built around three central components: a policy data object,
a policy learner setup, and a policy evaluation functionality. The policy data
object allows the user to easily structure the data for decision problems with a
fixed or stochastic number of stages. The policy learner setup provides a uni-
fying framework by combining already available methods from other packages
with new learners not readily available elsewhere. It is also easy for the user to
define static or dynamic policies and create new policy learning methods. The
performance of each policy or policy learner can then be evaluated using the
policy evaluation functionality with easy specification of the required nuisance
models and cross-fitting setup.
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Research Objective 2: Novel industrial application

Maersk owns an extensive portfolio of assets, including ships, containers, and
terminals. Asset management is thus an integral part of the business. Equip-
ment maintenance is classically formulated as a Markov decision problem, as
illustrated by examples like the bus engine replacement problem [39]. Thus,
at the beginning of the project, the repair and maintenance of containers,
particularly refrigerated containers was identified as an excellent application
of statistical policy learning. And with the project anchored in the Section of
Biostatistics at the University of Copenhagen, it was easy to draw an analogy
to statistical policy learning within personalized medicine. Each refrigerated
container is a patient with an expected lifetime of 16-20 years. Whenever the
box or the refrigeration unit is damaged or requires maintenance, a work order
from the designated repair shop needs to be approved. Like in quality of life
research, we do not solely want to optimize the expected lifetime, but rather
a utility measure that balances costs with how much the container has been
used. Paper B documents this novel application of statistical policy learning
within asset management.

Research Objective 3: Policy learning under positivity violations

One particular challenge that we faced in the above application was a lack of
treatment variation due to existing enforced guidelines. This leads to positiv-
ity violations, which is one of the key causal assumptions needed to identify
the optimal policy. Our proposed solution to this problem is to restrict the
class of policies to actions deemed realistic at a given probability threshold.
To our knowledge, the polle package is the only available software that in-
cludes this functionality. The importance of protecting doubly robust policy
learners against positivity violations is highlighted in a novel simulation study
that mimics the lack of treatment support experienced in the application.

Research Objective 4: Treatment effect among responders

For actions or treatments where the outcome is observed after a long dura-
tion of time, it is highly valuable if we can get an early indication using a
biomarker, for example, of whether the patient responds to the treatment.
This would allow us to switch treatments quickly and optimize the expected
outcome. In a business context, this is also highly relevant. For example, we
can investigate the effectiveness of various marketing campaigns. What is the
effect of each campaign among the customers who were actually exposed to it?
The final Paper C studies the average treatment effect among responders in a
survival setup. Conditioning on a post-randomization response variable will
generally not yield a causal interpretation. Thus, we condition on the princi-
pal stratum of treatment responders instead. The key assumption allowing us
to identify the treatment effect among responders is that non-responders have
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no effect of the treatment. This strong but easily interpretable assumption
will need to be justified from case to case. The results from these types of
analyses can inspire the design of sequentially randomized trials verifying the
long-term advantage of treatment-switching regimens. Contributions of Paper
C include novel considerations for conditionally independent right censoring
and the construction of the associated non-parametric efficient one-step esti-
mate for the treatment effect among responders.

In non-parametric estimation theory, the concept of efficient influence func-
tions and the associated estimators is key. All of the work in this thesis heavily
depends on this methodology. For completeness, we briefly introduce efficient
non-parametric estimation in Chapter 2. Chapter 3 provides a comprehensive
introduction to policy learning, covering a wide range of details on identifi-
cation and performance measures not covered in Paper A and Paper B, and
with an emphasis on our contributions. Chapter 4 presents the background
and motivation for optimizing the repair and maintenance policy for refriger-
ated containers as covered in Paper B. Chapter 5 introduces the concept of
treatment effects among responders as studied in Paper C and discusses its
connection to policy learning. Finally, Chapter 6 discusses our research ob-
jectives, possible extensions of our implementation and methods, along with
potential areas for future research.



Chapter 2

Efficient non-parametric
estimation

This chapter serves as a short introduction to efficient non-parametric esti-
mation theory. It is a reflection (or perhaps a projection) of the rich theory
around influence functions. For more comprehensive coverage, we recommend
the reader to explore reviews by [8, 55, 53]. Additionally, we will highlight
recent intuitive reviews by [15, 17].

The workhorse of non-parametric estimation is the concept of parametric
submodels. Let P be a collection of distributions. For the true distribution
P0 ∈ P we consider submodels Pϵ ∈ P, ϵ > 0, for which Pϵ is differentiable in
ϵ = 0 with score s. For simplicity, we assume that Pϵ is absolutely continuous
with respect to a dominating measure ν. We let fϵ denote the density of Pϵ.
The score of the submodel is then given by

s(x) =
∂

∂ϵ
log(fϵ(x))

∣∣∣
ϵ=0

,

where s(X) is an element in the L2(P0) space. The set of all parametric
submodel scores is called the tangent set and is denoted T (P0).

In this work, the target parameter will always be defined as a function of
the true distribution onto the real line Ψ(P0) ∈ R. We say that the target
parameter is pathwise differentiable at P0 if for every score s in the tangent set
T (P0) and for every parametric submodel with score s there exist a continuous
linear function Ψ̇(P0) : L2(P0) 7→ R such that

Ψ(Pϵ)−Ψ(P0)

ϵ
→ Ψ̇(P0)(s).

Let the tangent space T (P0) be the closed linear span of the tangent set. By
the Riesz representation theorem, the map Ψ̇(P0) can be represented by an
inner product with a unique function ψ(P0) ∈ T (P0). Specifically,

Ψ̇(P0)(s) = ⟨ψ(P0), s⟩L2(P0) =

∫
ψ(P0)(X)s(X)dP0. (2.1)

5
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Note that for any element s⊥ in the orthogonal complement to the tangent
space, it also holds that

Ψ̇(P0)(s) = ⟨ψ(P0) + s⊥, s⟩L2(P0).

We denote the linear variety ψ(P0)+T (P0)
⊥ the set of influence functions and

ψ(P0) the efficient influence function. We say that a model is non-parametric
if T (P0) = L2(P0). This follows from the fact that if we put no restrictions
on P, a valid submodel is given by

fϵ(x) = (1 + ϵs(x))f(x)

for any mean zero bounded score function s. The closed linear space of these
scores is the maximal tangent space L2(P0). Thus, only a single influence
function exists.

For a given parametric submodel, the optimal asymptotic variance is bounded
by the Cramer-Rao lower bound:

∂
∂ϵΨ(Pϵ)|ϵ=0

E[s(X)2]
=

⟨ψ(P0), s⟩L2(P0)

⟨s, s⟩L2(P0)
,

where E[s(X)2] is the Fisher information. Intuitively, the asymptotic lower
bound for a semi-parametric estimator must be larger than the asymptotic
lower bound for any submodel or, equivalently, any score in the tangent set.
Thus, a lower bound for the asymptotic variance of a semi-parametric estima-
tor is given by the variance of the efficient influence function:

sup
s∈T (P0)

⟨ψ(P0), s⟩L2(P0)

⟨s, s⟩L2(P0)
= E[ψ(P0)(X)2],

This result follows by the Cauchy-Schwarz inequality and the fact that ψ(P0)(X)
is an element of T (P0). Let Ψ̂n denote a regular asymptotically linear estima-
tor of Ψ(P0) based on a sample of n iid observations. Formally, the estimator
is efficient under the model P if and only if

Ψ̂n −Ψ(P0) = n−1
n∑

i=1

ψ(P0)(Xi) + oP0(n
−1/2). (2.2)

Assuming that we know the efficient influence function, how do we construct
an estimator that fulfills (2.2)? We will use the notation PnV = n−1

∑n
i=1 Vi

for n iid variables (Vi)i∈{1,...,n} and PV =
∫
V dP . Furthermore, let P̂n denote

an estimator of the model P0. For any plug-in estimator Ψ(P̂n) we can write



7

up the so-called von Mises expansion:

Ψ(P̂n)−Ψ(P0)

= Pnψ(P0)(X)

− Pnψ(P̂n)(X) (2.3)

+ {Pn − P0}
{
ψ(P̂n)(X)− ψ(P0)(X)

}
(2.4)

+ R(P̂n, P0), (2.5)

where the second order remainder is given by

R(P̂n, P0) = P0ψ(P̂n)(X) +
{
Ψ(P̂n)−Ψ(P0)

}
.

If the bias remainder (2.3), the empirical process remainder (2.4), and the
second order remainder are all oP0(n

−1/2), then by the central limit theorem,
the estimator is consistent and asymptotically linear, with the variance given
by the variance of the efficient influence function.

As described in [54], to prove that the empirical process remainder (2.4) is
oP0(n

−1/2), it is sufficient to show that ψ(P̂n) falls into a Donsker class with
probability tending to one, and that conditional on P̂n it holds that

∥ψ(P̂n)(X)− ψ(P0)(X)∥2,P0 = oP0(1).

However, if P̂ is fitted on a separate dataset, such as through cross-fitting,
we may lose the Donsker class condition. It may seem complicated to show
that the second order remainder term is oP0(n

−1/2), but in many cases, the
term simplifies considerably as we will also see in the next section. The real
problematic term is the bias term. However, we can avoid this term by sim-
ply adjusting for the bias. The resulting estimator is the so-called one-step
estimator given by

Ψ(P̂n) + Pnψ(P̂n)(X).

Other estimators, such as estimation equation estimators based on the efficient
influence function, may also directly imply that the bias term is zero.

Only a single (efficient) influence function exists for a non-parametric es-
timator. Thus, given a candidate for the efficient influence function and the
associated one-step estimator, if we can show that the remainder terms are
oP0(n

−1/2), then the estimator will be efficient.
To summarise, our strategy for non-parametric efficient estimation is: 1)

Find a candidate for the efficient influence function, for example, by calculat-
ing the Gateaux derivative. 2) Construct a cross-fitted one-step estimator or
another cross-fitted estimator for which the bias term is zero. 3) Show that
the empirical process term and second order remainder term are oP0(n

−1/2).
4) Estimate the variance of the estimator via the fitted influence function.
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2.1 Gateaux derivaties

The Riesz representation theorem (2.1) provides a direct method for calculat-
ing the efficient influence function. However, for non-parametric models, the
calculations involved can become unnecessarily complicated.

An alternative approach, advocated by [15, 17, 21], is to calculate the
Gateaux derivative of the target parameter using a point mass contamina-
tion. This derivative is a good candidate for the efficient influence function.
The Gateaux derivative is simply the pathwise derivative for a single spe-
cific parametric submodel. For a distribution P̃ , the Gateaux derivative of Ψ
around P0 in the direction P̃ exists if

Ψ(Pϵ)−Ψ(P0)

ϵ
→
∫
ψ(P0)(x)d(P̃ (x)− P (x))

where Pϵ has density fϵ(x) = f0(x) + ϵ(f̃(x) − f0(x)). If Ψ(P0) is pathwise
differentiable, then the efficient influence will equal the function ψ(P0). Specif-
ically, ∫

ψ(P0)(x)d(P̃ (x)− P (x)) =

∫
ψ(P0)(x)

(
f̃(x)

f0(x)
− 1

)
dP0(x),

where f̃(x)
f0(x)

− 1 is the score of the submodel. Even if the data is continuous,
we will assume it is discrete computationally. This allows us to consider point
mass contaminations f̃(x) = Ix̃(x). Under this submodel and using the fact
that the efficient influence function has mean zero, we get that the Gateaux
derivative directly equals the efficient influence function evaluated at x̃:

Ψ(Pϵ)−Ψ(P0)

ϵ
→ ψ(P0)(x̃).

An advantage of working with point mass contamination Gateaux deriva-
tives is that the chain rule applies. Thus, we can decompose the Gateaux
derivative of a target parameter into standard expressions. For the remainder
of this section, we will report some useful results and display some key exam-
ples for our work.

For a submodel over the variables X and Y , it is useful to know that the
marginal sub-model is given by

fϵ(x) =

∫
fϵ(y, x) dν(y) =ϵIx̃(x)

∫
Iỹ dν(y) + (1− ϵ)

∫
f0(y, x) dν(y)

=ϵIx̃(x) + (1− ϵ)f0(x).

This result directly implies that the conditional sub-model is given by

fϵ(y | x) = fϵ(y, x)

fϵ(x)
=
f0(y, x) + ϵ · (Iỹ(y)Ix̃(x)− f0(y, x))

f0(x) + ϵ · (Ix̃(x)− f0(x))
.
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Lemma 1. Assume f0(x) = P(X = x) > 0, then

∂

∂ϵ
fϵ(y|x)

∣∣∣∣
ϵ=0

=
Iỹ(y)Ix̃(x)− f0(y, x)

f(x)
− f0(y, x)[Ix̃(x) + f0(x)]

f0(x)20

= Iỹ(y)Ix̃(x)f0(x)
−1 − Ix̃(x)f0(y|x)f0(x)−1

Example 1. For the target parameter E(Y | X = x) the point mass contam-
ination Gateaux derivative is given by

ψ(P0)(ỹ, x̃) =

∫
yI(ỹ = y)I(x̃ = x)f0(x)

−1 dν(y)

−
∫
yI(x̃ = x)f0(y|x)f0(x)−1 dν(y)

=
I(x̃ = x)

P(X = x)
{ỹ − E(Y |X = x)}.

Lemma 2. For a (Gateaux) differentiable function v(P0)(x) it holds that the
point mass contamination Gateaux derivative of E[v(P0)(X)] is given by

ψ(P0)(x̃) = E [v1(P0)(X)] + v(P0)(x̃)− E[v(P0)(X)]

where v1(P0)(X) = ∂
∂ϵv(Pϵ)(X)

∣∣
ϵ=0

.

Example 2. For variables (H,A,U) assume that P(A = a|H) > 0 for some
a. Let the target parameter be given by

Ψ(P0) = E [E[U | A = a,H]] .

Define
v(P0)(H) = E[U | A = a,H].

Then

∂

∂ϵ
v(Pϵ)(h)

∣∣∣∣
ϵ=0

=
I(ã = a)I(h̃ = h)

P(A = a,H = h)

{
ũ− E[U |A = a,H = h̃]

}
,

and ∫
I(ã = a)I(h̃ = h)

P(A = a,H = h)

{
ũ− E[U |A = a,H = h̃]

}
f0(h)dν(h)

=
I(ã = a)

P(A = a|H = h̃)

{
ũ− E[U |A = a,H = h̃]

}
.

Thus, the Gateaux derivative is given by

ψ(P0)(h̃, ã, ũ) =
I(ã = a)

P(A = a|H = h̃)

{
ũ− E[U |A = a,H = h̃]

}
+ E[U | A = a,H = h̃]−Ψ(P0).





Chapter 3

Policy learning

Learning better policies from historical data is at the core of this thesis. Un-
like online policy learning methods, where it is possible to interact with the
environment, such as when playing a game, learning the effects of alternative
actions based on historical data requires careful causal considerations. In this
regard, a limited amount of available data necessitates efficient learners. Oth-
erwise, we cannot make any performance guarantees or estimate the value of
the learned policy. The purpose of this chapter is not to reiterate the content
covered in Paper A and Paper B, but rather to expand on key results not
included in the manuscripts and highlight our contributions. Additionally, we
will introduce new material concerning variable importance measures for the
estimated policy.

The policy learning process can be divided into two parts. The first part
involves formally defining the optimal policy as a causal parameter and deter-
mining the structural assumptions that allow us to identify it from the data.
This part is described in detail in Sections 3.1 and 3.2. The second part re-
volves around estimating the policy and evaluating its performance. Doubly
robust policy estimation is introduced in Section 3.3, and efficient performance
measures are described in Section 3.4. Finally, material on functional infer-
ence for the policy, which is not considered in any of the papers, is included
in Section 3.7.

Most of this chapter focuses on a simplified two-stage decision problem. A
general K-stage formulation will not add any conceptual understanding but
will introduce a lot of cumbersome notation. We represent a single observation
as:

O = (S1, A1, S2, A2, U).

Here, S1 ∈ S1 and S2 ∈ S2 represent general state variables, A1 ∈ A1 and
A2 ∈ A2 are binary action or decision variables, and U denotes the utility
outcome. For convenience, define the history variables H1 = S1 ∈ H1 and
H2 = (S1, A1, S2) ∈ H2.

11
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S1 A1 a1 Sa1
2 Aa1

2 a2 Ua

L1 L2

Figure 3.1: Single world intervention graph (SWIG). S1 and S
a1
2 represent the

potential state variables, A1, and A
a1
2 represent the potential action variables

and Ua represents the potential utility outcome. In this case, the assumption
of sequential randomization holds even though L1 and L2 are unmeasured
variables.

3.1 Optimality

In this section, we will formally define what the optimal policy means in a
causal framework. For any static actions a = (a1, a2) ∈ A = {0, 1}⊗2, we
introduce the potential outcomes [43] under action a as follows:

Oa = (S1, a1, S
a1
2 , a2, U

a).

The potential outcome Oa represents the observation we would have observed
if, contrary to the fact, we had forced the actions to be A1 = a1 and A2 = a2.
We will not go into a discussion on the existence of potential outcomes. How-
ever, in practical terms, we always think of potential outcomes as the result of
an intervention in a structural equation model. This also allows us to visualize
interventions in graphs [41]. Figure 3.1 displays an example of a single-world
intervention graph. The variables L1 and L2 represent unmeasured variables.

Let V1 ∈ V1 be a function of H1 and let V2 ∈ V2 be a function of H2.
A policy restricted to the input V1 and (A1, V2) is a set of rules d = (d1, d2)
where d1 : V1 7→ A1 and d2 : A1 × V2 7→ A2. Based on a given policy d, we
define the potential utility under d as follows:

Ud =
∑

a1∈A1,a2∈A2

Ua1,a2I{d2(a1, V a1
2 ) = a2}I{d1(V1) = a1}.

Hypothetically, we would want to maximize Ud directly for every observation,
but unfortunately, we only observe a single version of the world. Instead, we
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define the optimal V -restricted policy as follows:

d0 = argmax
d∈D

E[Ud].

Here, D is the class of all V -restricted policies. This definition is not very
constructive in terms of how we should estimate the optimal policy. However,
with a bit more structure on the inputs V1 and V2, we can prove the following
important theorem. The proof is a corrected version of Theorem 1 in [52].

Theorem 3. If V1 is a function of V2, then the V -optimal policy d0 is given
by

B0,2(a1, v2) = E[Ua1,a2=1|V a1
2 = v2]− E[Ua1,a2=0|V a1

2 = v2]

d0,2(a1, v2) = I {B0,2(a1, v2) > 0}
B0,1(v1) = E[Ua1=1,d0,2 |V1 = v1]− E[Ua1=0,d0,2 |V1 = v1]

d0,1(v1) = I {B0,1(v1) > 0} .

The above statement is also true if for all a1 and a2

E[Ua1,a2 |V1, V a1
2 ] = E[Ua1,a2 |V a1

2 ]. (3.1)

Proof. Let V a = (V1, V
a
2 ). For any policy d

E[Ud] = E

[∑
a1,a2

Ua1,a2I{d2(a1, V a1
2 ) = a2}I{d1(V1) = a1}

]

=
∑
a1

E

[{∑
a2

E
(
Ua1,a2

∣∣V a1
2

)
I{d2(a1, V a1

2 ) = a2}

}
I{d1(V1) = a1}

]
,

where it is used that V1 is a function of V a1
2 or that (3.1) holds. For any a1

the inner sum is maximized in d2 by d0,2, i.e., E[Ud] ≤ E[Ud1,d0,2 ]. Now,

E[Ud1,d0,2 ] = E

[∑
a1

E[Ua1,d0,2 |V1]I{d1(V1) = a1}

]
,

which is maximized for d1 = d0,1, i.e., E[Ud] ≤ E[Ud1,d0,2 ] ≤ E[Ud0,1,d0,2 ].

The above Theorem is highly constructive as it inspires recursive identifi-
cation (and estimation) of the causal blip functions B0,1 and B0,2. This will
be the topic of the following section.

3.2 Identification

In this section we show that the causal blip functions are identified from
the observed distribution under consistency, sequential randomization, and
positivity. We start by formally stating each of these assumptions.
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Definition 1. : Consistency

HA1
2 = H2

UA = U

Definition 2. : Sequential Randomization
For every action a ∈ A assume that

Ua ⊥ Aa1
2

∣∣Ha1
2

Ua ⊥ A1

∣∣H1

Definition 3. : Positivity
For every action a ∈ A and for some γ > 0 it almost surely holds that

P
(
A2 = a2 | H2, A1 = a1

)
> γ

P
(
A1 = a1 | H1

)
> γ

Consistency is the assumption that allows us to observe the potential out-
comes that occur by chance in the historical data. The assumption subtly
states that an intervention itself does not alter the outcome if the actions re-
main the same. Consistency is also linked to the stable-unit-treatment-value
assumption [44], which states that an intervention on one observation or unit
does not affect the outcome of other units, meaning that independence is
preserved between the potential outcomes in an iid population.

Sequential randomization, or exchangeability, is a generalization of the as-
sumption of no unmeasured confounders. The single-world intervention graph
presented in Figure 3.1 provides an example of a structural equation model
where sequential randomization holds true [41]. The assumption would no
longer hold if there were an arrow from L1 or L2 to A1 or A2. Therefore, in
practical terms, if we can account for all the information used to make the
historical actions, we can be confident that sequential randomization holds.

Positivity is the final assumption, stating that we should observe all pos-
sible actions in all strata of the historical data. Within the causal inference
and reinforcement learning literature, this is also known as overlap or cover-
age. Dealing with positivity violations or near positivity violations is a major
topic discussed in Manuscript Paper B. We will revisit this topic later in the
chapter.

Under the above-stated assumptions, it is possible to identify the causal
blip functions in two ways, both of which are constructive for the later estima-
tion procedure. Therefore, for completeness, we will state both methods. The
first result relies on the fact that the distribution of the potential observation
Oa is absolutely continuous with respect to the observed distribution. For
convenience, we define the g-functions as follows:

g0,k(hk, ak) = P(Ak = ak|Hk = hk) k ∈ {1, 2}.
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Then, for any a ∈ A it holds that

E
[
I{A2 = a2}
g0,2(H2, A2)

U
∣∣∣A1 = a1, V2

]
=E

[
I{Aa1

2 = a2}
g0,2(H

a1
2 , a2)

Ua1,a2
∣∣∣V a1

2

]
=E

[
E[I{A2 = a2}|Ha1

2 ]

g0,2(H
a1
2 , a2)

Ua1,a2
∣∣∣V a1

2

]
=E

[
E[I{A2 = a2}|H2]

g0,2(H2, a2)
Ua1,a2

∣∣∣A1 = a1, V2

]
=E

[
Ua1,a2

∣∣∣V a1
2

]
.

Note that the first expression is well defined due to positivity. The first,
third, and fourth equalities hold due to consistency, and the second equality
holds due to sequential randomization. Thus, we can identify the second-stage
causal blip function B0,2 and the associated second-stage optimal policy d0,2.
Now, for any a1, we see that

E
[
I{A1 = a1}
g0,1(H1, A1)

I{A2 = d0,2(A1, V2)}
g0,2(H2, A2)

U
∣∣∣V1]

=E
[
I{A1 = a1}
g0,1(H1, a1)

I{A2 = d0,2(a1, V
a1
2 )}

g0,2(H
a1
2 , d0,2(a1, V

a1
2 ))

Ua1,a2
∣∣∣V1]

=E
[
I{A1 = a1}
g0,1(H1, a1)

E[I{A2 = d0,2(a1, V
a1
2 )}|Ha1

2 ]

g0,2(H
a1
2 , d0,2(a1, V

a1
2 ))

Ua1,d0,2
∣∣∣V1]

=E
[
I{A1 = a1}
g0,1(H1, a1)

Ua1,d0,2
∣∣∣V1]

=E
[
Ua1,d0,2

∣∣∣V1] .
Thus, we have identified the first-stage causal blip function along with the
first-stage optimal policy. The second approach to identifying the causal blip
functions is an adaptation of Q-learning. For this purpose, define the Q-
function at stage 2 as follows:

Q0,2(h2, a2) = E[U |H2 = h2, A2 = a2]

Again, using consistency and sequential randomization it is possible to show
that for any a ∈ A

E
[
Q0,2(H2, a2)|A1 = a1, V2

]
= E[Ua1,a2 |V a1

2 ].

Given the second stage optimal policy we can define the first stage Q function
as follows:

Q0,1(h1, a1) = E[Q0,2(H2, d0,2(V2))|H1 = h1, A1 = a1]

= E[E[Ua1,d0,2 |Ha1
2 ]|H1 = h1, A1 = a1]

= E[Ua1,d0,2 |H1 = h1].
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Evidently,

E [Q0,1(H1, a1)|V1] = E[Ua1,d0,2 |V1].

3.3 Estimation

In the previous section, we demonstrated recursive identification of the V -
restricted optimal policy using the g-functions and Q-functions. This section
will combine these results to construct a doubly robust loss function for the
optimal policy. This loss function and other comparable loss functions will
serve as the foundation for recursively learning the optimal policy.

At stage two, drawing inspiration from the efficient influence function for
the single-stage static policy value in Example 2, we define the doubly robust
blip function score as follows:

D2(g,Q)(O) =
2A2 − 1

g2(H2, A2)
{U −Q2(H2, A2)}

+Q2(H2, 1)−Q2(H2, 0).

The score is doubly robust in the sense that under the assumptions of consis-
tency, sequential randomization, and positivity, if either g = g0 or Q = Q0,
then

E[D2(g,Q)(O)|A1, V2] = B0,2(A1, V2).

Now, for a measurable function B2, define the doubly robust blip loss function
as

L2(B2)(g,Q)(O) =
{
D2(g,Q)(O)−B2(A1, V2)

}2
.

If either g = g0 or Q = Q0, the expectation of the loss function is given by

E[L2(B2)(g,Q)(O)] =E
[{
D2(g,Q)(O)−B2(A1, V2)

}2]
=E

[
D2(g,Q)(O)2

]
+ E

[
B2(A1, V2)

2
]

− 2E [D2(g,Q)(O)B2(A1, V2)]

=E
[
D2(g,Q)(O)2

]
+ E

[
B2(A1, V2)

2
]

− 2E [B0,2(A1, V2)B2(A1, V2)]

=E
[{
B2(A1, V2)−B0,2(A1, V2)

}2]
+ E

[
D2(g,Q)(O)2

]
− E

[
B0,2(A1, V2)

2
]
.
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The last two terms are constant in B2. Thus, the true second-stage blip
function B0,2 minimizes the expected blip loss. Given second-stage nuisance
function estimates ĝn and Q̂n, we can use any least square regression type
estimator for the second-stage blip function denoted B̂2,n, which minimizes
the empirical doubly robust blip loss:

n∑
i=1

L2(B2)(ĝn, Q̂n)(Oi).

For a given second-stage policy d2, it is again possible to construct a doubly
robust loss function for the first-stage blip. Define

D1(g,Q
d2 , d2)(O) =

I{A2 = d2(A1, V2)}
g2(H2, A2)

2A1 − 1

g1(H1, A1)
{U −Q2(H2, A2)}

+
2A1 − 1

g1(H1, A1)

{
Q2(H2, d2(V2, A1))−Qd2

1 (H1, A1)
}

+ Qd2
1 (H1, 1)−Qd2

1 (H1, 0).

We note that

Qd2
0,1(H1, a1) =E

[
Q0,2(H2, d2(A1, V2))

∣∣H1, A1 = a1
]

=E
[
E
[
U
∣∣H2, A2 = d2(V2, A1)

]∣∣H1, A1 = a1
]

=E
[
E
[
Ud2

∣∣H2

]∣∣H1, A1 = a1
]

=E
[
UA1=a1,d2

∣∣H1

]
.

Thus, if the optimal second stage policy d0,2 is known and Qd0,2 = Q
d0,2
0 , we

see that

E
[
D1(g,Q

d0,2 , d0,2)(O)
∣∣V1] = B0,1(V1).
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Similarly, if g = g0, then

E
[
D1(g,Q

d0,2 , d0,2)(O)
∣∣V1] = E

[
Q

d0,2
1 (H1, 1)−Q

d0,2
1 (H1, 0)

∣∣V1]
+B0,1(V1)

− E
[
I{A2 = d2(A1, V2)}

g2(H2, A2)

2A1 − 1

g1(H1, A1)
Q2(H2, A2)

∣∣∣∣V1]
+ E

[
2A1 − 1

g1(H1, A1)
Q2(H2, d0,2(V2, A1))

∣∣∣∣V1]
− E

[
2A1 − 1

g1(H1, A1)
Q

d0,2
1 (H1, A1)

∣∣∣∣V1]
= E

[
Q

d0,2
1 (H1, 1)−Q

d0,2
1 (H1, 0)

∣∣V1]
+B0,1(V1)

− E
[

2A1 − 1

g1(H1, A1)
Q2(H2, d0,2(V2, A1))

∣∣∣∣V1]
+ E

[
2A1 − 1

g1(H1, A1)
Q2(H2, d0,2(V2, A1))

∣∣∣∣V1]
− E

[
Q

d0,2
1 (H1, 1)−Q

d0,2
1 (H1, 0)

∣∣V1]
= B0,1(V1).

Combining the above results yields that if either g = g0 or Qd0,2 = Q
d0,2
0 , a

valid loss function is given by

L1(B1)(g,Q
d0,2 , d0,2)(O) =

{
D1(g,Q

d0,2 , d0,2)(O)−B1(V1)
}2
.

In practice, for an estimated second-stage optimal policy d̂n,2 and nuisance

function estimates ĝn and Q̂
d̂n,2
n , we can use any least square regression type

estimator for the first-stage blip function, denoted B̂1,n, which minimizes the
empirical doubly robust blip loss:

n∑
i=1

L1(B2)(ĝn, Q̂
d̂n,2
n , d̂n,2)(Oi).

In the single-stage case, cross-fitting the nuisance functions can be done easily
following the approach described for the one-step estimator in Chapter 2.
However, when dealing with two stages or more, it becomes more challenging
to cross-fit the first-stage Q-function. This is because the estimation of the
first-stage Q-function depends on the estimated second-stage optimal policy.
Ideally, a nested cross-fitting scheme should be applied to handle this situation
correctly.

The least square blip loss function is just one way to frame the optimal
policy problem. Other notable alternative loss functions include the value loss
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function, which leads to value search or partitioning procedures [57, 62, 23],
and the weighted classification loss function, which leads to (augmented) out-
come weighted learning [60, 32, 20, 58]. These value loss functions and clas-
sification loss functions are presented in detail in Paper A. Both the value
loss and the classification loss can be seen as more direct approaches focus-
ing on the decision boundary. In contrast, learning the blips focuses on the
estimation error of the blip functions rather than just the associated decision
boundary.

As mentioned by [30], an advantage of estimating the blip functions is that
it allows us to identify subgroups of patients for which following the estimated
optimal policy is particularly beneficial. This is easy to see in the single stage
case. Given a threshold η > 0, we can define the subgroup indicator as follows:

sη(V1) = I {B0,1(V1) > η} .

Then, the above subgroup indicator identifies the group of patients with a
conditional average treatment effect of at least η. The associated subgroup
average treatment effect is then given by:

E[U1 − U0|sη(V1) = 1].

The concept of subgroups can be generalized to the multi-stage case, where
we compare the expected utility outcome under the optimal policy with the
outcome under a reference policy.

The polle R package, as described in Paper A, unifies many of the avail-
able doubly robust policy learners on CRAN 1 as well as introducing doubly
robust blip learning. The function policy_learn() is used to specify a given
policy learner. Table 3.1 provides an overview of the available policy learn-
ing methods. Unless specified otherwise, the nuisance function values used to
construct the doubly robust score at each stage can be cross-fitted.

3.4 Performance

In this section, we introduce various performance measures for policy learning.
For simplicity, we consider a single-stage setup with

O = (H,A,U),

where A is binary. Under consistency, sequential randomization, and positiv-
ity, an unrestricted optimal policy is given by

d0(h) = I
{
B0(h) > 0

}
B0(h) = Q0(h, 1)−Q0(h, 0),

1https://cran.r-project.org/web/views/CausalInference.html

https://cran.r-project.org/web/views/CausalInference.html
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type argument Method Imports Limitations

"ql" Q-learning

"drql" Doubly Robust Q-
learning

"blip" Doubly Robust blip-
learning

Only available for di-
chotomous action sets.

"ptl" Policy tree learning policytree Realistic policy learn-
ing implemented for di-
chotomous action sets.

"owl" Outcome weighted
learning

DTRlearn2 No realistic policy
learning. Fixed number
of stages. Dichotomous
action set. Augmen-
tation terms are not
cross-fitted.

"earl" Efficient augmented
and relaxation learning

DynTxRegime Single stage. No cross-
fitting. No realistic pol-
icy learning. Dichoto-
mous action set.

"rwl" Residual weighted
learning

DynTxRegime Same as "earl".

Table 3.1: Overview of policy learning methods and their dependencies and
limitations.

where B0 is the blip function. An obvious target parameter that can be used
to measure the maximum achievable performance is the optimal policy value
given by

Ψ(P0) = E [Q0(H, d0(H))] .

Inference for the optimal policy value has generally been challenging due to
the parameter’s inherent non-smooth structure around the decision boundary
where the blip function is zero. This challenge was initially highlighted by [42].
To ensure the existence of an influence function, we use the non-exceptional
law, which states that the blip function is almost surely bounded away from
zero. Note that this assumption implies that the optimal policy is unique.

Definition 4. : Non-exceptional law
For some δ > 0 it holds that

P
(
|B0(H)| > δ

)
= 1.

The non-exceptional law is a strong assumption that can be challenging
to justify, particularly in settings with treatment non-responders.
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The following technical Lemma is helpful when dealing with model-based
threshold policies:

Lemma 4. for some x and y on R

|I{x > 0} − I{y > 0}| ≤ I{|y| ≤ |x− y|} (3.2)

Proof. If x > 0 and y > 0 or x ≤ 0 and y ≤ 0, then the statement is trivial.
If x > 0 and y ≤ 0 then −(x− y) < y ≤ 0. Similarly, if y > 0 and x ≤ 0 then
(x− y) ≤ −y < 0.

The following Theorem can be found in [34], see also [19]. We also give a
proof for completeness and because it is instructive for working with pathwise
derivatives.

Theorem 5. Assume that, for some constant C < ∞, P(|U | < C) = 1 and
|Q0(H, a)| < C almost surely for a ∈ {0, 1}. Furthermore, assume that the
non-exceptional law holds. Then Ψ(P0) is pathwise differentiable with efficient
influence function

ψ(g0, Q0, d0)(O) =
I{A = d0(H)}
g0(H,A)

{U −Q0(H, d0(H)}+Q0(H, d0(H))−Ψ(P0).

(3.3)

Proof. As we will see, the target parameter is not sensitive to fluctuations
of the action model f0(a | h) = g0(h, a). Thus, the relevant tangent space
consists of the closure of the direct sum of the sub-tangent-spaces

TH(P0) = {s(H) ∈ L2(P0) : E[s(H)] = 0}
TU (P0) = {s(H,A,U) ∈ L2(P0) : E[s(H,A,U)|H,A] = 0}.

To construct a valid parametric submodel, we only consider scores bounded
by C. A parametric submodel is then given by

fϵ(h) = (1 + ϵs(h))f0(h)

fϵ(u | h, a) = (1 + ϵs(h, a, u))f0(u | h, a).

The target parameter can be rewritten as

Ψ(P0) = E [d0(h)B0(H)]

+ E [Q0(H, 0)] .

We directly calculate the pathwise derivative, where we note that the optimal
policy under the parametric submodel is given by

dϵ(h) = I{Bϵ(h) > 0}. (3.4)
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Thus,

ϵ−1 {Ψ(Pϵ)−Ψ(P0)}

= ϵ−1

∫
dϵ(h)Bϵ(h)f0,ϵ(h)dν(u) + ϵ−1

∫
u f0,ϵ(u | h, 0)f0,ϵ(h)dν(u, h)

− ϵ−1

∫
d0(h)B0(h)f0(h)dν(h)− ϵ−1

∫
u f0(u | h, 0)f0(h)dν(u, h)

= ϵ−1

∫
{dϵ(h)− d0(h)} Bϵ(h)fϵ(h)dν(h) (3.5)

+ ϵ−1

∫
d0(h) {Bϵ(h)fϵ(h)−B0(h)f0(h)} dν(h) (3.6)

+ ϵ−1

∫
u {fϵ(u | h, 0)fϵ(h)− f0(u | h, 0)f0(h)} dν(u, h). (3.7)

The expression in (3.6) and (3.7) corresponds to the pathwise derivative of
E[Q0(H, d(H))] for a known policy d = d0 with associated efficient influence
function ψ(g0, Q0, d0)(O), see Example 2. It is left to prove that the remaining
term (3.5) converges to zero as ϵ approaches zero. For this purpose, we rewrite
the fluctuated blip as

Bϵ(h)

=

∫
u {fϵ(u | h, 1)− fϵ(u | h, 0)} dν(u)

=

∫
u {(1 + ϵs(h, 1, u))f0(u | h, 1)− (1 + ϵs(h, 0, u))f0(u | h, 0)} dν(u)

= B0(h) + ϵ

∫
u {s(h, 1, u)f0(u | h, 1)− s(h, 0, u)f0(u | h, 0)} dν(u), (3.8)

where, by assumption, the last term is bounded because∣∣∣∣∫ u {s(h, 1, u)f0(u | h, 1)− s(h, 0, u)f0(u | h, 0)} dν(u)
∣∣∣∣ ≤ 2C2, (3.9)

Going back to expression (3.5), we see that

ϵ−1

∣∣∣∣∫ {dϵ(h)− d0(h)} Bϵ(h)fϵ(h)dν(h)

∣∣∣∣
≤
∫

|dϵ(h)− d0(h) | |Bϵ(h)| fϵ(h)dν(h)

≤ ϵ−1

∫
I{|B0(h)| ≤ |Bϵ(H)−B0(h)|} |Bϵ(h)| fϵ(h)dν(h) (3.10)

≤ ϵ−1

∫
I{|B0(h)| ≤ ϵ2C2}

{
|B0(h)|+ ϵ2C2

}
{1 + ϵC} f0(h)dν(h) (3.11)

≤ ϵ−1

∫
I{|B0(h)| ≤ ϵ2C2}

{
ϵ2C2 + ϵ2C2

}
{1 + ϵC} f0(h)dν(h)

≤ 4C2 {1 + ϵC}
∫
I{δ < |B0(h)| ≤ ϵ2C2}f0(h)dν(h). (3.12)
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Inequality (3.10) follows by Lemma 4, (3.11) follows by (3.8), (3.9), and the
definition of the bounded parametric submodel, and (3.12) follows by the non-
exceptional law. Finally, by dominated convergence, the last expression (3.12)
goes to zero as ϵ goes to zero.

As also used in the proof of Theorem 5, we recognize expression (3.3) as
the efficient influence function for the value of the optimal policy, assuming
that we already know the optimal policy d0. At first glance, it appears that
we do not pay the price asymptotically by first having to estimate the optimal
policy. However, our hope for good fortune is soon to end. We must estimate
theQ-function (and the policy) at a parametric model rate n1/2 to construct an
estimator with the above influence function. This result follows from studying
the second-order remainder:

Theorem 6. Given a policy d and nuisance functions Q and g, where g(H, a) >
γ almost surely for some γ > 0, the second order remainder for the efficient
influence function of the optimal policy value is given by

R(g,Q, d, g0, Q0, d0)

= E
[
g0(H, d(H))− g(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E [{d(H)− d0(H)}B0(H)]

= R1(g,Q, d, g0, Q0)

+ R2(Q, d,Q0, d0).
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Proof. By definition of the second order remainder term:

R(g,Q, d, g0, Q0, d0) = E[ψ(g,Q, d)(O)] + Ψ(Q, g, d)−Ψ(P0)

= E
[
I{A = d(H)}
g(H,A)

{U −Q(H,A)}
]

+ E[Q(H, d(H))]−Ψ(P0)

= E
[
I{A = d(H)}
g(H, d(H))

{Q0(H, d(H))−Q(H, d(H))}
]

+ E[Q(H, d(H))]−Ψ(P0)

= E
[
g0(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E[Q(H, d(H))]−Ψ(P0)

= E
[
g0(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E[Q(H, d(H))]

+ E[Q0(H, d(H))]− E[Q0(H, d(H))]−Ψ(P0)

= E
[
g0(H, d(H))− g(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E[Q0(H, d(H))]−Ψ(P0)

= E
[
g0(H, d(H))− g(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E[Q0(H, 0) + d(H)B0(H)]−Ψ(P0)

= E
[
g0(H, d(H))− g(H, d(H))

g(H, d(H))
{Q0(H, d(H))−Q(H, d(H))}

]
+ E [{d(H)− d0(H)}B0(H)] ,

The first remainder term R1 is the typical product remainder term, which,
under positivity, can be bounded up to a constant by the product of the
nuisance function L2(P0) errors:

∥Q0(H,A)−Q(H,A)∥2,P0 × ∥g0(H,A)− g(H,A)∥2,P0

Hence, a convergence rate of n1/4 for both the Q-function and g-function esti-
mates will be sufficient to ensure a convergence rate of n1/2 for the remainder
term R1. The second remainder term R2 poses more of a challenge. Letting
d be the threshold policy associated with Q given by

d(H) = I{B(H) > 0} = I{Q(H, 1)−Q(H, 0) > 0},
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we can again use Lemma 4 to bound R2:

∥{d(H)− d0(H)}B0(H)∥2,P0

≤∥I{|B0(H)| ≤ |B(H)−B0(H)|}|B0(H)|∥2,P0

≤∥B(H)−B0(H)∥2,P0

Thus, to achieve a convergence rate of n1/2 for the second-order remainder R,
it is necessary to estimate the blip function and, in turn, the Q-function at a
parametric rate. This requirement, combined with the necessity of the non-
exceptional law, means that asymptotic bounds for the optimal policy value
are not suitable for measuring the maximum performance of a policy learner.

Instead, a part of the literature has focused on bounding the expected
regret [4, 18, 40, 3]. For a given policy within a class of policies D, the regret
is defined as the difference between the value of the optimal policy within the
class and the value of the chosen policy:

regret(d) = max
d′∈D

{
E
[
Q0(H, d

′(H))
]}

− E [Q0(H, d(H))]

For a policy estimate d̂n, the expected regret over samples of size n is given by
E[regret(d̂n)]. Although putting asymptotic bounds on the expected regret of
a policy learner is more of a theoretical performance guarantee than a practical
measure for evaluating a policy learner, it is still important as it allows us to
construct well-behaved policy estimators.

As shown in [3], bounding the regret of an unrestricted class of policies
is too ambitious. Following the key insights of [29], the authors focus on
classes of policies with a bounded Vapnik-Chervonenkis (VC) dimension. The
VC dimension of the policy class can grow with the sample size, but not
too quickly. Examples of policy classes with bounded VC dimensions include
linear threshold policies and decision trees.

Even under policy class restrictions, not all policy estimators are equally
suited. We need policy value estimators that are strong enough to withstand
optimization over the class of policies. In this regard, the authors of [3] study
a policy learner that empirically minimizes the doubly robust value loss. For
this policy estimator, they achieve optimal n1/2 bounds for the regret. The
proof critically depends on the efficiency of the doubly robust value estimator.

In our view, restricting the policy class is preferable to making further
distributional assumptions. A notable example of such assumptions that can
lead to a bounded regret is presented in [4]. This approach, similar to the
non-exceptional law, limits the concentration of the blip function around
zero through margin conditions. As mentioned, while performance guaran-
tees based on regret bounds are relevant for theoretical comparisons of policy
learners, they may not be helpful in practical situations for policymakers to
analyze the gain in value and associated risk of implementing an estimated
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policy. Instead, we strongly advocate for targeting the estimated policy’s value
[12]. Conditional on d̂n, the target parameter is given by:

Ψd̂n(P0) = E[U d̂n ].

This data-adaptive policy value is arguably more practically relevant than the
true optimal policy value because the true optimal policy will never actually
be implemented. Moreover, as we will see, the data-adaptive policy value
does not suffer from non-regularity issues, eliminating the need for the non-
exceptional law. Let the data-adaptive one-step estimator be given by

Ψ̂d̂n
n = n−1

n∑
i=1

(
I{Ai = d̂n(Hi)}
ĝn(Hi, Ai)

{
Ui − Q̂n(Hi, d̂n(Hi))

}
+ Q̂n(Hi, d̂n(i))

)
.

If, for some (limiting) policy d′ [52], it holds that

{Pn − P0}
{
ψ(ĝn, Q̂n, d̂n)(X)− ψ(g0, Q0, d

′)(X)
}
= oP0(n

−1/2), (3.13)

a direct application of the von Mises expansion yields that

Ψ̂d̂n
n −Ψd̂n(P0) = n−1

n∑
i=1

ψ(g0, Q0, d
′)(Xi)

+R1(ĝn, Q̂n, d̂n, g0, Q0)

+ oP0(n
−1/2).

As described, under positivity, the second order remainder termR1 is oP0(n
−1/2)

if conditional on Q̂n and ĝn it holds that

∥Q0(H,A)− Q̂n(H,A)∥2,P0 × ∥g0(H,A)− ĝn(H,A)∥2,P0 = oP0(n
−1/2).

(3.14)

We are left to show that the empirical process remainder term is negligible
under reasonable conditions, i.e., that (3.13) holds. In Appendix I, we show
that if Q̂n, ĝn, and d̂n falls in a Donsker class with probability approaching
one, and conditional on Q̂n, ĝn, and d̂n it holds that

∥Q̂n(H,A)−Q0(H,A)∥2,P0 = oP0(1), (3.15)

∥ĝn(H,A)− g0(H,A)∥2,P0 = oP0(1), (3.16)

P0|d̂n(H)− d′(H)| = oP0(1), (3.17)

then (3.13) holds true. Ideally, d′ = d0, but this does not have to be the
case. Of course, under an exceptional law, we may still be critical whether d̂n
converges towards a fixed policy at any rate.

We further advocate for constructing a cross-fitted version of the data-
adaptive policy value estimate [45], where the g-function, Q-function, and
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policy are estimated on each training fold, and the doubly robust score is
calculated on each validation fold. The details of this procedure are described
in Paper A and implemented in the polle R package via the policy_eval()
function. To our knowledge, this very important performance measure is not
available in any other software implementation.

To conclude this section, we would like to add some notes on the multi-
stage case. As of our current knowledge, regret bounds like those found in [3]
have yet to be generalized to the multi-stage case. However, the data-adaptive
policy value estimator remains asymptotically linear under conditions similar
to those presented in this section. We will not delve into the details, but refer
to [34] for further information.

3.5 Positivity violations

The assumptions of consistency and sequential randomization are untestable,
meaning we cannot directly verify them based on the observed data. However,
the assumption of positivity is a property of the observed distribution, which
enables us to identify violations or practical violations [6, 38].

Despite the importance of the positivity assumption, issues related to pos-
itivity violations have received surprisingly limited attention in the statistical
policy learning literature. A retargeting approach via a weighted value func-
tion has been suggested by [24]. Among the reviews [48, 30, 13], only [13]
mentions that methods for handling positivity violations in multi-stage set-
tings are underdeveloped. Positivity violations are also known as partial cov-
erage in the offline reinforcement literature. For recent reviews on off-policy
reinforcement learning and challenges related to partial coverage in Markov
decision problems, we refer to [49, 50].

Practical positivity violations are a considerable issue in the application
of Paper B, as also described in Chapter 4. This issue further motivated the
development of the polle R package Paper A, as no other software implemen-
tations of statistical policy learning offer methods for dealing with practical
positivity violations. We advocate for changing the targeted policy. Instead of
targeting the globally optimal policy, we target the optimal policy within the
set of policies deemed realistic at a given level α > 0. In the single-stage binary
action case, the globally optimal policy is given by the zero threshold policy
associated with the blip function. Let dα0 denote the realistic modification of
d0:

dα0 (h) = I{g0(h, 1) ∈ (α, 1− α)}I{B0(h) > 0}+ I{g0(h, 1) ∈ [1− α, 1)}.

By construction, dα0 will not lead to positivity violations in the sense that
g0(H, d

α
0 (H)) ≥ α almost surely. Let d̂αn denote the associated plug-in esti-

mator, which, if the true g-function is unknown, will depend on the estimate
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ĝn. Realistic policy learning is available in the polle package via the alpha

argument in the policy_learn() function.
Performance guarantees in terms of regret for this policy estimator have, to

our knowledge, not been studied in the literature. However, the data-adaptive
policy value estimator can easily accommodate the above modification. Let

G0(h) = {a ∈ A : g0(h, a) > 0}

denote the feasible set of actions for a given h. We assume positivity for the
feasible set:

g0(H, a) > γ ∀ a ∈ G0(H) a.s.

We want to verify that under positivity for the feasible set, the convergence
conditions (3.14), (3.15), (3.16), and (3.17) still lead to asymptotic linearity of
the realistic data-adaptive policy value estimator. Without loss of generality,
we assume that α > γ. Because (3.16) holds, it also holds with probability
tending one that

d̂αn(H) ∈ G0(H).

Thus, conditional on Q̂n and d̂αn we see that

∥Q̂n(H,A)−Q0(H,A)∥22,P0

= E
[{

Q̂n(H, 1)−Q0(H, 1)
}2

g0(H, 1) +
{
Q̂n(H, 0)−Q0(H, 0)

}2

g0(H, 0)

]
≥ γ E

[{
Q̂n(H, 1)−Q0(H, 1)

}2

I{1 ∈ G0(H)}+
{
Q̂n(H, 0)−Q0(H, 0)

}2

I{0 ∈ G0(H)}
]

≥ γ E
[{

Q̂n(H, 1)−Q0(H, 1)
}2

I{1 ∈ G0(H)}I{d̂n(H) = 1}

+
{
Q̂n(H, 0)−Q0(H, 0)

}2

I{0 ∈ G0(H)}I{d̂n(H) = 0}
]

= γ ∥Q̂n(H, d̂n(H))−Q0(H, d̂n(H))∥22,P0
.

Similarly, with probability approaching one

∥ĝn(H,A)− g0(H,A)∥22,P0

≥ γ ∥ĝn(H, d̂n(H))− g0(H, d̂n(H))∥22,P0
.

Hence, both the second order remainder term and the empirical process re-
mainder term converge to zero at the required rates. We can conclude that the
realistic data-adaptive policy value estimator is asymptotically linear under
positivity for the feasible set.

3.6 Stochastic number of stages

In many applications, including the case addressed in Paper B, the decision-
making process is influenced by an underlying marked point process, where
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the timing between decisions naturally varies. For example, in the refriger-
ated container maintenance and repair problem presented in Chapter 4, the
timing between breakdowns will vary, resulting in a varying number of stages
within a given time interval for each observation. Up until now, we have only
considered a fixed number of stages. Fortunately, the recursive methodology
developed for a fixed number of stages can be extended to handle a stochastic
number of stages, assuming that the maximum number of stages is finite [16].

For simplicity, we assume that the maximum number of stages is 2. For
convenience, if the state variables occur, we represent them as S1 = (X1, U1),
S2 = (X2, U2), and S3 = U3. The action variables remain as A1 and A2, and
the utility is the sum of the occurring rewards Uk. For an observation with a
single decision stage, the likelihood is given by:

f0(S1)f0(A1|S1)f0(S2|S1, A1),

where X2 = ∅ by construction, indicating that the process has terminated.
Similarly, for an observation with two decision stages, the likelihood is:

f0(S1)f0(A1|S1)f0(S2|S1, A1)f0(A2|S1, A1, S2)f0(S3|S1, A1, S2, A2).

The above decomposition of the likelihood inspires a degenerate extension of
the single decision observation using the auxiliary variables.

A∗
2 = a†2, U

∗
3 = 0,

for some fixed action a†2 ∈ A2. For the resulting auxiliary observations O∗ it
holds that

g∗0,2(a
†
2|S1, A1, S2 = ∅) = 1

Q∗
0,2(S1, A1, S2 = ∅, A2 = a†2) = U1 + U2 + 0.

An adaptation of Lemma 4.1 in [16] yields that for any feasible policy d over the
auxiliary distribution, it holds that E[Ud] = E[U∗,d]. Thus, finding the optimal
policy in the auxiliary fixed-stage decision problem corresponds to finding the
optimal policy in the stochastic-stage decision problem. This functionality
is also implemented in the polle R package Paper A. To our knowledge, no
other package in R has similar functionality.

3.7 Functional inference

So far, we have only been concerned with inference for the (data-adaptive) pol-
icy value. The value is arguably a key parameter, but it does not provide any
information on why and how the policy works. The form and interpretability
of a policy is obviously important in the medical sciences, but in an industrial
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setting, it can also help build confidence in the policy and persuade any critics
that the policy is sensible.

Inference for functional parameters is an exciting field of research. For ex-
ample, [33] studies general differentiable Hilbert-valued parameters, including
key examples such as the potential mean outcome under continuous treatment
and the conditional average treatment effect. The latter example corresponds
precisely to the blip in the single-stage case. Other recent works studying
the estimation of heterogeneous treatment effects include [27, 28, 37]. Gen-
eral functional parameters tend not to be differentiable, meaning no influence
functions exist. the mentioned works rely on restricting the functional target
to a reproducing kernel Hilbert space, making local polynomial approxima-
tions, or regularizing the problem in other ways. These results are directly
related to the lack of existence of an influence function for the value of the
true optimal policy if we cannot estimate the Q-function at a sufficiently fast
rate.

A general review of inference for (policy) functionals is beyond the scope
of this thesis. However, we will focus on a specific line of research that involves
inference for the parameters in the best smooth model approximation of the
V -restricted Q-functions or blip functions. This topic is also referred to as
variable importance in [51] and is advocated for by [11]. Another closely
related approach, proposed by [56], considers associational parameters linked
to the parameters of a generalized linear model.

Variable importance as an approximation

For simplicity, we consider a single-stage case with observationsO = (H,A,U),
where H denotes the baseline variables, A denotes the action, and U denotes
the outcome. Let V be a function of H and let Ψ(P0)(V ) denote the param-
eter of interest, e.g., the V -restricted Q-function E[E[U |A = a,H]|V ] or just
the conditional average treatment outcome. Usually, for continuous V , this
parameter will not have an influence function. Thus, we consider the best
approximation given by the projection

β(P0) = argmin
β

E
[(

Ψ(P0)(V )−m(V ;β)
)2]

, (3.18)

for a smooth model m with parameter β. Whereas Ψ(P0)(V ) in general does
not have an influence function, we aim to find an (efficient) influence function
for the finite parameter β0 = β(P0).

The Gateaux derivate gives a candidate for the efficient influence function.
Under regularity conditions, β(P ) solves

Ω(β, P ) = EP [m1(V ;β) {Ψ(P )(V )−m(V ;β)}] = 0,
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where m1(V ;β) = ∂
∂βm(V ;β). For a parametric submodel Pϵ, the derivative

is given by the implicit derivative

β(Pϵ)
∣∣∣
ϵ=0

= −
[
∂Ω(β, P0)

∂β

∣∣∣
β=β0

]−1 ∂Ω(β0, Pϵ)

∂ϵ

∣∣∣
ϵ=0

. (3.19)

We immediately have that the inverse of the first factor of (3.19) is given by

∂Ω(β, P0)

∂β

∣∣∣
β=β0

= E
[
m2(V ;β0{Ψ(P0)(V )−m(V ;β0} −m1(V ;β0)

⊗2
]

where m2(V ;β) = ∂2m(V ;β)
∂βT ∂β

. Define

h(V, Pϵ) = m1(V ;β0) {Ψ(Pϵ)(V )−m(V ;β0} .

By Lemma 2 and the fact that Ω(β(P ), P ) = 0, the second factor of (3.19) is
given by

∂Ω(β0, Pϵ)

∂ϵ

∣∣∣
ϵ=0

= E
[
∂

∂ϵ
h(V, Pϵ)

∣∣∣∣
ϵ=0

]
+ h(ṽ, P0)− E {h(V, P0)}

= E
[
∂

∂ϵ
h(V, Pϵ)

∣∣∣∣
ϵ=0

]
+ h(ṽ, P0),

where

∂

∂ϵ
h(v, Pϵ)

∣∣∣∣
ϵ=0

= m1(v;β0)
∂

∂ϵ
Ψ(Pϵ)(v)

∣∣∣∣
ϵ=0

.

Combining the above results yields that the Gateaux derivative of β0 is given
by

β(Pϵ)
∣∣∣
ϵ=0

= −E
[
m2(V ;β0){Ψ(P0)(V )−m(V ;β0)} −m1(V ;β0)

⊗2
]−1

×
{
E
[
m1(V ;β0)

∂

∂ϵ
Ψ(Pϵ)(V )

∣∣∣∣
ϵ=0

]
+m1(ṽ;β0) {Ψ(Pϵ)(ṽ)−m(ṽ;β0)}

}
(3.20)

Conditional average treatment outcome

As mentioned, an important example related to policy learning is the condi-
tional average treatment outcome:

Ψ(P0)(V ) = E[E[U |A = a,H]|V ],

which is also the V -restricted Q-function in the single-stage policy learning
problem. By direct calculation, we see that the Gateaux derivative is given
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by

∂

∂ϵ
Ψ(Pϵ)(v)

∣∣∣∣
ϵ=0

=

∫
∂

∂ϵ
EPϵ [U |A = a,H = h]

∣∣∣∣
ϵ=0

f(h|v)dh (3.21)

+

∫
E[U |A = a,H = h]

∂

∂ϵ
fϵ(h|v)

∣∣∣∣
ϵ=0

dh. (3.22)

By Example 1, we see that line (3.21) equals∫
∂

∂ϵ
EPϵ [U |A = a,H = h]

∣∣∣∣
ϵ=0

f(h|v)dh

=

∫
I(ã = a)I(h̃ = h)

P(A = a,H = h)

{
ũ− E[U |A = a,H = h]

}
f(h|v)dh

=

∫
I(ã = a)I(h̃ = h)

P(A = a,H = h)

{
ũ− E[U |A = a,H = h]

}f(h)I(V (h) = v)

f(v)
dh

=
I(ã = a)

P(A = a|H = h̃)

I(ṽ = v)

f(v)

{
ũ− E[U |A = a,H = h̃]

}
.

By Lemma 1, we also see that

∂

∂ϵ
fϵ(h|v)

∣∣∣∣
ϵ=0

=
I(h̃ = h)I(ṽ = v)

f(v)
− I(ṽ = v)f(h|v)

f(v)
.

Thus line (3.22) is equal to

I(ṽ = v)

f(v)

{
E[U |A = a,H = h̃]− E [E[U |A = a,H] | V = v]

}
.

Combining the above results yields that

∂

∂ϵ
Ψ(Pϵ)(v)

∣∣∣∣
ϵ=0

=
I(ṽ = v)

f(v)

{
D(P0)(õ)−Ψ(P0)(ṽ)

}
,

where D(P0) is the doubly robust score:

D(P0)(O) =
I{A = a}

P(A = a|H)
[U − E[U |A = a,H]] + E[U |A = a,H].

Thus, the second term of Equation (3.20) is given by

m1(ṽ;β0)

{
D(P0)(õ)−Ψ(P0)(ṽ)

}
+m1(ṽ;β0)

{
Ψ(P0)(ṽ)−m(ṽ;β0)

}

= m1(ṽ;β0)

{
D(P0)(õ)−m(ṽ;β0)

}
.
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Finally, a candidate for the efficient influence function for the parameter β0 is
given by

ψ(P0)(O) = −C(P0)
−1m1(V ;β0)

{
D(P0)(O)−m(V ;β0)

}
,

where

D(P0)(O) =
I{A = a}

P(A = a|H)
[U − E[U |A = a,H]] + E[U |A = a,H]

C(P0) = E
[
m2(V ;β0)

{
D(P0)(O)−m(V ;β0

}
−m1(V ;β0)

⊗2
]
.

Note that in the expression for C(P0), we can replace Ψ(P0)(V ) withD(P0)(O)
since

E
[
D(P0)(O)

∣∣∣V ] = Ψ(P0)(V ).

This result inspires a least square type estimator for β0. An equivalent for-
mulation to Equation (3.18) is given by

β0 = argmin
β

E
[(
D(P0)(O)−m(V ;β)

)2]
because

E
[
m1(V ;β)

(
D(P0)(O)−m(V ;β)

)]
= E

[
m1(V ;β)

(
Ψ(P )(V )−m(V ;β)

)]
.

Hence, a least square type estimator for β0 is

β̂ = β(P̂n) = argmin
β

Pn

[(
D(P̂n)(O)−m(V ;β)

)2]
,

for which it holds that

Pnψ(P̂n)(0) = Pn

{
−C(P̂n)

−1m1(V ; β̂)
[
D(P̂n)(O)−m(V ; β̂)

]}
= 0.

To prove that the least square estimator has influence function ψ(P0)(O), we
need to show that the empirical process remainder term vanishes asymptoti-
cally, i.e., that

√
n(Pn − P )

{
ψ(P̂n)(O)− ψ(P )(O)

}
= oP (1),

and that the second order remainder term R(P̂n, P ) is oP (n
−1/2). The second

order remainder term is defined as

R(P̂n, P0) = P0ψ(P̂n)(O) +
{
β(P̂ )− β0

}
.
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We strongly suspect that the second order remainder is bounded by the prod-
uct of the nuisance function L2(P0) errors

∥Q0(H,A)−Q(H,A)∥2,P0 × ∥g0(H,A)− g(H,A)∥2,P0 .

However, proving this is not straightforward for a general smooth model m,
and we will defer this task to future research. In conclusion, for the best
smoothly parameterized least square approximation of the conditional average
treatment effect or the blip function, it is possible to calculate confidence
intervals for each parameter via a plug-in estimator of the efficient influence
function. While this feature is not currently available in the polle package,
we have plans to incorporate it in a future version.



Chapter 4

Reefer repair and
maintenance

Maersk owns a large fleet of more than 2.5 million dry containers and 300,000
reefers used primarily to transport chilled or frozen perishable cargo. Reefers
are considerably more expensive to acquire than dry containers, and with
an intended lifetime between 12 and 20 years, the fleet of reefers represents
a substantial long-term investment for Maersk. Maersk even produces their
reefers under the brand MCI1, see Figure 4.1.

Containers, in general, have a high wear and tear level, and as a result,
Maersk spends more than $175 million annually repairing and maintaining the

1https://www.mcicontainers.com/

Figure 4.1: MCI Starcool reefers. The cooling fan, compressor, user display,
and electronics box are clearly visible on each reefer.
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fleet. Even minor improvements to the existing repair and maintenance policy
can lead to significant cost savings for the business. Because of this potential,
we consider asset maintenance and repairs an excellent case to illustrate the
policy learning methods developed in this work, especially considering the long
lifespan of reefers. The analysis and the challenges we encountered during this
process formed the foundation for Paper B. The purpose of this chapter is not
to repeat the details and results of the analysis but to provide some additional
domain knowledge about the operation of refrigerated containers and how we
define the decision problem. We also give insights into data handling and
limitations.

4.1 Domain knowledge

A typical reefer is a 40ft insulated box with a T-bar ventilation floor. The
box is susceptible to damage during handling, with the door and floor being
particularly vulnerable. The refrigeration unit or machine is installed at the
opposite end of the door. The unit’s main components are the compressor,
cooling fans, and electronics box. Sensors monitor the temperature inside and
outside the box, and this information is transmitted to the ship or terminal.
Some units also contain equipment to control the atmosphere of the box,
including moisture levels and air composition. However, units with this type
of equipment are not included in the analysis.

Reefers are cleaned and inspected before they are handed over to cus-
tomers and when they are retuned. If a reefer is not functioning or requires
maintenance, it will be sent to a local repair shop or may even be shipped to
another location for major repairs. Maersk or an independent party may own
the repair shop. Depending on the repair shop’s capabilities, a reefer might
visit several repair shops in the same location. Each repair shop creates a
standardized work order that lists each task item along with the cost of ma-
terials and labor. Each item is categorized as being associated with the box
or the refrigeration unit. Pictures are also included to document the list of
proposed tasks. Some routine tasks, such as cleanings are automatically ap-
proved. However, the remaining work orders must be approved by a regional
equipment manager who follows operational guidelines. These guidelines in-
clude age, region, and mode-specific box and refrigeration unit cost limits.
The ”mode” describes whether the container is laden with cargo or empty.
Emergency repairs, even onboard ships, also occur frequently to save the of-
ten valuable cargo. However, our analysis will not focus on emergency repairs
as part of the decision process.

A status code captures the last known status of the work order (created,
edited, deleted, in progress, paid, etc.). While the status code can easily
capture the approval of the work order, it is not immediately clear whether
a work order has been deleted by the repair shop for technical reasons or
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if the equipment manager rejected it. We spent a considerable amount of
work categorizing appended comments made by the equipment manager to
deduce whether the given work orders were, in fact, rejected. Another issue
we encountered was that work orders split between multiple repair shops were
frequently reviewed simultaneously by the equipment manager. Still, the work
orders were not recorded as being linked in the system. Thus, based on the lo-
cation, the creation time stamps, and the status code time stamps, we merged
the work orders together to form a single entity.

4.2 Defining the problem

The approval or rejection of work orders over time forms the basis for for-
mulating the decision process that we want to optimize. However, we only
want to focus on strategically important work orders, excluding automatically
approved ones. A pragmatic way to achieve this is by only considering work
orders with a box or refrigeration unit cost estimate above a sufficiently high
threshold. From the beginning of the project, our primary focus has been
to optimize the long-term utility effects of an alternative work order policy.
However, due to the gradual introduction of the operational system recording
work orders in 2003 and 2004, it has not been possible to select a cohort of
similar reefers for which all repairs were recorded as work orders during the
complete intended lifetime of around 20 years. Instead, we decided to select a
cohort of reefers produced in 2000 or 2001, which were still in active use after
5 years in the fleet. Each of these reefers were then followed for 11.5 years,
resulting in a cohort of 17,883 reefers with 71,668 associated high-cost work
orders.

The follow-up period, denoted as [0, T ], is fixed for each reefer, while the
number and timing of (high-cost) work orders within the follow-up period
varies. Utilizing the notation introduced in Chapter 3, Figure 4.2 illustrates
how data is structured over the follow-up period. The action to approve
or reject individual work orders is represented by binary variables Ak. For
convenience, state variables Sk are a combination of the variables Xk and
rewards Uk, which we will discuss later.

The minimal set of state variables Xk required to ensure sequential ran-
domization, as defined in Definition (2), consists of the variables that reflect
the information available to the equipment manager at the decision time point.
This information includes task items, cost estimates, and reefer specifications.
Furthermore, we know that the equipment manager does not review past re-
pairs during this process. Hence, a reasonable assumption is that the action
probability model is time-homogeneous:

g0,k(Hk, Ak) = g0(Xk, Ak),

for some probability function g0. It is important to note that this does not
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Figure 4.2: Data structure for the work orders within the follow-up period.

imply that the entire process is Markov. A Markov assumption regarding the
action and state space would likely only be valid if we could accurately measure
the reefer’s condition. Given the existing data quality, this is not the case,
meaning that the Q -functions still need to be stage-dependent. In practice, to
reduce complexity, the Q-functions will not use the complete history as input;
instead, we rely on a summary of the history. If this simplification introduces
bias to the Q-functions, the consistency of the doubly robust policy learner
and evaluation will still be guaranteed by the consistency of the g-function.

As described, the equipment managers largely adhere to regional guide-
lines when approving work orders. Therefore, we anticipate severe positivity
violation issues for any policy learning procedure. The histogram of the cross-
fitted g-function values in Figure 4.3 indeed confirms this anticipation. The
propensities are heavily skewed towards 0 and 1, emphasizing the necessity for
estimators that can handle positivity violations, as discussed in Section 3.5.
This will also limit the potential gain of any realistic policy learner.

While the state variables discussed thus far are sufficient for identifying the
optimal realistic policy, we can enhance the efficiency of the estimators and
the effectiveness of the policy by incorporating variables that are predictive of
future rewards. To achieve this, we include summary variables that capture
the extent of reefer usage and the amount of repairs conducted.

The last missing component for the formulation of the policy learning
problem is to define a suitable utility measure. The costs associated with
keeping the reefer in working condition should obviously be an input to the
utility measure. However, minimizing costs alone will lead to an optimal
policy that rejects every work order, which is not sensible. We also need
to consider the usage of each reefer during the follow-up period. Various
usage metrics, such as the number of days in active service, the running time
of the refrigeration unit, the number of cargo loads, and ship movements,
could be considered. Ultimately, we decided to count the number of times
the reefer was loaded/moved with cargo, distinguishing between whether the
refrigeration unit was in use or not. This count would form the other basis of
our utility measure.
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Figure 4.3: Histogram and calibration plot of the cross-fitted g-function values.

A natural way to combine the cost and number of moves into a single
utility measure is to calculate the cost per move. The downside of this mea-
sure is that it prevents us from easily accumulating and adjusting the utility
contributions over time. Hence, we opted for an additive structure, assigning
a dollar equivalent to each type of move, which enables us to calculate the
profit associated with each reefer. In addition to the operational costs and
usage-related metrics, we must consider other factors. For instance, the sales
or scrap price of the reefer is a vital piece of information to include. Similarly,
if a reefer is still in active service at the end of the follow-up period, we must
include a cash premium to account for its continued value.

There are plenty of opportunities in the future for developing the utility
measure to reflect the priorities of the business even better. The stakeholders
presented several ideas for improving it further. They suggested including the
repositioning cost of damaged containers and adding a premium for bring-
ing a reefer into working condition in high-demand locations, proportional to
the lost profit of being unable to service the customers. Additionally, they
recommended incorporating a penalty whenever cargo is lost due to a failing
refrigeration unit.

4.3 Summary of findings

As suggested by the simulation study of Paper B, mimicking the extent of
positivity violations seen in the actual application, even under positivity pro-
tection as described in Section 3.5, doubly robust policy learners may still
suffer from the variability of inverse probability weights compared to stan-
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dard Q-learning, leading to a loss in performance. However, we find that even
Q-learning benefits from positivity protection by limiting the degree of ex-
trapolation. Similarly, doubly robust evaluation of any policy learner benefits
greatly from positivity protection. In the actual application, cross-fitted dou-
bly robust policy evaluation found that realistic Q-learning with a positivity
protection level of α = 0.01 showed a significant value gain of $287 per reefer
over the follow-up period. With 300,000 reefers, this amounts to a potential
saving of $86 million.



Chapter 5

Treatment Effect Among
Responders

5.1 Early response indication

For actions or treatments where the outcome is observed after a long duration
of time, as is often the case in survival analysis, it is highly valuable if we
can get an early indication, using a biomarker for example, of whether the
patient responds to the treatment. If the patient does not respond we would
be inclined to switch treatment. Similarly, in a business context, we could
be interested in the effect of a type of advertisement (treatment) among the
customers who were actually exposed to the ad. The question is, how do we
effectively compare treatments in cases where it is possible to switch treatment
based on a response indicator?

Manuscript Paper C studies the average treatment effect among responders
in a survival setup under right censoring. In this setting, an observation is
represented by

O = (H,A,D, T̃ ,∆),

where D is a post-randomization or post-action binary response indicator,
T̃ = min(T,C) for a time-to-event outcome T and censoring time C, and
∆ = I{T < C}. As before A denotes a binary treatment variable, but in
this setting we assume that the treatment is completely randomized as would
be the case in a clinical trial. Let δ = P(A = 1) denote the randomization
probability. For a given endpoint τ , the usual average treatment effect is given
by

P(T 1 ≤ τ)− P(T 0 ≤ τ) = P(T ≤ τ |A = 1)− P(T ≤ τ |A = 0).

Under the assumption of independent censoring, this treatment effect can eas-
ily be identified from the observed data. However, as D represents an early
indication of whether the treatment is a (complete) failure, patient dropout
and the time-to-event outcome of are likely confounded by the response indi-
cator. Of course, the treatment itself as well as other baseline variables may
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also be informative for both the censoring time and the event. Thus it is more
reasonable to assume that

T ⊥ C|(H,A,D),

which also allows us to identify the average treatment effect. The question
is, how do we adjust for the response indicator? Simply conditioning on D
would result in a loss of causal interpretability due to selection bias. This
is because D itself is influenced by the treatment. To address this issue,
we consider the principal stratum of treatment responders, defined as the
set {D1 = 1}. In a randomized trial, the potential reponse indicator D1 is
independent of the observed treatment A and therefore acts like a baseline
variable. This observation leads to the definition of the average treatment
effect among treatment responders as follows:

P(T 1 ≤ τ |D1 = 1)− P(T 0 ≤ τ |D1 = 1).

This causal target parameter is not directly identifiable due to the cross-world
conditional probability P(T 0 ≤ τ |D1 = 1). Therefore, additional structural
assumptions are needed. As implied by the name of the response indicator, we
assume that non-responders do not experience a treatment effect. Specifically,
we assume that the average causal effect is zero among the treatment non-
responders, i.e., that

P(T 1 ≤ τ |D1 = 0)− P(T 0 ≤ τ |D1 = 0) = 0.

Under the above so-called stochastic exclusion restriction and the usual struc-
tural assumptions, by the law of total probability, we see that

P(T 1 ≤ τ |D1 = 1)− P(T 0 ≤ τ |D1 = 1)

=
P(T ≤ τ |A = 1)− P(T ≤ τ |A = 0)

P(D = 1|A = 1)
.

This target parameter has been studied before by [9, 10], suggesting a sim-
ple non-parametric plug-in estimator depending on the Kaplan-Meier esti-
mator for the treatment effect. Consistency of this estimator relies on com-
pletely independent censoring for each treatment group. The authors also
suggest utilizing baseline covariates via a Cox-model. However, the very im-
portant considerations mentioned above regarding conditionally independent
right censoring, as presented in Paper C, are a novel addition to the litera-
ture. The construction of the associated efficient non-parametric estimator in
Paper C is an equally important contribution resulting in an attractive robust
alternative to the Cox-model. Inference for the estimator is achieved via the
associated influence function.
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5.2 Optimal policy among responders

A natural extension to the treatment effect among responders, given our focus
on optimal policies, is to investigate whether we can sensibly define an optimal
policy among responders. For simplicity, we return to the usual setup where
the outcome of interest is a continuous variable U . For a given unrestricted
policy d, the average potential policy value is defined as follows:

E[Ud] = E[d(H)
{
U1 − U0

}
] + E[U0].

To avoid the need to deal with the reference value E[U0], we will instead
focus on the policy advantage defined as E[Ud]− E[U0]. Conditioning on the
principal stratum of treatment responders {D1 = 1} is no longer meaningful
in the context of a policy that may select either treatment. Instead, we define
the policy responders as the dynamic principal stratum given by {Dd = 1}.
The policy advantage among policy responders is then defined as

E[Ud − U0|Dd = 1],

and the optimal policy among policy responders is simply

argmax
d∈D

E[Ud − U0|Dd = 1].

If the conditional average treatment effect among policy non-responders is
zero, i.e., that

E[Ud − U0|Dd = 0, H] = 0,

then the policy advantage among policy responders is identified as

E[d(H)E[Q0(H, 1)−Q0(H, 0)]]

E
[
d(H)E[D|A = 1, H] + (1− d(H))E[D|A = 0, H]

] .
If every subject responds to both treatments, we immediately recognize the op-
timal policy as the usual threshold policy with plug-in of the blip function. To
the best of our knowledge, the formulation of the optimal policy among policy
responders as stated above has not been studied in the literature. Therefore,
this topic presents an exciting avenue for future research.





Chapter 6

Discussion

Policy learning is truly a vast research field across many disciplines, and thus
this thesis should definitely not be seen as an exhaustive review of the topic.
Rather, the project has focused on bridging the gap between the latest sta-
tistical policy learning methodologies and their practical application in the
industry.

6.1 Key contributions

Linked to research objective 1, the polle R package Paper A offers a flexi-
ble and unified framework for conducting doubly robust policy learning and
evaluation. This framework is built on a straightforward package architec-
ture centered around three core functions: policy_data, policy_learn, and
policy_eval. The package is user-friendly, featuring comprehensive docu-
mentation and illustrative examples. Nuisance model specifications require
minimal user input, and the package automates the management of cross-
fitting procedures. A noteworthy advantage of the package lies in the de-
composition of policy learning and evaluation procedures, making it easy to
compare competing learners in a consistent manner.

Doubly robust policy learning, as presented in this thesis, has not previ-
ously found application in industrial maintenance problems. As per research
objective 2, this initiative culminated in the estimation of an improved long-
term maintenance policy for Maersk reefers, resulting in a significant value
increment of $287 per reefer (Paper B). In comparison to the conventional
Markov decision problem formulation, our approach delivers outcomes that
are causally interpretable while relying on a minimal set of structural as-
sumptions.

The reefer maintenance application highlighted challenges related to prac-
tical positivity violations, as described in research objective 3. Within the
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statistical policy learning literature, we found that methods for handling pos-
itivity violations are underdeveloped. With an increased focus on doubly ro-
bust scores, which directly utilize inverse probability weights, protecting the
policy learning and evaluation process against positivity violations becomes
of utmost importance. We advocate for a simple yet effective restriction on
the policy learning procedure, recommending alternative actions only if they
exceed a predefined probability threshold. The polle package introduces a
novel implementation of realistic doubly robust policy learning in line with
this approach.

An early indication of whether a treatment or action has the desired ef-
fect is highly valuable for outcomes with long durations, as often seen in
survival analysis. Under an exclusion assumption, we can identify the treat-
ment effect among the principal stratum of treatment responders. However,
important considerations regarding right censoring, depending on the post-
randomization variable itself, has been missing from the literature. In Paper
C, we successfully construct an efficient estimator for the treatment effect
among responders under right censoring, leveraging informative baseline co-
variates and adjusting for the post randomization indicator. This estimator
holds high relevance for the design of future treatment switching policy de-
signs.

6.2 Future work and research

As mentioned, many important policy learning topics have not been covered
in this thesis. We intend to continue developing the polle package, and we
hope to incorporate substantial additional functionality in the future. The
following is a summary of some of the topics we consider important for future
work:

Doubly robust policy learners also exist for Markov decision problem for-
mulations [22, 25]. An obvious extension of polle would be to include these
learners as well. The policy data object of polle already has the functionality
to handle Markov data in long data table format.

From a practical perspective, incorporating solutions for (right) censoring
[61, 52, 5] and missing data [46, 31] would be highly valuable. The event
variable included in the policy data object of polle was designed from the
beginning to be used for dealing with censored data.

Adding variable importance measures for smoothly parameterized blip
functions, as discussed in Section 3.7, is a logical extension for the polle

package. This implementation would improve the interpretation of the learned
policy. This topic is closely related to interpretable policies, as explored by
[59].
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As mentioned briefly in Section 3.3, subgroup analysis is closely inter-
twined with policy learning. This analysis is particularly valuable, especially
in clinical trials where the active treatment is compared to a placebo treat-
ment. The value of subgroup analysis can also extend to business problems,
for example, when creating targeted marketing campaigns. Implementing sub-
group analysis in the single-stage scenario is straightforward within the polle
framework. However, for the multi-stage case, it necessitates more careful
considerations.

Throughout this work, we have concentrated on discrete action sets. Ex-
tending the polle package to accommodate continuous actions or treatments
would undoubtedly increase its usability. However, dealing with non-parametric
evaluation of the learned policy in such cases becomes substantially more com-
plex [26, 27, 3].

Another related challenge revolves around optimizing ’when-to-treat’ poli-
cies [36]. In the context of maintenance problems, this is often referred to as
predictive maintenance. Unlike our application, where we do not intervene in
the timing between decision points, the problem of optimizing dynamic inter-
ventions on a general counting process is considerably more intricate. To our
knowledge, a solution to this problem has only been convincingly formulated
for equidistant decision time points.

So far, we have only considered deterministic policies. However, in most
cases, we aim to implement decision processes that continue to explore, with
the goal of further optimization. Consequently, the estimated policy should
not be directly implemented but instead be subject to stochastic modifications.
This topic is extensively addressed in the reinforcement learning literature,
where the objective is to strike the right balance between policy greediness
and exploration level [47]. Regarding trial design, [35] discusses sequentially
randomized trials, including sample size and power calculations. The con-
cept of data-adaptive designs, where the implemented policy is continuously
updated, is explored in works like [14, 7].

Finally, from a methodological perspective, we want to mention the devel-
opment of the optimal policy among responders as discussed in Section 5.2.
These types of policy estimates can really help in designing effective sequen-
tially randomized trials or experiments where the treatment switches based
on post-randomization response indicators.

The success of policy learning in a company like Maersk does not only rely
on the development of better methods, but it critically depends on the business
committing to documenting decision processes, conducting experimentation,
collecting data, and defining utility measures that reflect the priorities of the
business. All these efforts require that Maersk adapts its company culture and
continues to support efforts like this project. We sincerely believe that this
work contributes to transforming Maersk into being truly data-driven in all
aspects of operations and business. We also hope that the academic research
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community realizes just how important causal inference and statistical policy
learning are for making a real change in the private sector. Collaborations
like this project benefit all parties and can help push the field forward.
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Appendix I

Data-adaptive policy value
empirical process remainder

Let d̂n(H) denote a policy estimator for which we assume that

P0|d̂n(H)− d′(H)| = oP0(1),

for some policy d′. Furthermore, conditional on Q̂n and ĝn, assume that

∥Q̂n(H,A)−Q0(H,A)∥2,P0 = oP0(1) (I.1)

∥ĝn(H,A)− g0(H,A)∥2,P0 = oP0(1).

Under these conditions, we want to show that the data-adaptive policy value
empirical process remainder is oP0(n

−1/2), i.e., that

{Pn − P0}
{
ψ(ĝn, Q̂n, d̂n)(X)− ψ(g0, Q0, d

′)(X)
}
= oP0(n

−1/2). (I.2)

We start by noting that

{Pn − P0}
{
Ψ(ĝn, Q̂n, d̂n)−Ψ(g0, Q0, d

′)
}
= 0.

Thus, a sufficient condition for (I.2) is that Q̂n, ĝn, and d̂n falls in a Donsker

class with probability approaching one, and that conditional on ĝn, Q̂n, and
d̂n ∥∥∥Q̂n(H, d̂n(H))−Q0(H, d′(H))

∥∥∥
2,P0

= oP0(1)∥∥∥∥∥I{A = d̂n(H)}
ĝn(H,A)

{
U − Q̂n(H,A)

}
− I{A = d′(H)}

g0(H,A)
{U −Q0(H,A)}

∥∥∥∥∥
2,P0

= oP0(1).

Firstly,

∥Q̂n(H, d̂n(H))−Q0(H, d′(H))∥2,P0

≤ ∥Q̂n(H, d̂n(H))− Q̂n(H, d′(H))∥2,P0

+ ∥Q̂n(H, d′(H))−Q0(H, d′(H))∥2,P0
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PROCESS REMAINDER

The last of the above terms is bounded by Line (I.1) under positivity. As-

suming that Q̂n is bounded by a constant C as in Theorem 5, we also see
that ∥∥∥Q̂n(H, d̂n)− Q̂n(H, d′(H))

∥∥∥
2,P0

≤
∥∥∥I{d̂n(H) ̸= d′(H)}

{
Q̂n(H, d̂n(H))− Q̂n(H, d′(H))

}∥∥∥
2,P0

≤ 2C
∥∥∥I{d̂n(H) ̸= d′(H)}

∥∥∥
2,P0

= oP0(1)

Secondly,∥∥∥∥∥I{A = d̂n(H)}
ĝn(H,A)

(U − Q̂n(H,A))− I{A = d′(H)}
g0(H,A)

(U −Q0(H,A))

∥∥∥∥∥
2,P0

≤ϵ−2
∥∥∥g0(H,A)I{A = d̂n(H)}[U − Q̂n(H,A)]− ĝn(H,A)I{A = d′(H)}[U −Q0(H,A)]

∥∥∥
2,P0

≤ϵ−2
∥∥∥g0(H,A)

{
I{A = d̂n(H)}[U − Q̂n(H,A)]− I{A = d′(H)}[U −Q0(H,A)]

}∥∥∥
2,P0

+ϵ−2
∥∥{g0(H,A)− ĝn(H,A)} I{A = d′(H)}[U −Q0(H,A)]

∥∥
2,P0

.

Now ∥∥{g0(H,A)− ĝn(H,A)} I{A = d′(H)}[U −Q0(H,A)]
∥∥
2,P0

≤ 2C ∥{g0(H,A)− ĝn(H,A)}∥2,P0

= oP0(1),

and ∥∥∥g0(H,A)
{
I{A = d̂n(H)}[U − Q̂n(H,A)]− I{A = d′(H)}[U −Q0(H,A)]

}∥∥∥
P0,2

≤
∥∥∥I{A = d̂n(H)}[U − Q̂n(H,A)]− I{A = d′(H)}[U −Q0(H,A)]

∥∥∥
P0,2

≤
∥∥∥I{A = d̂n(H)}[U − Q̂n(H,A)]− I{A = d̂n(H)}[U −Q0(H,A)]

∥∥∥
P0,2

+
∥∥∥I{A = d̂n(H)}[U −Q0(H,A)]− I{A = d′(H)}[U −Q0(H,A)]

∥∥∥
P0,2

≤
∥∥∥[U − Q̂n(H,A)]− [U −Q0(H,A)]

∥∥∥
P0,2

+ 2C
∥∥∥I{A = d̂n(H)} − I{A = d′(H)}

∥∥∥
P0,2

=oP0(1).
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Abstract

The R package polle is a unifying framework for learning and evaluating finite stage
policies based on observational data. The package implements a collection of existing and
novel methods for causal policy learning including doubly robust restricted Q-learning,
policy tree learning, and outcome weighted learning. The package deals with (near)
positivity violations by only considering realistic policies. Highly flexible machine learn-
ing methods can be used to estimate the nuisance components and valid inference for
the policy value is ensured via cross-fitting. The library is built up around a simple
syntax with four main functions policy_data(), policy_def(), policy_learn(), and
policy_eval() used to specify the data structure, define user-specified policies, specify
policy learning methods and evaluate (learned) policies. The functionality of the package
is illustrated via extensive reproducible examples.

Keywords: policy learning, dynamic treatment regimes, semiparametric inference, double ma-
chine learning, R.

1. Introduction
Sequential decision problems arise in various fields. Important examples include deciding on
treatment assignments in a medical application, defining equipment maintenance strategies
in a military or industrial setting, or determining a sales strategy in a commercial context.
Policy learning seeks to identify sequential decision strategies from observational data and to
quantify the effect of implementing such a strategy using causal inference techniques. While
the theoretical field has progressed substantially during the last decade based on advances in
semiparametric methods, there has been a large gap in terms of generic implementations of
these methods being available to practitioners.
The R package polle (Nordland and Holst 2022) is a unifying framework for learning optimal
policies/dynamic treatment regimes from historical data based on cross-fitted doubly robust
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loss functions for finite horizon problems with discrete action sets. Within this scope, the
package unifies available methods from other R packages and introduces previously unavailable
methods. The performance of the methods can then easily be evaluated, compared and applied
to new data. As a unique feature, the package also handles a stochastic number of decision
stages. In addition, the package deals with issues related to learning optimal policies from
observed data under (near) positivity violations by considering realistic policies.
The core concept of polle is to use doubly robust scores/double machine learning devel-
oped from semiparametric theory when estimating the value of a policy (Robins 1986; Cher-
nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins 2018). These scores are
also used to construct a doubly robust loss function for the optimal policy value (Tsiatis,
Davidian, Holloway, and Laber 2019). The resulting loss function is the basis for policy
value search within a restricted class of policies such as policy trees (Athey and Wager 2021).
Transformations of the value loss function leads to a range of other loss functions and methods
such as doubly robust restricted Q-learning (Luedtke and van der Laan 2016) and outcome
weighted learning based on support vector machines (Zhang, Tsiatis, Davidian, Zhang, and
Laber 2012; Zhao, Zeng, Rush, and Kosorok 2012). As is customary within targeted learn-
ing and double machine learning, our policy evaluation and policy learning methods apply
cross-fitting schemes, which allow for inference under weak conditions even when nuisance
parameters are learned from highly flexible machine learning methods.
Sequential policy learning is closely related to estimating heterogeneous causal effects via the
conditional average treatment effect, see (Kennedy 2020; Semenova and Chernozhukov 2021)
for recent overviews of the field and some of the challenges regarding inference and generic
error bounds. Other notable mentions include (Künzel, Sekhon, Bickel, and Yu 2019) and
(Athey, Tibshirani, and Wager 2019). Variable importance measures formulated as projections
are also closely related to policy learning, see (Van der Laan 2006).
The polle R package joins a collection of other packages available on CRAN, https://
CRAN.R-project.org/view=CausalInference. Other packages which should be highlighted
include DynTxRegime (Holloway, Laber, Linn, Zhang, Davidian, and Tsiatis 2022) which
provides methods for estimating policies including interactive Q-learning, outcome weighted
learning, and value search. However, most of the methods are only implemented for single
stage problems and the package has no cross-fitting methods for consistent policy evaluation.
The polle package wraps efficient augmentation and relaxation learning and residual weighted
learning from the DynTxRegime package. The package policytree (Sverdrup, Kanodia, Zhou,
Athey, and Wager 2020, 2022) is an implementation of single stage policy tree value search
based on doubly robust scores. The polle package wraps this functionality and extends it to a
stochastic number of stages. Lastly, the R package DTRlearn2 (Chen, Liu, Zeng, and Wang
2020) implements outcome weighted learning in a fixed number of stages. The polle package
also wraps this functionality.
Beyond R, the Python package EconML (Battocchi, Dillon, Hei, Lewis, Oka, Oprescu, and
Syrgkanis 2019) implements a wide range of learners for the conditional average treatment ef-
fect including doubly robust estimators (equivalent to doubly robust Q-learning as formulated
in polle), double machine learning estimators, and orthogonal random forests. The package
also implements policy trees and forests. To our knowledge, EconML does not contain meth-
ods for cross-fitted policy evaluation. For multi-stage decision problems, the package only
considers G-estimation based on specific Markov decision process structural equation models,
see (Lewis and Syrgkanis 2020).
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The available methods for policy learning in proprietary software are still very limited. A SAS
macro denoted PROC QLEARN performs standard Q-learning (Ertefaie, Almirall, Huang, Dziak,
Wagner, and Murphy 2012). In stata methhods are limited to estimating average treatment
effects and potential outcome means with the teffects function (StataCorp 2021).
In Section 2 we introduce the most important concepts of doubly robust policy learning in
a simple single-stage setting. In doing so, we avoid the cumbersome notation needed for
the general sequential setup as presented in Section 3. In Section 4 we give an overview
of the package syntax and describe the main functions of the package. Section 5 contains
four reproducible examples based on simulated data covering all aspects of the package. In
Section 6 we present a complete analysis of a data set investigating the treatment effect of a
literacy intervention. Finally, in Section 7 we summarize the functionality of polle and discuss
limitations and future developments.

2. Concepts
In a randomized trial investigating the average treatment effect of two competing treatments
we should ask ourselves whether the treatment effect is heterogeneous or not, i.e., whether
the subjects respond differently to the treatments depending on their age, sex, disease history,
etc. If so, is it possible to learn a treatment policy from the observed data that will have a
greater expected outcome than any of the individual treatments?
For simplicity, we consider a single-stage problem, where each subject receives a completely
randomized treatment at a single time point. Let A denote the treatment variable with two
levels A ∈ {0, 1}, and let U denote the measured utility outcome. The average treatment
effect is a causal parameter which can be formulated via potential outcomes (Rubin 1974;
Hernán and Robins 2020). We let Ua denote the potential utility had we forced the subject
to receive treatment A = a, and we refer to E[Ua] as the value of the given treatment. The
average treatment effect is now defined as the difference in value, E[U1 − U0], and due to
complete randomization, the effect is identified as E[U |A = 1] − E[U |A = 0]. The effect is
easily estimated based on a sample of N iid observations O = (A,U). Without additional
information, treatment A = 1 is recommended if the estimated effect is positive and vice
versa.

H A a Ua

Figure 1: Single world intervention graph illustrating confounding via the history.

Suppose now that we also collect a set of baseline covariates H ∈ H for each subject, and
that treatment randomization depends on this history by design. The treatment probability
model is then given by a known function

g0(h, a) = P(A = a|H = h). (1)

If the trial has a sensible design we will also know that g0(H, a) > 0 almost surely for
a ∈ {0, 1}, which is commonly referred to as the positivity condition. Due to confounding,
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the average treatment effect will no longer be identified by the mean utility in each treatment
group, see Figure 1. However, it is possible to show that

E
[
I{A = a}
g0(H, a) U

]
= E[Ua]. (2)

This equality inspires an inverse probability weighting (Horvitz-Thompson) estimator for the
value of each treatment group, see (Horvitz and Thompson 1952). In an observational study,
the treatment probability function g0 might not be known a priori. In that case, we instead
use some appropriate estimate gN .
Alternatively, the treatment value is identified as

E[E[U |A = a,H]] = E[Ua], (3)

where we define the quality function as Q0(h, a) = E[U |A = a,H = h]. Usually, the Q-
function is not known a priori and will need to be estimated. The fit QN is then used to
construct an outcome regression estimate of the value in each treatment group, see (Robins
1986).

If the treatment values are heterogeneous across the collected history it is possible that one
group of subjects benefit from treament A = 1 and that another group of subjects benefit from
treament A = 0. The researcher may even have a candidate treatment policy d : H → {0, 1}
that he believes will improve the value. Let Ud denote the potential utility had we forced the
subject to be treated in accordance to policy d. The policy value E[Ud] can then be estimated
using (2) or (3) or a combination of the two. Define the doubly robust policy score as

Z(d, g,Q)(O) = Q(H, d(H)) + I{A = d(H)}
g(H,A) (U −Q(H,A)) . (4)

If either g = g0 or Q = Q0 it holds that

E [Z(d, g,Q)(O)] = E[Ud]. (5)

The associated empirical plug-in estimator is said to be doubly robust. Furthermore, it is
possible to show that the estimator is asymptotically efficient, if the nuisance models (gN and
QN ) are correctly specified, see (Van der Laan and Robins 2003). Specifically, the centralized
score

Z(d, g,Q)(O) − E [Z(d, g,Q)(O)]

is the efficient influence function from which we can derive the asymptoic distributions via
central limit theorem arguments. For a recent review of influence functions, see (Hines, Dukes,
Diaz-Ordaz, and Vansteelandt 2022).
By applying nuisance model cross-fitting (/sample splitting) in combination with the doubly
robust score, the nuisance models can be estimated using flexible machine learning methods
without causing asymptotic bias (Chernozhukov et al. 2018). In Section 3.2 we present the
estimating procedure of the policy value in detail and generalize it to multi-category policies
over multiple stages.
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In many situations the aim of the researcher is not just to evaluate a given policy, but to
learn the optimal policy from the data. The optimal treatment policy d0 is defined as the
policy for which it holds that E[Ud] ≤ E[Ud0 ] for all other policies d. Thus, a direct approach
to policy learning is to use (5) as a loss function:

dN = arg min
d∈D

N∑

i=1
L̃(d)(gN , Qn)(Oi) = arg min

d∈D
(−1)

N∑

i=1
Z(d, gN , Qn)(Oi).

In pratice, the complexity of the class of candidate policies D is bounded for the search to be
viable. Examples include threshold policies and policy trees, see (Athey and Wager 2021). In
the first part of Section 3.3 we present this methodology in detail and generalize it to multiple
stages.

A key and rather intuitive result is that the optimal policy is also identified as
d0(h) = arg max

a∈{0,1}
E[Ua|H = h] = arg max

a∈{0,1}
Q0(H, a). (6)

This result motivates Q-learning which rely on estimating the Q-function. The fitted Q-
function is then plugged into (6) to get the associated estimated policy. Although the imple-
mentation of standard Q-learning is straightforward, estimation of the associated policy value
requires parametric convergence rates of the estimated Q-function (van der Laan and Luedtke
2014; Semenova and Chernozhukov 2021). Ignoring this by using too flexible machine learning
methods makes it impossible to put any standard bounds on the policy performance. On the
other hand, misspecification of the model will introduce bias and as a consequence lead to poor
performing policies. To deal with this problem we advocate the use of restricted doubly robust
Q-learning. Let V ∈ V be a subset or a function of the history H. Let dV : V → {0, 1} denote
a V -restricted policy. Finally, let DV denote the class of V -restricted policies. The optimal
V -restricted policy is simply defined as the policy dV

0 for which it holds that E[UdV ] ≤ E[UdV
0 ]

for all dV ∈ DV . Similarly as above, the optimal V -restricted policy is given by
dV

0 (v) = arg max
a∈{0,1}

E
[
Ua
∣∣V = v

]
= arg max

a∈{0,1}
QV0(v, a),

see (Luedtke and van der Laan 2016). The QV -function is now identified in two ways:

E
[
I{A = a}
g0(H, a) U

∣∣∣V
]

= E [Q0(H, a)|V ] = QV0(V, a).

Again, the nuisance models can combined to create a doubly robust expression for the optimal
V -restricted policy. Define Z(a, g,Q) as Z(d, g,Q) from line (4) under the static policy
d(H) = a. If either g = g0 or Q = Q0 it holds that

E
[
Z(a, g,Q)(O)

∣∣V
]

= QV0(V, a).
This result directly inspires a doubly robust regression type estimator for the QV -function.
Specifically, we let QVN denote the function with the lowest empirical mean squared error
loss:

QVN (·, a) = arg min
QV

N∑

i=1
L(QV )(gN , QN )(Oi)

= arg min
QV

N∑

i=1

(
Z
(
a, gN , QN

)(
Oi
)−QV

(
Vi, a

))2
,
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where we let the class of candidate QV -functions have bounded complexity, e.g., it must be
a member of a Donsker class such as the class of smooth parametric models (Luedtke and
Chambaz 2020). This QV -function formulated as a projection in a mean squared error sense
remedies the shortcomings of standard Q-learning and also improves the interpretability of
the resulting policy. We present doubly roubust Q-learning (DRQ-learning) in detail in the
second part of Section 3.3 where we also generalize it to multiple stages.

The final concept that we want to introduce for now is realistic policy learning. Positivity
violations, see (1), or even near positivity violations is a concern for both policy learning and
evaluation (Petersen, Porter, Gruber, Wang, and Van Der Laan 2012). If we in some stratum
of the history do not observe both treatments it is impossible to learn the optimal policy
in the given stratum without strong structural assumptions. Thus we introduce the set of
(estimated) reaslistic actions at level α:

Dα
N (h) = {a ∈ A : gN (h, a) > α}.

DRQ-learning can then easily be adapted to the set of realistic actions as follows

dN (h) = arg max
a∈Dα

N (h)
QVN (v, a).

In the next section we formalize all of the above concepts and generalize them to multiple
stages.

3. Setup and methods

3.1. General multi-stage setup
Let K ≥ 1 denote a fixed number of stages. Let B ∈ B denote the baseline covariates.
For a finite set A, let Ak ∈ A denote the decision or action at stage k ∈ {1, . . . ,K}. For
k ∈ {1, . . . ,K + 1}, let Sk ∈ S denote the state at stage k. The trajectory for an observation
can be written as

O = (B,S1, A1, S2, A2, . . . , SK , AK , SK+1),

as illustrated in Figure 2. Usually, we will assume to have a sample of N iid observations
indexed as {Oi}i∈1...,N . For k ∈ {1, . . . ,K + 1}, let Sk = (S1, . . . , Sk), Ak = (A1, . . . , Ak)
and Hk = (B,Sk, Ak−1) ∈ Hk define the history where A0 = AK+1 = ∅. Using the implied
ordering, the density of the data can be expressed as

p0(O) = p0(B)
[

K∏

k=1
p0,k(Ak|Hk)

] [
K+1∏

k=1
p0,k(Sk|Hk−1, Ak−1)

]
. (7)

For convenience, let Sk = (Xk, Uk), where Uk ∈ R is the kth reward, and Xk is a state
covariate/variable for k ∈ {1, . . . ,K} and XK+1 = ∅. The utility is the sum of the rewards

U =
K+1∑

k=1
Uk.
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A1 A2

B S1 S2

Figure 2: Graph for the observational data with two stages. B is a baseline covariate, A1, A2
are the two decisions at stages 1 and 2, and S1, S2 are the state variables. From each of
the state variables, a reward can be derived, and the sum of these defines the utility of the
decisions.

3.2. Policy value estimation
A policy is a set of rules d = (d1, ..., dK), dk : Hk 7→ A assigning an action in each stage. Let
D0,k(hk) ⊆ A denote the feasible set of decicions at stage k for history hk under P0, i.e.,

D0,k(hk) = {ak ∈ A : p0,k(ak|hk) > 0}.

Define the class of feasible policies D0 as all sets of rules satisfying dk(hk) ∈ D0,k(hk).
For a feasible policy d, let P d

0 be the distribution with density

pd
0(O) = p0(B)

[
K∏

k=1
I{Ak = dk(Hk)}

] [
K+1∏

k=1
p0,k(Sk|Hk−1, Ak−1)

]
. (8)

Let Od denote the data with distribution given by (8), which is identified from the observed
data. Define the value of the policy as

θd
0 = E[Ud].

Under consistency and sequential randomization the above value will have a causal interpre-
tation as the mean utility under an intervention given by the feasible policy.

The value of a feasible policy d can explicitly be stated via the Q-functions recursively defined
as

Q0,K(hK , aK) = E[U | HK = hK , AK = aK ]

Q
dk+1
0,k (hk, ak) = E

[
Q

dk+2
0,k+1(Hk+1, dk+1(Hk+1)) | Hk = hk, Ak = ak

]
, k ∈ {1, . . . ,K − 1}

where dk = (dk, ..., dK). It is possible to show that the target parameter is identified as

θd
0 = E[Qd

0,1(H1, d1(H1)].
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The recursive structure of the Q-functions directly inspires a sequential regression procedure
resulting in an estimate Qd

N,1, based on N iid observations. The value can then be estimated
as the empirical mean of Qd

N,1(H1, d1(H1).

The value of a feasible policy d can also be stated via the g-functions defined as

g0,k(hk, ak) = p0,k(ak | hk),

for k ∈ {1, . . . ,K}. Again, it is possible to show that

θd
0 = E

[(
K∏

k=1

I{Ak = dk(Hk)}
g0,k(Hk, Ak)

)
U

]
.

Given regression estimates gN,k, the value can now be estimated as the weighted empirical
mean of the observed utilities.

Finally, it is possible to combine the two estimation approaches. Define the doubly robust
score at stage k as

Zk(dk,g,Q
dk+1)(O)

= Q
dk+1
k (Hk, dk(Hk))

+
K∑

r=k





r∏

j=k

I{Aj = dj(Hj)}
gj(Hj , Aj)




{
Q

dr+2
r+1 (Hr+1, dr+1(Hr+1)) −Q

dr+1
r (Hr, dr(Hr))

}
, (9)

where QK+1(HK+1, dK+1(HK+1)) = U . It is possible to show that E[Z1(d, g,Qd)(O)] = θd
0 if

either g = g0 or Qd = Qd
0, see for example Tsiatis et al. (2019). This result directly inspires

a doubly robust moment type estimator of the policy value, see Algorithm 1.

Algorithm 1: Cross-fitted doubly robust estimator of θd
0

input : Data set with iid observations O = (O1, . . . , ON )
Feasible policy d
Action probability regression procedure ĝ
Outcome regression procedure Q̂d

output: Value estimate θd
N

Variance estimate Σd
N

{O1, . . . ,OM } = M-folds (O)
foreach m ∈ {1, . . . ,M} do

gm = ĝ(O \ Om)
Qd

m = Q̂d(O \ Om)
Z1,m = {Z1(d, gm, Q

d
m)(O) : O ∈ Om}

end
θd

N = N−1∑M
m=1

∑
Z∈Z1,m

Z

Σd
N = N−1∑M

m=1
∑

Z∈Z1,m
(Z − θd

N )2
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It is well known that ψd
0(O) = Z1(d, g0, Qd

0)(O)−θd
0 is the efficient influence function/curve for

the policy value. We assume that the absolute utility is bounded and that gk,0(Hk, AK) > ϵ al-
most surely for some ϵ > 0. Let ‖g‖P,2 = maxj∈{1,...,K}‖gj‖P,2 and ‖Qd‖P,2 = maxj∈{1,...,K}‖Qdj+1

j ‖P,2.
If, with probability converging to one, gk,m(Hk, Ak) > ϵ and

‖gm − g0‖P0,2 =oP0(1)
‖Qd

m −Qd
0‖P0,2 =oP0(1)

‖gm − g0‖P0,2 × ‖Qd
m −Qd

0‖P0,2 =oP0(N−1/2),

then

N1/2(θd
N − θd

0) = N−1/2
N∑

i=1
ψd

0(Oi) + oP0(1).

Thus Σd
N from Algorithm 1 is a good estimate of the asymptotic variance of the value estimate

if the nuisance models ĝ and Q̂d are correctly specified. It is important to note that the
convergence rate conditions are relatively weak. For example, Qd

0 and g0 may be estimated at
rate o(N−1/4), which is much lower than a parametric rate of order o(N−1/2). This justifies
the use of adaptive and regularized nuisance models, see Chernozhukov et al. (2018).

3.3. Policy learning
The main objective of polle is to learn the optimal policy from data. Specifically, we want
to learn the optimal policy within a restricted class of policies such that the learned policy
is simpler to understand and easier to implement. We start by defining the optimal policy
within a restricted class of policies that only depends on a subset of the observed history.
The following result is a generalization of van der Laan and Luedtke (2014).

Let Vk be a function (or subset) of Hk. A V -restricted policy is a set of rules dV = (dV
1 , ..., d

V
K),

dV
k : Ak−1 × Vk 7→ A. Let DV denote the class of V -restricted policies. Under positivity, i.e.,
D0,k(Hk) = A almost surely, the V -optimal policy is defined as

dV
0 = arg max

d∈DV
E[Ud].

The following theorem specifies the V -optimal policy. A proof for the two-stage case can be
found in Appendix A.

Theorem 3.1:
Under positivity, for any a = (a1, ..., aK) and policy d define

QV0,K(aK−1, vK , aK) = E[UaK |V aK−1
K = vK ], (10)

QV
dk+1

0,k (ak−1, vk, ak) = E[Uak,dk+1 |V ak−1
k = vk] k ∈ {1, ...,K − 1}. (11)

If

E[Ua|V1, ..., V
ak−1

k ] = E[Ua|V ak−1
k ], k ∈ {1, ...,K}, (12)
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then the V -optimal policy dV
0 is recursively given by

dV
0,K(aK−1, vK) = arg max

aK
QV0,K(aK−1, vK , aK),

dV
0,k(ak−1, vk) = arg max

ak
QV

dV
0,k+1

0,k (ak−1, vk, ak) k ∈ {1, ...,K − 1}.

If for all k ∈ {1, ...,K} and r < k, V ar−1
r is a function of V ak−1

k then (12) holds by construction.
Finally, note that only future rewards affects the optimal decision at stage k since

arg max
ak

QV
dV

0,k+1
0,k (ak−1, vk, ak)

= arg max
ak

E
[
U1 + ...+ U

ak−1
k + Uak

k+1 + ...+ U
ak,dV

0,k+1
K+1

∣∣V ak−1
k = vk

]

= arg max
ak

E
[
Uak

k+1 + ...+ U
ak,dV

0,k+1
K+1

∣∣V ak−1
k = vk

]
.

The basis for learning the V -optimal policy is to construct an observed data loss function
L which identifies dV

0 , i.e., construct a function L for which E[L(d)(O)] is minimized in dV
0 .

Various loss functions inspires different algorithms for estimating the V -optimal policy. In
the following, we present three different loss functions, a value, quality and classification loss
function.

Value search
For the final stage K consider the loss function L̃K(dK)(gK , QK)(O) in dK given by

−L̃K(dK)(gK , QK)(O) = ZK(dK , g,Q)(O)

= QK(Hk, dK(Hk)) + I{AK = dK(Hk)}
gK(HK , AK) {U −QK(HK , AK)}

If either QK = Q0,K or gK = g0,K , then

E
[
L̃K(dK)(gK , QK)(O)

]
= −E

[
UdK

]
.

Thus, for a V -restricted policy

E
[
L̃K(dV

K)(gK , QK)(O)
]

= −E
[
QV0,K

(
AK−1, VK , d

V
K(AK−1, VK)

)]
,

meaning that over the class of V -restricted policies DV
K the expected loss is minimized in dV

0,K

by Theorem 3.1.

For stage k ∈ {1, ...,K − 1} consider the loss function L̃k(dk)(dk+1, g,Q
dk+1)(O) in dk given

by

−L̃k(dk)(dk+1, g,Q
dk+1)(O) = Zk([dk, dk+1], g,Qdk+1)(O).

If either Qdk+1 = Q
dk+1
0 or g = g0, then

E
[
L̃k(dk)(dk+1, g,Q

dk+1)(O)
]

= −E
[
Udk,dk+1

]
,
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and for a V -restricted policy at stage k it holds that

E
[
L̃k(dV

k )(dk+1, g,Q
dk+1)(O)

]
= −E

[
QV

dk+1
0,k (Ak−1, Vk, d

V
k (Ak−1, Vk)

]

Thus, given dV
0,k+1, the above expected loss over DV

k is minimized in dV
0,k by Theorem 3.1.

The constructed loss function directly inspires sequential/recursive value search, see Algo-
rithm 2. Similar to Algorithm 1, the algorithm utilizes cross-fitted values of the nuisance
models at each step. However, it is important to note that the Q-models are not truly cross-
fitted (except for the last stage), because the fitted policy at a given stage depends on the
fitted policy at later stages. A nested cross-fitting scheme would be required to make the
folds (used to fit the Q-models) independent.

Algorithm 2: Sequential Value Search
input : Data set with iid observations O = (O1, . . . , ON )

Class of V -restricted policies DV

Function class minimization procedure F̂
Action probability regression procedure ĝ
Outcome regression procedure Q̂ = {Q̂1, ..., Q̂K}

output: V -restricted optimal policy estimate dV
N

{O1, . . . ,OL} = L-folds (O)
foreach l ∈ {1, . . . , L} do

gl = ĝ(O \ Ol)
end
for k = K to 1 do

foreach l ∈ {1, . . . , L} do
Q

dV
N,k+1

l,k = Q̂
dV

N,k+1
k

({
Hk, Ak, Q

dV
N,k+2

k+1,l

(
Hk+1, d

V
N,k+1(Hk+1)

)
: O ∈ O \ Ol

})

end

dV
N,k = F̂dV

k
∈DV

(∑L
l=1
∑

O∈Ol
L̃(dV

k )
(
dV

k+1,N , gl, Q
dV

k+1,N

l

)
(O)

)

end

Algorithm 2 requires a suitable function class minimization procedure F̂ imitating arg mindV
k

∈DV {·}
at every stage. The R package policytree, see Sverdrup et al. (2020), implements such a min-
imization procedure where the class of policies is given by decision trees. See Zhou, Athey,
and Wager (2018) for theoretical results related to this implementation.

Quality learning

Under positivity, for any a = (a1, ..., aK) and any policy d, let Zk([ak, dk+1], g,Qdk+1)(O) for
k ∈ {1, ...,K} be given by (9) with dk replaced by the static policy ak ∈ A.

For the final stage K, define QV0,K(aK)(aK−1, vK) = QV0,K(aK−1, vK , aK) from equation
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(10). If gK = g0,K or QK = Q0,K then

E
[
ZK(aK , g,Q)(O)

∣∣AK−1, VK

]
= QV0,K(aK)(AK−1, VK),

and valid loss function for QV0,K(aK) over functions QVK : AK−1 × VK 7→ A is given by

LK(QVK)(aK , g,Q)(O) =
(
ZK(aK , g,Q)(O) −QVK(AK−1, VK)

)2
.

Hence, any regression type estimator which minimizes the (empirical) mean squared error can
be used to estimate QV0,K(aK). This can be repeated for every aK ∈ A. By Theorem 3.1,
the V -optimal policy dV

0,K is then identified as arg maxaK∈AQV0,K(aK).

For k ∈ {1, ...,K − 1}, let QV dk+1
0,k (aK)(ak−1, vk) = QV

dk+1
0,k (ak−1, vk, ak) from equation (11).

If g = g0 or Qdk+1 = Q
dk+1
0 then

E
[
Zk([ak, dk+1], g,Qdk+1)(O)

∣∣Ak−1, Vk

]
= QV

dk+1
0,k (ak)(Ak−1, Vk),

and a valid loss function for QV dk+1
0,k (ak) over functions QVk is given by

Lk(QVk)(ak, dk+1, g,Q
dk+1)(O) =

(
Zk([ak, dk+1], g,Qdk+1)(O) −QVk(Ak−1, Vk)

)2
.

Thus, given the future V -restricted optimal policy rules dV
0,k+1, if g = g0 or QdV

0,k+1 = Q
dV

0,k+1
0 ,

then the expected loss is minimized in QV
dV

0,k+1
0,k (ak). Again, this can be repeated for each

ak ∈ A and the V -optimal policy at stage k is identified as arg maxak∈AQV
dV

0,k+1
0,k (ak).

The constructed quality loss function directly inspires doubly robustQ-learning (DRQ-learning),
see Algorithm 3. The quality loss function is a generalization of the blip loss function, see
Appendix B.

Weighted classification
In this section we assume for simplicity that the actions are binary, i.e., A = {0, 1}. Define
the blip or Z-score difference as

⌣
Zk(dk+1, g,Q

dk+1)(O) =
{
Zk([1, dk+1], g,Qdk+1)(O) − Zk([0, dk+1], g,Qdk+1)(O)

}
.

A weighted classification (0-1) loss function is now given by
⌣
Lk(dk)(dk+1, g,Q

dk+1)(O) =
∣∣∣∣
⌣
Zk(dk+1, g,Q

dk+1)(O)
∣∣∣∣

× I
{
dk(Hk) 6= I

{⌣
Zk(dk+1, g,Q

dk+1)(O) > 0
}}
. (13)

Given the future V -optimal policy rules dV
0,k+1, if g = g0 or QdV

0,k+1 = Q
dV

0,k+1
0 , then it can be

shown that the expected weighted classification loss function is minimized in dV
0,k over DV

k .
Further details on the weighted classification loss function can be found in Appendix C.
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Algorithm 3: Doubly Robust Q-learning
input : Data set with iid observations O = (O1, . . . , ON )

Action probability regression procedure ĝ
Outcome regression procedure Q̂ = {Q̂1, ..., Q̂K}
Outcome regression procedure Q̂V = {Q̂V 1, ..., Q̂V K}

output: V -restricted optimal policy estimate dV
N

{O1, . . . ,OL} = L-folds (O)
foreach l ∈ {1, . . . , L} do

gl = ĝ(O \ Ol)
end
for k = K to 1 do

foreach l ∈ {1, . . . , L} do
Q

dV
N,k+1

k,l = Q̂k

({
Hk, Ak, Q

dV
N,k+2

k+1,l

(
Hk+1, d

V
N,k+1(Hk+1)

)
: O ∈ O \ Ol

})

foreach ak ∈ A do
Õk,l(ak) =

{
Ak−1, Vk, Zk

(
[ak, d

V
N,k+1], gl, Q

dV
N,k+1

l

)
(O) : O ∈ Ol

}

end
end
foreach ak ∈ A do

QV
dV

N,k+1
N,k (ak) = Q̂V k

(
{Õ ∈ Õk,l(ak) : l = 1, ..., L}

)

end

dV
N,k = arg maxak∈AQV

dV
N,k+1

N,k (ak)
end
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It can be challenging to perform minimization of the weighted classification loss function.
Thus, it is common to use a convex surrogate of the indicator function. Let fk : Hk 7→ R be
some action function corresponding to dk, i.e., dk(Hk) = I{fk(Hk) > 0}. Then

⌣
Lk(fk)(dk+1, g,Q

dk+1)(O) =
∣∣∣∣
⌣
Zk(dk+1, g,Q

dk+1)(O)
∣∣∣∣

× I

{
fk(Hk)

[
2I
{

⌣
Zk(dk+1, g,Q

dk+1)(O) > 0
}

− 1
]

≤ 0
}

is equivalent to (13). Replacing I{x ≤ 0} in the above expression with a convex surrogate
ϕ : R 7→ [0,∞) differentiable in 0 with ϕ′(0) < 0 yields a convex loss function given by

⌣
L

ϕ

k(fk)(dk+1, g,Q
d)(O) =

∣∣∣∣
⌣
Zk(dk+1, g,Q

dk+1)(O)
∣∣∣∣

× ϕ

(
fk(Hk)

[
2I
{

⌣
Zk(dk+1, g,Q

dk+1)(O) > 0
}

− 1
])

.

If g = g0 or QdV
0 = Q

dV
0

0 and the non-exceptional law holds, i.e., that

0 < E
[

⌣
Zk(dk+1, g,Q

dk+1)(O)
]
, (14)

then the expected weighted surrogate loss function is minimized in fV
0,k over the class of

V -restricted action functions and dV
0,k = I{fV

0,k > 0}. The above result directly inspires
sequential learning of the restricted optimal policy using weighted classification methods
similar to Algorithm 2.
The classification perspective was first established by Zhao et al. (2012) and Zhang et al.
(2012). Various methods within this approach has been implemented in the R packages
DTRlearn2 and DynTxRegime, see Chen et al. (2020) and Holloway et al. (2022). General-
izations to multiple actions (more than two) has also been developed, see Zhang, Chen, Fu,
He, Zhao, and Liu (2020).

3.4. Learned policy value estimation
Although the optimal (restricted) policy value is identified, existence of the associated efficient
influence function is not guaranteed. Using the results of Hirano and Porter (2012), Luedtke
and Van Der Laan (2016) show that the efficient influence function only exists under the non-
exceptional law, i.e., that the action which minimizes the quality at each stage is almost surely
unique, see line (14). For references on the non-regularity issues causing these problems, see
Robins and Rotnitzky (2014) and Chakraborty and Moodie (2013). Even under the non-
exceptional law, inference for the learned policy value requires an unreasonably high policy
learning rate, as the Q-functions are required to be estimated at rate o(N−1/2). Thus, we
draw inference on the value of the learned policy, E

[
UdV

N

]
, instead of the value of the true

optimal policy, E
[
UdV

0
]
, see Algorithm 4.

3.5. Stochastic number of stages
The methodology developed for a fixed number of stages can be extended to handle a stochas-
tic number of stages assuming that the maximal number of stages is finite. The key is to
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Algorithm 4: Cross-fitted doubly robust estimator of θdN
0

input : Data set with iid observations O = (O1, . . . , ON )
Policy learning procedure d̂
Action probability regression procedure ĝ
Outcome regression procedure Q̂d

output: Cross-fitted value estimate θd
N

Cross-fitted variance estimate Σd
N

{O1, . . . ,OM } = M-folds (O)
foreach m ∈ {1, . . . ,M} do

dm = d̂(O \ Om)
gm = ĝ(O \ Om)
Qdm

m = Q̂dm(O \ Om)
Z1,m = {Z1(dm, gm, Q

dm
m )(O) : O ∈ Om}

end
θdN

N = N−1∑M
m=1

∑
Z∈Z1,m

Z

ΣdN
N = N−1∑M

m=1
∑

Z∈Z1,m
(Z − θdN

N )2

modify each observation such that every observation has the same number of stages.

Let K∗ denote the stochastic number of stages bounded by a maximal number of stages K.
As in Section 3.1, let B∗ denote the baseline data, (A∗

1, . . . , A
∗
K∗) denote the decisions and

(S∗
1 , . . . , S

∗
K∗+1) denote the stage summaries where S∗

k = (X∗
k , U

∗
k ) and X∗

K∗+1 = ∅. The
utility U∗ is still the sum of the rewards U∗ = ∑K∗+1

k=1 U∗
k . We assume that the distribution

of the observed data is given by P ∗
0 composed of conditional densities p∗

0(B∗), p∗
0,k(A∗

k | H∗
k)

for k ∈ {1, ...,K} and p∗
0,k(S∗

k | H∗
k) for k ∈ {1, ...,K + 1} such that the likelihood for an

observation O∗ is given by

p∗
0(O∗) = p∗

0(B∗)
[

K∗∏

k=1
p∗

0,k(A∗
k|H∗

k)
] [

K∗+1∏

k=1
p∗

0,k(S∗
k |H∗

k−1, A
∗
k−1)

]
.

For a feasible policy d∗ = (d∗
1, ..., d

∗
K) the distribution P

∗d∗ is defined similar to P d in (8).
Also, the value under P ∗d∗ is defined as E

[
U∗d

]
.

We now construct auxiliary data such that each observation O∗ has K stages. Let Ak = A∗
k

for k ≤ K∗ and Ak = a† ∈ A (for some default value a†) for k > K∗. Similarly, let Sk = S∗
k

for k ≤ K∗ + 1. Finally, let Xk = ∅ and Uk = 0 for k > K∗ + 1 such that U = U∗. This
construction implies a partly degenerate distribution P0 over the maximal number of stages
with density on the form given by (7), see Goldberg and Kosorok (2012). A feasible policy d
associated with d∗ is given by

dk(Hk) =
{
a† ifXk = ∅
d∗

k(Hk) otherwise.

Furthermore, it holds by construction that g0,k(Hk, a
†) = 1 and Qd

0,k(Hk, a
†) = U if Xk = ∅.
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Finally, a generalization of the results in Goldberg and Kosorok (2012) yields that E
[
Ud
]

=
E
[
U∗d∗]. Thus, the methodology developed for a fixed number of stages can be used on the

augmented data.

3.6. Partial policy
It may occur that a small subset of the observations has numerous stages. Without further
structural assumptions, information about these late stages will be sparse. Uncertain esti-
mation of the Q-functions for the late stages can be avoided by considering partial policies.
Let K̃ < K and let dK̃ be a given policy up till stage K̃. A partial (stochastic) policy
is now given by (dK̃ , AK̃+1, . . . , AK). By setting Q0,K̃ = E[U | HK̃ = hK̃ , AK̃ = aK̃ ] and
Q0,K̃+1 = U , the efficient influence score for the partial policy value will be equal to (9) with
K replaced by K̃. From a practical point of view, implementation of a partial policy requires
that (g0,K̃+1, . . . , g0,K) is known (or at least well approximated).

3.7. Learning realistic policies
Positivity violations or even near positivity violations is a huge concern for policy learning
based on historical data. Estimation of a valid loss function will solely rely on extrapolation
of the Q-functions to decisions with little or no support in the observed data, see Petersen
et al. (2012). To address this issue we suggest restricting the set of possible interventions
based on the action probability model. For a probability threshold α > 0, define the set of
realistic actions at stage k based on the action probability model g as

Dα
g,k(hk) = {ak ∈ A : gk(hk, ak) > α}.

It is relatively simple to modify doubly robust Q-learning to only consider realistic policies,
see Algorithm 5. On the other hand, it is harder to make the same practical modification
to a given value search algorithm because the structure of the candidate function class DV

changes in a non-trivial way.
However, in the situation that the action set is dichotomous, the recommended action can be
overruled by the alternative action, if it is deemed unrealistic.
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Algorithm 5: Realistic Doubly Robust Q-learning
input : Data set with iid observations O = (O1, . . . , ON )

Action probability regression procedure ĝ
Outcome regression procedure Q̂ = {Q̂1, ..., Q̂K}
Outcome regression procedure Q̂V = {Q̂V 1, ..., Q̂V K}

output: Realistic V -restricted optimal policy estimate dV
N

gN = ĝ(O)
{O1, . . . ,OL} = L-folds (O)
foreach l ∈ {1, . . . , L} do

gl = ĝ(O \ Ol)
end
for k = K to 1 do

foreach l ∈ {1, . . . , L} do
Q

dV
N,k+1,l

k,l = Q̂k

({
Hk, Ak, Q

dV
N,k+2,l

k+1,l

(
Hk+1, d

V
N,k+1,l(Hk+1)

)
: O ∈ O \ Ol

})

foreach ak ∈ A do
Õk,l(ak) =

{
Ak−1, Vk, Zk

(
[ak, d

V
N,k+1,l], gl, Q

dV
N,k+1,l

l

)
(O) : O ∈ Ol

}

end
end
foreach ak ∈ A do

QV
dV

N,k+1
N,k (ak) = Q̂V k

(
{Õ ∈ Õk,l(ak) : l = 1, ..., L}

)

end
foreach l ∈ {1, . . . , L} do

dV
N,k,l = arg max

ak∈Dα
gl,k

QV
dV

N,k+1
N,k (ak)

end

dV
N,k = arg max

ak∈Dα
gN ,k

QV
dV

N,k+1
N,k (ak)

end
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4. Syntax and implementation details
The polle implementation is build up around four functions: policy_data(), policy_def(),
policy_eval() and policy_learn(). Figure 3 provides an overview of how the functions
relate and the main required inputs and outputs. policy_data() constructs a policy data

characters/functions
user-defined static or
dynamic policy func-
tions

policy def

defines a policy

policy data

stores baseline,
stage/state, action
and utility/reward
data

data.frame

data in wide or long
format

policy eval

specifies a policy
evaluation
algorithm

policy learn

specifies a policy
learning algorithm

policy

dynamic policy func-
tions

policy value

fitted influence curve
nuisance models

policy actions

nuisance models

g-model and Q-model
specifications

Figure 3: Overview of the four main functions of polle and their arguments and return values.
The starting point is to define the input data in the correct format using policy_data(). A
policy can subsequently be defined directly by the user, policy_def(), or estimated with one
of the algorithms descripted in Section 3.3 with policy_learn(). The value of a policy can
be estimated directly using policy_eval().

object. The data input can be on long or wide format. Usually, the wide format is used
for applications with a fixed number of stages and a possibly varying set of state covariates.
Assume that the observed data has the sequential form

O = (B,X1, U1, A1, X2,W2, U2, A2, U3),

where B is a baseline covariate, X1, X2, and W2 are state covariates, U1, U2, and U3 are re-
wards, and A1 and A2 are actions. Given a data.table/data.frame denoted data with vari-
able/column names B, X_1, U_1, A_1, X_2, W_2, U_2, A_2 and U_3, we can apply policy_data
in the following way:

policy_data(data,
action = c("A_1", "A_2"),
baseline = c("B"),
covariates = list(X = c("X_1", "X_2"),

W = c(NA, "W_2")),
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utility = c("U_1", "U_2", "U_3"),
type = "wide")

If only the final utility U is provided, we may replace c("U_1", "U_2", "U_3") with c("U").
Note that each row in data corresponds to a single observation.
The long format is inspired by the data format used for survival data (Therneau 2023). This
format is relevant for handling a high and possibly stochastic number of stages. Assume that
the observed data has the sequential form

O = (B,X1, U1, A1, . . . , XK∗ , UK∗ , AK∗ , U(K∗+1)),

where K∗ is the (stochastic) number of stages. Assume that stage_data is a data.table
with variable names id, stage, event, X, U and A. id and stage denotes the observation ID
and stage number. The variable event is an event indicator which is 0 in stage 1 through
K∗ and 1 in stage (K∗ + 1). Also assume that baseline_data is a data.table with variable
names id and B. An application of policy_data() is now given by:

policy_data(stage_data,
baseline_data = baseline_data,
action = "A",
baseline = c("B"),
covariates = c("X"),
utility = "U",
id = "id",
stage = "stage",
event = "event",
type = "long")

Note, an observation with K∗ stages spans over (K∗ + 1) rows in stage_data and a single
row in baseline_data.
The function policy_def() constructs a user-specified static or dynamic policy. The resulting
policy object can be applied directly on a policy data object or as input to policy_eval().

policy_def(policy_functions,
full_history = FALSE,
replicate = FALSE)

policy_functions may be a single function/character string or a list of functions/character
strings defining the policy at each stage. The argument full_history defines the input to
the policy functions. If full_history = FALSE the state/Markov type history (B,Xk) is
passed on to the functions with variable names B and X. If full_history = TRUE, the full
history (B,X1, A1, . . . , Xk−1, Ak−1, Xk) with variable names B, X_1, A_1,..., X_(k-1),
A_(k-1), X_k is passed on to the functions. As an example, function(X) 1*(X>0) in com-
bination with full_history = FALSE defines the policy Ak = I{Xk > 0}. Similarly, at
stage k = 2, function(X_1, X_2) 1*(X_1>0)*(X_2>0) in combination with full_history
= TRUE defines the policy A2 = I{X1 > 0, X2 > 0}. The input replicate = TRUE will reuse
the provided policy functions at each stage if possible.
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policy_learn() specifies a policy learning algorithm which can be used directly on a policy
data object or as input to policy_eval(). The type argument selects the method. Table 1
provides an overview of the method types, dependencies and limitations.

type argument Method Imports Limitations
"ql" Q-learning

"drql" Doubly Robust Q-
learning. Algorithm 3,
5.

"ptl" Policy tree learning. Al-
gorithm 2.

policytree Realistic policy learn-
ing implemented for di-
chotomous action sets.

"owl" Outcome weighted
learning

DTRlearn2 No realistic policy
learning. Fixed number
of stages. Dichotomous
action set. Augmen-
tation terms are not
cross-fitted.

"earl" Efficient augmented
and relaxation learning

DynTxRegime Single stage. No cross-
fitting. No realistic pol-
icy learning. Dichoto-
mous action set.

"rwl" Residual weighted
learning

DynTxRegime Same as "earl".

Table 1: Overview of policy learning methods and their dependencies and limitations.

A cross-fitted doubly robust V -restricted Q-learning algorithm, see Algorithm 3 and 5, may
be specified as follows:

policy_learn(type = "drql",
control = list(qv_models = q_glm(~X)),
full_history = FALSE,
alpha = 0.05,
L = 10)

The control argument qv_models is a single model or a list of models specifying the QV-
models. We will subsequently describe these models in detail. Note that a QV-model is fitted
for each action in the action set. The argument full_history specifies the history available
to the QV-models similar to full_history in policy_def(). The argument alpha is the
probability threshold for defining the set of realistic actions. The default value is alpha = 0.
Finally, the argument L is the number of folds used in the cross-fitting procedure.
Similarly, a cross-fitted doubly robust sequential value search procedure based on decision
trees, see Algorithm 2, may be specified as follows:

policy_learn(type = "ptl",
control = control_ptl(policy_vars = c("X"),
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depth,
split.step,
min.node.size,
hybrid,
search.depth)

full_history = FALSE,
alpha = 0.05,
L = 10)

The function control_ptl() helps set the default control arguments for type = "ptl". Sim-
ilar functions are available for every policy learning type. The control argument policy_vars
is a character vector or a list of character vectors further subsetting the history available to
the decision tree model. The control arguments depth, split.step, min.node.size, and
search.depth are directly passed on to policytree::policy_tree(). Each of these argu-
ments must be an integer or an integer vector. The control argument hybrid is a logical value
indicating whether to use policytree::policy_tree() or policytree::hybrid_policy_tree().
The value of a user-specified policy or a policy learning algorithm can be estimated using
policy_eval(). The evaluation can be based on inverse probability weighting or outcome
regression. However, the default is to use the doubly robust value estimator given by Algo-
rithm 4:

policy_eval(type = "dr",
policy_data,
policy,
policy_learn,
g_models = g_glm(~ X+B),
g_full_history = FALSE,
q_models = q_glm(~ A*X),
q_full_history = FALSE,
M = 10)

g_models and g_full_history specifies the modelling of the g-functions. If g_full_history
= FALSE and a single g-model is provided, a single Markov type model across all stages is
fitted. In this case a generalized linear model is fitted with a model matrix given the formula
~ X+B. If g_full_history = TRUE or g_models is a list, a g-function is fitted for each stage.
Similarly, q_models and q_full_history specifies the modelling of the Q-functions. A model
is fitted at each stage. If q_full_history = FALSE and a single Q-model is provided, the
model is reused at each stage with the same design. Alternatives to g_glm() and q_glm()
are listed in Table 2. The models are created to save the design specifications, which is useful
for cross-fitting. M is the number of folds in the cross-fitting procedure.
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Call Method Imports Limitations
g_empir empirical (conditional)

probabilities
g_glm/q_glm generalized linear model stats g_glm: dichotomous ac-

tions
g_glmnet/q_glmnet lasso and elastic-net

regularized generalized
linear models

glmnet g_glmnet: dichotomous
actions

g_rf/q_rf random forests ranger
g_sl/q_sl super learner prediction

algorithm
SuperLearner g_sl: dichotomous ac-

tions

Table 2: Overview of available g-model and Q-model constructors.

5. Examples
In this section we go through a number of reproducible examples based on simulated data
sets that illustrates different applications of the polle package.
In Section 5.1 we consider a single-stage problem. We demonstrate how the policy evaluation
framework handles static policies to obtain estimates of causal effects. Furthermore, we
evaluate the true optimal dynamic policy using highly adaptive nuisance models and use
doubly robust V -restricted Q-learning to obtain an estimate of the same optimal policy. In
Section 5.2 we study a problem with two fixed stages. We show how to create a policy data
object from raw data on wide format and how to formulate the optimal dynamic policy over
multiple stages. We use g-models and Q-models with custom data designs to evaluate the
policy and showcase the use of policy trees.
The problem of having a stochastic number of stages is showcased in Section 5.3. A policy
data object is created using raw data on long format. We showcase the use of partial policies
and estimate the optimal partial realistic policy using doubly robust Q-learning. We show
how to implement and simulate new data based on the estimated policy.
Finally, in Section 5.4 we examplify how polle handles problems with multiple actions in the
action set.

5.1. Single-stage problem
To illustrate the usage of the polle package we first consider a single-stage problem. Here we
consider data from a simulation where the optimal policy is known. We consider observed
data from the directed acyclic graph (DAG) given in Figure 4.
The utility/reward/response is in this example defined as the conditional Gaussian distribu-
tion

U | Z,L,A ∼ N (Z + L+A · {γZ + αL+ β}, σ2)

with independent state covariates/variables Z,L ∼ Uniform([0, 1]), and treatment, A, defined
by the logistic regression model

A | Z,L,B ∼ Bernoulli(expit{κZ−2(Z + L− 1) + δB})
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A U

B Z L

Figure 4: Single-stage problem with treatment variable A, utility U , and confounders B,Z,L.

where B ∼ Bernoulli(π) is an additional independent state covariate, and expit is the inverse
logistic link function. Here we consider the choices π = 0.3, κ = 0.1,∆ = 0.5, α = 1, β =
−2.5, γ = 3, σ = 1:

R> library("polle")
R> par0 <- c(p = .3, k = .1, d = .5, a = 1, b = -2.5, c = 3)
R> (d <- sim_single_stage(n = 5e2, seed=1, par=par0))

Z L B A U
1 1.2879704 -1.4795962 0 1 -0.9337648
2 1.6184181 1.2966436 0 1 6.7506026
3 1.2710352 -1.0431352 0 1 -0.3377580
4 -0.2157605 0.1198224 1 0 1.4993427

The data is first transformed using policy_data() with instructions on which variables de-
fines the action, state covariates and the utility:

R> pd <- policy_data(d, action="A", covariates=list("Z", "B", "L"), utility="U")
R> pd

Policy data with n = 500 observations and maximal K = 1 stages.

action
stage 0 1 n

1 278 222 500

Baseline covariates:
State covariates: Z, B, L
Average utility: -0.98

Policy Evaluation
A single-stage policy is mapping from the history H = (B,Z,L) onto the set of actions
A = {0, 1}. It is possible to evaluate both user-defined policies as well as learning a policy
from the data using polle. Here we first illustrate how to estimate the value of a static policy
where all individuals are given action ‘1‘ irrespective of their covariate values. Policies are
defined using policy_def() which expects a function as input or, as here, a numeric vector
specifying the static policy:
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R> p1 <- policy_def(1, name="A=1")
R> p1

Policy with argument(s)
policy_data

The policy can be applied to a policy_data object to get the individual actions:

R> p1(pd)

id stage d
1: 1 1 1
2: 2 1 1
3: 3 1 1

The value of the policy can then be estimated using policy_eval():

R> (pe1 <- policy_eval(pd, policy=p1))

Estimate Std.Err 2.5% 97.5% P-value
A=1 -2.674 0.2116 -3.089 -2.26 1.331e-36

This provides an estimate of the average potential outcome, E[U (a=1)]. By default, a doubly
robust estimator given by Algorithm 1 without cross-fitting is used to estimate the value. A
logistic regression model with all main effects is used to model the g-function and a linear
regression model with all interaction effects between the action and each of the state covariates
is used to model the Q-function. We will later revisit how to estimate the value of the policy
using flexible machine learning models and cross-fitting.
In the same way, we can estimate the value under the action ‘0‘:

R> (pe0 <- policy_eval(pd, policy=policy_def(0, name = "A=0")))

Estimate Std.Err 2.5% 97.5% P-value
A=0 -0.02243 0.08326 -0.1856 0.1408 0.7877

Finally, the average treatment effect, ATE := E{U (a=1))−U (a=0)}, can then be estimated as:

R> estimate(merge(pe0, pe1), function(x) x[2]-x[1], labels="ATE")

Estimate Std.Err 2.5% 97.5% P-value
ATE -2.652 0.1737 -2.992 -2.312 1.236e-52

The function lava::merge.estimate() (Holst and Budtz-Jørgensen 2013) combines the in-
fluence curve estimates for each estimate. The influence curve matrix is available via IC():

R> IC(merge(pe0, pe1))



Journal of Statistical Software 25

A=0 A=1
1 -0.08832404 0.6568576
2 2.61912976 9.6387445
3 0.27539152 1.0710632

The standard errors for the transformation f(x1, x2) = x2 − x1 is then given by the delta
method.
In this case, we know that the optimal decision boundary is defined by the hyper-plane
γZ + αL+ β = 0. Again, we use policy_def() to define the optimal policy:

R> p_opt <- policy_def(
+ function(Z, L) 1*((par0["c"]*Z + par0["a"]*L + par0["b"])>0),
+ name="optimal")

We estimate the value of the optimal policy using Algorithm 1. Specifically, we use M fold
cross-fitting and super learners for the g-function and Q-function including random forests
regression and generalized additive models as implemented in the SuperLearner package
(Polley, LeDell, Kennedy, and van der Laan 2021):

R> set.seed(1)
R> policy_eval(
+ pd,
+ policy = p_opt,
+ g_models = g_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam")),
+ q_models = q_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam")),
+ M = 5
+ )

Estimate Std.Err 2.5% 97.5% P-value
optimal 0.3726 0.1109 0.1553 0.5899 0.0007793

Policy learning
In real applications the optimal policy is of course not known. Instead we seek to esti-
mate/learn the optimal policy from the data. The function policy_learn() constructs a
policy learner. Here we specify a cross-fitted doubly robust V -restricted Q-learning algorithm
as given by Algorithm 3:

R> pl <- policy_learn(
+ type = "drql",
+ L = 5,
+ control = control_drql(qv_models = q_glm(formula = ~ Z + L))
+ )

The policy learner is restricted to V = (Z,L) given by the formula argument. Remember
that L is the number of cross-fitting folds. The algorithm can be applied directly resulting in
a policy object:
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R> set.seed(1)
R> po <- pl(
+ pd,
+ g_models = g_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam")),
+ q_models = q_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam"))
+ )
R> po

Policy object with list elements:
qv_functions, action_set, stage_action_sets, alpha, K, folds
Use 'get_policy' to get the associated policy.

The actions of the learned policy are available through the get_policy():

R> get_policy(po)(pd)

id stage d
1: 1 1 1
2: 2 1 1
3: 3 1 1

The value of the learned policy can also be estimated directly via policy_eval():

R> set.seed(1)
R> pe <- policy_eval(
+ pd,
+ policy_learn = pl,
+ g_models = g_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam")),
+ q_models = q_sl(SL.library = c("SL.glm", "SL.ranger", "SL.gam")),
+ M = 5
+ )
R> pe

Estimate Std.Err 2.5% 97.5% P-value
drql 0.3896 0.1109 0.1723 0.6069 0.0004417

Note that the cross-fitting procedure is nested in this case, i.e., M × L g-functions and Q-
functions are fitted. The resulting policy actions are displayed in Figure 5 along with the true
optimal decision boundary.

5.2. Two-stage problem
In this example we consider a two-stage problem. An observation can be written as O :=
(S1, A1, S2, A2, S3), where S1 = (C1, L1, U1), S2 = (C2, L2, U2), and S3 = (L3, U3). The state
covariates (cost Ck and load Lk) and action variables (Ak) are associated with the DAG in
Figure 6.
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Figure 5: Fitted policy actions based on doubly robust V -restricted Q- learning. The black
line shows the true optimal decision boundary.

L1 L2 L3

C1 A1 C2 A2 C3

Figure 6: Two-stage problem with states (L1, C1), (L2, C2), L3 with exogenous component
Lk, k = 1, 2, 3. As the utility in this example does not depend on the last endogenous state,
C3, it can be omitted from the analysis.

Specifically, the costs, loads and actions are given by the structural model

L1 ∼N (0, 1)
C1 | L1 ∼N (L1, 1)
A1 | C1 ∼Bernoulli(expit(βC1))

L2 ∼N (0, 1)
C2 | A1, L1 ∼N (γL1 +A1, 1)

A2 | C2 ∼Bernoulli(expit(βC2))
L3 ∼N (0, 1)

for parameters γ, β ∈ R. The rewards are given by

U1 = L1

U2 = A1 · C1 + L2

U3 = A2 · C2 + L3
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Remember that the utility is the sum of the rewards, i.e., U = U1 +U2 +U3. In this problem
we consider the parameter choices γ = 0.5, β = 1:

R> par0 <- c(gamma = 0.5, beta = 1)
R> (d <- sim_two_stage(2e3, seed=1, par=par0))

L_1 C_1 A_1 L_2 C_2 A_2 L_3
1: 0.9696772 1.711279 1 -0.7393434 2.424370 1 -0.83124340
2: -2.1994065 -2.643124 0 0.4828756 -2.664728 0 -0.07151015
3: 1.9480938 2.061934 0 0.4803055 2.474761 1 0.40785209

U_1 U_2 U_3
1: 0.9696772 0.9719356 1.59312684
2: -2.1994065 0.4828756 -0.07151015
3: 1.9480938 0.4803055 2.88261357

The data is transformed using policy_data() with instructions on which variables define the
actions, covariates and the rewards at each stage.

R> pd <- policy_data(d,
+ action = c("A_1", "A_2"),
+ covariates = list(L = c("L_1", "L_2"),
+ C = c("C_1", "C_2")),
+ utility = c("U_1", "U_2", "U_3"))
R> pd

Policy data with n = 2000 observations and maximal K = 2 stages.

action
stage 0 1 n

1 1017 983 2000
2 819 1181 2000

Baseline covariates:
State covariates: L, C
Average utility: 0.84

Policy Evaluation
The optimal policy d0 = (d0,1, d0,2) is identified via theQ-functions. At stage 2, theQ-function
is given by

Q0,2(h2, a2) =E[U | H2 = h2, A2 = a2]
=l1 + a1c1 + l2 + a2c2.

Thus, the optimal policy at stage 2 is

d0,2(h2) =arg max
a2∈{0,1}

Q2(h2, a2)

=I{c2 > 0}.
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At stage 1, the Q-function under the optimal policy at stage 2 is given by

Qd0
0,1(h1, a1) =E[Q0,2(H2, d0,2(h2)) | H1 = h1, Aa = a1]

=l1 + a1c1 + E[I{C2 > 0}C2 | L1 = l1, A1 = a1].

Let

κ(a1, l1) =E[I{C2 > 0}C2 | L1 = l1, A1 = a1]
=E[I{C2 > 0} | L1 = l1, A1 = a1]E[C2 | L1 = l1, A1 = a1, C2 > 0]

= (1 − Φ(−{γl1 + a1}))
(
γl1 + a1 + ϕ(−{γl1 + a1})

1 − Φ(−{γl1 + a1})

)
.

The optimal policy at stage 1 can now be written as

d0,1(h1) =arg max
a1∈{0,1}

Q1(h1, a1)

=I{(c1 + κ(1, l1) − κ(0, l1)) > 0}.

The basis for defining the optimal policy are the historiesH1 = (L1, C1) andH2 = (L1, C1, A1, L2, C2)
which are available via get_history():

R> get_history(pd, stage = 1, full_history = TRUE)$H
R> get_history(pd, stage = 2, full_history = TRUE)$H

id stage L_1 C_1
1: 1 1 0.9696772 1.711279
2: 2 1 -2.1994065 -2.643124
3: 3 1 1.9480938 2.061934

id stage A_1 L_1 L_2 C_1 C_2
1: 1 2 1 0.9696772 -0.7393434 1.711279 2.424370
2: 2 2 0 -2.1994065 0.4828756 -2.643124 -2.664728
3: 3 2 0 1.9480938 0.4803055 2.061934 2.474761

We use the policy_def() function to define the optimal policy:

R> kappa <- function(mu){
+ pnorm(q = -mu, lower.tail = FALSE) *
+ (mu + dnorm(-mu) / pnorm(-mu, lower.tail = FALSE))
+ }
R> p_opt <- policy_def(
+ list(function(C_1, L_1){
+ 1*((C_1 +
+ kappa(par0[["gamma"]] * L_1 + 1) -
+ kappa(par0[["gamma"]] * L_1)
+ ) > 0)
+ },
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+ function(C_2){
+ 1*(C_2 > 0)
+ }),
+ full_history = TRUE,
+ name = "optimal"
+ )
R> p_opt

Policy with argument(s)
policy_data

The optimal policy can be applied directly on the policy data:

R> p_opt(pd)

id stage d
1: 1 1 1
2: 1 2 1
3: 2 1 0

Doubly robust evaluation of the optimal policy requires modelling the g-functions and Q-
functions. In this case, the g-function is repeated at each stage. Thus, we may combine
(C1, A1) and (C2, A2) when fitting the g-function. The combined state histories and actions
are available through the get_history() function with full_history = FALSE:

R> get_history(pd, full_history = FALSE)$H
R> get_history(pd, full_history = FALSE)$A

id stage L C
1: 1 1 0.9696772 1.711279
2: 1 2 -0.7393434 2.424370
3: 2 1 -2.1994065 -2.643124

id stage A
1: 1 1 1
2: 1 2 1
3: 2 1 0

Similarly, when using policy_eval(), we can specify the structure of the used histories:

R> pe_opt <- policy_eval(pd,
+ policy = p_opt,
+ g_models = g_glm(),
+ g_full_history = FALSE,
+ q_models = list(q_glm(), q_glm()),
+ q_full_history = TRUE)
R> pe_opt
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Estimate Std.Err 2.5% 97.5% P-value
optimal 1.311 0.06578 1.182 1.44 2.067e-88

On closer inspection we see that a single g-model has been fitted across all stages:

R> get_g_functions(pe_opt)

$all_stages
$model

Call: NULL

Coefficients:
(Intercept) L C

0.01591 0.03145 0.98013

Degrees of Freedom: 3999 Total (i.e. Null); 3997 Residual
Null Deviance: 5518
Residual Deviance: 4361 AIC: 4367

If q_models is not a list, the provided model is reused at each stage. In this case the full
history is used at both stages:

R> get_q_functions(pe_opt)

$stage_1
$model

Call: NULL

Coefficients:
(Intercept) A1 L_1 C_1 A1:L_1

0.52415 0.44348 0.17462 0.09043 0.21854
A1:C_1

0.92899

Degrees of Freedom: 1999 Total (i.e. Null); 1994 Residual
Null Deviance: 6029
Residual Deviance: 2772 AIC: 6343

$stage_2
$model

Call: NULL

Coefficients:
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(Intercept) A1 A_11 L_1 L_2
-0.014697 0.140420 -0.148007 -0.118571 0.002233

C_1 C_2 A1:A_11 A1:L_1 A1:L_2
0.124817 -0.031178 0.046876 0.171946 0.023246

A1:C_1 A1:C_2
-0.113314 0.944778

Degrees of Freedom: 1999 Total (i.e. Null); 1988 Residual
Null Deviance: 3580
Residual Deviance: 1881 AIC: 5579

Note that in practice only the residual value is used as input to the (residual) Q-models, i.e.,

Q0,2,res(h2, a2) :=E[U3 | H2 = h2, A2 = a2]
=a2c2

Qd0
0,1,res(h1, a1) :=E[U2 +Q0,2,res(H2, d0,2(h2)) | H1 = h1, Aa = a1]

=a1c1 + E[I{C2 > 0}C2 | L1 = l1, A1 = a1].

The fitted values of the g-functions and Q-functions are easily extracted using predict():

R> predict(get_g_functions(pe_opt), pd)
R> predict(get_q_functions(pe_opt), pd)

id stage g_0 g_1
1: 1 1 0.15139841 0.84860159
2: 1 2 0.08557919 0.91442081
3: 2 1 0.93363059 0.06636941

id stage Q_0 Q_1
1: 1 1 1.817896 4.063055
2: 1 2 1.800290 4.233710
3: 2 1 -2.298324 -4.790946

Policy Learning
A V -restricted policy can be estimated via the policy_learn() function. In this case we use
sequential doubly robust value search based on the policytree package, see Algorithm 2:

R> pl <- policy_learn(type = "ptl",
+ control = control_ptl(policy_vars = c("C", "L")),
+ full_history = FALSE,
+ L = 5)

The policy learner is restricted to V = (C,L) given by the policy_vars argument. The
learner can be applied directly:
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R> po <- pl(pd,
+ g_models = g_glm(),
+ g_full_history = FALSE,
+ q_models = q_glm(),
+ q_full_history = TRUE)
R> get_policy(po)(pd)

id stage d
1: 1 1 1
2: 1 2 1
3: 2 1 0

Or the value of the policy learning procedure can be estimated directly using policy_eval():

R> set.seed(1)
R> pe <- policy_eval(pd,
+ policy_learn = pl,
+ g_models = g_glm(),
+ g_full_history = FALSE,
+ q_models = q_glm())
R> pe

Estimate Std.Err 2.5% 97.5% P-value
ptl 1.385 0.0809 1.226 1.544 1.068e-65

The associated policy objects are also saved for closer inspection, see Figure 7:

R> po <- get_policy_object(pe)
R> po$ptl_objects

$stage_1
policy_tree object
Tree depth: 2
Actions: 1: 0 2: 1
Variable splits:
(1) split_variable: C split_value: -3.14122

(2) split_variable: L split_value: -1.67452
(4) * action: 1
(5) * action: 2

(3) split_variable: C split_value: -0.274346
(6) * action: 1
(7) * action: 2

$stage_2
policy_tree object
Tree depth: 2
Actions: 1: 0 2: 1
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Variable splits:
(1) split_variable: C split_value: -0.747456

(2) split_variable: C split_value: -0.811175
(4) * action: 1
(5) * action: 2

(3) split_variable: C split_value: 0.0237423
(6) * action: 1
(7) * action: 2
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d: stage 1
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Figure 7: Fitted policy actions based on policy tree learning. The black lines show the true
optimal decision boundaries.

5.3. Multi-stage problem
In this example we illustrate how polle handles decision processes with a stochastic number
of stages. Specifically, we consider a problem with an underlying recurrent marked point
process. Let {Tk}k≥1 be a sequence of time points associated with a maintenance process
for a piece of equipment. At each time point, the cost Xk and the maintenance decision
Ak ∈ {0, 1} are observed. If the maintenance is rejected (Ak = 0) the equipment is scrapped
meaning that no further maintenance events occur. At baseline we observe a binary variable
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B. Let W denote an unmeasured latent variable representing the quality of the equipment.
For convenience, define T0 = 0, X0 = 0, and A0 = 1. Let

W ∼ N (0, 1),
B ∼ Ber(ξ),

and for k ≥ 1 let

(Tk − Tk−1)|Xk−1, Ak−1,W ∼




Exp
{

exp
(
γ>[1, Xk−1,W ]

)}
+ ψ Ak−1 = 1

∞ Ak−1 = 0

Xk | Tk, Xk−1, B ∼




N
{
α>[1, Tk, T

2
k , Xk−1, B], 1

}
Tk < ∞

0 Tk = ∞

Ak | Xk, Tk ∼




Ber
{

expit
(
β>[1, T 2

k , Xk]
)}

Tk < ∞
0 Tk = ∞,

for parameters α, β, γ, and ψ (minimum increment). Note that if Ak = 0, then Tk+1 = ∞,
i.e., no further maintenance events occur. We consider stages within the interval [0, τ ]. The
stochastic number of stages considered is given by

K∗ = max{k : Tk ≤ τ}.

We define the utility as the time in service within the interval minus the approved costs:

U =
K∗+1∑

k=1
Uk =

K∗∑

k=1
Ak−1(Tk − Tk−1 −Xk−1) +AK∗(τ − TK∗ −XK∗).

In this problem we consider the parameter choices α = (0, 0.5, 0.2,−0.5, 0.4), β = (3,−0.5,−0.5),
γ = (0,−0.2, 0.3), ξ = 0.3, τ = 10, ψ = 1:

R> par0 <- list(alpha = c(0, 0.5, 0.2, -0.5, 0.4),
+ beta = c(3, -0.5, -0.5),
+ gamma = c(0, -0.2, 0.3),
+ xi = 0.3,
+ tau = 10,
+ psi = 1
+ )
R> a0 <- function(t, x, beta, ...){
+ prob <- lava::expit(beta[1] + (beta[2] * t^2) + (beta[3] * x))
+ stats::rbinom(n = 1, size = 1, prob = prob)
+ }
R> d <- sim_multi_stage(2e3, par = par0, a = a0, seed = 1)

The data is in long type format where the number of stages is stochastic:

R> d$stage_data
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id stage event t A X X_lead U
1: 1 1 0 0.000000 1 1.3297993 0.0000000 0.0000000
2: 1 2 0 1.686561 1 -0.7926711 1.3297993 0.3567621
3: 1 3 0 3.071768 0 3.5246509 -0.7926711 2.1778778
4: 1 4 1 3.071768 <NA> NA NA 0.0000000
5: 2 1 0 0.000000 1 0.7635935 0.0000000 0.0000000
6: 2 2 0 1.297336 1 -0.5441694 0.7635935 0.5337427
7: 2 3 0 5.635634 0 9.0304656 -0.5441694 4.8824675

The data is transformed using policy_data() with type = "long". The names of the id,
stage, event, action, and utility (reward) variables have to be specified (in this case the
default names). The event variable is 0 whenever an action occur and 1 in the terminal event.
Only the utility variable is used in a terminal event.

R> pd <- policy_data(data = d$stage_data,
+ baseline_data = d$baseline_data,
+ type = "long",
+ id = "id",
+ stage = "stage",
+ event = "event",
+ action = "A",
+ utility = "U")
R> pd

Policy data with n = 2000 observations and maximal K = 4 stages.

action
stage 0 1 n

1 113 1887 2000
2 844 1039 1883
3 956 74 1030
4 72 0 72

Baseline covariates: B
State covariates: t, X, X_lead
Average utility: 2.46

Policy Evaluation

Very few observations have more than 3 observed stages. Thus, we will only consider partial
interventions on the first 3 stages. The partial() function is used to trim the policy data
object:

R> pd3 <- partial(pd, K = 3)
R> pd3
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Policy data with n = 2000 observations and maximal K = 3 stages.

action
stage 0 1 n

1 113 1887 2000
2 844 1039 1883
3 956 74 1030

Baseline covariates: B
State covariates: t, X, X_lead
Average utility: 2.46

First, we consider doubly robust evaluation of the static policy of always approving the repair
(A = 1):

R> p1 <- policy_def(1, reuse = TRUE, name = "A=1")
R> pe3 <- policy_eval(pd3,
+ policy = p1,
+ g_models = g_glm(),
+ q_models = q_glm(),
+ g_full_history = FALSE,
+ q_full_history = FALSE)
R> pe3

Estimate Std.Err 2.5% 97.5% P-value
A=1 -0.7208 0.1245 -0.9648 -0.4769 6.965e-09

When q_full_history = FALSE and a single Q-model is provided, the model is reused at
every stage and fitted to the state/Markov type history. Here we extract the fitted Q-function
for the third stage via get_q_functions():

R> get_q_functions(pe3)[[3]]

$model

Call: NULL

Coefficients:
(Intercept) A1 t X X_lead
-5.072e-16 1.051e+00 -5.573e-16 1.218e-16 3.303e-16

B A1:t A1:X A1:X_lead A1:B
1.033e-16 6.382e-01 -8.502e-02 -3.368e-01 4.581e-01

Degrees of Freedom: 1029 Total (i.e. Null); 1020 Residual
Null Deviance: 502.4
Residual Deviance: 128.4 AIC: 800.4
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Policy Learning
The probability of a maintenance job being approved (the propensity) is high when the cost
and time is low and vice versa. Figure 8 displays the fitted propensities over time t and cost
X.
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Figure 8: Fitted propensities.

In order to prevent learning poorly supported (unrealistic) policies we can use the alpha
parameter in policy_learn() to set a minimum action probability of at least α:

R> pl <- policy_learn(type = "drql",
+ alpha = 0.05,
+ full_history = FALSE,
+ control = control_drql(),
+ L = 10)
R> set.seed(1)
R> po3 <- pl(pd3,
+ q_models = q_sl(SL.library = c("SL.mean",
+ "SL.glm",
+ "SL.glmnet",
+ "SL.ranger",
+ "SL.gam")),
+ q_full_history = FALSE,
+ g_models = g_glm(),
+ g_full_history = FALSE)

The resulting policy is displayed in Figure 9. We use policy_eval() to get the cross-fitted
estimated value of the learned realistic policy:

R> set.seed(1)
R> future::plan("multisession")
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Figure 9: Optimal actions at stage 2 as dictated by a realistic QV-learning algorithm. En-
circled dots indicate non-realistic actions, i.e., actions where the alternative action does not
occur with probability larger than the threshold α = 0.05.

R> pe3 <- policy_eval(pd3,
+ policy_learn = pl,
+ q_models = q_sl(SL.library =
+ c("SL.mean",
+ "SL.glm",
+ "SL.glmnet",
+ "SL.ranger",
+ "SL.gam")),
+ q_full_history = FALSE,
+ g_models = g_glm(),
+ g_full_history = FALSE,
+ M = 10)
R> pe3

Estimate Std.Err 2.5% 97.5% P-value
drql 2.872 0.04867 2.777 2.968 0

Note that we use parallel processing via the future and future.apply packages (Bengtsson
2021). For implementation and simulation purposes, the learned policy function can also be
extracted for each stage via get_policy_functions(). Here we extract the policy function
at stage 2 and evaluate it on new custom data:

R> pf2 <- get_policy_functions(po3, stage = 2)
R> get_history_names(pd3)

[1] "t" "X" "X_lead" "B"
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R> new_H <- data.frame(t = c(2, 2),
+ X = c(1, 5),
+ X_lead = c(0, 0),
+ B = c(0, 0))
R> pf2(new_H)

[1] "1" "0"

Finally, we illustrate how to perform a simulation based on the partially fitted policy. First
we extract all of the policy functions and combine it with the existing policy for all stages
above the third stage:

R> pf <- lapply(1:3, function(x) get_policy_functions(po3, stage = x))
R> a_pf <- function(stage, t, x, beta, x_lead, b, ...){
+ if (stage <= 3){
+ H <- data.table(t = t, X = x, X_lead = x_lead, B = b)
+ out <- pf[[stage]](H)
+ return(as.numeric(out))
+ } else{
+ out <- a0(t = t, x = x, beta = beta)
+ }
+ return(out)
+ }

We then simulate data and estimate the value of the fitted policy:

R> n <- 2e4
R> d_pf <- sim_multi_stage(n, par = par0, a = a_pf, seed = 1)
R> pd_pf <- policy_data(data = d_pf$stage_data,
+ baseline_data = d_pf$baseline_data,
+ type = "long")
R> pd_pf

Policy data with n = 20000 observations and maximal K = 5 stages.

action
stage 0 1 n

1 0 20000 20000
2 5629 14345 19974
3 11216 2986 14202
4 2941 5 2946
5 5 0 5

Baseline covariates: B
State covariates: t, X, X_lead
Average utility: 2.87
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5.4. Multi-action problems
In our final example we illustrate how polle handles actions sets with more than two elements.
For simplicity, we consider a single stage problem. The utility is defined as the conditional
Gaussian distribution

U | X,Z,A ∼ N
(
X + Z + I{A = 1}(X2 + Z − 0.5) + I{A = 2}(X − 0.5), 1

)

with independent state covariates X,Z ∼ N (0, 1), and action variable A ∈ {0, 1, 2} given as
a function of a latent variable Y:

A =





0 if Y < −1
1 if − 1 ≤ Y < 0.5
2 if 0.5 ≤ Y,

where
Y |X ∼ N (X, 1).

We construct a policy data object in exactly the same way as the other single-stage problem,
see Section 5.1:

R> d <- sim_single_stage_multi_actions(seed = 1, n = 2e3)
R> pd <- policy_data(d,
+ action="a",
+ covariates=c("x","z"),
+ utility="u")
R> pd

Policy data with n = 2000 observations and maximal K = 1 stages.

action
stage 0 1 2 n

1 151 849 1000 2000

Baseline covariates:
State covariates: x, z
Average utility: 1.12

Policy Evaluation
We use policy_def() to define the optimal policy:

R> p_opt <- policy_def(
+ function(x, z){
+ i0 <- 0
+ i1 <- (x*x+z-0.5)
+ i2 <- (x-0.5)
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+
+ 1 * (i1>i0) * (i1 >= i2) + 2 * (i2 > i0) * (i2 > i1)
+ },
+ name = "optimal"
+ )

The optimal policy can now be evaluated using policy_eval(). The g-model input must be
a multinomial classifier. The model given by g_rf() is a random forest classifier from the
package ranger (Wright and Ziegler 2017).

R> (pe <- policy_eval(pd,
+ policy = p_opt,
+ g_model = g_rf(mtry = 2, num.trees = 1000),
+ q_model = q_glm(~A*(x+z+I(x^2)))))

Loading required namespace: ranger

Estimate Std.Err 2.5% 97.5% P-value
optimal 1.406 0.02836 1.351 1.462 0

The fitted g-function values are available via the functions get_g_functions() and predict():

R> (g_pred <- predict(get_g_functions(pe), pd))

id stage g_0 g_1 g_2
1: 1 1 0.07127817 0.5229683 0.4057536
2: 2 1 0.01133056 0.5123563 0.4763131
3: 3 1 0.01321349 0.4442091 0.5425774

In this case (near) positivity violations is a cause for concern:

R> g_pred[g_0 == 0,]

id stage g_0 g_1 g_2
1: 26 1 0 0.5835329 0.4164671
2: 310 1 0 0.2228849 0.7771151
3: 556 1 0 0.2551845 0.7448155

Policy Learning
Not every policy learning method can handle multiple actions (more than two), see Table
1. The available types are "ql", "drql" and "ptl". However, the type "ptl" can not fit
realistic policies for multiple actions. Thus, we use realisticQ-learning at probability threshold
α = 0.01 with a correctly specified Q-model:
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R> pl <- policy_learn(type="ql",
+ alpha=0.01)
R> set.seed(1)
R> po <- pl(
+ pd,
+ g_model=g_rf(mtry = 2, num.trees = 1000),
+ q_model=q_glm(~A*(x+z+I(x^2)))
+ )
R> get_policy(po)(pd)

id stage d
1: 1 1 1
2: 2 1 1
3: 3 1 1

Figure 10 display the fitted (realistic) optimal policy for each observation. The black lines
indicate the true optimal decision boundaries.
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Figure 10: Fitted realistic optimal policy for each observation based on Q-learning. The black
lines indicate the true optimal decision boundaries.
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6. K-2 Literacy Intervention
In this section, we demonstrate the application of polle on a real data example. To ensure
reproducibility we work with a data set publicly available in the harvard dataverse https:
//dataverse.harvard.edu/. Specifically, we use the kindergarten to second-grade literacy
intervention data set (Kim, Asher, Burkhauser, Mesite, and Leyva 2019a) , funded by the
Chan Zuckerberg initiative, which is documented and analyzed in (Kim, Asher, Burkhauser,
Mesite, and Leyva 2019b). The following analysis is conducted independently of the original
study, and we take full responsibility for any misinterpretations or errors.
The data set contains records of 273 students from kindergarten to second grade associated
with 16 teachers. The study seeks to investigate the treatment effect of assigning two types
of print texts (10 texts/books in each group) for the students to read over the summer break.
All students received training before the summer break, and the investigators used a mobile
app to engage and monitor each student. At stage 1 each classroom associated with a given
teacher was randomly assigned to read either conceptually coherent texts (CCT) or leveled
text (LT). At an intermediate time point during the summer break (stage 2), if a student had
completed at least one activity on the mobile app, the student was classified as a responder and
no further actions were initiated. However, all non-responders were subject to gamification
of the app and the parents were randomly selected to receive text messages with reminders,
information, and encouragement. The main outcome of the study was the reading measure
of academic progress Rasch unit (MAP RIT) score. The score was measured before and after
the summer break (referred to as spring and fall). Of the 273 students enrolled in the study,
56 students have missing MAP RIT scores. As in the original study, we conduct a complete
case analysis.
We start by loading the data and conducting some basic transformations, which we include
for reproducibility. Note that we define the utility as the difference in the spring and fall
MAP RIT scores. A description of the variables can be found in Table 3.

R> library("readstata13")
R> d <- readstata13::read.dta13("k2smart_public.dta")
R> d <- transform(
+ d,
+ utility = as.numeric(fa_maprit) - as.numeric(sp_maprit),
+ cct = as.logical(cct),
+ responder = as.logical(responder),
+ text = as.logical(text),
+ maprit = as.numeric(sp_maprit),
+ teacher = as.character(t_id_public),
+ attend = as.numeric(sp_pctattend_yr),
+ trc = as.numeric(sp_trcbook_num),
+ dib = as.numeric(sp_dib_score),
+ ell = as.logical(ell),
+ iep = as.logical(iep),
+ grade = as.character(grade_final),
+ male = as.logical(male),
+ familynight = as.logical(familynight)
+ )
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Variable Type Description
utility Numeric Difference between the spring and

fall MAP RIT score
cct Logical If TRUE, the student receives con-

ceptually coherent texts (CCT). If
FALSE, the student receives leveled
text (LT).

responder Logical Respondence indicator
text Logical If TRUE the parents received text

messages.
maprit Numeric Spring MAP RIT score.
teacher Character

string
Teacher ID.

attend Numeric Student attendance percentage.
trc Numeric Spring text reading comprehension

score.
dib Numeric Spring dynamic indicators of basic

early literacy skills score.
ell Logical If TRUE, the student received

English-language learner services.
iep Logical If TRUE, the student has an individ-

ualized education plan.
grade Character

string
Student grade: kindergarten (0),
first grade (1), second grade (2).

male Logical If TRUE, the student is a male.
familynight Logical If TRUE, the family of the student

attended family night.

Table 3: Variable descriptions.

As described we make a complete case analysis:

R> d <- subset(d,!is.na(utility))

Finally, we create a stage 1 and stage 2 treatment variable:

R> d <- transform(
+ d,
+ A_1 = ifelse(cct, "cct", "lt"),
+ A_2 = ifelse(responder, "continue", ifelse(text, "text", "notext"))
+ )

The policy_data() function is used to create a policy data object. Note that responder is
a stage 2 state covariate:

R> pd <- policy_data(
+ d,
+ action = c("A_1","A_2"),
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+ utility = "utility",
+ baseline=c("maprit",
+ "male",
+ "ell",
+ "iep",
+ "attend",
+ "trc",
+ "dib",
+ "grade",
+ "familynight"),
+ covariates = list(responder = c(NA, "responder"))
+ )
R> print(pd)

Policy data with n = 217 observations and maximal K = 2 stages.

action
stage cct continue lt notext text n

1 112 0 105 0 0 217
2 0 36 0 86 95 217

Baseline covariates: maprit, male, ell, iep, attend, trc, dib, grade, familynight
State covariates: responder
Average utility: 2.7

Since student responders are not randomized at stage 2, only 4 static realistic policies exist:

R> actions <- list(
+ c("cct","text"),
+ c("cct","notext"),
+ c("lt","text"),
+ c("lt","notext")
+ )
R> static_policies <- lapply(
+ actions,
+ function(a){
+ policy_def(list(
+ function(...) a[1],
+ function(responder) ifelse(responder, "continue", a[2])
+ ),
+ name = paste(a, collapse = "_"))
+ }
+ )
R> head(static_policies[[1]](pd), 4)

id stage d
1: 1 1 cct
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2: 1 2 text
3: 2 1 cct
4: 2 2 text

We begin the analysis by comparing the policy value for each of the 4 static policies. First,
we consider a basic inverse probability weighting estimator:

R> gm <- list(g_empir(~1),
+ g_empir(~responder))
R>
R> pe_static_policies_ipw <- lapply(
+ static_policies,
+ function(p){
+ policy_eval(pd,
+ policy = p,
+ g_models = gm,
+ type = "ipw")
+ }
+ )
R> do.call("merge", pe_static_policies_ipw)

Estimate Std.Err 2.5% 97.5% P-value
cct_text 2.920 1.159 0.64838 5.193 0.011760
__________
cct_notext 1.737 1.109 -0.43707 3.912 0.117353
__________
lt_text 3.573 1.120 1.37793 5.769 0.001422
__________
lt_notext 2.504 1.322 -0.08728 5.095 0.058233

Note that the reported standard errors are valid because the g-models are known in a ran-
domized trial. The g-models specified by the function g_empir() computes the (conditional)
empirical probabilities and match them to each student:

R> print(get_g_functions(pe_static_policies_ipw[[1]]))

$stage_1
$tab

A empir_prob
1: cct 0.516129
2: lt 0.483871

$v
character(0)

$stage_2
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$tab
A responder empir_prob

1: continue TRUE 1.0000000
2: notext FALSE 0.4751381
3: text FALSE 0.5248619

$v
[1] "responder"

attr(,"full_history")
[1] FALSE

R> predict(get_g_functions(pe_static_policies_ipw[[1]]), pd)[c(1,2,43,44),]

id stage g_cct g_continue g_lt g_notext g_text
1: 1 1 0.516129 0 0.483871 0.0000000 0.0000000
2: 1 2 0.000000 0 0.000000 0.4751381 0.5248619
3: 22 1 0.516129 0 0.483871 0.0000000 0.0000000
4: 22 2 0.000000 1 0.000000 0.0000000 0.0000000

Efficiency of the policy value estimates can be increased by using the doubly robust value
scores. As we are fitting 25 sets of nuisance models we parallelize the computations via the
future.apply package. The variable names used to specify the nuisance model are available
via get_history_names():

R> get_history_names(pd, stage = 1)

[1] "responder_1" "maprit" "male" "ell"
[5] "iep" "attend" "trc" "dib"
[9] "grade" "familynight"

R> get_history_names(pd, stage = 2)

[1] "A_1" "responder_1" "responder_2" "maprit"
[5] "male" "ell" "iep" "attend"
[9] "trc" "dib" "grade" "familynight"

With this help we can easily specify the Q-models using the SuperLearner package and plug
them into the policy_eval() function:

R> sl_lib <- c("SL.mean",
+ "SL.glm",
+ "SL.gam",
+ "SL.ranger",
+ "SL.nnet")
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R> qm <- list(
+ q_sl(formula = ~.-responder_1, SL.library = sl_lib),
+ q_sl(formula = ~.-responder_1-responder_2, SL.library = sl_lib)
+ )

R> library("future.apply")
R> plan(list(
+ tweak("multisession", workers = 4)
+ ))
R> pe_static_policies_dr <- lapply(
+ static_policies,
+ function(p){
+ set.seed(1)
+ policy_eval(pd,
+ policy = p,
+ g_models = gm,
+ q_models = qm,
+ q_full_history = TRUE,
+ type="dr",
+ M = 25)
+ }
+ )
R> print(do.call("merge", pe_static_policies_dr))

R> plan("sequential")
R> print(do.call("merge", pe_static_policies_dr))

Estimate Std.Err 2.5% 97.5% P-value
cct_text 2.817 0.9158 1.0226 4.612 0.0020934
__________
cct_notext 2.275 1.0109 0.2936 4.256 0.0244262
__________
lt_text 3.550 1.0489 1.4938 5.606 0.0007141
__________
lt_notext 1.966 1.1535 -0.2950 4.227 0.0883399

So far the reported standard errors have been overly optimistic because we ignored the random
teacher/classroom effect. Luckily, when working with influence curves it is easy to adjust for
these types of dependencies. When estimating the variance we first sum all of the influence
curve terms related to each teacher. The resulting compounded influence curve terms are then.
independent and the variance is computed in the usual fashion. This approach is similar to
computing clustered standard errors (Liang and Zeger 1986). The method is implemented in
the estimate() function from the lava package (Holst and Budtz-Jørgensen 2013):

R> library("lava")
R> (est <- estimate(do.call("merge", pe_static_policies_dr), id = d$teacher))
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Estimate Std.Err 2.5% 97.5% P-value
cct_text 2.817 1.0337 0.7915 4.843 6.418e-03
cct_notext 2.275 0.8739 0.5622 3.988 9.233e-03
lt_text 3.550 0.6538 2.2683 4.831 5.660e-08
lt_notext 1.966 1.3385 -0.6577 4.589 1.419e-01

As is already evident, none of the static policies are statistically different in terms of marginal
value. For completeness we conduct a chi square test:

R> pdiff <- function(n) lava::contr(lapply(seq(n-1), \(x) seq(x, n)))
R> estimate(est, f = pdiff(4))

Estimate Std.Err 2.5% 97.5% P-value
[cct_text] - [cct_notext] 0.5425 0.9079 -1.237 2.3219 0.5502
[cct_text] - [lt_text] -0.7323 1.0827 -2.854 1.3897 0.4988
[cct_text] - [lt_notext] 0.8517 1.6208 -2.325 4.0284 0.5992
[cct_notext] - [lt_text] -1.2747 0.9051 -3.049 0.4992 0.1590
[cct_notext] - [lt_no.... 0.3092 1.6607 -2.946 3.5642 0.8523
[lt_text] - [lt_notext] 1.5840 1.8128 -1.969 5.1370 0.3823

Null Hypothesis:
[cct_text] - [cct_notext] = 0
[cct_text] - [lt_text] = 0
[cct_text] - [lt_notext] = 0
[cct_notext] - [lt_text] = 0
[cct_notext] - [lt_notext] = 0
[lt_text] - [lt_notext] = 0

chisq = 2.1328, df = 3, p-value = 0.5453

The function conditional() allows the user to easily compute the conditional policy value
estimates based on categorical baseline covariates. Here we group by the baseline covariate
male for the static CCT text policy:

R> estimate(
+ conditional(pe_static_policies_dr[[1]], pd, "male"),
+ id = d$teacher
+ )

Estimate Std.Err 2.5% 97.5% P-value
male:FALSE 1.874 0.6617 0.5767 3.170 4.633e-03
male:TRUE 3.943 0.6694 2.6305 5.255 3.872e-09

Even though none of the static policies have a marginal treatment effect we may hope to
find group specific treatment effects. To investigate further, we specify a selection of doubly
robust V -restricted Q-learners and estimate the cross-fitted value of the fitted policies.
We formulate simple linear QV -models using the q_glm() function as we do not expect to be
able to find complex non-linear treatment associations in this relatively small data set.
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R> qvm_formulas <- list(
+ qvm_1 = list(~1, ~A_1),
+ qvm_2 = list(~maprit, ~A_1+maprit),
+ qvm_3 = list(~male, ~A_1+male),
+ qvm_4 = list(~grade, ~A_1+grade),
+ qvm_5 = list(~male+maprit, ~A_1+male+maprit),
+ qvm_6 = list(~male+grade+maprit, ~A_1+grade+male+maprit)
+ )
R>
R> qvm <- lapply(qvm_formulas,
+ function(form){
+ list(q_glm(form[[1]]), q_glm(form[[2]]))
+ })

The Q-models are then passed to the controls of the policy_learn() function. Importantly,
note that alpha is set to 0.01 in order to account for the degenerate structure of the data; A
student responder always continue the treatment in stage 2.

R> pl_drql <- mapply(
+ qvm,
+ names(qvm),
+ FUN = function(qv, name){
+ policy_learn(type = "drql",
+ control = control_drql(qv_models = qv),
+ full_history = TRUE,
+ alpha = 0.01,
+ L = 25,
+ cross_fit_g_models = FALSE,
+ name = name)
+ })

The value of the fitted policies are cross-fitted using policy_eval():

R> plan(list(
+ tweak("multisession", workers = 2)
+ ))
R> set.seed(1)
R> pe_drql <- lapply(
+ pl_drql,
+ function(pl){
+ set.seed(1)
+ policy_eval(pd,
+ policy_learn = pl,
+ g_models = gm,
+ q_models = qm,
+ q_full_history = TRUE,
+ type="dr",
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+ M = 25)
+ })

R> estimate(do.call(what = "merge", unname(pe_drql)), id = d$teacher)

Estimate Std.Err 2.5% 97.5% P-value
qvm_1 3.0542 0.5928 1.89227 4.216 2.579e-07
qvm_2 0.9175 0.9703 -0.98436 2.819 3.444e-01
qvm_3 3.3579 1.3048 0.80053 5.915 1.007e-02
qvm_4 2.4449 1.2362 0.02206 4.868 4.795e-02
qvm_5 2.0806 0.9730 0.17365 3.988 3.248e-02
qvm_6 1.9655 1.1611 -0.31021 4.241 9.049e-02

None of the fitted policies show a gain in value compared to the static policy lt_text.
However, we might still want to study a possible male treatment interaction further (qvm_3).
We fit policy learner 3 on the complete data set and summarize the dictated actions:

R> set.seed(1)
R> po_drql_male <- pl_drql[["qvm_3"]](pd,
+ g_models = gm,
+ q_models = qm,
+ q_full_history = TRUE)
R> pa_drql_male <- get_policy(po_drql_male)(pd)
R> head(pa_drql_male, 4)

id stage d
1: 1 1 cct
2: 1 2 text
3: 2 1 cct
4: 2 2 text

R> pa_drql_male <- merge(pa_drql_male, get_history(pd)$H)
R> pa_drql_male[,.N, list(stage, male,d)][order(stage, male,d)]

stage male d N
1: 1 FALSE lt 118
2: 1 TRUE cct 99
3: 2 FALSE continue 23
4: 2 FALSE text 95
5: 2 TRUE continue 13
6: 2 TRUE text 86

Thus, the fitted policy suggests that males receive CCT and females receive LT at stage 1
and that all non-responders get text messages at stage 2.
We end this analysis by emphasizing the importance of cross-fitting the policy learner because
it is easy to overfit an optimal policy. We showcase this by fitting the most complex of the
considered policy learners:
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R> po_drql_6 <- pl_drql[["qvm_6"]](pd,
+ g_models = gm,
+ q_models = qm,
+ q_full_history = TRUE)

The dictated actions are easily plotted using the get_history() and get_policy() functions:

R> plot_data <- get_history(pd)$H
R> plot_data <- merge(plot_data,
+ get_policy(po_drql_6)(pd),
+ by = c("id", "stage"))
R> library("ggplot2")
R> ggplot(plot_data) +
+ geom_point(aes(x = grade, y = maprit, color = d)) +
+ facet_wrap(~stage+male, labeller = "label_both") +
+ theme_bw()
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If we just plug in the resulting fitted policy we get an overly optimistic estimate of the value.

R> plan(list(
+ tweak("multisession", workers = 4)
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+ ))
R> set.seed(1)
R> pe_plugin <- policy_eval(pd,
+ policy = get_policy(po_drql_6),
+ g_models = gm,
+ q_models = qm,
+ q_full_history = TRUE,
+ type = "dr",
+ M = 25,
+ name = "qvm_6_plugin")

R> estimate(pe_plugin + pe_drql[["qvm_6"]], id = d$teacher)

Estimate Std.Err 2.5% 97.5% P-value
qvm_6_plugin 5.146 1.129 2.9335 7.358 5.147e-06
qvm_6 1.966 1.161 -0.3102 4.241 9.049e-02

7. Summary and discussion
The polle library is the first unifying R package for learning and evaluating policies. The
package efficiently handles cross-fitting of the nuisance models and provides protection against
(near) positivity violations. Also, to our knowledge, polle contains the first implementation
of doubly robust restricted Q-learning which can serve as sensible benchmark for all other
learning methods.
Of course, polle has its limitations. Future work to be included in the package includes the
handling of missing data and (right) censored observations. The event variable included in
the policy data object can be extended to specify missing or censored data similar to that of
the Surv function in the survival package. Additional models for the censoring distribution
would need to be included.
In our work we only consider the maximization of a scalar utility value. However, in some
applications a multi-dimensional value vector may more naturally be of interest. In such cases
the set of Pareto efficient policies can be formulated. An important example would be the
task of maximizing the utility subject to variance constraints in order to learn robust policies.
This is closely related to introducing a penalty term to the loss function, and will be the
subject of future developments to the polle package.

The package is available directly from the Comprehensive R Archive Network (CRAN) (Nord-
land and Holst 2022). We believe the package will provide practitioners with much easier
access to a broad range of policy learning methods and hope that it also may serve as a
framework for benchmarking as well as implementing new methods for researchers in the
policy learning field. We invite to collaboration on the future development of the package via
pull requests to the github repository https://github.com/AndreasNordland/polle/.
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Computational details
The results in this paper were obtained using R 4.2.1 (R Core Team 2022) with the polle 1.2
package. R itself and all packages used are available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/.
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A. Binary V -optimal policy
Consider the two-stage case, O = (S1, A1, S2, A2, U), where A1 and A2 are binary. Let V1 be
a function of H1 = S1 and let (A1, V2) be a function of H2. The V -optimal policy is defined
as

d0 = arg max
d∈D

E[Ud].

The following theorem is a corrected version of Theorem 1 in van der Laan and Luedtke
(2014).

Theorem A.1:
If V1 is a function of V2, then the V -optimal policy d0 is given by

B0,2(a1, v2) = E[Ua1,a2=1|V a1
2 = v2] − E[Ua1,a2=0|V a1

2 = v2]
d0,2(a1, v2) = I {B0,2(a1, v2) > 0}
B0,1(v1) = E[Ua1=1,d0,2 |V1 = v1] − E[Ua1=0,d0,2 |V1 = v1]
d0,1(v1) = I {B0,1(v1) > 0} .

The above statement os also true if for all a1 and a2

E[Ua1,a2 |V1, V
a1

2 ] = E[Ua1,a2 |V a1
2 ]. (15)

Proof. Let V a = (V1, V a
2 ). For any policy d

E[Ud] = E
[∑

a1,a2

Ua1,a2I{d2(a1, V
a1

2 ) = a2}I{d1(V1) = a1}
]

=
∑

a1

E
[{∑

a2

E
(
Ua1,a2

∣∣V a1
2
)
I{d2(a1, V

a1
2 ) = a2}

}
I{d1(V1) = a1}

]
,

where it is used that V1 is a function of V a1
2 or that (15) holds. For any a1 the inner sum is

maximzed in d2 by d0,2, i.e., E[Ud] ≤ E[Ud1,d0,2 ]. Now,

E[Ud1,d0,2 ] = E
[∑

a1

E[Ua1,d0,2 |V1]I{d1(V1) = a1}
]
,

which is maximized for d1 = d0,1, i.e., E[Ud] ≤ E[Ud1,d0,2 ] ≤ E[Ud0,1,d0,2 ].

Note that

E[Ua1,a2=1|V a1
2 = v2] = E[Ua2=1|V2 = v2, A1 = a1].
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B. Blip loss function
We continue to consider the two-stage case from Appendix A. Assuming positivity, define the
inverse probability weighted blip score as

D2(g)(O) = 2A2 − 1
g2(H2, A2)U.

We see that

E [D2(g0)(O)|A1, V2]

=E
[
I{A2 = 1}
g0,2(H2, A2)U

∣∣A1, V2

]
− E

[
I{A2 = 0}
g0,2(H2, A2)U

∣∣A1, V2

]

=E[UA2=1|A1, V2] − E[UA2=0|A1, V2]
=B0,2(A1, V2),

where the blip at stage 2, B0,2, is defined in Appendix A. The V -restricted optimal policy at
stage 2 is uniquely defined in terms of the blip by Theorem A.1. Similarly, define the doubly
robust blip score as

D2(g,Q)(O) = 2A2 − 1
g2(H2, A2) (U −Q2(H2, A2))

+Q2(H2, 1) −Q2(H2, 0),

where Q0,2(h2, a2) = E[U |H2 = h2, A2 = a2]. The score is doubly robust in the sense that if
g = g0, then

E [D2(g0, Q)(O)|A1, V2]
= B0,2(A1, V2)

+ E

[
I{A2 = 1}
g0,2(H2, A2)Q2(H2, A2)

∣∣A1, V2

]
− E

[
I{A2 = 0}
g0,2(H2, A2)Q2(H2, A2)

∣∣A1, V2

]

+ E[Q2(H2, 1)|A1, V2] − E[Q2(H2, 0)|A1, V2]
= B0,2(A1, V2)

+ E

[
I{A2 = 1}
g0,2(H2, 1)Q2(H2, 1)

∣∣A1, V2

]
− E

[
I{A2 = 0}
g0,2(H2, A2)Q2(H2, A2)

∣∣A1, V2

]

+ E[Q2(H2, 1)|A1, V2] − E[Q2(H2, 0)|A1, V2]
= B0,2(A1, V2),

and if Q = Q0, then

E [D2(g,Q0)(O)|A1, V2]

= E

[ 2A2 − 1
g2(H2, A2) (Q0,2(H2, A2) −Q0,2(H2, A2))

∣∣A1, V2

]

+B0,2(A1, V2)
= B0,2(A1, V2).
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For a measurable function B2 of (A1, V2) define the inverse probability weighted blip loss
function as

L2(B2)(g)(O) = (D2(g)(O) −B2(A1, V2))2 .

The expectation of the loss is given by

E[L2(B2)(g0)(O)] =E
[
(D2(g0)(O) −B2(A1, V2))2

]

=E
[
D2(g0)(O)2

]

+ E
[
B2(A1, V2)2

]

− 2E [D2(g0)(O)B2(A1, V2)]

=E
[
D2(g0)(O)2

]

+ E
[
B2(A1, V2)2

]

− 2E [B0,2(A1, V2)B2(A1, V2)]

=E
[
(B2(A1, V2) −B0,2(A1, V2))2

]

+ E
[
D2(g0)(O)2

]

− E
[
B0,2(A1, V2)2

]
.

The last two term are constant in B2. Thus E[L2(B2)(g0)(O)] is minimized in B2 when
B2 = B0,2 almost surely, i.e., L2(g0) and L2(Q, g), where either g = g0 or Q = Q0, are valid
loss function for B0,2.

At the first stage define

D1(g)(O) = 2A1 − 1
g1(H1, A1)U.

For a given policy at the second stage, d2, we see that

E
[
D1(g0)(Od2)

∣∣V1 = v1
]

=E
[

2A1 − 1
g0,2(H1, A1)U

d2
∣∣V1 = v1

]

=E
[
UA1=1,d2 − UA1=0,d2

∣∣V1 = v1
]

=B0,1(v1).

Thus, a valid loss function in the observed data is given by

L1(B1)(g0, d2)(O) = I{A2 = d2(A1, V2)}
g0,2(H2, A2) (D1(g0)(O) −B1(V1))2 ,

since

E [L1(B1)(g0, d2)(O)] = E

[(
D1(g0)(Od2) −B1(V1)

)2
]
.
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Alternatively, for stage one define

D1(g, d2)(O) = I{A2 = d2(A1, V2)}
g2(H2, A2)

2A1 − 1
g1(H1, A1)U

Then

E
[
D1(g0, d0,2)(O)

∣∣V1
]

=B0,1(V1),

and a valid loss function for d0,1 is given by

(D1(g0, d0,2)(O) −B1(V1))2 .

As in the second stage it is possible to construct a doubly robust loss function for the first
stage. Define

D1(g,Qd2 , d2)(O) = Qd2
1 (H1, 1) −Qd2

1 (H1, 0)

+ I{A2 = d2(A1, V2)}
g2(H2, A2)

2A1 − 1
g1(H1, A1) {U −Q2(H2, A2)}

+ 2A1 − 1
g1(H1, A1)

{
Q2(H2, d2(V2, A1)) −Qd2

1 (H1, A1)
}
.

Note that

Qd2
0,1(H1, a1) =E (Q0,2(H2, d2(V2, A1))|H1, A1 = a1)

=E (E[U
∣∣H2, A2 = d2(V2, A1)

]∣∣H1, A1 = a1
)

=E (E[Ud2
∣∣H2

]∣∣H1, A1 = a1
)

=E
(
UA1=a1,d2

∣∣H1
)
.

Thus, if Qd2 = Qd0,2, then

E
[
D1(g,Qd2 , d2)(O)

∣∣V1
]

= B0,1(V1),
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and if g = g0, then

E
[
D1(g,Qd, d2)(O)

∣∣V1
]

= E
[
Qd2

1 (H1, 1) −Qd2
1 (H1, 0)

∣∣V1
]

+B0,1(V1)

− E

[
I{A2 = d2(A1, V2)}

g2(H2, A2)
2A1 − 1
g1(H1, A1)Q2(H2, A1)

∣∣∣∣V1

]

+ E

[ 2A1 − 1
g1(H1, A1)Q2(H2, d2(V2, A1))

∣∣∣∣V1

]

− E

[ 2A1 − 1
g1(H1, A1)Q

d2
1 (H1, A1)

∣∣∣∣V1

]

= E
[
Qd2

1 (H1, 1) −Qd2
1 (H1, 0)

∣∣V1
]

+B0,1(V1)

− E

[ 2A1 − 1
g1(H1, A1)Q2(H2, d2(V2, A1))

∣∣∣∣V1

]

+ E

[ 2A1 − 1
g1(H1, A1)Q2(H2, d2(V2, A1))

∣∣∣∣V1

]

− E
[
Qd2

1 (H1, 1) −Qd2
1 (H1, 0)

∣∣V1
]

=B0,1(V1).

C. Weighted classification loss function
We continue the setup from Appendix B. At the second stage define the loss function

⌣
L2(d2)(g0)(O) = |D2(g0)(O)|I

{
d2(A1, V2) 6= I{D2(g0)(O) > 0}

}

This is a valid loss function since L̃2(d2)(g0)(O) is a valid loss function and

−L̃2(d2)(g)(O) =I{A2 = d2(A1, V2)}
g2(H2, A2) U

=d2(A1, V2)D2(g)(O) + I{A2 = 0}
g2(H2, A2)U

=I{D2(g)(O) > 0}|D2(g)(O)| + I{A2 = 0}
g2(H2, A2)U

− |D2(g)(O)|I
{
d2(A1, V2) 6= I{D2(g0)(O) > 0}

}

The last equality holds because for d ∈ {0, 1} and D ∈ R

dD =d|D|I{D > 0} − d|D|I{D ≤ 0}
=|D|I{D > 0} − |D|

(
(1 − d)I{D > 0} + dI{D ≤ 0}

)

=|D|I{D > 0} − |D|I
{
d 6= I{D > 0}

}
.
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Similarly, at stage one, a valid loss function for d0,1 is given by

L̂1(d1)(g0, d0,2)(O) = |D1(g0, d0,2)(O)|I
{
d1(V1) 6= I{D1(g0, d0,2)(O) > 0}

}
,

since

−L̃1(d1)(g0, d0,2)(O) =I{A1 = d1(V1)}
g0,1(H1, A1)

I{A2 = d0,2(A1, V2)}
g0,2(H2, A2) U

=d1(V1)D1(g0, d0,2)(O) + I{A1 = 0}
g0,1(H1, A1)

I{A2 = d0,2(A1, V2)}
g0,2(H2, A2) U

= − |D1(g0, d0,2)(O)|I
{
d1(V1) 6= I{D1(g0, d0,2)(O) > 0}

}

+ I{A1 = 0}
g0,1(H1, A1)

I{A2 = d0,2(A1, V2)}
g0,2(H2, A2) U

+ I{D1(g0, d0,2)(O) > 0}|D1(g0, d0,2)(O)|.
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Abstract
This paper introduces a novel application of assumption lean statistical policy learning for physical asset
management. Our focus is on optimizing corrective maintenance policies and addressing the limited variation
in the current decision process. To handle practical positivity violations, we restrict policies to dynamic
realistic action sets. Through a thorough simulation study, we show the advantages of imposing positivity
restrictions, especially for doubly robust policy learners and policy evaluation. Based on these results, we
strongly suggest adopting positivity restrictions as a standard practice. We illustrate the effectiveness of
our methods with a real-world case study on refrigerated container maintenance.

Key words: policy learning; dynamic treatment regimes; near positivity violations; causal inference;
Q-learning; double machine learning; physical asset management

1. Introduction
In asset-heavy industries such as transportation and logistics, maintenance and repair policies play a crucial role in equipment
management. Even minor enhancements to these policies can lead to substantial cost savings, considering the scale of
operations involved. This raises an important question: Can a given set of historical data, collected over extended periods be
utilized to improve existing policies?

The pursuit of learning optimal policies from data has garnered considerable attention across various fields. The
reinforcement learning literature has made notable progress in on-policy or online data settings, resulting in numerous
practical applications with well-known systems.

Off-policy reinforcement learning methods, such as importance sampling or Q-learning, have also enabled learning from
historical data. However, all of these methods rely on a key Markov assumption that needs to be justified in each case. In a
maintenance application, we can justify the Markov assumption if we can accurately measure the equipment’s condition at
the time of an action. However, in cases where the data detail level is insufficient to support a Markov decision problem
approach, what is the minimal set of structural assumptions we need to consistently learn from historical data?

An assumption-lean approach to policy learning has seen significant advancements within the statistical and econometric
literature, finding applications in health sciences, social sciences, and economics. The causal framework and the estimation
approach in this paradigm differ substantially from those in Markov decision problem solutions. The purpose of this work is
to bring some of these new developments to the field of maintenance policy learning.

The contribution of this paper is two-fold. Firstly, we introduce completely new methodology to the field of physical asset
management by showcasing a novel application of statistical policy learning from historical data that relies on a minimal set
of structural assumptions. Our focus lies in developing robust maintenance and repair policies, while assessing the associated
risk of implementing these policies in terms of the expected value gain. Our methods are designed to address positivity
violations arising from limited variation in the historical decision-making process due to existing guidelines. We apply our

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com
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methods to a real-case where we seek to estimate an optimal equipment maintenance and repair policy for refrigerated
containers (commonly known as reefers) owned by the shipping company Maersk.

Secondly, the statistical policy learning literature has not adequately addressed the significant challenges associated with
(near) positivity that arise in our application. We believe that these challenges warrant greater attention. To the best of our
knowledge, our simulation study is the first of its kind to examine the significance of realistic recursive policy learning in
cases where practical positivity violations occur across multiple stages. We believe that insights from this study may provide
important guidelines for practitioners in the field of statistical policy learning.

The remainder of this paper is organized as follows. Section 2 provides the context for our work and a literature review
on asset maintenance and statistical policy learning, with special emphasis on the practical challenges that we encounter. In
Section 3, we introduce the fundamental concepts of a general asset maintenance optimization problem and establish the
methodology used throughout the paper. Section 4 presents a comprehensive simulation study that investigates various
policy learning strategies, replicating a real-world case of estimating an optimal realistic maintenance policy for reefers.
In Section 5, we present the results of the actual case application. Finally, Section 6 concludes the paper by highlighting
potential avenues for future research.

2. Context and Literature Review
The field of physical asset maintenance optimization encompasses several aspects, ranging from short-term availability to
life-cycle cost optimization. For a comprehensive understanding of the terminology and methodologies used in this field,
we refer to the works [Farinha, 2018] and [De Jonge and Scarf, 2020]. In our setup and application, we focus on corrective
maintenance for a repairable single-unit system. The maintenance process is considered corrective as we do not have control
over the timing of work orders associated with the unit.

A common approach in maintenance optimization is to formulate the problem as a (partially observable) Markov decision
process and then apply reinforcement techniques [Puterman, 2014, Sutton and Barto, 2018, Uehara and Sun, 2023]. Recent
applications of this approach can be found in [Liu et al., 2020, Barde et al., 2019, Srinivasan and Parlikad, 2014, Zhang and
Si, 2020, Andriotis and Papakonstantinou, 2021]. However, all of these approaches rely on a known (simulation) system and
strong structural assumptions on the states and how repairs affects these states.

Within the topic of corrective maintenance, to the best of our knowledge, no other work has considered a general causal
framework which explicitly accounts for the use of historical data as done in statistical policy learning. Therefore, our
application can be viewed as a novel contribution to the field of asset maintenance. Specific to our application of maintenance
policies for shipping containers there is very limited research available. We refer to a technical paper by [Hoffmann et al.,
2020], which describes a decision model for the maintenance of shipping containers. Considering that container shipping is
the backbone of global trade we hope that this work can inspire more research in a field that can have a large impact.

For comprehensive reviews on statistical policy learning methodology and dynamic treatment regimes, we refer to
[Chakraborty and Moodie, 2013, Kosorok and Laber, 2019, Tsiatis, 2019]. In this work, our main focus is on doubly robust
loss-based learning of the blip functions, following the formulation by [Luedtke and van der Laan, 2016]. The concept of
blips was originally introduced in the works of [Murphy, 2003] and [Robins, 2004]. Our approach falls within the broader
scope of recursive policy learning, which includes other methods such as Q-learning, A-learning [Schulte et al., 2014], and
outcome weighted learning [Zhao et al., 2012]. When-to-treat or when-to-sell policies [Nie et al., 2021] is a different line of
work which is highly relevant for maintenance policy optimization.

A lot of recent work studies performance guarantees for policy learning in the single-stage case (heterogeneous treatment
effect) [Semenova and Chernozhukov, 2021, Kennedy, 2020, Athey and Wager, 2020]. The latter of the listed works also
provide an excellent overview of related research within the econometrics literature.

The positivity assumption or the overlap is a crucial assumption for ensuring the causal validity of policy learning
methods. It ensures that observed actions are sufficiently randomized across the state space. Near or practical positivity
violations, which have been extensively studied in the causal statistical literature [Bembom and van der Laan, 2007, Petersen
et al., 2012, Cole and Hernán, 2008, Moore et al., 2012, D’Amour et al., 2021], have surprisingly received limited attention
in the policy learning literature. Among the mentioned works on policy learning, only [Chakraborty and Moodie, 2013]
mentions that methods for handling positivity violations in multi-stage settings are underdeveloped.

This lack of focus on positivity violations is also evident in the available software implementations. Notably, packages
such as DynTxRegime (R) [Holloway et al., 2022], DTRlearn2 (R) [Chen et al., 2020], and EconML (Python) [Battocchi
et al., 2019] do not provide methods for handling practical positivity violations, apart from inverse probability weight
truncation. The R software package polle [Nordland and Holst, 2022] was specifically developed to tackle the extensive
practical positivity violations observed in the application discussed in this work.
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3. Concepts
In this section, we present a general framework for corrective maintenance and repair processes and introduce the notation
required to define a policy learning algorithm. This algorithm addresses the unique challenges associated with utilizing
historical data where the decisions have not been randomized. Our primary objective is not to provide an exhaustive
description of the methods employed, but rather to introduce the essential concepts necessary for understanding the model
components. We closely follow the notation established by [Nordland and Holst, 2023], where a comprehensive description of
the methods can be found.

Let us consider a scenario where we have a dataset consisting of N independent units. This means that the condition
and usage of each unit do not impact the other assets. The data is collected over a fixed follow-up period, denoted as [0, T ].
During this period, each unit is assigned several work orders, which outline different maintenance and repair tasks along with
their associated costs. These work orders can either be approved or rejected. If a work order is approved, all the specified
tasks are carried out. In many cases, if a work order is not approved, the unit will no longer be operational and will be sold.
As long as the unit remains in working condition, it generates revenue for the business. At the end of the follow-up period,
we reward each operational unit with an in-service cash premium.

Our objective is to maximize the expected profit of the unit fleet throughout the follow-up period, considering all the
costs and revenue streams associated with each unit. It’s important to note that the optimization task described here is
corrective or reactive, meaning that we cannot control the timing of the work orders. Our decision-making is limited to
approving or rejecting each work order. Thus, we want to estimate a policy, a set of rules, which given the individual history
of the unit returns the optimal decision in terms of the long term expected profit.

At this point, we are ready to introduce the formal notation for the process. We begin by considering a fixed-time process,
as illustrated in Figure 1. Each process consists of a fixed number K of work orders, which define K + 1 stages of the process.

Time0 A1 A2 AK T

W (X1, U1) (X2, U2) · · · UK+1

H1

H2

HK

Start of follow-up Work order End of follow-up

Fig. 1. Maintenance process with fixed time intervals. W represents the baseline variables, Ak, k = 1, 2, ..., the action variables, and
Hk the available history prior to the decision. After the action is made, the state variables Xk+1 and the reward Uk+1 are updated.

We define W ∈ W as the baseline variable containing the unit specifications. At each stage k ∈ {1, . . . , K}, we use
Ak ∈ {0, 1} to represent the action taken, where Ak = 1 corresponds to approving the work order at stage k. To summarize
the data collected up to stage 1, we use S1. For k ∈ {2, . . . , K}, Sk represents a summary of the data collected between
stage k − 1 and k. Similarly, SK+1 summarizes the data collected after stage K. To simplify notation, we let Sk = (Xk, Uk),
where Uk denotes the kth reward, and Xk serves as a stage variable summarizing the work order at the given stage and
other relevant information. For convenience, we define XK+1 = ∅. Thus, using the implied ordering, the observed process
can be written as

O = (W, S1, A1, S2, A2, . . . , SK , AK , SK+1).

For k ∈ {1, . . . , K + 1}, let Sk = (S1, . . . , Sk), Ak = (A1, . . . , Ak) and Hk = (W, Sk, Ak−1) ∈ Hk define the full history at
stage k where A0 = AK+1 = ∅. Finally, the utility, specifically the profit, is calculated as the sum of the rewards.

U =
K+1∑

k=1

Uk.
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3.1. Policies
A policy is a set of rules d = (d1, ..., dK), where dk : Vk 7→ A assigns an action in stage k given a summary Vk of the
history Hk. We informally denote an observation where all actions are taken according to policy d as Od. For the optimal
policy d0 it holds that E[Ud] ≤ E[Ud0 ] for any other policy d restricted to the same input. If Vr is a function of Vk

for any r ∈ {1, . . . , k − 1}, then the optimal policy can be expressed using the (optimal) blip functions. For any actions
a = (a1, ..., aK−1) recursively define

B0,K(aK−1, vK) = E
[

U(aK−1,aK =1) − U(aK−1,aK =0)
∣∣V aK−1

K = vK

]
,

d0,K(aK−1, vK) = I {B0,K(aK−1, vK) > 0} ,

B0,k(ak−1, vk) = E
[

U
(ak−1,ak=1,d0,k+1) − U

(ak−1,ak=0,d0,k+1)
∣∣V ak−1

k
= vk

]
k ∈ {1, ..., K − 1},

d0,k(ak−1, vk) = I {B0,k(ak−1, vk) > 0} k ∈ {1, ..., K − 1},

where we use the notation dk = (dk, ..., dK), and I denotes the indicator function. Importantly, the above statement remains
true if we, instead of assuming that Vr is a function of Vk for any r ∈ {1, . . . , k − 1}, assume that

E
[

Ua
∣∣V1, V a1

2 , . . . , V
ak−1

k

]
= E

[
Ua

∣∣V ak−1
k

]
. (1)

So when we, in practice, design the summary Vk, we do not necessarily need to compound all previous summaries. We just
need to capture all (or most) of the contained information relevant for the utility.

The blips serve to quantify the difference in value between the two actions when all subsequent actions are optimal. They
provide insight into the potential gain or loss resulting from choosing one action over the other, taking into account the
optimality of future actions. The blips are causal functions that may not be directly identifiable from the historical data.
To identify the blips, we rely on two key structural assumptions: positivity and sequential randomization [Robins, 1986].
The positivity assumption states that there must be a positive probability of choosing each action at each stage, given the
history. This assumption ensures that all possible actions have a chance of being selected, allowing for a comprehensive
exploration of the action space. Define the g-functions as

g0,k(hk, ak) = P(Ak = ak | Hk = hk).

Under positivity it holds that g0,k(Hk, ak) > 0 almost surely for any ak. In practice, violations of the positivity condition,
or even near positivity violations, are a cause for concern. We will discuss this issue later on.

When the guidelines for approving work orders are strict, the historical actions may exhibit limited variability. Therefore,
it is not feasible to estimate the overall optimal policy. Instead, we target the optimal realistic policy that maintains positivity
at a specified level. We will discuss this in more detail later in this section.

The sequential randomization assumption establishes a connection between the historical data and the causal parameter.
The assumption states that the future potential outcomes are independent of the observed action given the history at a
particular stage:

{Sak

k+1, . . . , SaK

K+1} ⊥ Ak

∣∣W, Sk, Ak−1 = ak−1 ∀k ∈ {1, . . . , K}.

The assumption holds when we effectively capture all the information that has influenced the decision-making process.
However, if we fail to account for confounding factors that influence both the historical actions and rewards, the estimated
optimal policy can be highly misleading and may even have harmful effects compared to status quo. It is crucial to carefully
consider and address these potential confounding factors to ensure the reliability and effectiveness of the estimated policy.

Under positivity and sequential randomization is possible to construct a doubly robust loss function for the blips. For a
given feasible policy d define the doubly robust blip score as

Zk(dk+1,g, Q
d

k+1 )(O)

= Q
d

k+1
k

(Hk, 1) − Q
d

k+1
k

(Hk, 0)

+
K∑

r=k

{
2Ak − 1

gk(Hk, Ak)

r∏

j=k+1

I{Aj = dj(Hj)}
gj(Hj , Aj)

}{
Q

d
r+2

r+1 (Hr+1, dr+1(Hr+1)) − Q
d

r+1
r (Hr , Ar)

}
, (2)
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where
∏k

k+1 xk = 1 and where the Q-functions are recursively defined as

Q
d

k+1
0,k

(hk, ak) = E
[

Q
d

k+2
0,k+1(Hk+1, dk+1(Hk+1)) | Hk = hk, Ak = ak

]
, k ∈ {1, . . . , K},

and Q
d

k+2
K+1(HK+1, dK+1(HK+1)) = U . The blip score is doubly robust in the sense that if either g = g0 or Qd0 = Qd0

0 then

E
[
Zk(d0,k+1, g, Q

d0,k+1 )(O)
∣∣Ak−1, Vk

]
= B0,k(Ak−1, Vk),

Thus, a valid loss function for the blip at stage k is given by

Lk(Bk)(d0,k+1, g, Q
d0,k+1 )(O) =

(
Zk(d0,k+1, g, Q

d0,k+1 )(O) − Bk(Ak−1, Vk)
)2

, (3)

since E[Lk(Bk)(d0,k+1, g0, Q
d0,k+1
0 )] is minimized in the true blip B0,k. The above results inspire a recursive regression type

estimator for the blips and, consequently, the optimal policy [Luedtke and van der Laan, 2016].
When it comes to non-parametric estimation of functions, including the blips, it is worth noting that pointwise evaluation

of these functions often lacks pathwise differentiability [Luedtke and Chung, 2023]. This means that there is no asymptotically
root-n estimator available for these functions. As a result, we cannot provide performance guarantees for the estimated
policy based on these non-parametric estimators.

However, in the case of single-stage problems, it has been demonstrated that a reduction in the complexity of the
candidate set of policies to fixed linear models, decision trees or reproducing kernel Hilbert spaces is enough to establish
performance guarantees towards the best performing policy within the set [Luedtke et al., 2020, Luedtke and Chung, 2023].
To our knowledge, the results mentioned above have not yet been extended to multi-stage problems. However, we believe it
is reasonable to apply the same methodology to the multi-stage case.

Reducing the complexity of the estimated policy may offer several other benefits. Firstly, it can make the policy easier to
interpret. This is especially the case for low-depth policy decision trees and linear models with a small number of variables.
However, in practice, we see a trade-off between the performance of the policy and interpretability. Secondly, a less complex
policy can ease implementation in real-world scenarios. In some cases, it may be costly or time-consuming to collect the
necessary data for a complex policy, or the decision-maker may not have immediate online access to compute the policy
recommendations. By simplifying the policy, we can make it more feasible to implement and apply it in a practical setting.

3.2. Near-positivity violations
At this point, the recursive policy estimation approach outlined does not prevent near positivity violations. The use of
inverse probability weights in the doubly robust blip score can lead to rare instances of numerically large weights, which in
turn can cause instability in the regression for the blip. Although the estimated Q-functions can contribute to stabilizing the
scores, the consistency of these functions may be compromised when there is limited variability in the observed actions.
Consequently, there is a reliance on uncertain extrapolation when attempting to estimate and generalize the Q-functions
under such circumstances.

To address this issue, we suggest a solution that involves constraining the set of feasible actions taken by the policy. By
introducing an action probability threshold α > 0, we can modify the estimated policy recursively as follows:

dα
k (hk) = I{gk(hk, 1) ∈ (α, 1 − α)}I{Bα

k (ak−1, vk) > 0} + I{gk(hk, 1) ∈ (1 − α, 1)}.

Here, Bα
k represents the blip associated with subsequently following the optimal realistic policy at the α level. Ensuring

positivity protection is crucial for applications where positivity violations are a real concern. The importance of this
protection will be emphasized in our simulation, see Section 4. The downside of modifying the estimated policy in this
fashion is that the new policy depends on the existing action model via the g-functions. If collecting the input for the
existing action model poses issues for implementing the protected policy, we propose fitting a new simplified g-function
based on the policy input Vk. This approximated g-function can then be utilized to provide the necessary protection.

3.3. Stochastic number of decision stages
Up to this point, we have only considered an maintenance and repair process with a fixed number of stages. However, in our
application, the timing between work orders varies within the follow-up period, resulting in a stochastic number of work
order stages K (as depicted in Figure 2). If the maximum number of stages is bounded, we can still apply the outlined
methodology by augmenting each observation to have the same number of work order stages [Goldberg and Kosorok, 2012].
It is worth noting that at stage k, the blip score, and consequently the estimated policy, only depend on the observations
with at least k stages.
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0 A1 A2 T

W (X1, U1) (X2, U2) U3

H1

H2

Observation 2

Observation 1

0 A1 A2 A3 T

Fig. 2. Maintenance process in continuous time were the work orders occurs randomly over time.

4. Equipment Repair and Maintenance Simulation Study
The purpose of this section is twofold. First, we aim to compare the performance of standard Q-learning and realistic doubly
robust blip-learning in scenarios involving multiple stages with limited variation in the actions, which can lead to positivity
violations. Second, we aim to verify the consistency and asymptotics of the estimated policy values. Both aspects are crucial
for the application of policy learning, especially in the context of equipment maintenance and repair optimization.

The simulation model is based on a simplified fit of our actual application concerning reefer equipment maintenance as
described in Section 5. This approach allows us to closely resemble the data structure, including the stochastic nature of the
number of work orders, the action model, and the utility measure.

To simulate the data, we employ a Markov structural equation model (SEM) that generates the data sequentially for each
stage. Table 1 provides a description of the baseline, stage-specific variables, and endline variables in the model. Additionally,
Figure 3 presents a graphical representation of the SEM. Each equipment unit is followed from the age of 5 years to the age
of 16.5 years, resulting in a follow-up period in weeks ranging from 261 to 860. Each stage of the process is repeated as
long as the work order is approved (action 1) and the unit has not reached an age of more than 860 weeks. Otherwise the
process is stopped. For convenience, we set all subsequent stage variables to 0. The 16th work order will always be rejected,
limiting the maximum number of work orders to 16. If a unit reaches week 860, the number of moves and the additional cost
only depends on the time between the age at the previous stage and week 860. It is important to note that we only sample
observations that have at least one work order within the follow-up period.

The time variable model is based on a Weibull proportional hazard regression, implemented in the R package mets
[Scheike et al., 2014]. The remaining variable models are based on penalized regression splines and tensor product splines,
implemented in the R package mgcv [Wood, 2017]. The source code and further documentation for the simulation are
available in the R package emrsim1.

The last missing component of the simulation model is to define the rewards as a function of the variables in the SEM.
Naturally, we define the rewards in terms of the profits associated with the reefer equipment between each stage. For this
purpose we set a fixed cash equivalent of 700 for each move the reefer unit makes. The reward associated with stage k ≤ K

(Uk) is now given by

reward(k) =
[
moves(k) × 700

]
− additional cost(k) −

[
action(k − 1) × work order cost(k − 1)

]
.

And at stage K + 1 the final reward (UK+1) is given by

reward(K + 1) =
{

in service premium − requisition cost +
[
moves(K + 1) × 700

]
− additional cost(K + 1), if age(K + 1) > 860

sales price − requisition cost, if age(K + 1) ≤ 860

As the requisition cost is fixed it will have no effect on the policy learning. We only include the requisition cost to
centralize the value and make the rewards comparable to the real application. The baseline variables, W , are defined by the
type of box and unit. The state variables, Xk, includes time, age, costs and moves.

As described, the number of work orders within the follow-up period is stochastic due to the varying timing between
each stage. Figure 4 displays the number of approved and rejected work orders at each stage for a random sample of 20,000
observations. Due to the construction of the process, only a few observations experience a large number of work orders
within the follow-up period. Consequently, the estimation of the blip-functions for the late stages solely relies on a small

1 https://github.com/kkholst/emrsim
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Table 1. Variables in the Structural Equation Model (SEM) for simulating reefer maintenance and repair data.

Baseline variables

Name Description Type Conditional Distribution

Baseline age Age of the reefer at baseline Continuous Fixed
(5 years/261 weeks)

Box Type of the reefer box Binary Bernoulli
Unit Type of the refrigeration unit Binary Bernoulli

Stage variables

Time (k) Time since the previous stage. Continuous: [0, ∞) Weibull
(proportional hazard)

Age (k) Age of the reefer. Continuous: [0, ∞)
Moves (k) The number of moves made

by the reefer since the previous stage.
Discrete: [0, ∞) Poisson (log link)

Additional cost (k) Additional maintenance costs
accumulated since the previous
stage.

Continuous Gaussian

Work order cost (k) Costs associated with approving
the work order at the given
stage.

Continuous Gaussian

Action (k) Decision on whether to
approve the work order.

Binary Bernoulli (logit link)

Endline variables

Sales price Sales price of the reefer
if the reefer is scrapped
within the follow-up period.

Continuous Gaussian

In service premium Cash premium if the reefer
is in working condition
at the end of the follow-up period.

Continuous Fixed (4000)

Requisition cost Price for a new reefer. Continuous Fixed (14000)

sub-sample of the data, which may result in erratic behavior of the estimated policy. To address this, we limit the maximum
number of stages to 8 by focusing on partial policies that only intervene on the first 8 stages. The remaining stages will
continue to be determined by the existing action model. This ensures more reliable estimation and avoids potential issues
caused by the lack of data in the later stages.

To illustrate the limited support of the g-function, Figure 5 depicts the contours of the propensity, i.e., the probability of
approving a work order, as a function of age and work order cost. For situations with low age and low work order cost, it is
unrealistic to observe a rejection of the work order. Conversely, for high age and high work order cost, it is unrealistic to
observe an approval of the work order. As a result, when estimating a realistic optimal policy at a given α-level, e.g. α = 0.1,
the optimization will only focus on a narrow band of the stage variable space. Over the remaining state variable space, the
most probable action is selected to avoid positivity violations.

4.1. Nuisance model estimation
The blip policy learning method requires estimation of the nuisance g and Q-functions. We do not fit the g-functions
separately for each stage. Instead, we fit a single g-function across all stages at once taking advantage of the known Markov
structure for the decision process, i.e., that the g-function is the same for every stage:

g0,k(Hk, Ak) = g0(Zk(Hk), Ak) ∀k ∈ {1, ..., K}.

In this case the subset Zk contains the age and the work order cost at stage k. The g-function is modeled using a generalized
additive model with integrated smoothness estimation [Wood, 2017] as implemented in the R package mgcv. The model
includes a tensor product smoother on the age and work order cost. The model is the same model used to simulate the
actions in the SEM and as such it represents the true underlying model.
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Fig. 3. Graph of the structural equation model at stage k. The model is used to simulate data similar to the application in Section 5
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Fig. 4. Count of approved and rejected work orders for each stage for 20,000 simulated observations.

The Q-functions are not fitted using the full available history at each stage. Instead, only the variables associated with
each stage, along with the cumulative costs and the cumulative number of moves, are provided. This simplification is justified
if it holds that

Q
d

k+1
0,k

(hk, ak) = Q
d

k+1
0,k

(lk, ak) ∀k ∈ {1, ..., K}, (4)
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Fig. 5. The true g-model propensity for approving a work order for varying age and work order cost. The remaining variables (box,unit,
and region) are kept fixed.

where lk is the considered summary of hk. In practice, the Q-functions are fitted using the R package SuperLearner [Polley
et al., 2021]. The model creates a weighted average of an ensemble of models based on the cross-validated risk (10 folds).
The ensemble includes linear regression models, generalized additive models with discretization, lasso models with natural
cubic spline bases, and a regularized gradient boosting tree model. [Chen et al., 2023]. All models, except the gradient
boosting tree model, include all possible action interactions.

4.2. Policy learning & evaluation
We use the R package polle [Nordland and Holst, 2022] and its policy_learn function to estimate the blip functions and
the corresponding policy. For doubly robust evaluation, we calculate scores similar to Equation (2) and estimate the value
by taking the empirical mean of the scores. The centralized scores are actually estimates of the influence function terms for
the associated value estimator, making it easy to construct Wald-type confidence intervals. The policy evaluation method is
implemented in the polle package through the policy_eval function, see [Nordland and Holst, 2022] for more details.

In addition to the doubly robust value estimator, we can also estimate the policy value using inverse probability weighting
(IPW) or the empirical mean of the fitted stage one Q-function. The former we refer to as the outcome regression (OR)
estimator. Ideally, both the policy learning and evaluation procedures would involve cross-fitting the g and Q-functions.
However, for computational simplicity, we opt to use the in-sample fitted nuisance functions.

In practice, selecting a suitable regression model for the blip functions is challenging, especially when the number of
observations in each of the considered eight stages varies as significantly as in this case. The later stages may not support as
flexible a blip function as the earlier stages. To address this, we choose to use a super learner for the blip functions based on
the doubly robust loss function in Equation (3). In the ensemble we include simple linear models and more flexible linear
models with unit interaction terms, spline basis expansions of continuous variables, and product interaction terms. This
approach was first suggested by [Luedtke and van der Laan, 2016] and further studied by [Montoya et al., 2022].

The blip policy learning method is benchmarked against regular Q-learning with the same nuisance model specifications.
For reference, we also include Q-learning based on a linear model and a action stratum conditional mean model. We apply
realistic versions of all of the policy learners. The simulation results are presented in Table 2.

Firstly, standard Q-learning based on the flexible nuisance models outperforms the blip policy learner. This result
may not be that surprising. If the estimated Q-functions are consistent and have low variability, the associated policy
approximates the optimal policy well. The low bias and RMSE of the outcome regression estimator indeed give an indication
that the fits of the Q-functions are good. Notably, although Q-learning in this case is insensitive to positivity violations,
adding some positivity protection does not negatively impact the learner’s performance. And importantly, increasing the
protection level reduces the bias of the doubly robust and outcome regression value estimators by half. In comparison, the
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pl qm gm alpha value SD (value) bias (DR) RMSE (DR) coverage (DR) bias (IPW) RMSE (IPW) bias (OR) RMSE (OR)
blip mean gam 0.000 994 645 14472 91683 0.43 6534 43123 -410 467
blip mean gam 0.010 1178 74 140 159 0.44 56 257 -419 453
blip mean gam 0.020 1212 53 98 121 0.65 79 129 -376 408
blip mean gam 0.030 1200 54 74 99 0.67 35 132 -387 417
blip mean gam 0.040 1228 36 53 79 0.76 45 99 -351 372
blip mean gam 0.050 1222 52 64 85 0.80 45 104 -360 382
blip mean gam 0.075 1222 37 33 60 0.93 21 75 -337 364
blip mean gam 0.100 1214 35 23 61 0.94 8 80 -325 339
blip sl gam 0.000 1160 181 287 403 0.81 99 1635 13 52
blip sl gam 0.010 1279 40 86 117 0.75 143 223 11 65
blip sl gam 0.020 1283 39 68 104 0.73 46 251 11 59
blip sl gam 0.030 1285 34 54 84 0.82 50 138 2 50
blip sl gam 0.040 1282 29 60 86 0.80 87 141 11 54
blip sl gam 0.050 1292 27 37 75 0.89 24 217 -2 50
blip sl gam 0.075 1281 34 21 58 0.93 59 111 -13 58
blip sl gam 0.100 1255 34 24 49 0.94 43 108 -13 46
ql glm glm 0.000 1241 20 -287 497 0.88 271 691 361 365
ql glm glm 0.010 1257 20 -63 149 0.92 227 484 334 340
ql glm glm 0.020 1264 20 -32 102 0.91 153 256 296 301
ql glm glm 0.030 1263 20 -23 81 0.90 144 230 279 284
ql glm glm 0.040 1262 21 -4 63 0.95 127 173 262 267
ql glm glm 0.050 1257 18 2 59 0.96 115 182 260 266
ql glm glm 0.075 1251 22 -7 54 0.94 81 149 216 222
ql glm glm 0.100 1238 20 -0 60 0.89 65 104 193 202
ql sl gam 0.000 1346 22 49 71 0.87 54 203 39 61
ql sl gam 0.010 1354 20 41 77 0.82 61 160 38 68
ql sl gam 0.020 1350 22 26 64 0.88 47 153 23 59
ql sl gam 0.030 1347 19 28 65 0.89 53 138 22 57
ql sl gam 0.040 1346 19 22 57 0.92 73 132 15 52
ql sl gam 0.050 1341 20 26 69 0.84 61 125 15 56
ql sl gam 0.075 1322 19 20 61 0.89 61 120 8 54
ql sl gam 0.100 1298 19 14 52 0.93 29 91 1 44

Table 2. Policy learning and evaluation simulation. The ’pl’ column specifies the policy learning method, where ’ql’ refers
to Q-learning and ’blip’ refers to blip-learning. The ’qm’ and ’gm’ columns indicate the choice of models for the Q-functions
and g-functions, respectively. ’glm’ represents a generalized linear model, ’sl’ represents Super Learner, and ’gam’ represents
a generalized additive model with integrated smoothness estimation. The parameter α defines the considered realistic action
set, with α = 0 implying no restriction on the policy learner. Each row is based on 100 replications with a sample size of
20,000. For each estimated policy, the true value is approximated by Monte Carlo sampling with 100,000 observations under
the policy. The value under the existing observed action model is 729.

Q-learner and outcome regression value estimator based a simple linear model (’qm’:’glm’) is overly optimistic as evident
from the value bias. Despite this, both the estimated policy and the doubly robust value estimator perform decently when
we add some positivity protection.

The performance of the blip policy learner is decent considering the induced simplicity of the fitted policy. However, it is
evident that this policy learner is more susceptible to positivity violations. When no positivity protection is added to the
policy (α = 0), the inverse probability weighting terms in the doubly robust blip scores exhibit high variability, resulting in
unstable policies and high variation in value. Restricting the policy learner by increasing the α-level enhances performance
and stability considerably. In our simulation, the highest performance is achieved at α = 0.05. Further increasing the α-level
improves the consistency of the value estimator, albeit at the expense of the policy performance. To showcase the double
robustness property of the blip learner we include the case where we let the Q-function be fitted as the empirical mean for
each action (’qm’:’mean’). In this case the blip learner will solely rely on the g-functions for consistency. It is clear from the
results that this learner is even more susceptible to positivity violations. However, with some protection, the learner still
manages to estimate a reasonably performing policy.

Overall, the simulation study suggests that adding positivity protection to any policy learner under consideration is
beneficial. The additional protection may contribute to improved policy performance. What is clear is that our ability to
evaluate policy performance is improved. However, a question arises: how do we determine the optimal level of protection
that strikes a balance between policy performance and evaluation? It should be noted that the number of stages in the
analysis plays a crucial role in determining the appropriate level of protection.

From a practical standpoint, we suggest to monitor the changes in the estimated doubly robust value and its associated
standard error as the positivity protection level is increased. Although the value estimator is doubly robust, its coverage
depends on the consistency of both the Q and g-functions. Therefore, it is important to also monitor the outcome regression
and inverse probability weighting estimators. We conjecture that notable deviations in the value estimates and the standard
error justifies increasing the protection level. To support this, we present the value estimates and standard error for a single
run of the blip learner policy evaluation simulation in Figure 6. Although the outcome regression estimate remains stable
even for α = 0, the inverse probability weighting estimator clearly indicates practical positivity violations. This issue also
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Fig. 6. Plot of the estimated policy value for changing values of the protection level α. The results are based on a single run of
the blip learner policy evaluation. The Q-functions are fitted using a super learner, and the g-function is fitted using a generalized
additive model. The solid black line and points represent the doubly robust value estimates. The true value of the fitted policy is
represented by the red line and points. The dashed line represents the inverse probability weighting estimates, and the dotted line
represents the outcome regression estimates.

affects the estimated standard error of the doubly robust estimator. Protection levels between 0.01 and 0.05 show similar
estimated performance. In this case, we argue that it is sensible to select the highest protection level.

5. Application - Reefer Maintenance
5.1. Setting & data
Maersk owns a large fleet of more than 300,000 reefers used primarily to transport chilled or frozen perishable cargo. Reefers
are considerably more expensive to acquire than dry containers and with an intended lifetime between 12 and 20 years, the
fleet of reefers represent a substantial long term investment for the company. As with all containers, reefers have a high wear
and tear level, and a large amount of resources must be spend to maintain the fleet. Our aim is to leverage the available
historic data to identify maintenance policies that will maximize the value of each reefer across its lifetime. Because of the
operation scale, even small improvements in the fleet management can greatly impact the business.

Every cleaning, inspection, repair, or maintenance task associated with a reefer is recorded as a work order. Each work
order consists of a list of items describing the individual tasks and the required materials, along with the estimated cost
of each item. The items are categorized as either box items or refrigeration unit items. Different repair shops may handle
various items within a work order. Additionally, each work order is associated with a mode that indicates whether the reefer
is laden (loaded with cargo) or empty.

Work orders that involve routine tasks like pre-trip inspections and cleanings are automatically approved. We exclude
such work orders from the decision process. Thus, we only include work orders with a box or refrigeration unit cost estimate
above a given threshold. All of these work order requires approval from an equipment manager. The manager is supported
by operational guidelines that take into account factors such as the age of the reefer, the region it is operating in, and
specific cost limits for both box and refrigeration unit repairs. Regional differences occur because labor costs and demand for
empty reefers varies across different regions. Another important consideration for approving or rejecting a work order is
to determine the party liable for the damage, whether it’s the customer or a third party. In cases where a work order is
rejected, the reefer is typically sold off or scrapped.

The data set is based on all Maersk owned 40ft steel reefers manufactured in 2000 and 2001. The data set contains
information on the specifications of the reefers and detailed information on the usage and location histories as well as all
work orders. Lastly, the data set contains information on sales and scrap prices for reefers that have been sold. The reefers
are followed 11.5 years from the age of 5. Thus, the subsequent analysis is conditional on reefer surviving the first 5 years.
Furthermore, we exclude 179 reefers with no work orders within the follow-up period. These reefers will not be affected by
any intervention on the work order process and can thus safely be excluded for our purposes. In total the cohort consists of
17,704 reefers. Figure 7 (a) displays the number of active reefers in the cohort over time. After 10 years, the disposal rate of
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Fig. 7. (a): Number of active reefers over time in the cohort. The dashed lines mark the follow-up period. (b): Number of work orders
within the follow-up period for the reefers in the cohort.

the reefers increases rapidly. As expected, the reefers have a stochastic number of work orders within the follow-up period,
see Figure 7 (b).

5.2. Defining the utility
Defining a utility measure is crucial for quantifying the potential impact of implementing a given policy. The utility measure
should accurately capture the priorities and objectives of the business. In the context of reefers, their utility is determined
by revenue generation through service provisions and reefer sales, as well as the costs associated with maintenance, repairs,
and the initial purchase of the reefer.

To establish a utility measure, we assign a fixed cash equivalent for each type of service provided by the reefer. We
differentiate between live trips, where the refrigeration unit is in use, and non-live trips. This allows us to calculate the
revenue stream generated by each reefer within the follow-up period. As mentioned, the cost stream is defined as the expenses
associated with maintenance and repairs of the reefer during the same period.

The timing of the revenue and costs is important for the business, as it influences the availability of capital for alternative
investments. To account for this aspect, we use the (US) inflation curve to discount the revenue and cost streams such that
early costs are penalized, and early revenues are rewarded.

If a reefer is sold within the follow-up period we add the selling price to revenue stream and discount it according to the
sales date. If a reefer is not sold within the follow-up period, a cash premium equivalent to the (discounted) sales price of a
reefer in working condition is added to the revenue stream at the end of the follow-up period.

The individual reefer purchase prices are not available for this application. Thus, we cannot account for the potential
differences in purchase prices. For this simple reason the purchase prices are not included in the cost stream. Finally, we
assume that the business immediately wants to replace a reefer that have been sold to maintain the fleet capacity. Thus a
fixed requisition cost is added to the cost stream at the time of the sale or at the end of the follow-up period. Importantly,
the requisition cost is then discounted accordingly.

The individual rewards can now easily be defined as the discounted profit generated between each stage in the work
order process. By definition, the utility is defined as the overall discounted profit.

5.3. Nuisance model estimation
The information available to the equipment manager for the approval of a specific work order is recorded in a centralized
operational system. Importantly, the equipment manager does not have access to the full maintenance history of the reefer.
Therefore, it is reasonable to assume that the action model is independent of the stage number. The information available to
the equipment manager can be represented as a subset Zk of the full history Hk. As a result, we can simplify the g-functions
as follows:

g0,k(Hk, Ak) = g0(Zk(Hk), Ak) ∀k ∈ {1, ..., K}.

Specifically, Zk contains information on the cost estimates for the box and the refrigeration unit, age, location, and
specifications. Furthermore, we include 14 binary system notifications flagging various conditions. We reasonably assume
that Zk is the minimal set of variables required to ensure sequential randomization at stage k.

Due to the Markov structure of the g-function, we stack the data across all 8 stages. The g-function is then cross-fitted
using 20 folds. Within each training fold the g-function is fitted using the super learner algorithm as described in Section
4. The ensemble includes various logistic regression models, generalized additive models with discretization and gradient
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Fig. 8. Histogram and calibration plot of the cross-fitted g-function values.

boosting tree models. A histogram of the cross-fitted g-function propensities, i.e., g(Hk, ak = 1), and a bin calibration plot
are displayed in Figure 8.

The equipment manager typically adheres to the implemented guidelines, where work orders with cost estimates below
specified limits are approved, and those exceeding the limit are not. However, deviations from these guidelines occur due to
variations in regional demand for reefers and repair shop capacity. We assume that these variations are completely random
in the sense that they do no act as confounders for the future rewards. Anyhow, we expect the cross-fitted values of the
g-function to be heavily skewed towards 0 and 1, which is indeed the case as seen in Figure 8. Additionally, it is evident that
the cross-fitted values of the g-function are well calibrated. In our practical experience, when employing flexible models for
the g-functions, we find that the cross-fitting procedure has a positive impact on calibration.

Theoretically, the compounded history {W, Z1, A1, . . . , Zk−1, Ak−1, Zk} is the minimal set of variables that can be used
as input for the Q-function at stage k. However, for practical purposes, we first aim to summarize the full history such
that Equation (4) holds. Specifically, we construct the the Q-function input to include the g-function input, Zk, and the
cumulative work order costs associated with the box and the refrigeration unit. The previous actions are omitted from the
summary since they are typically all approved. Moreover, we do not consider past locations and system notifications to have
an impact on future rewards.

To improve the performance of the policy learner and the efficiency of the policy evaluation, we can enhance the
Q-function input by incorporating additional features from the full available history. We should only include features that we
believe, when combined with the action, are predictive of future rewards. In this context, we include the following features:
the time elapsed since the previous approved work order, the cumulative work order costs associated with the box and the
refrigeration unit (including emergency repairs), and the cumulative count of live and non-live trips.

The Q-functions are fitted recursively based on the estimated policy for the later stages. For modeling the Q-functions,
we utilize a super learner ensemble that combines linear models with different interaction terms and gradient boosting tree
models. The entire procedure is cross-fitted using the same 20 folds as for cross-fitting the g-function.

5.4. Policy learning & evaluation
We follow the exact same methodology for policy learning as outlined in the simulation study in Section 4. Both a doubly
robust blip learner and a regular Q learner is recursively fitted using the policy_learn function from the polle R package
[Nordland and Holst, 2022]. The blip functions are recursively fitted using a super learner model. The ensemble consists
of linear models with different specifications, including additional interaction terms and spline basis expansions of the
continuous variables. The variable input for the blip functions is the same as that for the Q-functions.
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Fig. 9. Cross-fitted value estimates for the policy learners.

Both policy learners are evaluated based on 20-fold cross-fitting, i.e., the g-function, Q-functions, and blip functions
are fitted on each of the training folds, and the doubly robust value score is calculated on each of the validation folds. It
is important to note that the folds remain the same for every value of the protection level α. The results of the policy
evaluation are displayed in Figure 9.

Overall, the Q-learner shows the highest estimated value gain based on the doubly robust value estimator. Specifically,
for α = 0.01, the estimated value gain is $287 with a standard error of $26. For α = 0.02 and α = 0.03, the estimated gain
drops slightly to $272 with a standard error of $23. The outcome regression and inverse probability weighting value estimates
show some discrepancy, which may indicate issues with consistency of either or both the nuisance models. Without positivity
protection, the outcome regression value estimate suggests an optimistic value gain of $505.

As anticipated, the blip learner is far more sensitive to the positivity protection level compared to the Q-learner. For
α = 0.02, the estimated value gain is $186 with a standard error of $45. Once again, we observe a noticeable discrepancy
between the outcome regression estimate and the inverse probability weighting estimate, indicating potential inconsistencies
in either or both of the estimates. Based on these results, it is challenging to argue for anything other than the superior
performance of the Q-learner, making it the recommended candidate for future implementation.

At this point, our focus is to analyze the implications of the estimated policy derived from the Q-learner. The top figure
in Figure 10 represents the number of work orders for which a policy intervention is considered realistic at different α levels.
In total, across the 8 stages examined, there are 71,668 observed work orders. However, for a protection level of α = 0.01,
only 22,313 of these work orders qualify for being controlled by the estimated policy.

The bottom figure in Figure 10 plots the number of work orders for which the observed action is not in agreement with
the estimated policy. Interestingly, the total count of disagreements does not vary considerably between α = 0 and α = 0.01,
indicating that the estimated policy without protection does not find value gains in regions of the data with limited support.
This suggests that the Q-learner does not heavily rely on extrapolation of the Q-functions as one might have feared.

By further examining the disagreement count between the observed actions and the policy, we see that the policy is more
opportunistic compared to the existing action model. Specifically, at α = 0.01, the policy recommends approving 4,786 work
orders that were in fact rejected, while it only recommends rejecting 1,150 work orders that were in fact approved.

6. Conclusion
Assumption lean statistical policy learning has immense potential within the industry, particularly in the field of physical
asset management. It forces the analyst to justify the minimal set of assumption needed to answer causal question from
historical data. The transparency of the existing decision process is crucial for justifying sequential randomization, as it
requires thorough documentation and storage of all relevant information related to the historical decision-making.
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Fig. 10. The top plot presents the count of realistic work orders based on different values of the protection level α. The bottom plot
shows the number of observed actions that are not in agreement with the estimated policy. The count is divided into two groups: the
blue points represent the count for which the policy recommends approving the work order, while the red points represent the count
for which the policy recommend rejecting the work order.

Near positivity violations are a practical challenge that has not received sufficient attention. Even large volumes of
historical data have limited value for data-driven decision-making if strict guidelines and policies are in place. Our simulation
study and application highlighted the importance of actively restricting a policy learner to consider only realistic alternative
actions. This is especially critical for doubly robust policy learners that rely on inverse probability weights. While methods
like Q-learning may offer greater stability, they are less robust against model misspecifications. Regardless of the type of
realistic policy learner used, we strongly recommend the use of (cross-fitted) doubly robust policy evaluation.

In our specific application, we estimated a significant value gain of $287 over the lifetime of a refrigerated container.
Although this may seem insignificant at first, considering the scale of 300,000 reefers, the potential value gain for the business
amounts to $86 million.

The methods employed in this paper offer a simple starting point for data-driven policy optimization without the
requirement to construct more or less realistic simulation models for the system. Any implementation of a learned policy
should introduce some stochasticity to the policy for the sake of future optimization. The value of the resulting stochastic
policy can be estimated using the same policy evaluation procedure outlined in this paper. Nevertheless, we see possibilities
for future research in estimating stochastic policies from historical data under practical positivity violations.
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In a placebo-controlled clinical study onemay
calculate the average treatment effect to con-
vey the effect of the active treatment on
some outcome. However, if it is speculated
that the treatment only has an effect if the
patient responds to the treatment defined
by a certain biomarker response, then it is
arguablymore relevant to estimate the treat-
ment effect among such responders. We
present such a causal parameter that is based
on principal stratification and is identified
under the exclusion of a treatment effect
among the non-responders. We focus on
time-to-event outcomes allowing for right
censoring, and construct a doubly robust and
efficient estimator based on the associated
efficient influence function. The properties
of the estimator are showcased in a simula-
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tion study and the methodology is applied
to the Leader trial investigating the effect
of liraglutide on the occurrence of cardio-
vascular events.
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function, local average treatment effect,
principal stratification, survival, treatment effect
among responders

1 | INTRODUCTION

In a placebo controlled clinical trial the average treatment effect is clearly an estimand of great inter-
est. However, in situations with a potential long term outcome such as a time-to-event it may also
be of interest to compare only populations where it is expected that the active treatment should
work. Such insight may sometimes be obtained via biomarker measurements as described for in-
stance in Bornkamp and Bermann (2019) (BB). Specifically, they describe the CANTOS outcomes
study (Ridker et al., 2017) where the primary outcome was time to a major adverse cardiac event
(MACE). The CANTOS trial investigated treatment with an anti-inflammatory agent against placebo
as inflammation has been identified as a important factor in atherosclerosis. In that study, the used
biomarker was high sensitivity C-reactive protein (hs-CRP) with lower values indicating less inflam-
mation. Interest focused on the treatment effect onMACE for patients that would have their hs-CRP
lowered beyond a specific target level three months after treatment initiation. Because, otherwise
it is suspected that treatment will have no effect on the long term outcome. Such a comparison is,
however, not straight forward as also detailed in BB. A fair comparison is as mentioned to focus on
the patients that would have the desired biomarker response if treated with the active agent, but
this biomarker response is unknown for patients in the placebo arm. We note that the considered
problem is mirrored by the problem of estimating the causal treatment effect among those that com-
ply with the active treatment in a placebo-controlled clinical study where there may be patients that
do not comply with the active treatment. Again, the compliance status is not observed for patients
in the placebo arm. The population of interest here is also known as a principal stratum andmethods
for dealing with such problems has attracted some interest lately as nicely summarized in Bornkamp
et al. (2021) that also give further examples where a principal strata estimand may be of clinical
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interest. We assume a stochastic exclusion criteria to identify the causal estimand of interest but
other identification assumptions exist as well, see Stuart and Jo (2015); Larsen and Josiassen (2020);
Jiang and Ding (2021). In this paper we focus on the situation with a time-to-event outcome that
may be right censored, and we wish to estimate the before mentioned causal effect among treat-
ment responders just like the situation in the CANTOS study. Such an estimation procedure was
also proposed by BB. However, the method we propose improves upon their estimator in several
important ways. The plug-in estimator proposed by BB requires completely independent censoring
and correct specification of the proposed working Cox-model. Both assumptions are likely to fail in
many studies leading to biased estimation of the target estimand. We further allow for the use of
baseline covariates like BB, but develop estimation based on the corresponding efficient influence
function the benefit being a robust and efficient estimation procedure that only requires conditional
independent censoring given the covariates. Furthermore, the covariates are used in an active way
to gain precision, which is possible due to the initial randomization of treatment. An important
feature of our method is also that censoring is allowed to depend on the biomarker response as
non-responders may be more likely to drop-out of the study. To our knowledge there is no such
estimator available for this specific estimand in the literature. We furthermore derive the asymp-
totic properties of the estimator making formal inference possible, and investigate the estimators
performance in simulation studies. We also apply the presented methods to data from the LEADER
trial (Marso et al., 2016). The trial investigates the effect of liraglutide on cardiovascular events.
In Section 2, inspired by the well-known local average treatment effect (Angrist et al., 1996; Fran-
gakis and Rubin, 2002), we formally define responders as a principal stratum resulting in a causally
interpretable average treatment effect for that stratum. We identify the causal parameter by the
(stochastic) exclusion of a treatment effect among the non-responders and we discuss situations
where the restriction is a reasonable assumption. In Section 3 we present the efficient estimator
of the resulting target parameter based on the associated efficient influence functions taking into
account the baseline covariates and that we have a randomized study design (Bickel et al., 1993;
Van der Vaart, 2000; Van der Laan et al., 2003; Hines et al., 2022). For generality, we start handling
the situation with binary and continuous outcomes and then turn to the before mentioned time-to-
event outcome with censoring. Section 4 demonstrates the properties of the constructed estimator
in two simulation studies. Finally, in Section 5 we apply the presented methods based on data from
the LEADER trial (Marso et al., 2016). Our analysis joins an increasing list of clinical applications
(Bornkamp and Bermann, 2019; Larsen and Josiassen, 2020; Bornkamp et al., 2021; Hirano et al.,
2000; Loeys and Goetghebeur, 2003; Gilbert et al., 2003; Egleston et al., 2017; Magnusson et al.,
2019).
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2 | SETUP AND THE AVERAGE TREATMENT EFFECT AMONG RE-
SPONDERS

2.1 | Continuous or Binary Outcome

Let A ∈ {0, 1} denote a randomization indicator in a clinical trial with A = 1 corresponding to treat-
ment and A = 0 to placebo. The randomization probability Ð(A = 1) = δ ∈ (0, 1) is assumed
to be known. Let D ∈ {0, 1} denote a post-randomization indicator (e.g. an indicator function of
biomarkers). LetW ∈ W denote a vector of baseline variables. The outcome of interest is denoted
Y ∈ Y and may be continuous or binary. Later we focus on the situation with a time-to-event out-
come, which may be right censored. We assume that observations are generated from the structural
model

W = fW (UW ), A = fA (UA ),

D = fD (W ,A,UD ), Y = fY (W ,A,D ,UY ),

where U = (UW ,UA,UD ,UY ) is a vector of exogenous variables. Due to randomization, UA is inde-
pendent of the other exogenous variables. LetO = (W ,A,D ,Y ) denote the observed data and let P0
denote the true distribution of the observed data. The data generating model allow us to formulate
potential outcomes as a result of an intervention on the assignment of treatment

D (a ) = fD (W , a,UD ), Y (a ) = fY (W , a,D (a ),UY ) .

Importantly, bothD (1) andD (0) are independent of A and thus behave as proper baseline variables.
On this basis, Angrist et al. (1996) and Imbens and Rubin (1997) defines four principal strata denoted
compliers {D (0) = 0,D (1) = 1}, always-takers {D (0) = 1,D (1) = 1}, defiers {D (0) = 1,D (1) = 0}
and never-takers {D (0) = 0,D (1) = 0}. Note that the principal stratum of an individual can never
be observed. However, the stratum of responders {D (1) = 1} composed of compliers and always-
takers is observed for individuals randomized to treatment but not for individuals randomized to
placebo. We define the average treatment effect among responders as

Å[Y (1) −Y (0) |D (1) = 1] . (1)
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To identify the average treatment effect among responders, we rely on the stochastic exclusion re-
striction, see Hirano et al. (2000), defined as

Å[Y (1) −Y (0) |D (1) = 0] = 0. (2)

Under the stochastic exclusion restriction,

Å[Y (1) −Y (0) ] = Å[Y (1) −Y (0) |D (1) = 1]Ð[D (1) = 1],

and thus the average treatment effect among responders is identified as

Å[Y (1) −Y (0) |D (1) = 1] = Å[Y (1) −Y (0) ]
Ð[D (1) = 1]

=
Å[Y |A = 1] − Å[Y |A = 0]

Å[D |A = 1] , (3)

where the last equality holds due to consistency. This result is similar to Proposition 1 in Angrist et al.
(1996). Note that the estimand has some resemblance to the Wald estimand in the instrumental
variables setting, see Didelez and Sheehan (2007). For ease of notation let

Ψa (P ) = Å[Y |A = a ] = Å{Å[Y |A = a,W ] },

ΨD (P ) = Å[D |A = 1] = Å{Å[D |A = 1,W ] } .

That Å[Y |A = a ] = Å{Å[Y |A = a,W ] } follows because of A andW being independent, and similarly
with the last equation in the latter display.

2.2 | Time to Event Outcome
Let A, D and W be defined as before. In this setup the outcome of interest is a time-to-event
endpointT , whichmay be subject to right censoring. LetC denote the censoring time. The observed
outcome is given by T̃ = min(T ,C ) and ∆ = I {T < C }. We assume that T ⊥ C |W ,A,D . It is
important that the censoring is allowed to depend both on (A,W ) but also on D as this is likely
to be the case in many practical settings where censoring may be more likely for patients where
the biomarker information indicates treatment failure. Let O = (W ,A,D , T̃ ,∆) denote the observed
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data. As before, we assume that the outcome is generated from a structural model

T = fT (W ,A,D ,UT ), C = fC (W ,A,D ,UC ),

whereUT andUC are exogenous variables related to the outcome. Note thatUT ⊥ UC |W ,A,D . Let
P0 denote the true distribution of the observed data O with density

p0 (o ) = µ0 (w )g0 (a )h0 (d |w , a )λ0 (t |w , a, d )∆S0 (t |w , a, d )λc0 (t |w , a, d ) (1−∆) S c0 (t |w , a, d ),

where λ0 and λc0 denote the hazard functions ofT andC and S0 and S c0 denote the survival functions
of T and C . Again, the data generating model allow us to formulate potential outcomes as a result
of an intervention on the assignment of treatment

T (a ) = fT (W , a,D (a ),UT ), C (a ) = fC (W , a,D (a ),UC ) .

For a given time point τ > 0 we are interested in the average treatment effect among responders
defined as

Ð(T (1) ≤ τ |D (1) = 1) − Ð(T (0) ≤ τ |D (1) = 1) . (4)

For identification purposes, we assume positivity for the censoring variable, i.e., we assume that
S c0 (τ |W ,A,D ) > η almost surely for some η > 0. Under the stochastic exclusion restriction (2), the
average treatment effect among responders can be identified similar to (3) as

Ð(T ≤ τ |A = 1) − Ð(T ≤ τ |A = 0)
Å[D |A = 1] , (5)

where

Ð(T ≤ τ |A = a ) = Å{Ð(T ≤ τ |A = a,W ) }

because of the randomization. For ease of notation let Ψa (P ) = ÐP (T ≤ τ |A = a ) .
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2.3 | Notes on the Stochastic Exclusion Restriction
The stochastic exclusion restriction (2) formulated in this paper states that the average treatment
effect for non-responders is zero, i.e., that the treatment has no effect on the outcome if the respon-
dence under treatment is zero. This formulation is weaker than the monotonicity assumption and
exclusion restriction originally stated in Angrist et al. (1996). Here, the authors assume that

D (1) ≥ D (0) (6)
Y (A = a,D = d ) =Y (A = a ′,D = d ) [a, a ′, d ∈ {0, 1} . (7)

Due to monotonicity (6), on the set {D (1) = 0} it must also hold that D (0) = 0, and due to the
exclusion restriction (7)Y (1, 0) =Y (0, 0) . Thus, it holds that

Å[Y (1) −Y (0) |D (1) = 0] = Å[Y (1,D (1) ) −Y (0,D (0) ) |D (1) = 0,D (0) = 0]

= Å[Y (1, 0) −Y (0, 0) |D (1) = 0,D (0) = 0]

= 0.

It is clear that the exclusion restriction (7) can be replaced by the restriction that

Y (A = 1,D = 0) =Y (A = 0,D = 0) . (8)

The disadvantage of (8) and (7) is that these restrictions only make sense in situations where an in-
tervention on D is hypothetically possible. The stochastic exclusion restriction (2) does not suffer
from the same conceptual issue.
The stochastic exclusion restriction is nevertheless an untestable assumption, sowhether it is reason-
able depends on expert knowledge about the specific application. An ideal application is a blinded
randomized trial with all-or-nothing compliance where patients assigned to placebo do not have
access to the active treatment, e.g., the patient has to take a single pill. In this case, the post-
randomization indicator expresses the exposure to the active treatment. Because the trial is blinded,
it is reasonable to assume that the treatment effect is zero for non-responders.
Another important case is a blinded randomized trial where post-randomization biomarkers identify
all or a subset of patients not reacting to the active treatment. If a medical expert can argue that the
treatment itself cannot have an effect on the outcome of interest for this group of patients, then it
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is again reasonable to assume that the stochastic exclusion restriction holds.

3 | EFFICIENT ESTIMATION

The target parameter for estimation has the form

ΨT (P0 ) =
Ψ1 (P0 ) − Ψ0 (P0 )

ΨD (P0 )
. (9)

We aim to efficiently estimate each of the subparameters Ψ1 (P0 ) , Ψ0 (P0 ) , and ΨD (P0 ) and then
efficiently estimate ΨT (P0 ) by plug-in. The key to constructing efficient and asymptotically linear
estimators for each of the subparameters is to derive the corresponding efficient influence functions
(Bickel et al., 1993; Van der Vaart, 2000; Van der Laan et al., 2003), see the Appendix for a brief
introduction to this theory.

3.1 | Continuous or Binary Outcome

Since the orthogonal complement of the tangent space is given by T⊥ =
{ (A − δ )h∗ (W ) : Å [

h∗ (W )2] < ∞}
it can be shown that the efficient influence functions for ΨD (P0 ) = Å[D |A = 1] and Ψa (P0 ) =

Å[Y |A = a ] are given by

ψ̃D (P0 ) (O ) = A

g0 (1)
(D − H0 (W ) ) + H0 (W ) − ΨD (P0 ), (10)

ψ̃a (P0 ) (O ) = I {A = a }
g0 (a )

(Y − Q0 (a,W ) ) + Q0 (a,W ) − Ψa (P0 ), (11)

where

g0 (a ) = Ð(A = a ) = aδ + (1 − a ) (1 − δ ),

H0 (w ) = Å[D |A = 1,W = w ],

Q0 (a,w ) = Å[Y |A = a,W = w ],
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see for example Tsiatis (2006). Let Ĥn and Q̂n denote models for H0 and Q0 and define the one-step
estimators

Ψ̃Dn (Ĥn ) = Pn φ̃D (P̂n ) (O ) = Pn
{

A

g0 (1)
(
D − Ĥn (W ) ) + Ĥn (W )

}
(12)

Ψ̃an (Q̂n ) = Pn φ̃a (P̂n ) (O ) = Pn
{
I (A = a )
g0 (a )

(
Y − Q̂n (a,W )

)
+ Q̂n (a,W )

}
. (13)

We assume that

∥Ĥn − H ∗ ∥P0 = oP0 (1), ∥Q̂n − Q ∗ ∥P0 = oP0 (1), (14)

for some models H ∗ and Q ∗. As described in Section 3, to prove that the one-step estimators
Ψ̃Dn (Ĥn ) and Ψ̃an (Q̂n ) have influence functions ψ̃D (P ∗ ) (O ) and ψ̃a (P ∗ ) (O ) , we need to prove that
the associated remainder terms are oP0 (n−1/2 ) . It is simple to show that

P0φ̃
D (P̂n ) (O ) = ΨD (P0 )

P0φ̃
a (P̂n ) (O ) = Ψa (P0 ), a ∈ {0, 1} .

Thus, the second order remainders R̃D (P̂n , P0 ) and R̃ a (P̂n , P0 ) are zero, see (20) in the Appendix. We
are left to prove that the empirical process remainder, given by (21) in the Appendix, is oP0 (n−1/2 ) .
In particular, this will be the case if the models Ĥn and Q̂n fall in a Donsker class with probability
tending to one. The Donsker class condition holds for parametric models, but it will generally not
hold for data-adaptive models for which the complexity increase with the sample size, see Cher-
nozhukov et al. (2018). However, the Donsker class condition can be avoided by fitting Ĥn and Q̂n
on a separate data set, for example, by constructing a cross-fitted one-step estimator as described
by Chernozhukov et al. (2018). Note that (14) is a very weak model requirement. Thus, we are al-
most guaranteed that the one-step estimators (12) and (13) are consistent and that inference based
on an approximation of (23) has the correct level of coverage. As a result, the associated plug-in
estimator of the average treatment effect among responders given by (24) will also be consistent
and have the correct level of coverage. Lastly, the plug-in estimator will be asymptotically efficient
if H ∗ = H0 and Q ∗ = Q0.
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3.2 | Time to Event Outcome

The efficient influence function for ΨD (P0 ) = Å[D |A = 1] is still given by equation (10) with an
associated one-step estimator given by (12). Thus, we can focus on estimating the subparameter
Ψa (P0 ) = Ð(T ≤ τ |A = a ) . For ease of notation, let X = (W ,A,D ) . As shown in the Appendix, the
efficient influence function for Ψa (P0 ) is given by

ψ̃a (P0 ) (O ) = I {A = a }
g0 (a )

(
∆(τ )

S c0 (min(T̃ , τ ) |X ) I {T̃ ≤ τ } +
∫ τ

0

S0 (u |X ) − S0 (τ |X )
S0 (u |X )Sc0 (u |X ) dM c

0 (u |X ) )
)

+
(
1 − I {A = a }

g0 (a )

)
F0 (τ |A = a,W ) − Ψa (P0 ) (15)

= φ̃a (P0 ) − Ψa (P0 ),

where ∆(τ ) = I {C > min(T , τ ) } and

F0 (τ |A = a,W ) =
∑

d ∈{0,1}

{∫ τ

0
S0 (u |W , a, d )dΛ0 (u |W , a, d )

}
h0 (d |W , a ), (16)

M c
0 (s |X ) = I {T̃ ≤ s,∆ = 0} −

∫ s

0
I {T̃ ≥ u }dΛc0 (u |X ),

the latter being the censoring martingale. Define the one-step estimator

Ψ̃an (P̂n ) = Pn φ̃a (P̂n ) (O ), (17)

for a model P̂n of Λ̂n , Λ̂cn and ĥn with limiting model P ∗. Related work is given in Lee et al. (2023),
where an instrumental variable setting is considered in a discrete time setup. To show that the one-
step estimator has influence function φ̃a (P ∗ ) (O ) − Å[φ̃a (P ∗ ) (O ) ], we need to prove that second
order remainder (20) and empirical process remainder (21) are oP0 (n−1/2 ) . General model conditions
ensuring these properties are still under active research, seeWestling et al. (2021) and Rytgaard et al.
(2021). As shown in the appendix, the second order remainder is given by

R a (P̂n , P0 ) = P0
[
− I {A = a }

g0 (a )
∫ τ

0

{
Ŝn (τ |X )
Ŝn (u |X )

[
S0 (u |X ) − Ŝn (u |X ) ] − [

S0 (τ |X ) − Ŝn (τ |X ) ]}

×
S c0 (u |X )
Ŝ cn (u |X )

{
dΛc0 (u |X ) − d Λ̂cn (u |X )}

]
.
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The remainder is well defined if we assume that positivity holds for the censoring model as well, i.e.,
that Ŝcn (τ |X ) > η for some η > 0. As noted by Westling et al. (2021), the second order remainder
and empirical process remainder are oP0 (n−1/2 ) if both the time-to-event and censoring distribu-
tions are correctly modeled by a Cox proportional hazard model. However, the product structure
of the second order remainder indicates that more flexible modelling of the time-to-event and cen-
soring distributions are possible. Furthermore, we note that R a (P ∗, P0 ) = 0 if either Λ∗ = Λ0 or
Λc∗ = Λc0 , meaning that the one-step estimator is consistent if either the time-to-event or censor-
ing distribution is correctly modelled. The one-step estimator will be efficient if both Λ∗ = Λ0 and
Λc∗ = Λc0 .

4 | SIMULATIONS

4.1 | Binary Outcome
The purpose of this simulation example is to demonstrate the guaranteed consistency of the efficient
one-step estimator described in Section 3.1, as well as to illustrate the gain in efficiency over the
usual empirical mean plug-in estimate. The R code is publicly available at https://github.com/
Andreas-Nordland/rate. We letÐ(A = 1) = δ = 0.5 and simulate the samenumber of observations
in the treatment and placebo groups. We sample from a structural model given by

Wk ∼ N(0, 1), k ∈ {1, . . . , 10} .

D |W1,W2,W3,A ∼


Ber(expit(2I {W1 > 0} sin(2W2 ) + exp(W3 ) ) A = 1

0 A = 0

,

Y |D ,W1,W4,W5 ∼ Ber (expit(D (2 cos(2W4 ) − 1) +W1W5 + log( |W5W4 | ) ) ) .

The efficient plug-in estimate of the average treatment effect among responders relies on nuisance
models for H0 (W ) = Å(D |A = 1,W ) and Q0 (a,W ) = Å[Y |A = a,W ] for a ∈ {0, 1}. We fit
both models using an ensemble of models, where each model receives a weight based on the cross-
validated loss of the fit. Specifically, we apply the super learner method described by Van der Laan
et al. (2007). The ensembles include logistic regression, generalized additive model regression with
integrated smoothness estimation, and random forest regression. The estimation procedure is cross-
fitted to relax the restrictions on the model complexity, see Chernozhukov et al. (2018).
The results of the simulation are given in Table 1. As anticipated, the efficient plug-in estimate is
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consistent and shows the correct level of coverage even though both nuisance models are based on
flexible regression models. We see a clear improvement in performance with a standard deviation
ratio of 0.92 when compared to the empirical mean plug-in estimate.

Table 1 about here

4.2 | Time-to-Event Outcome
This simulation example is intended to demonstrate the importance of conditioning on the response
indicator for ensuring conditionally independent censoring. It also illustrates that incorporating pre-
dictive baseline variables can enhance efficiency. The detailed description of the efficient one-
step estimator can be found in Section 3.2. The corresponding R code is openly accessible at
https://github.com/Andreas-Nordland/rate. In this simulation, we set Ð(A = 1) = δ = 0.5

and generate an equal number of observations for both treatment and placebo groups. The data is
sampled from a structural model defined as follows:

W ∼ Unif(0, 3),

D |W ,A ∼


Ber(expit(κT [1,W ] ) ) A = 1

0 A = 0

, κ = [2, −0.5],

T |W ,D ∼ λ0 (t |W ,D ) = exp (
βT [1,W ,D ,D ·W ]

)
, β = [−2, 2, −0.2, −0.4],

C |A,D ∼ λc0 (t |A,D ) = exp (
ζT [1,A,D ]

)
, ζ = [1, 1, −1],

where λ0 and λc0 are the hazard functions. We are interested in the average treatment effect among
responders at time point τ = 0.5. It is easy to see that the above structural equation model implies
both monotonicity and exclusion as described in Section 2.3. Thus, the treatment effect among
non-responders is zero and the estimator will have the desired causal interpretation.

The efficient one-step estimate relies on nuisance models for H0 (W ) = Å(D |A = 1,W ) and the
cumulative hazard functions Λ0 ( · |X ) and Λc0 ( · |X ) where X = (W ,A,D ) . A model for H0 (W ) is
fitted using maximum likelihood estimation. The cumulative hazard functions are fitted using Cox
proportional hazards models with all interactions.

As evident from the structural equation model, it holds that T ⊥ C |A,D , meaning that the
baseline variableW in this scenario solely contributes to enhancing the efficiency of the one-step
estimator. Improved efficiency is expected only ifW , possibly in combination with the treatment
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A, is predictive of the event time. Our model reveals a strong association betweenW and T . To
illustrate the efficiency gain, we also compute the efficient one-step estimate without access toW ,
i.e., X = (A,D ) . Finally, we demonstrate that omitting the response indicator D in the cumulative
event time and censoring time hazard models leads to bias. Specifically, we use working Cox-models
for the two hazard function taking X = (W ,A) , and we also calculated the simple plug-in estimator
based on naive Kaplan-Meier estimates for the two treatment strata. The results of the simulation
are presented in Table 2.

Table 2 about here

As anticipated, the estimators based on X = (W ,A,D ) and X = (A,D ) are both consistent
and exhibit the correct coverage level. However, the estimator that includesW demonstrates a 10%
reduction in standard deviation. On the other hand, the final estimator based on inputs X = (W ,A)
is evidently biased, leading to an incorrect coverage level. The plug-in estimator using Kaplan-Meier
estimates for the two treatment strata is also biased as expected.

5 | APPLICATION
We now apply the proposed methods to the LEADER trial data investigating the effect of liraglutide
on cardiovascular events for type 2 diabetics, see Marso et al. (2016). In short, we use the change in
glycated hemoglobin to define respondence and find a 9% increase in the average treatment effect
among responders.

A total of 9340 patients at least 50 years of age with type 2 diabetes and a high risk for car-
diovascular disease were randomized (1:1 ratio) to receive liraglutide or placebo. Liraglutide is an
analogue of human glucagon-like peptide 1, which stimulates insulin production and thus decreases
blood sugar levels. A high percentage of glycated hemoglobin is indicative of high blood sugar levels.
Only patients with a glycated hemoglobin level of 7% or more were eligible to enter the trial. We
consider a composite time-to-event endpoint defined as the first occurrence of non-fatal stroke, non-
fatal myocardial infarction, and all-cause death. The time-to-event endpoint is measured in months
and the minimum planned follow-up was 42 months, with a maximum of 60 months of receiving the
assigned regimen. A total of 1572 patients experienced an event within the follow-up period.

The baseline variables considered in this analysis include sex, smoking status (never/prior/current),
BMI group (<=30/>30), prior cardiovascular events (yes/no), antidiabetic therapy group, diabetes
duration group (<=11 years/>11 years), calculated eGFR-MDRD and the percentage of glycated
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hemoglobin (at the time of randomization). 112 patients are excluded from the analysis due to miss-
ing baseline variables.

The level of glycated hemoglobin was measured over time to assess the effectiveness of the
drug. Let Hb denote the baseline percentage level of glycated hemoglobin and let H5 denote the
percentage level of glycated hemoglobin at visit 5 scheduled 3 months after randomization. We
define the post-randomization respondence indicator as

D β = 1 − I {Hb ≥ 7.5}I {H5 ≥ Hb − β }, (18)

for a threshold parameter β . Thus, a non-responder is defined as a patient with elevated glycated
hemoglobin levels (above 7.5%) who does not experience a decrease in glycated hemoglobin of at
least β . Lower values of β will classify fewer patients as non-responders and as a result, the target
estimate will be more conservative.

Obviously, it is possible to experience an event or drop out before visit 5 where the biomarker
is measured. Since visit 5 is scheduled 3 months after randomization, it is reasonable to assume that
by month 4, if no event or drop out has occurred, it would have been possible to measure the level
of glycated hemoglobin. We adjust the principal stratum accordingly and consider the causal target
parameter given by:

Ð(T (1) > 50 |T̃ (1) > 4,D β (1) = 1) − Ð(T (0) > 50 |T̃ (1) > 4,D β (1) = 1) .

Under the stochastic exclusion restriction

Ð(T (1) > 50 |T̃ (1) > 4,D β (1) = 0) − Ð(T (0) > 50 |T̃ (1) > 4,D β (1) = 0) = 0,

the causal target parameter equals

Ð(T (1) > 50 |T̃ (1) > 4) − Ð(T (0) > 50 |T̃ (1) > 4)
Ð(D β (1) = 1 |T̃ (1) > 4) .

If we assume that treatment has no effect up until month 4 on both the event time and the censoring
time, i.e., that I {T̃ (1) > 4} = I {T̃ (0) > 4} almost surely, then the causal target parameter is
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identified as:

Ð(T > 50 |A = 1, T̃ > 4) − Ð(T > 50 |A = 0, T̃ > 4)
Ð(D β = 1 |A = 1, T̃ > 4) . (19)

A total of 103 patients experienced an event or was censored before month 4. These patients
are excluded from the population. An additional 395 patients missed visit 5 and we classify these
patients as responders. Of the remaining 9125 patients in the population, 1446 experienced an
event within the follow-up period.

We base the efficient plug-in estimator of the parameter on a survival random forest regression
for the event endpoints and censoring times and an ensemble regression for the respondence indica-
tor. Specifically, we rely on the survival random forest implementation of Wright and Ziegler (2017)
and the super learner ensemble method of Van der Laan et al. (2007). The ensemble includes logistic
regression, generalized additive model regression with integrated smoothness estimation and ran-
dom forest regression. Each one-step estimate is cross-fitted using 5 splits to relax the restrictions
on the model complexity. The results are displayed in Table 3. The estimated average treatment
effect is 0.0209 with corresponding 95% confidence interval (0.004,0.038). If we are willing to as-
sume that the stochastic exclusion restriction holds for a β -value of 0.4, the average treatment effect
among responders is 0.0226, (0.004,0.41), which corresponds to a 8% increase. These results may
reveal the performance of liraglutide relevant for the design of future treatment switching regimens.

Table 3 about here

6 | CONCLUDING REMARKS
In the setting of a randomized study with non-compliance in the active arm and with no access to
the active treatment in the placebo arm, the estimand considered in this paper corresponds to the
causal effect of treatment among patients that would comply to the active treatment if given the
active treatment. In this setting the observed D is identical zero if A = 0. However, the results
derived in this paper still hold in this case as the tangent space is unchanged, which is shown in the
Appendix.

The stochastic exclusion restriction may seem like a strict assumption. However, as highlighted
in our application, we can choose to be more or less conservative when classifying patients as non-
responders. Moreover, even though the restriction is an untestable assumption it will induce bounds
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that can be verified from the observed data, see Balke and Pearl (1997). Future work may focus on
sensitivity analyses along the line of Díaz et al. (2018) investigating bounds for the causal bias. Since
the exclusion restriction is untestable, the estimator we are considering should never be used as
a primary outcome for any medical study. However, the estimator can serve as an inspiration for
the design of (optimal) dynamic treatment regimen trials Chakraborty and Moodie (2013). These
trials, without relying on any cross-world assumptions, can verify the benefit of the treatment for a
subgroup of the patients.

Another important topic for future work is to study variable importance for a subset of the
baseline variables. Results for targeting the best parametric least square approximation of the lo-
cal average treatment effect have been established, see Ogburn et al. (2015), but an expression for
the efficient influence along with properties of the associated one-step estimator has not been pub-
lished. We also note that other identifying assumptions has been considered in the literature. Stuart
and Jo (2015) considered the principal ignorability assumption: T (0) and D (1) are conditionally in-
dependent givenW , which is sufficient to identify our considered target parameter. SinceT (0) and
D (1) cannot be jointly observed this is a so-called cross-world assumptions that is not verifiable
based on the observed data. Another cross- world assumption that also makes identification possi-
ble is to requireT (0) andW being conditionally independent givenD (1) which is sometimes known
as "auxiliary independence", see Jiang and Ding (2021). This is again an assumption that cannot be
verified based on the observed data, but a situation compatible with the assumption, is when the
included covariates effects on the outcome is via the biomarker response only. This is, however,
unappealing for the situation we consider where we wish to include covariates that are strong pre-
dictors for the outcome as this will lead to increased precision of the proposed estimator. For more
discussion on these assumptions, see Dukes et al. (2021).

The timing for assessing the post-baseline biomarker should occur relatively shortly after the
initiation of treatment to avoid that the event of interest happens before the biomarker is measured.
Even if a few events occur before the planned time point it is unlikely to influence the overall analysis
much. If this can not be assumed onemay define a further refined principal stratum such a restricting
to those individuals that would survive this point in time if of on active treatment, see Bornkamp
and Bermann (2019).
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Appendix
Generally, any influence function for a parameter Ψ(P0 ) can be written as ψ (P0 ) (O ) = φ (P0 ) (O ) −
Ψ(P0 ) for some function φ (P0 ) (O ) . We will use the notation PnV = n−1

∑n
i=1Vi for n independent

and identically distributed variables (Vi )i ∈{1,...,n} and PV =
∫
V dP . Define the one-step estimator

Ψn (P̂n ) = Pnφ (P̂n ) (O ) based on a fitted model P̂n . Let P ∗ be the limiting model of P̂n possibly
different from P0. Define the second order remainder as

R (P̂n , P0 ) = P0φ (P̂n ) (O ) − Ψ(P0 ) . (20)

Then it is simple to show that

Ψn (P̂n ) − Ψ(P0 ) = {Pn − P0} φ (P ∗ ) (O )

+ {Pn − P0}
{
φ (P̂n ) (O ) − φ (P ∗ ) (O )} (21)

+R (P̂n , P0 ), (22)

where we denote (21) as the empirical process remainder. If both the empirical process remainder
and the second order remainder are oP0 (1) , the one-step estimator will be consistent. If in addition
to that, both the empirical process remainder and the second order remainder are oP0 (n−1/2 ) , the
one-step estimator Ψn (P̂n ) has influence function φ (P ∗ ) (O ) − Å

[
φ (P ∗ ) (O ) ] . Consequently, for
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Ψ(P0 ) ∈ Ò,

n1/2 (Ψn (P̂n ) − Ψ(P0 ) ) D−→ N
(
0,Å

[
φ (P ∗ ) (O ) − Å

{
φ (P ∗ ) (O )}]2) , (23)

which allow us to make inference on the estimator. In practice, the asymptotic variance of the
one-step estimator can be estimated by σ̂2

n = n−1Pn
{
φ (P̂n ) (O ) − Pnφ (P̂n ) (O )}2. Furthermore, if

ψ (P0 ) (O ) is the efficient influence function and P ∗ = P0, the one-step estimator will be asymptoti-
cally efficient, i.e., the one-step estimator asymptotically achieves the Cramer-Rao lower bound, see
Van der Vaart (2000) Section 25.3. To prove that empirical process remainder, (21), is oP0 (n−1/2 ) ,
it is enough to show that φ (P̂n ) falls in a Donsker class with probability tending to one and that
P0 (φ (P̂n ) (O ) − φ (P ∗ ) (O ) )2 = oP0 (1) .
Suppose that we have a vector-valued estimator Ψn ∈ Òm of a parameter Ψ(P0 ) ∈ Òm with influ-
ence functionψ (P0 ) : O → Òm . Then, for a differentiable function f : Òm → Ò, the estimator f (Ψn )
has influence function

+f (Ψ(P0 ) )T · ψ (P0 ),

see Van der Vaart (2000) Section 25.7. Thus, given influence functions ψD (P0 ) , ψ1 (P0 ) and ψ0 (P0 )
for estimators ΨDn (P̂n ) , Ψ1

n (P̂n ) and Ψ0
n (P̂n ) , the plug-in estimator

Ψn (P̂n ) =
Ψ1
n (P̂n ) − Ψ0

n (P̂n )
ΨDn (P̂n )

(24)

has influence function

ψ (P0 ) (O ) = 1

ΨD (P0 )

(
ψ1 (P0 ) (O ) − ψ0 (P0 ) (O ) − Ψ1 (P0 ) − Ψ0 (P0 )

ΨD (P0 )
ψD (P0 ) (O )

)
. (25)

If the influence functions ψD (P0 ) , ψ1 (P0 ) and ψ0 (P0 ) are efficient, then so is ψ (P0 ) (O ) .

| Tangent space
We start by calculating the tangent space in the setting where D is always observed correspond-
ing the main application in our paper where is the post-treatment biomarker response. Let Z :=
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(W ,A,D ,Y ) . Consider the Hilbert space H of L2 (Ð) zero mean functions of Z endowed with co-
variance inner product. Due to randomization the tangent space, which is a subspace of H, is given
by following orthogonal decomposition

T = TW ⊕ TD ⊕ TY

where

TW = {h (W ) ∈ H : Å[h (W ) ] = 0}

TD = {h (D ,A,W ) ∈ H : Å[h (D ,A,W ) | A,W ] = 0}

TY = {h (Y ,D ,A,W ) ∈ H : Å[h (Y ,D ,A,W ) | D ,A,W ] = 0} .

Thus, it is clear that the orthogonal complement to the tangent set is given by

T⊥ = {h (A,W ) ∈ H : Å[h (A,W ) | W ] = 0}

=
{
(A − δ )h∗ (W ) : Å [

h∗ (W )2
]
< ∞

}
. (26)

Note that (26) holds since A is binary and we know that Å[h (A,W ) | W ] = 0. We now derive
the tangent space in the setting where D is only observed if A = 1 mirroring the situation with a
randomized study where there is non-compliance and where patients randomized to placebo do not
have access to the active treatment. We denote the (full data) tangent space by T and will now
argue that its orthogonal complement is again given by (26). In this case, data can be written as
Z = {Y , (A,AD ),W ) } withY = I (T ≤ t ) in the survival setting. Let

T1 = {α (Z ) : E {α (Z ) | (A,AD ),W } = 0}

T∗
2 = {α { (A,AD ),W } : E {α { (A,AD ),W } |W } = 0}

T3 = {α (W ) : E {α (W ) } = 0} ,

The three tangent spaces in the latter display are mutually orthogonal and

H = T1 ⊕ T∗
2 ⊕ T3
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where H is the Hilbert-space of zero-mean functions α (Z ) . Let

T2 =
{
Ah (W ) [I (A = 1,D = 0) − P (D = 0 |A = 1,W ) ]}

Then it is easy to see that the tangent space is given by

T = T1 ⊕ T2 ⊕ T3

and from the decomposition of the full Hilbert space we see that

(T1 ⊕ T3 )⊥ = T∗
2 .

Further, since

T⊥ = (T1 ⊕ T3 )⊥ ∩ T⊥
2 ,

we see that T⊥ consist of elements in T∗
2 that are also perpendicular to T2. After a little algebra it is

seen that this is again given by (26).

| Derivation of efficient influence function and remainder term

Let Z = (W ,A,D ,T ) denote the full data. In the full data case, an influence function for Ψa (P0 ) =
Å[I {T ≤ τ } |A = a ] is given by

ψa (Z ) (P0 ) =
I {A = a }
g0 (a )

(
I {T ≤ τ } − Ψa (P0 )

)

The efficient influence function is now given by the projection of the gradient onto the tangent space.
The orthogonal complement to the tangent space is given by the space { (A− δ )h (W ) : Å[h (W )2 ] <
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∞}. The resulting projection yields that the full data efficient influence function is given by

ψ̃a (Z ) (P0 ) =
I {A = a }
g0 (a )

{I {T ≤ τ } − F0 (τ |A = a,W ) } + F0 (τ |A = a,W ) − Ψa (P0 ),

where

F0 (τ |A = a,W ) =
∑
d=0,1

{∫ τ

0
S0 (u |W , a, d )dΛ0 (u |W , a, d )

}
h0 (d |W , a ) = Ð(T ≤ τ |A = a,W ) .

Let X = (W ,A,D ) . In the observed data case formula (10.76) in Tsiatis (2006) yields that the ob-
served data efficient influence function is given by

ψ̃a (O ) (P0 )

=
∆(τ )

S c0 (min(T̃ , τ ) |X ) ψ̃
a (Z ) (P0 ) +

∫ τ

0

Å [ψ̃a (Z ) (P0 ) |T ≥ u,X ]
S c0 (u |X ) dM c

0 (u |X ),

where ∆(τ ) = I {C > min(T , τ ) } and

M c
0 (s |X ) = I {T̃ ≤ s,∆ = 0} −

∫ s

0
I {T̃ ≥ u }dΛc0 (u |X ) .

A similar result can also be found in Example 1.12 in (Van der Laan et al., 2003). Because

Å [I {T ≤ τ } |T ≥ u,X ] = I {u ≤ τ } S0 (u |X ) − S0 (τ |X )
S0 (u |X ) ,

the observed data efficient influence function is given by

ψ̃a (O ) (P0 ) =
I {A = a }
g0 (a )

(
∆(τ )

Sc0 (min(T̃ , t ) |X ) I {T̃ ≤ τ } +
∫ τ

0

S0 (u |X ) − S0 (τ |X )
S0 (u |X )Sc0 (u |X ) dM c

0 (u |X )
)

(27)
+

(
1 − I {A = a }

g0 (a )

)
F0 (τ |A = a,W ) − Ψa (P0 ) .
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For a fixed model P of P0 we are interested in finding an expression for the second order remainder.
For that purpose we notice that the first term of the parentheses of (27) can be rewritten as

∆(τ )
S c0 (min(T̃ , t ) |X ) I {T̃ ≤ τ } =I {T ≤ τ } +

{
∆(τ )

S c0 (min(T , τ ) |X ) − 1

}
I {T ≤ τ }

=I {T ≤ τ } −
∫ τ

0

I {T ≤ τ }
Sc0 (u |X ) dM

c
0 (u |X ) .

The first equality holds because if C > min(T , τ ) and min(T ,C ) ≤ τ then C > T . The second
equality holds because

∫ τ

0

I {T ≤ τ }
Sc0 (u |X ) dM

c
0 (u |X ) = I {T ≤ τ }

{
(1 − ∆)I {T̃ ≤ τ }

S c0 (T̃ |X ) −
∫ min(T̃ ,τ )
0

1

S c0 (u |X ) dΛ
c
0 (u |X )

}

= I {T ≤ τ }
{
(1 − ∆)I {T̃ ≤ τ }

S c0 (T̃ |X ) − 1

S c0 (min(T̃ , τ ) ) + 1

}

= I {T ≤ τ }
{

1 − ∆(τ )
S c0 (min(T̃ , τ ) |X ) − 1

Sc0 (min(T̃ , τ ) ) + 1

}

= I {T ≤ τ }
{

−∆(τ )
S c0 (min(T̃ , τ ) |X ) + 1

}
.

Thus, the efficient influence function is also equal to

ψ̃a (O ) (P0 ) =
I {A = a }
g0 (a )

(
I {T ≤ τ } −

∫ τ

0

{
I {T ≤ τ }
S c0 (u |X ) − S0 (u |X ) − S0 (τ |X )

S0 (u |X )S c0 (u |X )

}
dM c

0 (u |X )
)

+
(
1 − I {A = a }

g0 (a )

)
F0 (τ |A = a,W ) − Ψa (P0 ) .

By definition, the second order remainder is now given by

R a (P , P0 )

= − Å

[
I {A = a }
g0 (a )

∫ τ

0

{
I {T ≤ τ }
S c (u |X ) − S (u |X ) − S (τ |X )

S (u |X )Sc (u |X )

}
dM c (u |X )

]

+ Å

[ (
1 − I {A = a }

g0 (a )

)
F (τ |A = a,W )

]

+ Å

[
I {A = a }
g0 (a )

I {T ≤ τ } − Ψa (P0 )
]

= − Å

[
I {A = a }
g0 (a )

∫ τ

0

{
I {T ≤ τ }
S c (u |X ) − S (u |X ) − S (τ |X )

S (u |X )Sc (u |X )

}
dM c (u |X )

]
.
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We aim to use the tower property in order to replace I {T ≤ τ } in the above expression. For this
purpose we note that

Å

[∫ τ

0

I {T ≤ τ }
Sc (u |X ) dN

c (u )
]

=Å

[
I {T ≤ τ } (1 − ∆)I {T̃ ≤ τ }

S c (T̃ |X )

]

=Å

[
Å

(
I {T ≤ τ } |X , T̃ ,∆ = 0

) 1 − ∆

Sc (T̃ |X )

]

=Å

[
Å (I {T ≤ τ } |X ,T > C ,C ) 1 − ∆

S c (T̃ |X )

]

=Å

[
I {T̃ ≤ τ } S0 (T̃ |X ) − S0 (τ |X )

S0 (T̃ |X )
1 − ∆

Sc (T̃ |X )

]
,

and

Å

[∫ τ

0

I {T ≤ τ }
S c (u |X ) I {T̃ ≥ u }dΛc (u |X )

]

=Å

[∫ τ

0

Å
[
I {T ≤ τ } |X , T̃ ≥ u ]

Sc (u |X ) I {T̃ ≥ u }dΛc (u |X )
]

=Å

[∫ τ

0

Å [I {T ≤ τ } |X ,T ≥ u ]
Sc (u |X ) I {T̃ ≥ u }dΛc (u |X )

]

=Å

[∫ τ

0

S0 (u |X ) − S0 (τ |X )
S0 (u |X )Sc (u |X ) I {T̃ ≥ u }dΛc (u |X )

]
.

Combining the two results yields that we can rewrite the second-order remainder as

− R a (P , P0 )

=Å

[
I {A = a }
g0 (a )

∫ τ

0

{
S0 (u |X ) − S0 (τ |X )

S0 (u |X ) − S (u |X ) − S (τ |X )
S (u |X )

}
1

S c (u |X ) dM
c (u |X )

]

=Å

[
I {A = a }
g0 (a )

∫ τ

0

{
S0 (u |X ) − S0 (τ |X )

S0 (u |X ) − S (u |X ) − S (τ |X )
S (u |X )

}
E [I {T̃ ≥ u } |X ]

S c (u |X )
{
dΛc0 (u |X ) − dΛc (u |X )}]

=Å

[
I {A = a }
g0 (a )

∫ τ

0

{
S0 (u |X ) − S0 (τ |X )

S0 (u |X ) − S (u |X ) − S (τ |X )
S (u |X )

}
S0 (u |X )Sc0 (u |X )

Sc (u |X )
{
dΛc0 (u |X ) − dΛc (u |X )}]

=Å

[
I {A = a }
g0 (a )

∫ τ

0

{
S (τ |X )
S (u |X ) − S0 (τ |X )

S0 (u |X )

}
S0 (u |X )S c0 (u |X )

S c (u |X )
{
dΛc0 (u |X ) − dΛc (u |X )}] .
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Finally, note that

S (τ |X )
S (u |X ) − S0 (τ |X )

S0 (u |X ) =
S (τ |X )S0 (u |X ) − S0 (τ |X )S (u |X )

S (u |X )S0 (u |X )

=
S (τ |X )S0 (u |X ) − [

S0 (τ |X ) + S (τ |X ) − S (τ |X ) ]S (u |X )
S (u |X )S0 (u |X )

=
S (τ |X ) [S0 (u |X ) − S (u |X ) ] − [

S0 (τ |X ) − S (τ |X ) ]S (u |X )
S (u |X )S0 (u |X )

=
S (τ |X ) [S0 (u |X ) − S (u |X ) ]

S (u |X )S0 (u |X ) −
[
S0 (τ |X ) − S (τ |X ) ]

S0 (u |X ) .

Hence,

−R a (P , P0 ) = Å

[
I {A = a }
g0 (a )

∫ τ

0

{
S (τ |X )
S (u |X )

[
S0 (u |X ) − S (u |X ) ] − [

S0 (τ |X ) − S (τ |X ) ]}

×
S c0 (u |X )
S c (u |X )

{
dΛc0 (u |X ) − dΛc (u |X )}

]
.
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TABLE 1 Simulation study: Cross-fitted efficient one-step estimation of the average treatment
effect among responders with a binary outcome. The study is based on 1000 replications with a
sample size of 1000 using 5 fold cross-fitting. The efficient one-step estimate is described in
Section 3.1. The empirical mean plug-in estimate is based on plug-in of the empirical mean
estimates in Equation (3).

Mean SD Bias RMSE SE Coverage
Empirical mean plug-in estimate -0.103 0.039 0.001 0.039 0.038 0.943
Efficient one-step estimate -0.104 0.035 0.001 0.035 0.035 0.945

TABLE 2 Simulation study: Efficient one-step estimation of the average treatment effect among
responders with a time-to-event outcome under right censoring. The estimation procedure is
replicated 1000 times with a sample size of 1000 (500 randomized to each group). The cumulative
hazard functions Λ ( · |X ) and Λc ( · |X ) are fitted using Cox proportional hazards models. The model
inputs X varies accordingly for the different cases. The response indicator model H inputsW if and
only if X includesW . The final estimator KM is the plug-in estimate based on the Kaplan-Meier
estimate for the treatment effect and the empirical probability estimate for the response.

Mean SD Bias RMSE SE Coverage
X = (W ,A,D ) -0.1708 0.0518 0.0001 0.0518 0.0514 0.9530
X = (A,D ) -0.1700 0.0575 0.0009 0.0575 0.0583 0.9510
X = (W ,A) -0.1948 0.0462 -0.0239 0.0520 0.0469 0.9190
KM -0.1901 0.0539 -0.0192 0.0572 0.0528 0.9150
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TABLE 3 Estimates of (25) for various values of β . A β -value of −∞ corresponds to everyone
being classified as a responder, meaning that the target parameter equals the usual average
treatment effect.

beta Estimate Std.Err 2.5% 97.5% P-value
−∞ 0.0209 0.0086 0.0042 0.0377 0.0145
0 0.0213 0.0089 0.0038 0.0389 0.0170
0.2 0.0224 0.0091 0.0045 0.0403 0.0140
0.4 0.0226 0.0093 0.0043 0.0408 0.0152
0.5 0.0242 0.0095 0.0055 0.0429 0.0112
0.6 0.0241 0.0097 0.0052 0.0430 0.0124
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