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Errata to “Combined evidence of treatment effects”

Chapter 2

Page 7, line 28 The overlap condition 𝐿(𝑀 = 1 | 𝑁) > 0 should read 𝐿(𝑀 =
0 | 𝑁) > 0.

Page 12, line 23 The notation for empirical average P𝐿 𝑂 =
∑𝐿

𝑀=1 𝑂 (𝑃𝑀)
should read P𝐿 𝑂 = 𝑄→1 ∑𝐿

𝑀=1 𝑂 (𝑃𝑀).

Chapter 4

Page 28,
equation (4.16)

The summation in the second term on the right hand
side of the equation

∑
𝑁↑ ↓{0,1} 𝑅(𝑆 | 𝑁) [· · · ] should read∑

𝑁↑ ↓{0,1} 𝑅(𝑆↑ | 𝑁) [· · · ].
Page 29, line 9 The inverse-variance weight should instead be [𝑇{var→1 (𝑈 |

𝑁 ,𝑀) | 𝑁 ,𝑉 = 0}]→1var→1 (𝑈 | 𝑁 ,𝑀).

Chapter 5

Page 38, line 21 The condition for function 𝑊1 should be 𝑇{𝑊1 (𝑋, 𝑁 ,𝑀) | 𝑌 ↔
𝑋, 𝑍 = 0, 𝑁} = 0.

Page 39, line 8 The notation of the orthocomplement of the tangent space
should be ↗P↘

≃ . The functions 𝑊1 and 𝑊2 also depend on 𝑆.

Manuscript I

Page 15, Table 1 The parameter 𝑎 should be defined as 𝑇{𝑏 (→1) → 𝑏 (1) | 𝑐 =
0}.

Manuscript III

Page 10,
Theorem 1

Condition (ii) for consistency of 𝑑1 (0) should be Ā•1 = A•1,
𝑒1 = 𝑒1, and Ā𝑂

1 = A𝑂
1 .
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Abstract

Although randomized controlled trials are the gold standard for
assessing treatment e!ects, they can lack external validity and
are increasingly costly and time-consuming. Combining existing
data provides an opportunity to generate evidence of treatment
e!ects in external populations without the need to conduct new
trials. Incorporating external data into the trials can also im-
prove the precision of treatment e!ect estimates. This thesis
contributes three works of statistical methods for causally inter-
pretable parameters through data combination. The first work
establishes the identifiability of the target population average
treatment e!ect in the presence of unmeasured e!ect modifiers
using proxy variables. The second work is concerned with e”-
cient estimation of the marginal treatment e!ect with data from
multiple sources under transportability of the stratified treatment
e!ects. The third work proposes estimators of cumulative in-
cidences in trials with competing risks, incorporating external
controls. The developed methods are illustrated with data from
placebo-controlled trials investigating the e!ect of semaglutide
and liraglutide (glucagon-like peptide-1 receptor agonists) on
body weight and cardiovascular events.
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Resumé

Randomiserede kontrollerede forsøg betragtes som guldstan-
darden for vurdering af behandlingse!ekter. Dog kan de mangle
ekstern validitet og er i stigende grad både omkostningstunge
og tidskrævende. En løsning er at anvende kombinerede data
til at generere evidens for behandlingse!ekter i eksterne popu-
lationer uden at skulle udføre nye forsøg. I eksisterende studier
kan denne metode også bruges til at øge præcisionen af be-
handlingse!ektsestimater ved at integrere eksterne data. Denne
afhandling præsenterer tre artikler om statistiske metoder for
kausalt fortolkelige parametre ved kombination af data. Den
første artikel beskriver identificerbarheden af målpopulationens
gennemsnitlige behandlingse!ekt i tilfældet med umålte e!ekt-
modifikatorer ved brug af såkaldte stedfortrædervariable. Den
anden artikel fokuserer på e”cient estimation af den marginale
behandlingse!ekt med data fra flere kilder ved transportabilitet af
stratificerede behandlingse!ekter. Den tredje artikel foreslår esti-
matorer for kumulative incidenser i studier med konkurrerende
afgangsårsager, som integrerer eksterne kontrolpersoner. De ud-
viklede metoder illustreres med data fra placebokontrollerede
studier, der undersøger e!ekten af semaglutid og liraglutid (glu-
kagonagtige peptid 1-receptoragonister) på kropsvægt og kardio-
vaskulære hændelser.
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1. Introduction

Collecting evidence of treatment e!ects is a fundamental task in biostatistics. In prac-
tice, available data may be combined to generate new evidence or to improve existing
evidence. This thesis is concerned with statistical inference of treatment e!ects through
data combination and contribute with three methodological works.

1.1. Motivation

A new treatment under development is usually evaluated first in clinical trials for e”cacy
and safety. Ideal randomized controlled trials (RCTs) are the gold standard for evaluating
treatment e!ects, since the evidence can be interpreted causally and enjoys internal
validity. This constitutes the primary source of evidence, which comes from well-
controlled experimental settings and often targets the treatment e!ect of interest through
study designs. After obtaining approval from regulatory bodies, the treatment is then
applied by medical practitioners and reaches a broader population.

However, conducting an RCT for every new target population under investigation
may not be time- nor cost-e!ective, when data from other RCTs comparing the same
treatments in similar populations are readily available. On the other hand, existing RCT
results may not be directly applicable to new target populations by their lack of external
validity due to treatment e!ect heterogeneity and selection on e!ect modifiers. In some
situations, administration of certain treatments may be di”cult or unethical according
to the standard of care, necessitating the use of non-experimental data or historical data.

Integrating evidence from other sources into the target population is desirable when
data obtained from the target population alone do not best describe the underlying
treatment e!ect (Cole et al., 2023). Depending on the scientific question, the target
population may be a subset of the source population or a separate population on its
own. Using information from the source population to make statistical inferences
of treatment e!ects is usually referred to as generalizability in the former scenario and
transportability in the latter. While both scenarios are common in applications, we focus
on transportability in the current work. Most of the statistical theory for transportability
can be easily adapted to accommodate generalizability. Transportability studies usually
follow a non-nested design, where samples are collected separately from the source and
target populations (Dahabreh et al., 2021). See Degtiar and Rose (2023); Colnet et al.
(2024c) for comprehensive reviews of data combination methods.
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4 Introduction

1.2. Objectives

In the following, we discuss three particular use cases of data combination methods
studied in the manuscripts. We also briefly describe the RCTs in the data examples
that illustrate the methods developed. Note that the problems presented below are the
main objectives of the thesis but are far from being exhaustive; see Dahabreh (2024) for
additional use cases where researchers may wish to combine information from di!erent
sources.

1.2.1. Indirect comparison

Indirect comparison is a specific form of meta-analysis, where the head-to-head com-
parison of two treatments of interest is not available from the same RCT. It is often the
case that these treatments are previously studied in two separate RCTs, both of which
contain an arm for a third treatment. In this case, the shared treatment arm allows for
evidence synthesis using the contrast between treatments rather than information within
the treatment arms. This is referred to as an anchored comparison (Phillippo et al.,
2018).

SCALE (Davies et al., 2015) and STEP-2 (Davies et al., 2021) are two RCTs whose
main objective was to study the e!ect of glucagon-like peptide-1 (GLP-1) agonists on
body weight loss among overweight or obese adults with type 2 diabetes. The active
treatments were once-daily liraglutide, 3.0 mg or 1.8 mg in SCALE and once-weekly
semaglutide, 2.4 mg or 1.0 mg in STEP-2. Both RCTs were placebo-controlled, but the
frequency of administration and the injection volume of placebos were matched to their
respective active treatments. Since SCALE was initiated 5 years earlier than STEP-2, it
is unclear whether liraglutide would have achieved the same weight loss e!ect as that
reported in SCALE, had SCALE been conducted within the time frame of STEP-2.

Suppose we are interested in comparing the e!ect of the higher dose liraglutide
against that of the higher dose semaglutide in the study population of STEP-2. The
direct comparison of these treatment is not available from any superiority trial except
STEP-8 (Rubino et al., 2022), which instead studied overweight or obese patients without
diabetes in the United States (US). Although SCALE and STEP-2 employed highly
comparable inclusion-exclusion criteria, they recruited patients from 9 and 12 countries,
respectively. This leads to a potential discrepancy between the study populations of the
RCTs, and the e!ect of liraglutide versus placebo may not be naively transported for
indirect comparison. Nevertheless, if the study population of STEP-2 is a subset of the
study population of SCALE, the e!ect of the missing liraglutide against semaglutide in
STEP-2 may still be obtained from the treatment-outcome information in both RCTs.

1.2.2. Multisource data

It is common to observe evidence of treatment e!ects in multiple datasets collected from
di!erent sources. For instance, in a nationwide RCT, patients often visit di!erent clinics
across the country where they receive the same treatment options. Hospitals located in
di!erent countries may independently conduct RCTs for the same treatments to produce
a reliable treatment e!ect estimate within their own cohorts. When the source studies
contain fine-grained information on treatment e!ect heterogeneity, we may combine
these RCTs to produce an interpretable treatment e!ect estimate in the actual target
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population of interest.

STEP-1 (Wilding et al., 2021) is a placebo-controlled, multi-center global RCT for
the e!ect of once-weekly semaglutide, 2.4 mg on body weight. The study population of
STEP-1 comprised overweight or obese patients without diabetes, and the study sample
was collected from 129 centers in a total of 16 countries. Suppose we are interested in
evaluating the weight loss e!ect of semaglutide in the US sub-population of the entire
study population of STEP-1 recruited from a large region, had the treatment and outcome
information not been collected. The US sample was the largest among all countries,
making up about 39% of the entire sample of STEP-1. However, due to the diverse
racial and ethnic demography of the US, transporting experiment results using samples
from any single country or region may produce a biased treatment e!ect. Viewing
participants in the United Kingdom, the rest of European countries, and the East Asian
countries as three separate RCT samples, we might be able to obtain an estimate of
the US sub-population treatment e!ect based on all three source studies. If this was
possible, future study plannings may focus on sampling schemes that more realistically
reflect the composition of potential target patients of the treatment.

1.2.3. External controls

Many existing RCTs investigating treatments in similar patient groups have a control
arm in which either a placebo or standard of care is administered. From an economic
viewpoint, it makes sense to allocate more participants to receiving new treatments
with less evidence, if some controls can be borrowed from existing RCTs (Viele et al.,
2014). Even for su”ciently balanced designs, augmenting the control arm in an RCT
may further strengthen the evidence of a treatment e!ect. In studies of treatments for
rare diseases, where the number of eligible patients can be relatively small, it may be
more feasible to consider single-arm designs that rely completely on external controls
for the comparison of treatment (Davi et al., 2020).

SUSTAIN-6 (Marso et al., 2016a) and LEADER (Marso et al., 2016b) are two
cardiovascular outcome trials for assessing the safety of once-weekly semaglutide, 1.0
mg and 0.5 mg, and once-daily liraglutide, 1.8 mg, in patients with type 2 diabetes.
In SUSTAIN-6, patients were randomized to one of the two doses of semaglutide or
their volume-matching placebos to create arms of equal size. In LEADER, patients
were randomized to liraglutide or placebo in a 1 to 1 ratio. The primary outcome used
in both RCTs was the composite event of the first occurrence of three major adverse
cardiovascular events. LEADER ran with 9340 randomized patients and a median
follow-up of 3.8 years, and SUSTAIN-6 had a total of 3297 patients with a median
follow-up of 2.1 years. Since the control arm in LEADER is almost 3 times as large
as the combined control arms of SUSTAIN-6 and patients were generally followed over
longer periods of time, it is particularly interesting to incorporate LEADER controls into
SUSTAIN-6 as external controls. A re-analysis of the data may be able to consolidate
the superiority of semaglutide for protection against the primary event in SUSTAIN-6
by increasing the precision of e!ect estimates.



6 Introduction

1.3. Organization

The thesis includes a synopsis of seven chapters and three manuscripts. The remaining
chapters of the synopsis are organized as follows. Chapter 2 presents a selective overview
of existing estimators of target population treatment e!ects in transportability. Chapter 3
reviews the proximal causal inference framework for unmeasured confounding, which
inspires the work on proximal indirect comparison in Manuscript I. Chapter 4 covers the
connection between testable implications of transportability assumptions and e”cient
estimation of target population treatment e!ects, which we extend to a multi-source data
setting in Manuscript II. Chapter 5 discusses transportability assumptions in competing
risks analysis, and Manuscript III adopts one such assumption to accommodate external
controls in estimation of the target population treatment e!ect. Chapter 6 provides a
summary of the manuscripts, and finally Chapter 7 contains a general discussion on the
thesis and future research directions.



2. Assumptions and estimators

2.1. Typical assumptions

To ground ideas, we restrict attention to a specific setup of data combination. We
work with a non-nested study design where samples originate from a source population
(𝐿 = 0) and a target population (𝐿 = 1), indicated by a binary variable 𝐿. For
subjects from the target population, we do not have information on the binary treatment
𝑀 → {0, 1} nor the outcome 𝑁 , but both variables are observed for subjects from the
source population. Additionally, a set of baseline covariates 𝑂 is available from all
subjects. We assume the joint sample is an i.i.d. sample of size 𝑃 from the distribution
𝑄 over 𝑅 = {(1 ↑ 𝐿)𝑁 , (1 ↑ 𝐿)𝑀, 𝑂 ,𝐿}. We use 𝑃0 and 𝑃1 to denote the number of
samples from the source and target populations.

We consider the target population average treatment e!ect (TATE) defined as

𝑆 = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝐿 = 1},

where 𝑁 (𝑈) denotes the potential outcome under the treatment assignment 𝑀 = 𝑈.
Ideally, we would like to have access to the full data distribution over {𝑁 (1),𝑁 (0), 𝑂 ,𝐿},
where 𝑆 is immediately identifiable. However, we do not even observe the factual
outcomes in the target population. To proceed from here, it appears necessary to
make assumptions on the compatibility of the two populations, namely transportability
assumptions.

There are multiple choices of transportability assumptions, all of which are condi-
tional on the baseline covariates. If the baseline covariates consist of only categorical
variables, this is identical to performing a stratification and claiming that the subjects
within the same stratum are transportable across the populations in a certain sense.
Therefore, it is important that an overlap condition holds, so that we do not extrapolate
outside of the support of the source population. Denote the supports of the baseline
covariates in the target and source populations by X1 and X0. The overlap condition is

(2.1) X1 ↓ X0,

or equivalently, 𝑄(𝐿 = 1 | 𝑂) > 0.
Now we present transportability assumptions on the conditional distributions of the

potential outcomes, on the conditional treatment-specific means, on the conditional
distribution of individual treatment e!ect, and on the conditional average treatment

7



8 Assumptions and estimators

Table 2.1. Transportability assumptions appearing in publications.

Assumption Publications
(2.2) Stuart et al. (2011); Cole and Stuart (2010); Hotz et al.

(2005); Buchanan et al. (2018); Vo et al. (2019)
(2.3) Dahabreh et al. (2020a, 2019)
(2.4) Tipton (2013); Kern et al. (2016); Nguyen et al. (2018)
(2.5) Tipton et al. (2014); Dahabreh et al. (2023); Lee et al.

(2023).

e!ect (CATE):

𝑁 (𝑈) |= 𝐿 | 𝑂 ,(2.2)
𝑇{𝑁 (𝑈) | 𝑂 ,𝐿} = 𝑇{𝑁 (𝑈) | 𝑂},(2.3)
{𝑁 (1) ↑ 𝑁 (0)} |= 𝐿 | 𝑂 ,(2.4)
𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 ,𝐿} = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂}.(2.5)

All the above assumptions are ubiquitous in the literature on transportability and
generalizability of treatment e!ects; see Table 2.1 for a list of publications that make
use of these assumptions. Assumptions 2.2 and 2.4 are apparently stronger than As-
sumptions 2.3 and 2.5, respectively. The former two assumptions are on the conditional
distribution of the counterfactuals, while the latter two are on the conditional means in
these distributions. Since the mean scale is a common choice to summarize the distribu-
tion of continuous and binary outcomes, Assumptions 2.3 and 2.5 often su”ce. Here we
have chosen to evaluate the treatment e!ect through the di!erence of potential outcomes,
and assumptions 2.4 and 2.5 exploit this particular specification of the target parameter.
Assumption 2.2 alone does not imply Assumption 2.4. However, Assumption 2.2 is
often stated in the joint distribution of the potential outcomes as {𝑁 (1),𝑁 (0)} |= 𝐿 | 𝑂 ,
and in this formulation it becomes strictly stronger than Assumption 2.4.

These transportability assumptions are su”cient for the external validity of the treat-
ment e!ect in the source population. The TATE can be identified through the conditional
treatment e!ects in the source population by standardization. Then, if internal validity
can be established for the source population, we can identify 𝑆 in the observed data
distribution. Let 𝑉0 (𝑈 | 𝑊) = 𝑄(𝑀 = 𝑈 | 𝑂 = 𝑊,𝐿 = 0) be the propensity score for
receiving treatment 𝑈 in the source population. A minimum set of assumptions fre-
quently made in causal inference is consistency, positivity of treatment assignment, and
conditional exchangeability of treatment assignment:

(1 ↑ 𝐿)𝑁 (𝑀) = (1 ↑ 𝐿)𝑁 ,(2.6)
0 < 𝑉0 (𝑈 | 𝑊) < 1, 𝑊 → X0,(2.7)
𝑁 (𝑈) |= 𝑀 | {𝑂 ,𝐿 = 0}.(2.8)

In particular, these assumptions are fulfilled if subjects from the source population are
solicited from a randomized controlled trial. Clinical trials have well-defined, concrete
treatments so consistency holds. Under proper randomization, which is allowed to
depend on the baseline covariates, positivity and conditional mean exchangeability also
hold for treatment assignment. If subjects from the source population are derived from
observational data, the validity of these causal assumptions requires further examination.
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Let 𝑋0 (𝑈, 𝑊) = 𝑇 (𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 0) denote the conditional mean outcome
under treatment 𝑈 in the source population. Let 𝑌(𝑊) = 𝑄(𝐿 = 1 | 𝑂 = 𝑊) denote
the sampling score (or selection score) of an individual being selected into the target
population and 𝑍 = 𝑄(𝐿 = 1) the target population’s mixing proportion in the combined
population. Under assumptions (2.6)–(2.8) and one of assumptions (2.2)–(2.5), the target
parameter is identifiable as a functional of 𝑄:

(2.9) 𝑆 = 𝑇{𝑋0 (1, 𝑂) ↑ 𝑋0 (0, 𝑂) | 𝐿 = 1}.

This is a type of g-formula. The conditional mean outcome di!erence between treatment
1 and treatment 0 quantifies the treatment e!ect heterogeneity among subjects in the
source population. This conditional e!ect is then standardized according to the distribu-
tion of the baseline covariates in the target population to produce the target-population
average treatment e!ect. Alternatively, the parameter may be written in a weighting
formulation, such that

(2.10) 𝑆 = 𝑇

{
1 ↑ 𝐿

𝑍

𝑌(𝑂)
1 ↑ 𝑌(𝑂)

2𝑀 ↑ 1
𝑉0 (𝑀 | 𝑂)𝑁

}
.

Here, an outcome associated with a subject in the source population undergoes two
weightings. It is first weighted by the inverse propensity score within the population to
achieve balance of the treatment groups. Then it is recalibrated with the odds of being
in the target population to account for the discrepancy between covariate distributions
in the two populations, up to a constant scaling by the ratio of sampling proportions.

2.2. Plug-in estimators

Akin to the central role of the propensity score in observational studies for inferring
causal e!ects (Rosenbaum and Rubin, 1983), the sampling score plays an important part
in transportability studies. As a motivating argument, we notice that assumption (2.4),
transportability of the individual treatment e!ect, implies strong ignorability of sample
selection given the sampling score (Tipton, 2013)

{𝑁 (1) ↑ 𝑁 (0)} |= 𝐿 | 𝑌(𝑂).

Therefore, if strong ignorability of treatment assignment also holds, then

(2.11) 𝑆 = 𝑇 [𝑇{𝑁 | 𝑀 = 1, 𝑉0 (1 | 𝑂), 𝑌(𝑂),𝐿 = 0}
↑ 𝑇{𝑁 | 𝑀 = 0, 𝑉0 (1 | 𝑂), 𝑌(𝑂),𝐿 = 0} | 𝐿 = 1]

This provides an intuition for simultaneous matching on the sampling score and the
propensity score; see Stuart et al. (2011); Tipton (2013); O’Muircheartaigh and Hedges
(2014) for a detailed account for treatment e!ect generalization. If stratified matching
is used, the resulting estimator will behave like a weighting estimator, when the number
of strata and the sample size approach infinity (Rubin, 2001). The weighting estimator
is the sample analog of (2.10):

1
𝑃1

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

2𝑀𝐿 ↑ 1
𝑉0 (𝑀𝐿 | 𝑂𝐿)

𝑁𝐿 .



10 Assumptions and estimators

Every outcome from the source population is weighted by the product of the inverse
propensity score and the odds of being sampled into the target population. Weighting
estimators are found in both generalizability (Cole and Stuart, 2010; Lesko et al., 2017;
Dahabreh et al., 2019) and transportability (Westreich et al., 2017). For protection
against pathologically large odds, the Hájek estimator can be used in place of the
Horvitz-Thompson weighting estimator above, by replacing the normalizing factor with
the stable weights (Dahabreh et al., 2020a)

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

𝑀𝐿

𝑉0 (1 | 𝑂𝐿)
𝑁𝐿

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

𝑀𝐿

𝑉0 (1 | 𝑂𝐿)

↑

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

1 ↑ 𝑀𝐿

𝑉0 (0 | 𝑂𝐿)
𝑁𝐿

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

1 ↑ 𝑀𝐿

𝑉0 (0 | 𝑂𝐿)

.

An alternative approach relies on the outcome regression estimator 𝑋̂0 (𝑈, 𝑊) from the
source population. The g-estimator based on (2.9) is thus (Zhang, 2009; Dahabreh et al.,
2020a)

𝑆g =
1
𝑃1

∑

𝐿:𝑀𝐿=1
{𝑋̂0 (1, 𝑂𝐿) ↑ 𝑋̂0 (0, 𝑂𝐿)}.

Samples from the source population are used to provide the conditional treatment
e!ects, which are subsequently standardized on the empirical distribution of the target
population to produce the average treatment e!ect.

Consistency of the g-estimator and the weighting estimator can be established under
the correct specification of 𝑋̂0 and {𝑌̂, 𝑉0}, respectively (Colnet et al., 2022). These
estimators can be reformulated as Z-estimators that solve certain estimation equations.
If the nuisance parameter models are parametric, the estimators will then typically be
root-𝑃 consistent and converge to a normal distribution, whose standard error may be
estimated by the sandwich estimator (Buchanan et al., 2018) or nonparametric bootstrap
(Dahabreh et al., 2020a). Suppose the study design grants knowledge on the sampling
probability and the propensity score. Then we would expect that parametric models are
adequate for the weighting estimator. However, the g-estimator is blind to study designs
and therefore does not enjoy this privilege. To avoid model misspecifications, one option
is to forego parametric models and turn to nonparametric models like machine learning.
Yet the resulting estimators will inherent the sub-parametric convergence rates from
these models, leading to plug-in bias that ruins the asymptotic normality.

Fortunately, in many cases, the study of target parameters as functionals of the un-
derlying probability distribution reveals estimators with robustness against model mis-
specifications and slow convergence rates due to estimation of the nuisance parameters.
A classical example in causal inference is the augmented inverse probability weighting
estimator for the average treatment e!ect (Hirano et al., 2003; Bang and Robins, 2005).

2.3. Geometric approach to estimation

This section largely follows van der Vaart (1998, Chapter 25). A set of probability
measures P on the sample space O equipped with a suitable 𝑎-algebra is called a (semi-
parametric) model. A model solely indexed by a Euclidean parameter is parametric.
The goal of the theory we present is to study the statistical inference of a real-valued
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functional 𝑆 : P ↔ R, which is also called the target parameter or the parameter of
interest.

Suppose the observed data {𝑅𝐿 : 𝑏 = 1, . . . , 𝑃} is an independent and identically
distributed (i.i.d.) sample from a distribution 𝑄 → P with density 𝑐. To determine the
characteristics of the “best” estimator in the asymptotic sense is hard, but some intuition
from parametric models carries over to the general semiparametric case, where the model
may be indexed by an infinite-dimensional parameter. Specifically, we want to use the
Cramér-Rao lower bound, which requires two ingredients: the score of the indexing
parameter in some parametric model and the derivative of the target parameter with
respect to the indexing parameter. To this end, we first define smooth one-dimensional
paths that pass through the underlying density 𝑐 that are di!erentiable in an appropriate
sense. Heuristically, for every path {𝑐𝑁} with 𝑐𝑁 |𝑁=0 = 𝑐, the associated score function
is

𝑑(𝑒) = d
d𝑓

log{𝑐𝑁 (𝑒)}
####
𝑁=0

.

We call the set of all the score functions of the di!erentiable paths the tangent set and
denote it by ↗P . For simplicity, we also assume that ↗P is a closed linear subspace of the
Hilbert space of mean-zero 𝑔2 (𝑄0)-functions, which we denote by 𝑔

0
2 (𝑄0). Suppose

the target parameter is pathwise di!erentiable relative to the tangent space; that is, there
exists a continuous linear functional ↗𝑆 : ↗P ↔ R such that for every di!erentiable path
{𝑐𝑁} with score 𝑑,

d
d𝑓

𝑆 (𝑄𝑁)
####
𝑁=0

= ↗𝑆 (𝑑).

The pathwise derivative ↗𝑆 behaves like a Hadamard derivative in the sense that uniform
convergence along the paths is guaranteed (Bickel et al., 1993, Appendix A). We call
any function 𝑕 → 𝑔

0
2 (𝑄) such that

↗𝑆 (𝑑) = 𝑇{𝑕(𝑅)𝑑(𝑅)}, for all 𝑑 → ↗P ,

an influence function (IF) of the parameter 𝑆. A parameter can have more than one
influence function if the tangent space ↗P is a proper subspace of 𝑔

0
2 (𝑄). However, it

is always possible to find an almost-everywhere unique IF that lies within the tangent
space by projecting any IF onto the space. We call this projection the e”cient influence
function (EIF), which is 𝑖 → ↗P such that

↗𝑆 (𝑑) = 𝑇{𝑖(𝑅)𝑑(𝑅)}, for all 𝑑 → ↗P ,

The EIF is also the Riesz representer of the functional ↗𝑆 : ↗P ↔ R that satisfies

sup
𝑂→ ↗P

| ↗𝑆 (𝑑) |
[𝑇{𝑑2 (𝑅)}]1/2 = [𝑇{𝑖2 (𝑅)}]1/2

.

Any influence function 𝑕 can be conveniently obtained by (Tsiatis, 2006, Chapter 4)

𝑕 = 𝑖 + 𝑗, for some 𝑗 → ↗P↘
.

IFs and the EIF are also known as gradients and the canonical gradient (Pfanzagl, 1982).
Estimation problems in one-parameter parametric sub-models are conceivably easier

than those in the larger, more complicated semiparametric model P . Therefore, we
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should not expect any “unbiased” estimator of 𝑆 to have a smaller variance in P than
the supremum of the Cramér-Rao lower bound of 𝑆 in all parametric sub-models,

(2.12) sup
{𝑃𝑀 }→P

(
d𝑆 (𝑄𝑁)/d𝑓 |𝑁=0

)2
𝑇{𝑑2 (𝑅)} = sup

𝑂→ ↗P

[𝑇{𝑑(𝑅)𝑖(𝑅)}]2

𝑇{𝑑2 (𝑅)} = 𝑇{𝑖2 (𝑅)}.

This intuition is formalized by the convolution theorem. However, we need to restrict
the class of estimators to the so-called regular estimators. Heuristically, the limiting
distribution of a regular estimator does not depend on the local data generating process,
so that its convergence is in some sense locally uniform. Any regular estimator 𝑘𝑄
converging in distribution such that

𝑃
1/2 (𝑘𝑄 ↑ 𝑆) ! 𝑔

satisfies that the law of the random element 𝑔 is a convolution of the law of a zero-mean
normal random variable 𝑙 with variance 𝑇{𝑖2 (𝑅)} with another probability measure.
We say that a regular estimator is e”cient if its asymptotic variance achieves the
semiparametric e”ciency bound 𝑇{𝑖2 (𝑅)}. A regular estimator 𝑘𝑄 is asymptotically
linear if there exists a function 𝑚 → 𝑔

0
2 (𝑄) such that

(2.13) 𝑘𝑄 ↑ 𝑆 =
1
𝑃

𝑄∑

𝐿=1
𝑚 (𝑅𝐿) + 𝑒𝑃0 (𝑃↑1/2).

The function 𝑚 is called the influence function of the estimator. It can be shown that
any regular e”cient estimator is asymptotically linear with influence function 𝑖.

2.4. Robust estimation

We show how the EIF (or more generally, the IFs) of a pathwise di!erentiable target
parameter may be useful in statistical inference. Suppose the EIF 𝑖(𝑒) = 𝑖(𝑒, 𝑆, 𝑛) of
𝑆 depends explicitly on the target parameter and some (possibly infinite-dimensional)
nuisance parameter 𝑛. For a possibly random function 𝑚 (𝑒) of the data, let P𝑄 𝑚 =∑

𝑄

𝐿=1 𝑚 (𝑅𝐿) and let 𝑄 𝑚 =
´

𝑚 (𝑒)d𝑄(𝑒). Let 𝑛̂ be an estimator of 𝑛. We define a
Z-estimator 𝑆 solving the estimating equation based on the EIF:

1
𝑃

𝑄∑

𝐿=1
𝑖(𝑅𝐿 , 𝑆, 𝑛̂) = 𝑒𝑃 (𝑃↑1/2).

The nuisance parameter often comprises several components, and for exposition we
assume that 𝑛 can be partitioned into two components (𝑛1, 𝑛2). In certain cases, the
mean of the EIF satisfies (Chernozhukov et al., 2022b)

##
𝑇 [𝑖{𝑅, 𝑆, (𝑛≃1, 𝑛≃2)}]

## = ##
𝑇{(𝑛≃1 ↑ 𝑛1) (𝑛≃2 ↑ 𝑛2)}

##
,

for any reasonable choice 𝑛
≃ = (𝑛≃1, 𝑛≃2) in the nuisance parameter space. Then the EIF

is a valid score of 𝑆, so the consistency of 𝑆 may be established, if either 𝑛1 or 𝑛2 is
correctly specified. This is called robustness against model misspecification.
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There is also a close connection between IFs and Neyman orthogonality (Cher-
nozhukov et al., 2018, 2022a), which means that the first-order impact of the misspeci-
fication of nuisance parameter is ignorable. We say that 𝑖 is Neyman orthogonal to 𝑛 if
for any reasonable 𝑛

≃, it holds that

(2.14)
d
d𝑓

𝑇 [𝑖{𝑅, 𝑆, 𝑛 + 𝑓(𝑛≃ ↑ 𝑛)}]
####
𝑁=0

= 0.

Further assuming di!erentiability of 𝑖 in the target parameter and expanding the esti-
mating equation around the true parameters {𝑆, 𝑛} yield the bias decomposition

(2.15) 𝑆 ↑ 𝑆 = P𝑄𝑖(·, 𝑆, 𝑛) + (P𝑄 ↑ 𝑄){𝑖(·, 𝑆, 𝑛̂) ↑ 𝑖(·, 𝑆, 𝑛)}
+𝑅𝑃 (⇐ 𝑛̂ ↑ 𝑛⇐2) + 𝑒𝑃 (𝑃↑1/2),

for an appropriate norm on the nuisance parameter space. Comparing this to (2.13),
the current estimator 𝑆, if regular, is e”cient if the non-leading terms all share the
order 𝑒𝑃 (𝑃↑1/2). The cross-product term can be handled by empirical process theory
and a Donsker class condition for the class of functions {𝑖𝑃 : 𝑄 → P} (van der
Vaart and Wellner, 2023). More generally, crossfitting can be applied for nuisance
parameters that cannot be reached by any Donsker class (Zheng and van der Laan,
2011; Chernozhukov et al., 2018; Kennedy, 2024). Irrespective of the approach, we
typically require consistency of {𝑆, 𝑛̂}. The structure of the error term 𝑅𝑃 (⇐ 𝑛̂ ↑ 𝑛⇐2)
provides robustness for target parameter estimation. Many nonparametric nuisance
estimators achieve the subparametric rate ⇐ 𝑛̂ ↑ 𝑛⇐ = 𝑒𝑃 (𝑃↑1/4). The second-order error
accommodates slow convergence rates from flexible (regression) models This is called
rate robustness.

Returning to the specific transportability setup, the semiparametric e”ciency bound
of the TATE 𝑆 is characterized by the EIF

𝑖(𝑒) = 1 ↑ 𝑜

𝑍

𝑌(𝑊)
1 ↑ 𝑌(𝑊)

2𝑈 ↑ 1
𝑉0 (𝑈 | 𝑊) {𝑝 ↑ 𝑋0 (𝑈, 𝑊)} +

𝑜

𝑍

{𝑋0 (1, 𝑊) ↑ 𝑋0 (0, 𝑊) ↑ 𝑆}.

The EIF is indeed a Neyman orthogonal score for 𝑆, since for arbitrary functions 𝑌≃ (𝑊),
𝑉
≃
0 (𝑈 | 𝑊), and 𝑋

≃
0 (𝑈, 𝑊), the Gateaux derivative vanishes:

d
d𝑓

𝑇 (𝑖[𝑅, 𝑆, {𝑌 + 𝑓(𝑌≃ ↑ 𝑌), 𝑉0 + 𝑓(𝑉≃0 ↑ 𝑉0), 𝑋0 + 𝑓(𝑋≃0 ↑ 𝑋0)}])
####
𝑁=0

= 0.

Upon closer inspection, it also has a double robustness property in the sense that

𝑇{𝑖(𝑅, 𝑆, {𝑌≃, 𝑉≃0, 𝑋0})} = 0 and 𝑇{𝑖(𝑅, 𝑆, {𝑌, 𝑉0, 𝑋
≃
0})} = 0,

that is, the e”cient influence function yields valid estimating equations when either
{𝑌, 𝑉0} or 𝑋0 is fixed at the truth. The Z-estimator using the obvious estimator 𝑍̂ = 𝑃1/𝑃
and plugging in all nuisance parameter estimates is given by (Dahabreh et al., 2020a)

𝑆 =
1
𝑃1

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

2𝑀𝐿 ↑ 1
𝑉0 (𝑀𝐿 | 𝑂𝐿)

{𝑁𝐿 ↑ 𝑋̂0 (𝑀𝐿 , 𝑂𝐿)}

+ 1
𝑃1

∑

𝐿:𝑀𝐿=1
{𝑋̂0 (1, 𝑂𝐿) ↑ 𝑋̂0 (0, 𝑂𝐿)}.
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Clearly, the estimator 𝑆 coincides with the so-called one-step estimator taking the g-
estimator as the first-stage estimator:

𝑆 = 𝑆g + P𝑄𝑖(·, 𝑆g, {𝑌̂, 𝑉0, 𝑋̂0}).

The asymptotic properties of the estimator can be established under suitable regularity
conditions. We present the results without enumerating these conditions. Suppose the
nuisance parameter estimators have probability limits with respect to the 𝑔2 (𝑄)-norm
such that ⇐ (𝑌̂ ↑ 𝑌̄) (𝑂)⇐ = 𝑒𝑃 (1), ⇐ (𝑉0 ↑ 𝑉0) (1 | 𝑂)⇐ = 𝑒𝑃 (1), and ⇐ ( 𝑋̂0 ↑ 𝑋̄0) (𝑈, 𝑂)⇐ =
𝑒𝑃 (1). It turns out that the estimator 𝑆 has both rate robustness and robustness against
model misspecification. If either 𝑌̄ = 𝑌 and 𝑉0 = 𝑉0, or 𝑋̄0 = 𝑋0, then

𝑆 ↑ 𝑆 = 𝑒𝑃 (1).

Furthermore, if 𝑌̄ = 𝑌, 𝑉0 = 𝑉0, and 𝑋̄0 = 𝑋0 and
{
⇐ (𝑌̂ ↑ 𝑌) (𝑂)⇐ + ⇐ (𝑉0 ↑ 𝑉0) (1 | 𝑂)⇐

}
⇐ ( 𝑋̂0 ↑ 𝑋0) (𝑈, 𝑂)⇐ = 𝑒𝑃 (𝑃↑1/2),

then 𝑆 is e”cient:
𝑆 ↑ 𝑆 = P𝑄𝑖 + 𝑒𝑃 (𝑃↑1/2).

While we require the augmentation term

1
𝑃1

∑

𝐿:𝑀𝐿=0

𝑌̂(𝑂𝐿)
1 ↑ 𝑌̂(𝑂𝐿)

2𝑀𝐿 ↑ 1
𝑉0 (𝑀𝐿 | 𝑂𝐿)

{𝑁𝐿 ↑ 𝑋̂0 (𝑀𝐿 , 𝑂𝐿)}

to stay bounded, if the estimated odds are large, the estimator 𝑆 can still move the
g-estimator by a considerably large margin, especially for small samples. For binary
outcomes, the estimator 𝑆 may not be a value between ↑1 and 1. One remedy is to first
consider Z-estimators for the transformation

𝑞(𝑈) = logit[𝑇{𝑋0 (0, 𝑂) | 𝐿 = 1}],

and then use the delta-method to obtain a confidence interval for the target parameter 𝑆 =
expit{𝑞(1)} ↑ expit{𝑞(0)}. Another proposal is to apply targeted maximum likelihood
estimation (Rudolph and van der Laan, 2017) by explicitly constructing a fluctuation
around the estimated conditional mean model. The resulting estimate is simply a
di!erence of averages of probabilities and thus respects the natural boundaries of the
parameter.



3. Proximal causal inference

3.1. Unmeasured confounding

In this chapter, we first digress from the track of transportability of treatment e!ects and
briefly review a framework for causal e!ect estimation in the presence of unmeasured
confounding. A typical concern with drawing causal conclusions from observational
studies is the existence of unmeasured confounders which, in principle, can never be
controlled for.

Epidemiologists make use of negative controls to alert unmeasured confounding
(Lipsitch et al., 2010; Shi et al., 2020b; Yang et al., 2024). For example, we may
have good reasons to believe that the treatment (or exposure) cannot causally a!ect a
variable, so the variable serves as a negative control outcome. In the case of residual
association between the treatment and this variable after adjusting for the set of observed
confounders, we should be more cautious about interpreting the findings causally, if
sensible at all. Likewise, negative control exposures, variables that cannot be the causes
of the outcome of interest, may be applied similarly to confounding bias detection.

A more quantitative approach to confounding bias relies on additional untestable
assumptions. The di!erence-in-di!erence (DiD) estimator (Abadie, 2005; Heckman
et al., 1997) of the average treatment e!ect on the treated relies on the assumption that
the change in counterfactual outcome means under the control treatment from baseline to
end-of-study does not depend on the treatment groups. In a certain sense, the outcomes
at baseline play the role of a negative control outcome, since their conditional means in
the respective treatment groups should not di!er under unconfoundedness (Sofer et al.,
2016). Then the parallel-trends assumption allows for the removal of confounding bias
from the naive g-estimator with the di!erence in conditional outcome means.

Another popular method for identifying causal e!ects under unmeasured confounding
is based on instrumental variables (IVs, Greenland, 2000; Angrist and Krueger, 2001).
A valid IV must be correlated with the treatment, must only a!ect the outcome causally
through the treatment, and cannot be confounded with the outcome after controlling for
observed variables (Hernán and Robins, 2006). Under the no-defiers assumption, the
complier average treatment e!ect is identifiable (Angrist and Krueger, 2001). Mendelian
randomization is a special case of IV analysis when genetic variants such as single-
nucleotide polymorphisms are used as instruments (Burgess et al., 2017).

3.2. Proximal identification and estimation

Besides the DiD and the IV approach, proximal causal inference is another closely related
approach to estimation of causal e!ects in the presence of unmeasured confounders. It

15
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makes use of so-called proxies as auxiliary variables that provide information on the con-
founding bias not captured by other observed confounders. Unlike the aforementioned
methods, this framework is applicable in settings where the parallel-trends assumption
is implausible and where candidate strong instruments are broken by their association
with the unmeasured confounders. Like virtually all causal inference methods, its guar-
antee relies on a separate set of untestable assumptions related to the proxies. We
refer to Tchetgen Tchetgen et al. (2024) for an extended introduction to proximal causal
inference.

We consider the setting where the target parameter is the average treatment e!ect
(ATE)

𝑆 = 𝑇{𝑁 (1) ↑ 𝑁 (0)},
but, provided access to the baseline variables 𝑂 , conditional exchangeability of the
treatment assignment (2.8) is not valid. We hypothesize that such a violation results
from the existence of latent variables 𝑟 that are common causes of both the treatment
and the outcome. If they were measured in the data, exchangeability would be restored
by adjusting for these factors:

𝑁 (𝑀) = 𝑁 ;
0 < pr(𝑀 = 𝑈 | 𝑂 ,𝑟) < 1;
𝑁 (𝑈) |= 𝑀 | {𝑂 ,𝑟}.(3.1)

If these conditions hold, we have latent identifiability of the ATE

(3.2) 𝑆 = 𝑇{𝑇 (𝑁 | 𝑀 = 1, 𝑂 ,𝑟) ↑ 𝑇 (𝑁 | 𝑀 = 0, 𝑂 ,𝑟)} = 𝑇

{
2𝑀 ↑ 1

pr(𝑀 | 𝑂 ,𝑟)𝑁
}
.

We cannot proceed further without additional information.
To this end, suppose we have collected a pair of proxies, a treatment-inducing proxy 𝑙

and an outcome-inducing proxy𝑠 , that satisfy the following conditional independences

(3.3)
𝑁 |= 𝑙 | {𝑀, 𝑂 ,𝑟},
𝑠 |= {𝑀, 𝑙} | {𝑂 ,𝑟}.

The proxies 𝑙 and 𝑠 can be treated as a negative control treatment and outcome,
respectively. The treatment-inducing proxy 𝑙 cannot be associated with the outcome
within each treatment arm after controlling for covariates {𝑂 ,𝑟}. On the other hand,
the outcome-inducing proxy 𝑠 must not vary with the level of the treatment nor 𝑙

conditional on {𝑂 ,𝑟}. Assumptions (3.1) and (3.3) can be jointly replaced by the
stronger exchangeability condition

{𝑁 (𝑈),𝑠} |= {𝑀, 𝑙} | {𝑂 ,𝑟}.

See Figure 3.1 for a directed acyclic graph (DAG) encoding a data generating mechanism
compatible with assumption (3.3). Immediately, we see that there is no independence
requirement between 𝑙 and 𝑟, so the treatment-inducing proxy need not be an IV. Also
important to note is that 𝑙 may be a cause of 𝑀 and 𝑠 may be a cause of 𝑁 . The latter
is reminiscent of 𝑠 being the baseline outcome in DiD.

Here, rather than making a structural assumption or working with some form of
confounding bias, we posit the existence of bridge functions that mimic the behavior of
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𝑀

𝑟

𝑁 𝑠𝑙

Figure 3.1. A DAG compatible with assumption (3.3). The node 𝑂 is not drawn but may point to
any other node.

the nuisance parameters in the latent identification formulas involving the unobserved
factors. Consider the following function classes:

H𝑅 =
{
𝑡𝑅 (𝑈, 𝑊,𝑢) : 𝑇{𝑡𝑅 (𝑀, 𝑂 ,𝑠) | 𝑀, 𝑂 ,𝑟} = 𝑇 (𝑁 | 𝑀, 𝑂 ,𝑟)

}
,

Q𝑅 =
{
𝑣𝑅 (𝑈, 𝑊, 𝑤) : 𝑇{𝑣𝑅 (𝑀, 𝑂 , 𝑙) | 𝑀, 𝑂 ,𝑟} = 1

pr(𝑀 | 𝑂 ,𝑟)

}
.

Any 𝑡𝑅 → H𝑅 is an outcome bridge function of the outcome-inducing proxy 𝑠 , and any
𝑣𝑅 → Q𝑅 is a treatment bridge function of the treatment-inducing proxy 𝑙 , if they exist.
The bridge functions and the proxies therein are related to the identifiability of the target
parameter because their projections onto the 𝑔2-space spanned by {𝑀, 𝑂 ,𝑟} coincide
with the unknown nuisance parameters. Formally for identifiability, we require that

(3.4) H𝑅 ω ⇒ or Q𝑅 ω ⇒.

We discuss su”cient conditions for non-emptiness of H𝑅, and similar conditions can
be stated for Q𝑅. Consider the case where 𝑠 and 𝑟 are categorical variables with 𝑜𝑆

and 𝑜𝑅 levels. Let 𝑥 (𝑈, 𝑊) denote the 𝑜𝑆-by-𝑜𝑅 matrix whose entry ( 𝑦 , 𝑧) is

pr(𝑠 = 𝑢𝑇 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝑟 = 𝛥𝑈).

Then H𝑅 ω ⇒ if all 𝑥 (𝑈, 𝑊) have full column rank, which automatically implies that
𝑜𝑆 ⇑ 𝑜𝑅 (Miao et al., 2018; Kallus et al., 2022). The intuition is that if we want 𝑠 to
mimic the information contained in 𝑟, then 𝑠 needs to be at least as fine-grained as 𝑟.
In the general case, H𝑅 is the solution set to a Fredholm integral equation of the first
kind. Such integral equations are generally ill-posed problems that are challenging to
solve. The su”cient and necessary condition for the existence of a solution for a special
class of such equations is given by Picard’s theorem (Kress, 2014, p. 311).

The bridge function classes H𝑅 and Q𝑅 consist of functions of observed variables
only, but the characterization of the bridge functions depends on the latent variables 𝑟.
Moreover, the target parameter is not identified with assumption (3.4), in the sense that
there may exist latent distributions corresponding to di!erent target parameter values
but yielding the same observed distribution when 𝑟 is marginalized out (Kallus et al.,
2022). We consider the observed counterpart of the latent bridge function classes:

H =
{
𝑡(𝑈, 𝑊,𝑢) : 𝑇{𝑡(𝑀, 𝑂 ,𝑠) | 𝑀, 𝑂 , 𝑙} = 𝑇 (𝑁 | 𝑀, 𝑂 , 𝑙)

}
,

Q =
{
𝑣(𝑈, 𝑊, 𝑤) : 𝑇{𝑣(𝑀, 𝑂 , 𝑙) | 𝑀, 𝑂 ,𝑠} = 1

pr(𝑀 | 𝑂 ,𝑠)

}
.

Comparing the definitions of H and Q to those of H𝑅 and Q𝑅, we notice that the
unobserved confounders 𝑟 are simply swapped out for the other proxy. Under assump-
tion (3.3), the latent and observed bridge classes have the relations that

H𝑅 ↓ H, Q𝑅 ↓ Q.



18 Proximal causal inference

Assumption (3.4) implies that H ω ⇒ or Q ω ⇒, but we need a stronger assumption to
identify the target parameter.

(3.5) H ω ⇒ and Q ω ⇒.

Then the ATE is identifiable in the observed data distribution as

(3.6)
𝑆 = 𝑇{𝑡(1, 𝑂 ,𝑠) ↑ 𝑡(0, 𝑂 ,𝑠)}, for any 𝑡 → H,

𝑆 = 𝑇{(2𝑀 ↑ 1)𝑣(𝑀, 𝑂 , 𝑙)𝑁 }, for any 𝑣 → Q.

Assumption (3.5) can also be justified from the perspective of estimation. Naturally, we
desire 𝑃

1/2-consistent estimators for the observed data functional 𝑆 whenever possible.
It turns out that under mild regularity conditions, both H and Q being non-empty is
necessary for the existence of such estimators (Severini and Tripathi, 2012; Zhang et al.,
2023). Conditions for the existence of observed bridge functions are analogous to the
discussion above for 𝑡𝑅.

Alternatively, identifiability of the ATE can be reached with assumption (3.5) and the
completeness assumption that for any 𝑚 ,

(3.7)
𝑇{ 𝑚 (𝑟) | 𝑀, 𝑂 , 𝑙} = 0 ⇓ 𝑚 (𝑟) = 0 or
𝑇{ 𝑚 (𝑟) | 𝑀, 𝑂 ,𝑠} = 0 ⇓ 𝑚 (𝑟) = 0.

Similar assumptions are used in non-parametric IV regression (Newey and Powell,
2003) and further explicated in D’Haultfœuille (2011) and Andrews (2017). This is
the approach taken by, for example, Cui et al. (2024), Miao et al. (2018), and Shi et al.
(2020a). The additional completeness assumption ensures that the observed bridge
functions are identical to the latent ones.

The identification formulas suggest two obvious estimators. Suppose the observed
bridge functions 𝑡̂ and 𝑣 are estimated from 𝑃 i.i.d. copies of 𝑅 = (𝑁 , 𝑀, 𝑂 ,𝑠 , 𝑙). The
proximal g-estimator is given by

𝑆𝑉 =
1
𝑃

𝑄∑

𝐿=1
{𝑡̂(1, 𝑂𝐿 ,𝑠𝐿) ↑ 𝑡̂(0, 𝑂𝐿 ,𝑠𝐿)},

and the proximal inverse propensity score weighting estimator is given by

𝑆𝑊 =
1
𝑃

𝑄∑

𝐿=1
(2𝑀𝐿 ↑ 1)𝑣(𝑀𝐿 , 𝑂𝐿 , 𝑙𝐿)𝑁𝐿 .

In a linear structural equation model (SEM) of continuous variables, the proximal g-
estimator is easily obtained by o!-the-shelf implementations of two-stage-least-squares
(2SLS) estimators for IV analysis (Tchetgen Tchetgen et al., 2024). For count, binary, and
categorical outcomes and outcome-inducing proxies of the same type, analogous 2SLS
procedures have been shown to produce the correct conditional log-mean di!erence and
log-odds ratios in specific SEMs (Liu et al., 2024).

Under local regularity conditions including the uniqueness of the bridge functions,

H = {𝑡} and Q = {𝑣},
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guaranteed by completeness assumptions similar to those in assumption (3.7), the e”-
cient influence function (EIF) of 𝑆 is (Cui et al., 2024; Kallus et al., 2022)

(3.8) (2𝑈 ↑ 1)𝑣(𝑈, 𝑊, 𝑤){𝑝 ↑ 𝑡(𝑈, 𝑊,𝑢)} + 𝑡(1, 𝑊,𝑢) ↑ 𝑡(0, 𝑊,𝑢) ↑ 𝑆0.

The proximal augmented inverse probability weighting estimator of 𝑆 based on the EIF
is

𝑆 =
1
𝑃

𝑄∑

𝐿=1

[
(2𝑀𝐿 ↑ 1)𝑣(𝑀𝐿 , 𝑂𝐿 , 𝑙𝐿){𝑁𝐿 ↑ 𝑡̂(𝑀𝐿 , 𝑂𝐿 ,𝑠𝐿)} + 𝑡̂(1, 𝑂𝐿 ,𝑠𝐿) ↑ 𝑡̂(0, 𝑂𝐿 ,𝑠𝐿)

]
.

The function (3.8) is a doubly robust score in the sense that

𝑇{(2𝑀 ↑ 1)𝑣≃ (𝑀, 𝑂 , 𝑙){𝑁 ↑ 𝑡
≃ (𝑀, 𝑂 ,𝑠)} + 𝑡

≃ (1, 𝑂 ,𝑠) ↑ 𝑡
≃ (0, 𝑂 ,𝑠) ↑ 𝑆} = 0

if either 𝑡≃ = 𝑡 or 𝑣≃ = 𝑣. Hence, we should expect the estimator 𝑆 to be robust against
nuisance model misspecification. To establish the asymptotic normality of 𝑆, we can
exploit the rate robustness such that

(3.9) ⇐𝑘 ( 𝑡̂ ↑ 𝑡)⇐𝑃 ⇐𝑣 ↑ 𝑣⇐𝑃 = 𝑒𝑃 (𝑃↑1/2),

where {𝑘 ( 𝑚 )}(𝑈, 𝑊, 𝑤) = 𝑇{ 𝑚 (𝑀, 𝑂 ,𝑠) | 𝑀 = 𝑈, 𝑂 = 𝑊, 𝑙 = 𝑤}. The first factor can
be replaced by the stronger version ⇐ 𝑡̂ ↑ 𝑡⇐𝑃 without projection, but su”ciently fast
convergence rates under this norm are more di”cult to establish. Under some more
regularity conditions including a Donsker class condition, 𝑆 will be regular and locally
e”cient.

However, the ill-posedness of the integral equations in the definitions of H and Q
creates challenges for the estimation of bridge functions. Furthermore, in the asymptotic
analysis of estimators such as 𝑆𝑉 and 𝑆𝑊 , standard arguments will not be applicable if
𝑡̂ and 𝑣 fail to converge to some fixed functions in the usual 𝑔2-norm. A common
remedy is regularization of the empirical risk minimization with a suitable loss function
(Singh, 2023; Kompa et al., 2022; Mastouri et al., 2021; Kallus et al., 2022). In
finite-dimensional linear classes without regularization, the minimax problems become
equivalent to the estimating equations given in Cui et al. (2024). We refer to Zhang
et al. (2023) and Bennett et al. (2023) for elaborate discussions and proposed solutions
to sound statistical inference under ill-posedness.

3.3. Selection diagrams

In the rest of the chapter, we return to the data setup in Chapter 2 with the goal to
estimate the TATE

𝑆 = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝐿 = 1}.
In Manuscript I, we study anchored indirect comparison in the presence of unmeasured
e!ect modification that threatens the validity of transportability of the treatment e!ect.
For comparison between the proxies and assumptions in proximal causal inference for
unmeasured confounding and the those used in Manuscript I for transportability, it is
convenient to make use of selection diagrams.

The structural causal model (SCM) approach to causality o!ers a second viewpoint on
the transportability of treatment e!ects (Bareinboim and Pearl, 2016). In this framework,
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𝑀
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𝐿 𝑁
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𝑀 𝑈

𝑂

𝐿 𝑁 (𝑈)
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𝑀
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𝑀 𝑈

𝑂

𝑂
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𝐿 𝑁 (𝑈)

Figure 3.2. Selection diagrams (a and c) and the corresponding SWIGs (b and d) showing when the
target-population average treatment e!ect is identified as (2.9) (a and b) and when identification
does not rely on prognostic variables 𝑂⇔ (c and d).

each structural equation can be translated into a receiving node and its incoming edges
in a causal graph. Directed acyclic graphs (DAGs) are the most commonly used causal
graphs, but acyclic directed mixed graphs are also convenient for encoding unobserved
common causes between two variables.

Again, we focus on identifiability of the TATE, where we are concerned with trans-
porting the e!ect from the source population to a di!erent population rather than gen-
eralizing it to a super-population. This distinction allows us to represent aspects of the
SCMs from two populations using a unified diagram, called the selection diagram (Pearl
and Bareinboim, 2014; Bareinboim and Pearl, 2013). In a non-nested sampling scheme,
the population is represented by a node 𝐿 with edges pointing to all other variables
whose structural equations di!er between the populations or when the innovations di!er
in distributions. Figure 3.2 displays two selection diagrams.

Suppose we have a clear goal of estimating the TATE and have elicited a selection
diagram from domain knowledge. To apply the potential outcome framework, we then
use the selection diagram to justify the conditional distribution transportability (2.2),
since DAGs do not encode structural assumptions apart from conditional independences.
Typically, we turn the diagram into a single-world intervention graph (Richardson and
Robins, 2013, SWIG) and check for the d-separation between the nodes 𝑁 (𝑈) and 𝐿;
see Dahabreh et al. (2020b). If the underlying data generating mechanism satisfies
the Markov property with respect to the selection diagram Figure 3.2a, validity of
assumption (2.2) and thus identifiability of the TATE are established.

Identification in the SCM framework tends to rely on reading conditional indepen-
dences o! of manipulated selection diagrams. In Figure 3.2b, where assumption (2.2)
may not hold due to the path 𝐿 ↔ 𝑂

⇔ ↔ 𝑁 . If the structural equation of the outcome is
such that for some functions 𝑚 and 𝑗 and an innovation 𝛩 ,

𝑁 ↖ 𝑀 𝑚 (𝑂) + 𝑗(𝑂 , 𝑂 ⇔) + 𝛩 ,

𝛩 |= {𝑀, 𝑂 , 𝑂 ⇔
,𝐿},

the weaker transportability of the conditional average treatment e!ect (2.5) still holds,
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and the identification formulas (2.9) and (2.10) apply.

3.4. Relations to unmeasured e!ect modifiers

The presence of shifted, unobserved shifted prognostic variables for the outcome does
not invalidate identifiability of the TATE, as long as these variables are non-e!ect
modifying in the ATE e!ect measure. However, if there exist shifted, unobserved e!ect
modifiers 𝑟, identifiability of the TATE is lost. For the time being, we pretend to have
measured 𝑟 so that latent transportability and overlap conditions hold:

𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 ,𝑟,𝐿 = 1} = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 ,𝑟,𝐿 = 0};(3.10)
pr(𝐿 = 0 | 𝑂 ,𝑟)𝛬{pr(𝐿 = 1 | 𝑂 ,𝑟) > 0} > 0.(3.11)

Additionally, we assume proper randomization of the treatment that protects against
unmeasured confounders; that is,

𝑀 |= {𝑁 (1),𝑁 (0),𝑟} | {𝑂 ,𝐿 = 0},
0 < 𝑉0 (𝑈 | 𝑊) < 1, 𝑊 → X0,

where 𝑉0 (𝑈 | 𝑊) = pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝐿 = 0) is the propensity score in the source
population. Treating 𝑉0 as known, we can consider the transformed outcome

𝑁 =
2𝑀 ↑ 1

𝑉0 (𝑀 | 𝑂)𝑁

instead of the original outcome. This is because the relevant aspect of the outcome
for the TATE is the CATE, which is exactly the conditional mean of the transformed
outcome; that is,

𝑇 (𝑁 | 𝑂 ,𝑟,𝐿 = 0) = 𝑇 (𝑁 | 𝑀 = 1, 𝑂 ,𝑟,𝐿 = 0) ↑ 𝑇 (𝑁 | 𝑀 = 0, 𝑂 ,𝑟,𝐿 = 0).
Latent identifiability of the TATE is then as follows:

(3.12) 𝑆 = 𝑇{𝑇 (𝑁 | 𝑂 ,𝑟,𝐿 = 0) | 𝐿 = 1} = 𝑇

{
1 ↑ 𝐿

𝑍

pr(𝐿 = 1 | 𝑂 ,𝑟)
pr(𝐿 = 0 | 𝑂 ,𝑟)𝑁

}
.

Without additional information nor reasonable assumptions, identification of 𝑆 in the
observed data distribution is impossible.

In Manuscript I, we suggest a proximal causal inference approach to handle the
existence of unobserved e!ect modifiers. Comparing the identification formula of the
TATE (3.12) to that of the ATE (3.2), it is intuitive to consider two classes of bridge
functions which can replace the nuisance parameters

𝑇 (𝑁 | 𝑂 ,𝑟,𝐿 = 0) and
pr(𝐿 = 1 | 𝑂 ,𝑟)
pr(𝐿 = 0 | 𝑂 ,𝑟) ,

after being projected onto the space spanned by the e!ect modifiers {𝑂 ,𝑟}. We may
posit the existence of latent bridge functions depending on two separate proxies 𝑠 and
𝑙:

H𝑅 =
{
𝑡𝑅 (𝑊,𝑢) : 𝑇{𝑡𝑅 (𝑂 ,𝑠) | 𝑂 ,𝑟,𝐿 = 0} = 𝑇 (𝑁 | 𝑂 ,𝑟,𝐿 = 0)

}
,

Q𝑅 =
{
𝑣𝑅 (𝑊, 𝑤) : 𝑇{𝑣𝑅 (𝑂 , 𝑙) | 𝑂 ,𝑟,𝐿 = 0} = pr(𝐿 = 1 | 𝑂 ,𝑟)

pr(𝐿 = 0 | 𝑂 ,𝑟)

}
.
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𝑀𝐿

𝑟

𝑁 𝑠𝑙

Figure 3.3. A DAG compatible with the definitions of proxies for transportability. The node 𝑂 is
not drawn but may point to any other node but 𝐿.

The definition of H𝑅 does not concern the latent conditional outcome mean

𝑇 (𝑁 | 𝑀, 𝑂 ,𝑟,𝐿 = 0).

This aligns with assumption (3.10), in that the target population treatment-specific means
𝑇{𝑁 (𝑈) | 𝐿 = 1} are not latently identifiable, and we would generally not be interested
in introducing unnecessary complexity to nuisance parameters not directly relevant to
the TATE.

In the selection of proxies to combat unmeasured confounding, it is helpful to think
about negative controls. When the goal is to capture undesired unmeasured e!ect
modification whose magnitude varies between populations, some intuition can be gained
through analogy. First, we would like the proxy 𝑠 to be invariant in the sense that its
distribution should not shift between populations once we control for the shifted e!ect
modifiers {𝑂 ,𝑟}. Second, the proxy 𝑙 should not contribute to e!ect modification in
the source population if the other e!ect modifiers are already conditioned on. Third,
the proxies 𝑙 and 𝑠 must be (conditionally) independent to disentangle the aspect
of covariate shift and e!ect modification in relation to 𝑟. Now we formally state
the definition of proxies used in Manuscript I. We require that in the source trial, a
reweighting proxy 𝑙 and an adjustment proxy 𝑠 can be obtained, while knowledge of
the adjustment proxy su”ces in the target trial. Thus, the observed data is an i.i.d.
sample of𝑅 = {(1↑𝐿)𝑁 , (1↑𝐿)𝑀, 𝑂 , (1↑𝐿)𝑙 ,𝑠}. In addition to a extended version
of randomization

𝑀 |= {𝑟, 𝑙 ,𝑠} | {𝑂 ,𝐿 = 0},
the proxies satisfy the conditional independences

𝑙 |= 𝑠 | {𝑂 ,𝑟,𝐿 = 0},
𝐿 |= 𝑠 | {𝑂 ,𝑟},

and the structural assumption

𝑇 (𝑁 | 𝑙 , 𝑂 ,𝑟,𝐿 = 0) = 𝑇 (𝑁 | 𝑂 ,𝑟,𝐿 = 0).

Figure 3.3 displays a DAG compatible with the conditions for the proxies. Comparing
Figures 3.1 and 3.3, we see that the edges 𝑙 ↔ 𝑁 and 𝐿 ↔ 𝑁 are allowed to exist, since
transportability of the CATE allows for the presence of shifted, unmeasured prognostic
variables, and the reweighting proxy 𝑙 itself is also allowed to be a prognostic variable.

These conditions on the proxies give rise to the observed data bridge function classes

H =
{
𝑡(𝑊,𝑢) : 𝑇{𝑡(𝑂 ,𝑠) | 𝑂 , 𝑙 ,𝐿 = 0} = 𝑇 (𝑁 | 𝑂 , 𝑙 ,𝐿 = 0)

}
,

Q =
{
𝑣(𝑊, 𝑤) : 𝑇{𝑣(𝑂 , 𝑙) | 𝑂 ,𝑠 ,𝐿 = 0} = pr(𝐿 = 1 | 𝑂 ,𝑠)

pr(𝐿 = 0 | 𝑂 ,𝑠)

}
.
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Under assumptions (3.4) and (3.5), the TATE is identifiable in the observed data distri-
bution as

𝑆 = 𝑇{𝑡(𝑂 ,𝑠) | 𝐿 = 1}, for any 𝑡 → H,

𝑆 = 𝑇

{
1 ↑ 𝐿

𝑍

𝑣(𝑂 , 𝑙)𝑁
}
, for any 𝑣 → Q,

where 𝑍 = pr(𝐿 = 1). It is now clear that the adjustment proxy 𝑠 and the outcome
bridge function 𝑡 yield the proximal g-formula, and the reweighting proxy 𝑙 and the
sampling odds bridge function 𝑣 form the proximal sampling odds weighting formula. In
Manuscript I, under local regularity conditions guaranteeing thatH andQ are singletons,
we show that an influence function of 𝑆 is

1 ↑ 𝑜

𝑍

𝑣(𝑊, 𝑤){𝑝̃ ↑ 𝑡(𝑊,𝑢)} + 𝑜

𝑍

{𝑡(𝑊,𝑢) ↑ 𝑆}.

Denote the number of observations from the target population by 𝑃1. Given estimators
of the bridge functions, we propose the estimator

𝑆 =
1
𝑃1

∑

𝐿:𝑀𝐿=0
𝑣(𝑂𝐿 , 𝑙𝐿){𝑁𝐿 ↑ 𝑡̂(𝑂𝐿 ,𝑠𝐿)} +

1
𝑃1

∑

𝐿:𝑀𝐿=1
𝑡̂(𝑠𝐿 , 𝑂𝐿),

which is doubly robust against misspecification of the bridge functions and asymptoti-
cally linear under a rate condition similar to (3.9).
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4. Multisource data fusion

4.1. Setup and identifiability

We continue to work with a non-nested design as in Chapter 2. To distinguish the current
setup from the one previously discussed, we denote the target population by the indicator
𝛯 = 1 and the source population with𝛯 = 0. In fact, the source population is an artificial
super-population comprising a mixture of multiple separate source subpopulations. For
simplicity, we work with two source subpopulations denoted by 𝐿 = 0, 1, whereas the
general setup is detailed in Manuscript II. In each source subpopulation, we collect a set
of baseline covariates 𝑂 , the treatment assigned 𝑀, and the outcome𝑁 of each individual
sampled. We only have access to the baseline covariates in the sample from the target
population. Therefore, the joint sample from all environments can be conveniently
viewed as an i.i.d. sample from the distribution over 𝑅 = {(1 ↑𝛯)𝑁 , (1 ↑𝛯)𝑀, 𝑂 , (1 ↑
𝛯)𝐿,𝛯}. Importantly, we assume the outcome to be continuous and unbounded. A
partial list of notations used in this chapter is given in Table 4.1 for easier reference.

Let 𝑉𝑋 (𝑈 | 𝑊) = pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝐿 = 𝑜) denote the propensity score in the
source subpopulation 𝑜. Consistency, unconfoundedness, and positivity of treatment
assignment are assumed to hold within each subpopulation:

(1 ↑ 𝛯)𝑁 (𝑀) = (1 ↑ 𝛯)𝑁 ;(4.1)
0 < 𝑉𝑋 (𝑈 | 𝑊) < 1, 𝑊 → X𝑋;(4.2)
𝑁 (𝑈) |= 𝑀 | {𝑂 ,𝐿}.(4.3)

We are interested in the TATE

𝑆 = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝛯 = 1}.

Table 4.1. A partial list of notations used in Chapter 4.

Notation Quantity
𝑍 pr(𝛯 = 1)
𝑌(𝑊) pr(𝛯 = 1 | 𝑂 = 𝑊)
𝛱(𝑜 | 𝑊) pr(𝐿 = 𝑜 | 𝑂 = 𝑊,𝛯 = 0)
𝛱(𝑜 | 𝑈, 𝑊) pr(𝐿 = 𝑜 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝛯 = 0)
𝑉𝑋 (𝑈 | 𝑊) pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝐿 = 𝑜)
𝑋𝑋 (𝑈, 𝑊) 𝑇 (𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 𝑜)
𝑉• (𝑈 | 𝑊) pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝛯 = 0)
𝑋• (𝑈, 𝑊) 𝑇 (𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝛯 = 0)
𝛴𝑋 (𝑈, 𝑊) var(𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 𝑜)
X0 {𝑊 : 𝑌(𝑊) < 1}
X1 {𝑊 : 𝑌(𝑊) > 0}

25
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𝑊

𝑐
(𝑊
)

Figure 4.1. Densities 𝑐 of a covariate within the target population and the source subpopulations.
Overlap is fulfilled for the combined source population. Solid: target population density 𝑐(𝑊 |
𝛯 = 1); Dotted: source subpopulation 1 density 𝑐(𝑊 | 𝐿 = 0); Dashed: source subpopulation 2
density 𝑐(𝑊 | 𝐿 = 1).

Let 𝑌(𝑊) = pr(𝛯 = 1 | 𝑂 = 𝑊) denote the conditional probability of being sampled into
the target population. Identifiability of 𝑆 now hinges on the following overlap condition
between the source and the target populations

(4.4) X1 ↓ X0,

where X0 and X1 are the supports of the baseline covariates 𝑂 in the source and target
populations. Although (4.4) appears to be identical to the previously used (2.1), with
multisource data, the overlap condition here is much less severe in practice, since we
do not require overlap for every pair of source subpopulation and the target population.
This means that even if the target population contains very diverse strata, as long as the
same participants could have appeared in any of the source subpopulations, the TATE
can be recovered. With small source subpopulations, which can be study populations
of small clinical trials, we can potentially approximate a large target population. See
Figure 4.1 for an illustration.

Next is the transportability assumption. Consider transportability of the conditional
potential outcome distribution, of the conditional treatment-specific means (CTSMs),
and of the conditional average treatment e!ect (CATE) from any source subpopulation
to the target population, respectively:

𝑐{𝑝(𝑈) | 𝑂 = 𝑊,𝐿 = 𝑜} = 𝑐{𝑝(𝑈) | 𝑂 = 𝑊,𝛯 = 1};(4.5)
𝑇{𝑁 (𝑈) | 𝑂 = 𝑊,𝐿 = 𝑜} = 𝑇{𝑁 (𝑈) | 𝑂 = 𝑊,𝛯 = 1};(4.6)
𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 = 𝑊,𝐿 = 𝑜} = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 = 𝑊,𝛯 = 1}(4.7)

for all (𝑜, 𝑊) such that

(4.8) 𝛱(𝑜 | 𝑊){𝑌(1 ↑ 𝑌)}(𝑊) > 0,

where 𝛱(𝑜 | 𝑊) = pr(𝐿 = 𝑜 | 𝑂 = 𝑊,𝛯 = 0) is the conditional probability of being
sampled from subpopulation 𝑜 within the source population.

Let 𝑋𝑋 (𝑈, 𝑊) = 𝑇 (𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 𝑜) denote the conditional outcome mean in
source subpopulation 𝑜. Under assumptions (4.1)–(4.4) and one of assumptions (4.5)–
(4.7) above, the TATE is identifiable in the observed data distribution as (Dahabreh
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et al., 2023)

(4.9) 𝑆 = 𝑇

[ ∑

𝑋=0,1
𝛱(𝑜 | 𝑂){𝑋𝑋 (1, 𝑂) ↑ 𝑋𝑋 (0, 𝑂)}

####𝛯 = 1
]

= 𝑇

{
1 ↑ 𝛯

𝑍

𝑌(𝑂)
1 ↑ 𝑌(𝑂)

2𝑀 ↑ 1
𝑉𝑀 (𝑀 | 𝑂)𝑁

}
.

In principle, this identifiability result also holds under an even weaker transportability
assumption on the CATE like (2.5):

𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 = 𝑊,𝛯 = 0} = 𝑇{𝑁 (1) ↑ 𝑁 (0) | 𝑂 = 𝑊,𝛯 = 1}, 𝑊 → X1.

However, this assumption is hardly interpretable because it compares the CATE between
the target population and the entire source population, the latter of which is a constructed
population that mostly likely has no practical meaning. We will not make further use of
this assumption.

4.2. E”ciency bounds in nested models

Under either of the two stronger transportability assumptions (4.5) and (4.6), we can
further write the identfication formula as

(4.10) 𝑆 = 𝑇{𝑋• (1, 𝑂) ↑ 𝑋• (0, 𝑂) | 𝛯 = 1} = 𝑇

{
1 ↑ 𝛯

𝑍

𝑌(𝑂)
1 ↑ 𝑌(𝑂)

2𝑀 ↑ 1
𝑉• (𝑀 | 𝑂)𝑁

}
,

where 𝑋• (𝑈, 𝑊) = 𝑇 (𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝛯 = 0) and 𝑉• (𝑈 | 𝑊) = pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝛯 = 0)
are the conditional outcome mean and the propensity score within the whole source
population. Comparing the identification formulas (4.9) and (4.10) here to (2.9) and
(2.10), it is not hard to guess that

(4.11)
1 ↑ 𝑗

𝑍

𝑌(𝑊)
1 ↑ 𝑌(𝑊)

2𝑈 ↑ 1
𝑉𝑋 (𝑈 | 𝑊) {𝑝 ↑ 𝑋𝑋 (𝑈, 𝑊)}

+ 𝑗

𝑍

[ ∑

𝑋
⇔=0,1

𝛱(𝑜 | 𝑊){𝑋𝑋⇔ (1, 𝑊) ↑ 𝑋𝑋⇔ (0, 𝑊)} ↑ 𝑆

]

and

(4.12)
1 ↑ 𝑗

𝑍

𝑌(𝑊)
1 ↑ 𝑌(𝑊)

2𝑈 ↑ 1
𝑉• (𝑈 | 𝑊) {𝑝 ↑ 𝑋• (𝑈, 𝑊)} +

𝑗

𝑍

{𝑋• (1, 𝑊) ↑ 𝑋• (0, 𝑊) ↑ 𝑆}

can be used to construct estimating equations for 𝑆 under the respective transportability
assumptions. In fact, it can be verified that (4.11) and (4.12) are Neyman orthogonal
scores with respect to all nuisance parameters. Therefore, we would expect the Z-
estimators solving these estimating equations to have the rate robustness property and
possibly robustness against model misspecifications given in Chapter 2. However, a
sensible researcher should investigate whether such estimators make e”cient use of the
data according to the transportability assumptions.

If the observed data distribution is completely free to vary, the scores (4.11) and
(4.12) should each be the e”cient influence function (EIF) of 𝑆 in some sense. In
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reality, when working with multisource data like in the current setup, the observed
data distribution is rarely left unconstrained. Although transportability assumptions
(4.5)–(4.7) are untestable, they may have testable implications in the observed data
distribution. Within the intersection of the support of baseline covariates between the
source subpopulations, we assume either identical conditional distributions, conditional
outcome means, or conditional outcome mean di!erences; that is, for all 𝑊 such that
𝛱(1 | 𝑊)𝛱(0 | 𝑊) > 0:

𝑁 |= 𝐿 | {𝑀 = 𝑈, 𝑂 = 𝑊,𝛯 = 0};(4.13)
𝑋0 (𝑈, 𝑊) = 𝑋1 (𝑈, 𝑊);(4.14)
𝑋0 (1, 𝑊) ↑ 𝑋0 (0, 𝑊) = 𝑋1 (1, 𝑊) ↑ 𝑋1 (0, 𝑊).(4.15)

To use the geometric approach to study the semiparametric e”ciency bounds, we need
to define the models so that obey the testable implications above. The models should be
nested because the testable implications respect the logic:

(4.13) ⇓ (4.14) ⇓ (4.15),
P↙ ↓ P< ↓ P ,

where we use P , P<, and P↙ to denote the sets of probability distributions over 𝑅 that
satisfy (4.15), (4.14), and (4.13). The tangent spaces ↗P , ↗P<, and ↗P↙ for the nested
models also have a nesting property:

↗P ↓ 𝑔
0
2 (𝑄), for 𝑄 → P ,

↗P< ↓ ↗P ↓ 𝑔
0
2 (𝑄), for 𝑄 → P<,

↗P↙ ↓ ↗P< ↓ ↗P ↓ 𝑔
0
2 (𝑄), for 𝑄 → P↙ ,

where 𝑔
0
2 (𝑄) is the Hilbert space of mean-zero square integrable functions with respect

to the measure 𝑄.
We start with the largest modelP , which is also the closest to the nonparametric model

with no restriction. Under some local regularity conditions, we show in Manuscript II
that the EIF of 𝑆 in model P is given by

(4.16) 𝑖(𝑒) = 1 ↑ 𝑗

𝑍

𝑌(𝑊)
1 ↑ 𝑌(𝑊)

𝑢𝑋 (𝑊)∑
𝑋
⇔=0,1 𝛱(𝑜⇔ | 𝑊)𝑢𝑋

⇔ (𝑊)
2𝑈 ↑ 1

𝑉𝑋 (𝑈 | 𝑊) {𝑝 ↑ 𝑋𝑋 (𝑈, 𝑊)}

+ 𝑗

𝑍

[ ∑

𝑋
⇔=0,1

𝛱(𝑜 | 𝑂){𝑋𝑋⇔ (1, 𝑊) ↑ 𝑋𝑋⇔ (0, 𝑊)} ↑ 𝑆

]

where

𝑢𝑋 (𝑊) =
{ ∑

𝑌=0,1

𝛴𝑋 (𝑈, 𝑊)
𝑉𝑋 (𝑈 | 𝑊)

}↑1
,

and 𝛴𝑋 (𝑈, 𝑊) = var(𝑁 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 𝑜) is the conditional outcome variance
under treatment 𝑈 in source subpopulation 𝑜. We refer to the function 𝑢𝑋 as the
optimal weight function. Replacing it in 𝑖 with other weight functions 𝑢̃𝑋 such that
𝑇{𝑢̃𝑀 (𝑂) | 𝑂 = 𝑊,𝛯 = 0} ω 0 still produces valid influence functions (IFs). The
score (4.11) is one such IF, and we denote it by 𝑕. This is easily seen from the result in
Manuscript II that the orthocomplement of the tangent space ↗P is

↗P↘ =
{
(1 ↑ 𝑗)𝑡(𝑊, 𝑜) 2𝑈 ↑ 1

𝑉𝑋 (𝑈 | 𝑊, 𝑜) {𝑝 ↑ 𝑋𝑋 (𝑈, 𝑊)} : 𝑇{𝑡(𝑂 ,𝐿) | 𝑂 ,𝛯 = 0} = 0
}
.
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Hence, if we are to construct Z-estimators using the geometric approach, the e”cient
estimator should solve the estimating equation based on 𝑖. In this case, we would weigh
the nonparametric regression residual 𝑁 ↑ 𝑋𝑀 (𝑀, 𝑂) in a two-step procedure. The first
step uses the propensity score within the source subpopulations to balance the over- and
under-represented treatments, yielding

𝛩 =
2𝑀 ↑ 1

𝑉𝑀 (𝑀 | 𝑂) {𝑁 ↑ 𝑋𝑀 (𝑀, 𝑂)}.

The second step multiplies the transformed residual from the first step with a normalized
inverse-variance weight,

var(𝛩 | 𝑂 ,𝐿)
var(𝛩 | 𝑂 ,𝛯 = 0) ,

such that the conditional variance of the resulting quantity is minimized in the source
population.

Now consider 𝑄 → P< ↓ P , then the pathwise derivative of 𝑆 along the submodel
{𝑄𝑁} → P< with score 𝑑< (𝑒) → ↗P< ↓ ↗P such that 𝑄𝑁 |𝑁=0 = 𝑄 is

d
d𝑓

𝑆 (𝑄𝑁)
####
𝑁=0

= 𝑇{𝑖(𝑅)𝑑< (𝑅)}.

Under mild regularity conditions, we show in Manuscript II that

↗P↘
<
=
{
(1 ↑ 𝑗) 2𝑈 ↑ 1

𝑉• (𝑈 | 𝑊) 𝑡(𝑈, 𝑊, 𝑜){𝑝 ↑ 𝑋• (𝑈, 𝑊)} : 𝑇{𝑡(𝑀, 𝑂 ,𝐿) | 𝑀, 𝑂 ,𝛯 = 0} = 0
}
.

Then the EIF in the smaller model P< nested in larger model P can be obtained by the
projection

𝑖< = ε{𝑖 | ↗P<} = 𝑖 ↑ ε{𝑖 | ↗P↘
<
}

=
1 ↑ 𝑗

𝑍

𝑌(𝑊)
1 ↑ 𝑌(𝑊)

2𝑈 ↑ 1
𝑉• (𝑈 | 𝑊)

𝛴
↑1
𝑋

(𝑈, 𝑊)
∑

𝑋
⇔=0,1 𝛴

↑1
𝑋
⇔ (𝑈, 𝑊)𝛱(𝑜⇔ | 𝑈, 𝑊)

{𝑝 ↑ 𝑋• (𝑈, 𝑊)}

+ 𝑜

𝑍

{𝑋• (1, 𝑊) ↑ 𝑋• (0, 𝑊) ↑ 𝑆},

where 𝛱(𝑜 | 𝑈, 𝑊) = pr(𝐿 = 𝑜 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝛯 = 0) is the conditional probability of
being sampled from the source subpopulation 𝑜 among those receiving treatment 𝑈 in
the entire source population. Replacing 𝛴

↑1
𝑋

(𝑈, 𝑊) with 1 in 𝑖<, we see that the score
(4.12) is an IF of 𝑆, and we denote it by 𝑕<. The optimal weighting strategy suggested
by 𝑖< di!ers from that by 𝑖. The residual is first weighted by the normalized inverse
variance within each treatment group in the source population, and then balanced across
the treatment groups. In the context of integrating external controls into randomized
trials, Li et al. (2023) assume transportability of the conditional outcome mean under the
control treatment. This results in a model similar to P<, and the EIF of the treatment-
specific mean under control they consider resembles 𝑖<.

Finally, for 𝑄 → P↙ , we can obtain the EIF 𝑖↙ of 𝑆 by projecting, for example, either
𝑖 or 𝑖< onto the orthocomplement of the tangent space

↗P↘
↙ = {(1 ↑ 𝑗)𝑡(𝑝, 𝑈, 𝑊, 𝑜) : 𝑇{𝑡(𝑁 , 𝑀, 𝑂 ,𝐿) | 𝑀, 𝑂 ,𝐿} = 0,

𝑇{𝑡(𝑁 , 𝑀, 𝑂 ,𝐿) | 𝑁 , 𝑀, 𝑂 ,𝛯 = 0} = 0}.
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𝑕

𝑖

↗P

𝑔
0
2 (𝑄)

↗P↙

𝑖

𝑖<

𝑖↙

↗P<

↗P

Figure 4.2. Relationship between the EIFs in di!erent models. Left: 𝑄 → P . Right: 𝑄 → P↙ .
Adapted from Bickel et al. (1993, Figure 2).

Since 𝑕< is orthogonal to P↘
↙ , it is exactly the EIF. Under model P↙ , Dahabreh et al.

(2023); Wang et al. (2024) study the TATE in the whole target population and in
subgroups of the target population. Their estimators are precisely based on the EIF 𝑖↙ .

In Figure 4.2, we illustrate the projection technique to find the EIF in each of the
nested models by starting with the largest. In the left panel when 𝑄 → P , the EIF 𝑖 is
simply the projection of any IF 𝑕 → 𝑔

0
2 (𝑄) onto the tangent space ↗P , as discussed in

Chapter 2. In the right panel when 𝑄 → P↙ , we may obtain the EIF 𝑖↙ by successively
projecting 𝑖 → ↗P down to ↗P<, which yields 𝑖𝑍 , and then to ↗P↙ . A direct projection of
any 𝑕 onto the tangent space ↗P↙ also gives the EIF.

We conclude the section with several remarks. First, in the model P , the estimand

𝑇{𝑋• (1, 𝑂) ↑ 𝑋• (0, 𝑂) | 𝐿 = 1}

is no longer necessarily the TATE (4.9). To see this, simply note that the di!erence
between these estimands is

𝑇

[ ∑

𝑌=0,1

∑

𝑋=0,1
(2𝑈 ↑ 1){𝛱(𝑜 | 𝑈, 𝑊) ↑ 𝛱(𝑜 | 𝑊)}𝑋𝑋 (𝑈, 𝑊)

]
.

However, if the propensity scores in the source subpopulations are equal,

𝑉1 (𝑈 | 𝑊) = 𝑉0 (𝑈 | 𝑊),

the estimand above will again agree with the TATE. By including this additional re-
striction into the model P , we can propose robust estimators without having to estimate
𝑋𝑋 (𝑈, 𝑊) within each source subpopulation. However, estimators formed in this fashion
will not be e”cient because the EIF in this model is still 𝑖. Second, when testable
implications on the observed data distribution constrain the mean of the outcome, the
EIFs in the models P and P< involve the variance. Similarly, if homoscedasticity was
included as part of the model restriction, the resulting EIF would involve the skewness
of the outcome. In this respect, the pursuit of e”ciency quickly becomes cumbersome
when we move away from mean restrictions. Since e”cient estimators would likely
require the estimation of many nuisance parameters, the precision of estimates may not
be better in finite samples.
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4.3. Variational dependence and non-collapsibility

So far, we have seen that for an unbounded continuous outcome, transportability of the
CATE (4.7) is in some sense the weakest assumption needed to identify the TATE. On
one hand, it recognizes possible heterogeneity in the CTSMs by allowing them to di!er
freely among the populations. In other words, transportability of the CATE leaves the
CTSMs variationally independent. Indeed, it is unnecessary to constrain the CTSMs
between the source and target populations, when we are only interested in identifying
the treatment e!ect and not the treatment-specific means (TSMs).

On the other hand, there is a neat correspondence between the CATE as a conditional
e!ect and the average treatment e!ect (ATE) as a marginal e!ect. To identify the TATE,
we simply standardize the CATE in the source population with respect to the baseline
covariate distribution in the target population. The standardization step is intuitive and
sane, because the target population marginal e!ect will be a weighted average of the
conditional e!ects. This property of an e!ect measure is called collapsibility (Huitfeldt
et al., 2019).

In the following, we discuss whether these two favorable properties can be maintained
for a binary outcome. We follow the notations from previous sections, although most
issues raised below occur irrespective of the multisource data setup.

When it comes to applying the identification formula (4.9), there is really no di!erence
between a continuous and a binary outcome. However, transportability on the CATE
(4.7) induces variational dependence between the TSMs when the outcome is binary.
For example, suppose we observe, for some level of baseline covariates 𝑊0 → X1 in the
target population, that in the source subpopulation 𝑜 with 𝛱(𝑜 | 𝑊0) > 0 the CATE is

𝑇{𝑁 (1) | 𝑂 = 𝑊0,𝐿 = 𝑜} ↑ 𝑇{𝑁 (0) | 𝑂 = 𝑊0,𝐿 = 𝑜} = ↑𝛶0,

where 0 ∝ 𝛶0 ∝ 1. Then the target population CTSMs must respect the following
bounds:

𝛶0 ∝ 𝑇{𝑁 (0) | 𝑂 = 𝑊0,𝛯 = 1} ∝ 1,
0 ∝ 𝑇{𝑁 (1) | 𝑂 = 𝑊0,𝛯 = 1} ∝ 1 ↑ 𝛶0.

These additional constraints may be falsifiable with prior knowledge of the TSMs in
the target population, but they are not verifiable. We should strive to avoid inducing
unverifiable relations that are not directly assumed but fall out as ramifications of
other assumptions. Moreover, if 𝛱(0 | 𝑊0)𝛱(1 | 𝑊0) > 0, then there is also variation
dependence between the conditional outcome means in the observed data distribution.

Because the odds maps a probability to an unbounded positive value, transportability
of the conditional causal odds ratio

(4.17)
𝑇{𝑁 (1) | 𝑂 = 𝑊,𝐿 = 𝑜}

1 ↑ 𝑇{𝑁 (1) | 𝑂 = 𝑊,𝐿 = 𝑜}
1 ↑ 𝑇{𝑁 (0) | 𝑂 = 𝑊,𝐿 = 𝑜}
𝑇{𝑁 (0) | 𝑂 = 𝑊,𝐿 = 𝑜}

=
𝑇{𝑁 (1) | 𝑂 = 𝑊,𝛯 = 1}

1 ↑ 𝑇{𝑁 (1) | 𝑂 = 𝑊,𝛯 = 1}
1 ↑ 𝑇{𝑁 (0) | 𝑂 = 𝑊,𝛯 = 1}
𝑇{𝑁 (0) | 𝑂 = 𝑊,𝛯 = 1} ,

for (𝑜, 𝑊) such that (4.8) holds, guarantees variational independence of the CTSMs, as
long as the conditional distributions of the potential outcomes are non-degenerate. The
problem with the odds ratio is that it is a non-collapsible e!ect measure (Daniel et al.,



32 Multisource data fusion

2021; Didelez and Stensrud, 2022). There is no standardization of the conditional causal
odds ratios from the source population that would produce the target population causal
odds ratio

𝑇{𝑁 (1) | 𝛯 = 1}
1 ↑ 𝑇{𝑁 (1) | 𝛯 = 1}

1 ↑ 𝑇{𝑁 (0) | 𝛯 = 1}
𝑇{𝑁 (0) | 𝛯 = 1} .

Interpretation of this estimand as a weighted average of conditional e!ects is no longer
possible. The target population causal odds ratio could even lie outside the range of
conditional e!ects in the source population (Colnet et al., 2024b).

A separate issue that comes with a binary outcome is that unlike with a continuous
outcome, the di!erence e!ect measure does not disentangle the treatment e!ect from
the “baseline” conditional risk

𝑇{𝑁 (0) | 𝑂 = 𝑊,𝛯 = 1}.

The lack of disentanglement blurs the distinction between prognostic variables and ef-
fect modifiers, hence defying the intuition that shifted e!ect modifiers are in some sense
su”cient for identification of the target population treatment e!ects defined in collapsi-
ble e!ect measures. Consider a data generating mechanism under which treatment 1
has the same beneficial e!ect for all subjects, but no harmful e!ect for anyone (Colnet
et al., 2024b; Cinelli and Pearl, 2021). We assume that the resulting distribution admits
a straightforward parametrization:

(4.18)
pr{𝑁 (1) = 0 | 𝑁 (0) = 1, 𝑂 = 𝑊,𝛯 = 1} = constant,
pr{𝑁 (1) = 1 | 𝑁 (0) = 0, 𝑂 = 𝑊,𝛯 = 1} = 0.

For an individual with baseline characteristics 𝑊, the former expression is the probability
of having no event under treatment 1, if the individual would su!er from the event under
treatment 0. It is constant in 𝑊, corresponding to the assumption of no heterogeneity.
The latter expression is the individual’s risk under treatment 1, given that the individual
would be event-free under treatment 0, which is exactly 0, because the treatment cannot
harm. Assuming (4.18), the conditional e!ect

pr{𝑁 (1) = 1 | 𝑂 = 𝑊,𝛯 = 1} ↑ pr{𝑁 (0) = 1 | 𝑂 = 𝑊,𝛯 = 1}
= ↑pr{𝑁 (1) = 0 | 𝑁 (0) = 1, 𝑂 = 𝑊,𝛯 = 1}pr{𝑁 (0) = 1 | 𝑂 = 𝑊,𝛯 = 1}

may still depend on the individual risk under treatment 0 that di!er among populations,
making (4.7) invalid. Therefore, transportability of the CATE fails to accommodate this
simple setup.



5. Competing risks analysis

5.1. Setup and identifiability

In this chapter, we work with the setup in which the treatment-outcome information is
available from the target population. Additionally, we have access to the outcome from
a source population where everyone receives the control treatment. A sample from such
a source population is called external controls. We discuss transportability assumptions
under which the external controls are compatible with the target population sample,
as well as how the external controls can be incorporated into the analysis to produce
estimates of target population treatment e!ects with greater precision.

Unlike the setup in previous chapters, we now work with time-to-event outcomes.
In Manuscript III, we are specifically concerned with competing risks analysis, where
there exist other types of events that preclude the occurrence of the event of interest.
For example, if the study population contains frail people, some may experience severe
adverse events such as death, so the event of interest may never occur for these people.
The event process can be captured by a Markov model where an individual starts from
an event-free state and, at some point in time, transitions into one of the event states. A
diagram illustrating this model is shown in Figure 5.1.

Time-to-event outcomes are susceptible to right censoring, meaning that the actual
event may remain unobserved by being cut o! prematurely. The source of censoring
varies between studies. In randomized clinical trials, the observation period often ends
after a preset number of events have accumulated in the sample, but some subjects may
also leave the study or simply lost to follow-up. To focus on the presentation, we assume
that there is no censoring. In Manuscript III, we handle censoring with the standard
independent censoring assumption.

The outcome is a tuple of the time to event since their entry into the study 𝑘 and the
associated event type 𝛷. For simplicity, we assume that there are only two types of events,
so that when the event of interest occurs, we observe 𝛷 = 1, and when the competing
event occurs, we observe 𝛷 = 2. We also collect binary treatment 𝑀 and some baseline
covariates 𝑂 . In the source population (𝐿 = 0), all individuals are exposed to treatment
𝑀 = 0. Under non-nested sampling from the target and source populations, the data
can be treated as an independent and identically distributed sample from the underlying
observed data distribution over 𝑅 = (𝑘 , 𝛷,𝐿𝑀, 𝑂 ,𝐿). A partial list of notations used in
this chapter is given in Table 5.1.

Suppose we are interested in the 𝛹-time target population causal cumulative incidence
di!erences

𝑆𝑇 = 𝑆𝑇1 ↑ 𝑆𝑇0,

33



34 Competing risks analysis

Event-free

Event type 1

Event type 2

Event type 𝛺
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.
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.

.

Figure 5.1. Competing risks model with 𝛺 possible event types. Adapted from Figure I.3.5. in
Andersen et al. (1993).

Table 5.1. A partial list of notations used in Chapter 5.

Notation Quantity
𝑍 pr(𝐿 = 1)
𝑍1 𝑇 (𝛻 | 𝑈, 𝑊) (5.7)
𝑍0 𝑇 (𝛻 | 𝑊) (5.8)
𝑉1 (𝑈 | 𝑊) pr(𝑀 = 𝑈 | 𝑂 = 𝑊,𝐿 = 1)
𝛼1 𝑇 (𝛻 | 𝑈, 𝑊) pr(𝑘 ∝ 𝛻, 𝛷 = 𝑦 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1)
𝛼0 𝑇 (𝛻 | 𝑊) pr(𝑘 ∝ 𝛻, 𝛷 = 𝑦 | 𝑂 = 𝑊,𝐿 = 0)
𝑥1 𝑇 (𝛻 | 𝑈, 𝑊) 𝛬 (𝑘 ∝ 𝛻, 𝛷 = 𝑦) ↑

´
𝑎

0 I(𝑘 ⇑ 𝑑)𝑍1 𝑇 (𝑑 | 𝑈, 𝑊)d𝑑
𝑌(𝑊) pr(𝐿 = 1 | 𝑂 = 𝑊)
𝛽1 (𝛻 | 𝑈, 𝑊) pr(𝑘 > 𝛻 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1)
𝛽0 (𝛻 | 𝑊) pr(𝑘 > 𝛻 | 𝑂 = 𝑊,𝐿 = 0)

where
𝑆𝑇𝑌 = pr{𝑘 (𝑈) ∝ 𝛹, 𝛷 (𝑈) = 𝑦 | 𝐿 = 1}

are the target population treatment-specific cumulative incidences. In fact, these pa-
rameters are simply the target population average treatment e!ects (TATEs) and the
target population treatment-specific means (TTSMs) for the binary outcomes 𝛬{𝑘 (𝑈) ∝
𝛹, 𝛷 (𝑈) = 𝑦}, and we will continue to refer to them as such. Identifiability of the TATEs
and the TTSMs depends on consistency in both populations, positivity of treatment
assignment in the target population, and exchangeability of treatment assignment in the
target population:

{𝑘 (𝑀), 𝛷 (𝑀)} = (𝑘 , 𝛷);(5.1)
0 < 𝑉1 (𝑈 | 𝑊) < 1;(5.2)
{𝑘 (𝑈), 𝛷 (𝑈)} |= 𝑀 | {𝑂 ,𝐿 = 1}.(5.3)

Assumptions (5.2) and (5.3) are generally satisfied in (conditionally) randomized con-
trolled trials. Then 𝑆𝑇𝑌 is identifiable in the observed data distribution as

𝑆𝑇𝑌 = 𝑇{𝛼1 𝑇 (𝛹 | 𝑈, 𝑂) | 𝐿 = 1},

where 𝛼1 𝑇 (𝛻 | 𝑈, 𝑊) = pr(𝑘 ∝ 𝛻, 𝛷 = 𝑦 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1) is the cause 𝑦 conditional
cumulative incidence function under treatment 𝑈 in the target population.
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5.2. Two transportability assumptions

Incorporation of the external controls into the target population sample may be licensed
by transportability assumptions. In this section, we discuss two such assumptions that
relate the distribution of the potential event time and potential event type under the
control treatment in the source population to that in the target population.

In the setting without competing risks, Lee et al. (2022, 2024) generalize and transport
treatment e!ects in survival analysis with one type of event from a source population to
a target population. They work under transportability of the conditional distributions of
the potential event times. In the current setup, an analogous assumption is the following:

(5.4) {𝑘 (0), 𝛷 (0)} |= 𝐿 | 𝑂 .

In words, this assumption states that the conditional distribution of the potential time
to event is transportable given the baseline covariates. Equivalently, we can represent
assumption (5.4) as

𝑍
0
0 𝑇 (𝛻 | 𝑊) = 𝑍

0
1 𝑇 (𝛻 | 𝑊), for 𝑊 → X1 ′ X0,

where

𝑍
0
𝑋 𝑇
(𝛻 | 𝑊) = lim

∞𝑎∈0

pr{𝑘 (0) → [𝛻, 𝛻 + ∞𝛻), 𝛷 (0) = 𝑦 | 𝑘 (0) ⇑ 𝛻, 𝑂 = 𝑊,𝐿 = 𝑜}
∞𝛻 ,

denotes the conditional cause 𝑦 hazard of the potential outcome under the control
treatment within the target or source population. It requires that between the populations,
all shifted prognostic variables for the outcome are contained in the set of baseline
covariates 𝑂 . In some situations, the hazards of the event of interest 𝑍0

𝑋1 may be aligned
between the populations given the observed covariates, but the hazards of the competing
event 𝑍0

𝑋2 may di!er. For example, suppose the use of tobacco and the exposure to
ultraviolet radiation vary between the populations, but in the data, we only collect
smoking habits of study participants. Suppose the competing risks are di!erent causes
of death. Then the hazard of cardiovascular death may be transportable conditioning on
the frequency of smoking, whereas the hazard of death from skin cancer is much less
likely to be transportable without controlling for solarium visits or the use of sunscreen.
In such cases, we may consider transportability of the conditional cause 1 hazard under
the control treatment

(5.5) 𝑍
0
01 (𝛻 | 𝑊) = 𝑍

0
11 (𝛻 | 𝑊), for 𝑊 → X1 ′ X0,

while the conditional cause 2 hazard can di!er arbitrarily.
We can also illustrate the di!erence between assumptions (5.4) and (5.5) in causal

diagrams. Recall from Chapter 3 that selection diagrams encode covariate shifts by
using an edge from the population indicator to every shifted covariate. Viewing the
event time and the type of event {𝑘 , 𝛷} as a single node, we can reproduce a directed
acyclic graph and a single-world intervention graph where assumption (5.4) holds,
resembling those given in Figure 3.2. However, assumption (5.5) cannot be depicted in
a similar fashion, since d-separation implies only conditional independence, while this
assumption involves hazards of only one cause of event.

It turns out that (5.5) is an instance of local independence and can thus be represented
in a local independence graph (Didelez, 2008; Røysland et al., 2025). One way of
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𝐿

𝑂

𝑀

𝛾2

𝛾1

Figure 5.2. A local independence graph compatible with assumption (5.5).

representing the time-to-event outcome is to note whether an event of type 𝑦 has occurred
before time 𝛻 in the observation period T = [0, 𝛹] in the form of

𝛾𝑇 (𝛻) = 𝛬 (𝑘 ∝ 𝛻, 𝛷 = 𝑦), 𝛻 → T .

These stochastic processes indexed by time are examples of counting processes. Given
assumption (5.3), assumption (5.5) is equivalent to that the counting process 𝛾1 is
locally independent of 𝐿 given {𝛾1, 𝛾2, 𝑀 = 0, 𝑂}, written as

(5.6) 𝐿 ⊋ 𝛾1 | {𝛾1, 𝛾2, 𝑀 = 0, 𝑂}.

This local independence means that the intensity of the counting process 𝛾1 with
respect to the filtration generated by {𝛾1, 𝛾2, 𝑀 = 0, 𝑂 ,𝐿} is the same as the intensity
generated without 𝐿. Informally, consider two individuals with the same baseline
covariates under treatment 0, one from the source population and the other from the target
population. If neither of them has experienced any event by time 𝛻, the instantaneous
rate of the event of interest is the same for both, which is exactly the interpretation of
assumption (5.5). Graphically, (5.6) can be represented by the so-called 𝛿-separation. In
the local independence graph from Figure 5.2, 𝐿 can be 𝛿-separated from 𝛾1 because all
trails (here the same as paths) from 𝐿 to 𝛾1 are blocked by the set of nodes {𝛾2, 𝑀, 𝑂}.
The edge 𝐿 ↔ 𝛾2 means that there may be unobserved shifted prognostic variables 𝑟
with 𝐿 ↔ 𝑟 ↔ 𝛾2. If there was no edge between 𝐿 and 𝛾2, the graph would also be
compatible with assumption (5.4).

In Manuscript III, we briefly discuss transportability assumptions on the 𝛹-time
conditional causal cumulative incidences, on the subdistribution functions, and on the
all-cause survival functions. These assumptions are less intuitive than assumptions (5.4)
and (5.5), since they involve the conditional hazards of both event types in specific
functional forms.

5.3. E”ciency in three models

Intuitively, the stronger the transportability assumption is, the more compatible the
data generating mechanisms will be between the target and source populations, and the
higher potential precision gain for the estimates of the TATEs and TTSMs. Given a
transportability assumption, it is of interest to propose e”cient estimators that make
optimal use of external controls to achieve the maximum precision gain. In this section,
we present the e”cient influence functions (EIFs) of the TATEs and the TTSMs under
three nested models. Under suitable regularity conditions, Z-estimators solving the
estimating equations formed by the EIFs will be e”cient in the respective models.
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We adopt a similar style to motivate the e”ciency calculations as in Chapter 4. Let the
observed data conditional cause-specific hazards in the target and source distributions
be

𝑍1 𝑇 (𝛻 | 𝑈, 𝑊) = lim
∞𝑎∈0

pr{𝑘 → [𝛻, 𝛻 + ∞𝛻), 𝛷 = 𝑦 | 𝑘 ⇑ 𝛻, 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1}
∞𝛻 ,(5.7)

𝑍0 𝑇 (𝛻 | 𝑊) = lim
∞𝑎∈0

pr{𝑘 → [𝛻, 𝛻 + ∞𝛻), 𝛷 = 𝑦 | 𝑘 ⇑ 𝛻, 𝑂 = 𝑊,𝐿 = 0}
∞𝛻 .(5.8)

Then the corresponding observed data conditional all-cause survival functions and
conditional cumulative incidence functions are

𝛽1 (𝛻 | 𝑈, 𝑊) = pr(𝑘 > 𝛻 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1) = exp
{
↑
ˆ

𝑎

0
(𝑍11 + 𝑍12) (𝑑 | 𝑈, 𝑊)d𝑑

}
,

𝛽0 (𝛻 | 𝑊) = pr(𝑘 > 𝛻 | 𝑂 = 𝑊,𝐿 = 0) = exp
{
↑
ˆ

𝑎

0
(𝑍01 + 𝑍02) (𝑑 | 𝑊)d𝑑

}
,

𝛼1 𝑇 (𝛻 | 𝑈, 𝑊) = pr(𝑘 ∝ 𝛻, 𝛷 = 𝑦 | 𝑀 = 𝑈, 𝑂 = 𝑊,𝐿 = 1) =
ˆ

𝑎

0
𝛽1 (𝑑 | 𝑈, 𝑊)𝑍1 𝑇 (𝑑 | 𝑈, 𝑊)d𝑑,

𝛼0 𝑇 (𝛻 | 𝑊) = pr(𝑘 ∝ 𝛻, 𝛷 = 𝑦 | 𝑂 = 𝑊,𝐿 = 0) =
ˆ

𝑎

0
𝛽0 (𝑑 | 𝑊)𝑍0 𝑇 (𝑑 | 𝑊)d𝑑.

Under assumptions (5.1)–(5.3), the transportability assumptions (5.4) and (5.5) have the
following testable implications in the observed data distribution:

{𝑘 , 𝛷} |= 𝐿 | {𝑀 = 0, 𝑂};(5.9)
𝑍11 (𝛻 | 0, 𝑊) = 𝑍01 (𝛻 | 𝑊).(5.10)

Then we can define three nested models

P↙ ↓ P< ↓ P ,

where the models are sets of probability distributions over 𝑅 that satisfy the conditional
independence (5.9), the local independence (5.10), and no special constraints, from the
smallest to the largest.

Suppose the underlying distribution 𝑄 stems from the unrestricted model P . Then
the tangent space is exactly the entire Hilbert space of square integrable mean-zero
functions 𝑔

0
2 (𝑄). The EIF of the TTSM 𝑆𝑇𝑌⇔ for treatment 𝑈⇔ and cause 𝑦 is (Rytgaard

et al., 2023)

𝑖𝑇𝑌⇔ (𝑒) = 𝑜

𝑍

𝛬 (𝑈 = 𝑈
⇔)

𝑉1 (𝑈 | 𝑊)

ˆ
𝑏

0

𝑗𝑇1 (𝛻, 𝑈, 𝑊)d𝜀11 (𝛻 | 𝑈, 𝑊) + 𝑗𝑇2 (𝛻, 𝑈, 𝑊)d𝜀12 (𝛻 | 𝑈, 𝑊)
𝛽1 (𝛻 | 𝑈, 𝑊)

+ 𝑜

𝑍

{𝛼1 𝑇 (𝛻 | 𝑈⇔, 𝑊) ↑ 𝑆𝑇𝑌⇔ },

where

𝑗𝑇𝑈 (𝛻, 𝑈, 𝑊) = 𝛬 ( 𝑦 = 𝑧)𝛽1 (𝛻 | 𝑈, 𝑊) ↑ {𝛼1 𝑇 (𝛹 | 𝑈, 𝑊) ↑ 𝛼1 𝑇 (𝛻 | 𝑈, 𝑊)},

and𝜀1 𝑇 (𝛻 | 𝑈, 𝑊) are realizations of 𝑥1 𝑇 (𝛻 | 𝑀, 𝑂) = 𝛾𝑇 (𝛻)↑
´
𝑎

0 𝛬 (𝑘 ⇑ 𝑑)𝑍1 𝑇 (𝑑 | 𝑀, 𝑂)d𝑑.
In fact, 𝐿𝑥1 𝑇 (𝛻 | 𝑀, 𝑂) is a martingale with respect to the filtration representing
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the history of events as time passes as well as the information available at baseline.
Martingales may be viewed as residuals from nonparametric regressions, so it should be
rather intuitive that martingale integrals, such as those appearing in 𝑖𝑇𝑌⇔ , characterize
the form of the tangent spaces associated with the counting processes. Another structure
that often arises in the derivation of EIFs of causal parameters with time-to-event data is
the weight composed of the propensity score and the at-risk (survival) probability. The
weight is often self-normalizing in the sense that it has mean 1. For example, writing
out the at-risk indicator 𝛬 (𝑘 ⇑ 𝛻) in the martingale increment, the time-varying weight
is

𝐿𝛬 (𝑀 = 𝑈
⇔)𝛬 (𝑘 ⇑ 𝛻)

𝑍𝑉1 (𝑀 | 𝑂)𝛽1 (𝛻 | 𝑀, 𝑂)
.

Finally, the functions 𝑗1 𝑇 are tied to the parameters of interest, which in this case are the
TTSMs. Because the EIF is multiplied by the indicator of being in the target population,
the Z-estimator based on 𝑖𝑇𝑌⇔ does not use any external controls.

In the sequel, we only discuss the TTSMs 𝑆𝑇0 under the control treatment, since the
e”ciency bounds of 𝑆𝑇1 should not change when there is no restriction on the event time
and event type distribution under treatment 1 in the target population. Consider first
the model P< where the counting process of the event of interest is locally independent
of the population given the history under the control treatment. The EIF of 𝑆𝑇0 can be
found by subtracting from 𝑖𝑇0 its projection onto the orthocomplement of the tangent
space ↗P<:

↗P↘
<
=
{
(1 ↑ 𝑈)

ˆ
𝑏

0
𝑡1 (𝛻, 𝑊, 𝑜)d𝜀11 (𝛻 | 0, 𝑊) : 𝑇{𝑡1 (𝛻, 𝑂 ,𝐿) | 𝑘 ⇑ 𝛻, 𝑂} = 0

}
.

Let 𝑌(𝑊) = pr(𝐿 = 1 | 𝑂 = 𝑊) be the probability of being sampled from the target
population. The EIF of 𝑆𝑇0 is

𝑖𝑇0,< (𝑒) =
𝑌(𝑊)
𝑍

(1 ↑ 𝑈)
ˆ

𝑏

0

𝑗𝑇1 (𝛻, 0, 𝑊)d𝜀11 (𝛻 | 0, 𝑊)
𝑌(𝑊)𝑉1 (0 | 𝑊)𝛽1 (𝛻 | 0, 𝑊) + {1 ↑ 𝑌(𝑊)}𝛽0 (𝛻 | 𝑊)

𝑜

𝑍

1 ↑ 𝑈

𝑉1 (0 | 𝑊)

ˆ
𝑏

0

𝑗𝑇2 (𝛻, 𝑈, 𝑊)
𝛽1 (𝛻 | 𝑈, 𝑊)

d𝜀12 (𝛻 | 𝑈, 𝑊) +
𝑜

𝑍

{𝛼1 𝑇 (𝛻 | 0, 𝑊) ↑ 𝑆𝑇0}.

Comparing 𝑖𝑇0,< to 𝑖𝑇0, it is clear that the martingale integral over 𝜀11 (𝛻 | 0, 𝑂)
now involves observations under treatment 0 from both populations, but the martingale
integral over 𝜀12 (𝛻 | 0, 𝑂) remains unchanged. Accordingly, the weight

(5.11)
𝑌(𝑂)
𝑍

(1 ↑ 𝑀)𝛬 (𝑘 ⇑ 𝛻)
𝑌(𝑂)𝑉1 (0 | 𝑂)𝛽1 (𝛻 | 0, 𝑂) + {1 ↑ 𝑌(𝑂)}𝛽0 (𝛻 | 𝑂)

first rescales the residual of the counting process 𝛾1 with the inverse joint probability
of surviving until time 𝛻 and receiving the control treatment

pr(𝑘 ⇑ 𝛻, 𝑀 = 0 | 𝑂 = 𝑊)

and then standardizes it over the distribution of the baseline covariates in the target
population. Previously in Chapter 4, we have seen that for an ordinary continuous
outcome, the restriction on the conditional outcome means leads to an EIF involving the
conditional variance of the outcome (Li et al., 2023). Here, since the counting process
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increment d𝛾1 (𝛻) is binary and completely characterized by the hazards, the “conditional
variances” are also equal and therefore do not appear in (5.11). Heuristically, precision
gain via external control data is only possible when there is an overlap in the distribution
of baseline covariates; that is, there should at least exist non-null sets of baseline
covariates where

𝑌(𝑊){1 ↑ 𝑌(𝑊)} > 0.

Finally, the orthocomplement of the tangent space ↗P↙ of the model P↙ is

↗P↙ =
{
(1 ↑ 𝑈)

ˆ
𝑏

0
{𝑡1 (𝛻, 𝑊)d𝜀11 (𝛻 | 0, 𝑊) + 𝑡2 (𝛻, 𝑊)d𝜀12 (𝛻 | 0, 𝑊)} :

𝑇{𝑡𝑇 (𝛻, 𝑂) | 𝑘 ⇑ 𝛻, 𝑀 = 0, 𝑂} = 0, 𝑦 = 1, 2
}
.

Hence, it is easily seen that the EIF of 𝑆𝑇0 in the model P↙ is

𝑖𝑇0,↙ (𝑒) = 𝑌(𝑊)
𝑍

(1 ↑ 𝑈)
ˆ

𝑏

0

𝑗𝑇1 (𝛻, 0, 𝑊)d𝜀11 (𝛻 | 0, 𝑊) + 𝑗𝑇2 (𝛻, 0, 𝑊)d𝜀12 (𝛻 | 0, 𝑊)
𝑌(𝑊)𝑉1 (0 | 𝑊)𝛽1 (𝛻 | 0, 𝑊) + {1 ↑ 𝑌(𝑊)}𝛽0 (𝛻 | 𝑊)

+ 𝑜

𝑍

{𝛼1 𝑇 (𝛻 | 0, 𝑊) ↑ 𝑆𝑇0}.

The di!erence from 𝑖𝑇0,< is that now the martingale integral over 𝜀𝑇2 (𝛻 | 0, 𝑊) also
incorporates observations from the external control population. This corresponds to the
fact that (5.9) is (5.10) plus the restriction on the cause 2 hazards

𝑍12 (𝛻 | 0, 𝑊) = 𝑍02 (𝛻 | 𝑊).

In Manuscript III, we consider event time distributions that may not be absolutely
continuous and are allowed to have masses on a countable set of timepoints. The
more general setup also accommodates discrete-time competing risks analysis, where
the martingale integrals in the EIFs reduce to summations over timesteps. Since the
transportability assumptions (5.4) and (5.5) are not specific to any e!ect measure, other
estimands in competing risks analysis may also be adopted. Apart from the 𝛹-time
cumulative incidence di!erences, we also consider the di!erences in 𝛹-time restricted
mean times lost (Andersen, 2013)

𝑇 (𝛬{𝛷 (1) = 𝑦}[𝛹 ↑ {𝑘 (1) ∋ 𝛹}] | 𝐿 = 1) ↑ 𝑇 (𝛬{𝛷 (0) = 𝑦}[𝛹 ↑ {𝑘 (0) ∋ 𝛹}] | 𝐿 = 1)

as an alternative e!ect measure. The restricted mean time lost to cause 𝑦 is a gener-
alization of the restricted mean survival time 𝑇{𝑘 (𝑈) ∋ 𝛹 | 𝐿 = 1} in the absence of
competing risks. Its interpretation follows directly from the decomposition

𝛹 ↑ 𝑇{𝑘 (𝑈) ∋ 𝛹 | 𝐿 = 1} =
∑

𝑇=1,2
𝑇 (𝛬{𝛷 (𝑈) = 𝑦}[𝛹 ↑ {𝑘 (𝑈) ∋ 𝛹}] | 𝐿 = 1).

The e”ciency calculations for cumulative incidences apply directly to restricted mean
times lost, because the latter estimands are simply integrals of the former.
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6. Summary of manuscripts

6.1. Manuscript I

In Manuscript I, we provide a new method for indirect comparison of two treatments,
when direct evidence of the treatment e!ect is unavailable, but the treatments are
researched separately in two randomized controlled trials (RCTs) in possibly di!erent
populations. We are in interested in the average treatment e!ect (ATE) comparing
these treatments in the target population, which is the study population from one of
the two RCTs. We consider the anchored indirect comparison setting, where the RCTs
share a common treatment. To establish the desired treatment e!ect, current methods
rely on transportability of the conditional average treatment e!ect (CATE) between the
source and target RCTs. However, if some shifted e!ect modifiers are unmeasured, the
transportability assumption will be violated. Thus, application of the estimators from
Chapter 2 adjusting for observed covariates may lead to biased results.

Through the use of proxy variables, we establish a new proximal identification result
that relies on the existence of the so-called bridge functions. We assume that trans-
portability of the CATE is restored when further conditioning on the unobserved e!ect
modifiers. We require that a pair of proxy variables are collected in the source RCT,
whereas only one of the two needs to be collected in the target RCT. As explained in
Chapter 3, the bridge functions are functions of observed variables only, but they mimic
the underlying nuisance functions containing unobserved variables. For estimation,
we propose a doubly robust estimator of the target population average treatment e!ect
(TATE), which depends on two bridge functions.

Using data from the STEP-2 and SCALE clinical trials, we estimated the weight loss
e!ect, comparing once-weekly semaglutide 2.4 mg and once-daily liraglutide 3.0 mg
at week 44 among the study population of STEP-2. The outcome was the percentage
change of body weight from baseline to week 44. The two groups of proxy variables were
lab measurements of blood sugar levels and lipid levels. A complete-case analysis of the
data with the proximal estimator demonstrateed a significant e!ect at ↑3.82 percentage
points [95%-confidence interval (CI): (↑4.73,↑2.90)] in favor of semaglutide. Applying
an estimator that did not account for unobserved e!ect modifiers gave ↑3.80 percentage
points [95%-CI: (↑4.59,↑3.01)]. The negligible di!erence between the estimates may
have been a consequence of insu”ciently informative proxies.

6.2. Manuscript II

In Manuscript II, we consider e”cient estimation of the TATE with multisource data.
By “multisource”, we mean that treatment and outcome information is available from
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more than one data source, but the information is unavailable in the target population.
Normally, when only a single source population contains this information, identifiability
of the TATE requires that the baseline characteristics of the individuals in this population
be as diverse as the characteristics in the target population. Using several RCTs, this
overlap condition is instead required between the combined source subpopulations and
the target population. To identify the TATE, we assume transportability of the CATE
across data sources, including the target population. The e!ect-measure transportability
holds when all shifted e!ect modifiers are collected.

This transportability assumption has testable implications that place restrictions on the
observed data distributions. By studying the space of influence functions of the TATE,
we propose a class of doubly robust estimators. We also provide a construction for an
e”cient estimator that hinges on the estimation of the optimal weight function; see also
Chapter 4. In addition to the TATE, we consider the target population projected CATE,
which is defined as the best linear approximation of the CATE in the target population by
a pre-specified finite-dimensional basis of the e!ect modifiers. We propose estimators
for the projected CATE with associated pointwise and uniform confidence intervals.

To illustrate the method, we split the STEP-1 clinical trial into four regions: the United
States (US), the United Kingdom, as well as countries of continental Europe and East
Asia. We used treatment and outcome information from the three regions excluding the
US to estimate the weight loss e!ect comparing once-weekly semaglutide 2.4 mg against
placebo in the study population within the US. The outcome was the percentage change
in body weight from baseline to week 68. A complete-case analysis with the estimator
using the optimal weight function yielded a TATE estimate of ↑12.57 percentage points
[95% CI: (↑14.03,↑11.10)]. In this data example, we also computed the ATE in the US
study population with an augmented inverse probability estimator, which led to an e!ect
of ↑13.21 percentage points [95% CI: (↑14.50,↑11.92)]. The discrepancy between
these estimates might have been due to unmeasured e!ect modifiers, suggesting the
need for sensitivity analysis.

6.3. Manuscript III

In Manuscript III, the aim is to improve the precision of cumulative incidence estimates
by incorporating external controls into an RCT where competing risks are present. For
example, mortality is a common competing risk that precludes the event of interest.
We utilize external control data by assuming that the conditional hazard of the event of
interest under the control treatment is transportable between the external population and
the RCT study population. This transportability assumption holds even when there exist
unobserved, shifted prognostic variables that directly alter the hazard of the competing
risks. In other words, we allow the observed conditional hazards of the competing risks
to di!er between the two populations; see Chapter 5 for details.

The target parameters are the causal (or standardized) cumulative incidence di!er-
ences in the RCT. Under assumed transportability, we derive the e”cient influence func-
tions (EIFs) of the target parameters. The structure of the EIFs prompts the construction
of e”cient estimators which turn out to be triply robust against model misspecification.
Specifically, the external controls are integrated into these estimators through martin-
gale integrals associated with the event of interest. Moreover, in contrast to existing
fusion estimators for an ordinary continuous outcome, the samples receive time-varying
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weights related to the inverse probability of being at risk in the pooled population.
To illustrate the estimators, we re-analyzed data from the LEADER and SUSTAIN-6

clinical trials. The event of interest was defined as the composite event of nonfatal
myocardial infarction and nonfatal stroke, and the competing event was the all-cause
mortality. Controls from LEADER were used as external controls to estimate the
causal cumulative incidence di!erences in SUSTAIN-6 at weeks 26, 52, 78, and 104,
comparing once-weekly semaglutide 1.0 mg to placebo. See the manuscript for the full
display of results. The point estimates computed with external controls were fairly close
to those computed without them. The fusion estimates had standard errors around 9%
smaller than the RCT-only estimators.
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7. Discussion and outlook

Sensitivity analysis for transportability. When the outcome is not observed in the
target population, correct identification of target population treatment e!ects often de-
pend on the validity of transportability assumptions. The concern for the violation of
such assumptions is partially addressed in Manuscript I, where we allow for the exis-
tence of unobserved, shifted e!ect modifiers. Though meant for point identification,
the proximal estimators can also be used in sensitivity analyses for unmeasured e!ect
modifiers based on proxies. We may alter the proxies of each type to produce a range
of possible target population treatment e!ects. Current sensitivity analysis methods
for transportability borrow ideas from sensitivity tools for unmeasured confounding,
including parametric bias functions (Nguyen et al., 2017), the exponential tilting model
(Dahabreh et al., 2022), marginal sensitivity models (Nie et al., 2021), and the omitted
variable bias framework (Huang, 2024). Further research may extend recent devel-
opments for unmeasured confounding to transportability bias, such as doubly sharp
and valid partial identification (Dorn et al., 2024) and nonparametric robustness values
(Chernozhukov et al., 2024).

Bias-robust data combination. When transportability assumptions have testable im-
plications in the observed data distribution, these implications can be used to falsify the
assumptions. In Manuscripts II and III, we do not make such considerations, but if the
transportability assumptions fail to hold, incorporating external controls may introduce
substantial bias to the estimators. Especially when the goal is to improve precision of
estimates, the reference estimator without data combination may not be e”cient but is
guaranteed to be bias-free. The bias-variance trade-o! between the reference estimator
and the possibly biased but e”cient estimator can be handled, for example, by linear
interpolation (Oberst et al., 2023), a test-then-pool procedure (Yang et al., 2023), or
sieve model selection (van der Laan et al., 2025). These methods easily adapt to the
settings of Manuscripts II and III. An alternative approach is automatic bias detection
and data fusion on a subset of data (Gao et al., 2024).

Optimal adjustment set for transportability. It is well-known that the average treat-
ment e!ect is overidentified in randomized controlled trials when baseline covariates
are observed. Thus, valid estimators can be formed both with and without adjustment
of baseline covariates (Yang and Tsiatis, 2001). In the model consisting of distributions
compatible with a directed acyclic graph (DAG), there exists a graphical criterion for
identifying the optimal adjustment set, if the average treatment e!ect is identifiable
(Henckel et al., 2022; Rotnitzky and Smucler, 2020). For augmented inverse probability
weighting estimators that are also asymptotically linear, the asymptotic variance of the
estimator adjusting for the optimal set lower-bounds the asymptotic variance of estima-
tors adjusting for other sets. In certain DAGs, the optimal adjustment set characterizes
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the semiparametric e”ciency bound under the aforementioned model. In transportabil-
ity of causal e!ects, similar optimality results are not yet known. Since DAGs do not
encode assumptions from structural equations, extensions on existing graphical models
may be necessary to capture the e!ect measure in question. In a class of reweight-
ing estimators for the target-population average treatment e!ect, Colnet et al. (2024a)
note that controlling for shifted but non-e!ect-modifying covariates increases estimator
variance.
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Abstract

We consider the problem of indirect comparison, where a treatment arm of interest is
absent by design in one randomized controlled trial (RCT) but available in the other.
The former is the target RCT, and the latter is the source RCT. The identifiability of the
target population average treatment effect often relies on conditional transportability
assumptions. However, it is a common concern whether all relevant effect modifiers
are measured and controlled for. We give a new proximal identification result in the
presence of shifted, unobserved effect modifiers based on proxies: an adjustment proxy
in both RCTs and an additional reweighting proxy in the source RCT. We propose
an estimator which is doubly-robust against misspecifications of the so-called bridge
functions and asymptotically normal under mild consistency of estimators for the bridge
functions. We use two weight management trials as a context to illustrate selection of
proxies and apply our method to compare the weight loss effect of active treatments
from these trials.

Keywords: Indirect comparison; Meta-analysis; Transportability; Proximal causal
inference.
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1. Introduction

Indirect comparison is the contrast of treatments that are not compared in head-to-head
randomized controlled trials (RCTs). An important application of indirect comparison
in health technology assessment is the comparison of a new treatment and an exist-
ing treatment in the health system, when both treatments are only studied in placebo-
controlled RCTs. Indirect comparison can be viewed as an instance of transportability
in causal inference. The transportability of the effect of the existing treatment ver-
sus placebo (or the lack of such transportability) from the source to the target RCT
determines whether the effect between the new and the existing treatment can be es-
tablished. It is therefore hardly surprising that current methods for indirect comparison
require effect-measure transportability, adjusting for shifted effect modifiers (Colnet
et al., 2024), that is, the effect modifiers that do not follow the same distribution across
the RCTs. However, when there are unobserved shifted effect modifiers, transportabil-
ity cannot be established by controlling for the observed baseline variables. The lack
of transportability jeopardizes the external validity of treatment effects in an indirect
comparison. If the treatments of interest come from RCTs which are conducted with
a considerable time gap apart, there may be changes in the standard of care that could
affect the treatment effects. Social determinants of health, which are often unmeasured
in RCTs, can also change the magnitude of treatment effects.

In this paper, we use negative controls, or proxies, to minimize external validity
bias. In observational studies, negative controls are known to help detect unmeasured
confounding (Lipsitch et al., 2010). Recently, a family of methods called proximal
causal inference has shown how appropriately selected proxies may rectify confounding
bias. Miao et al. (2018) demonstrated a nonparametric identification formula for the
counterfactual distribution of outcomes with a pair of complementary proxies in the
presence of unmeasured confounders. Under a nearly identical design, Cui et al. (2024)
proposed a proximal doubly robust estimator of the average treatment effect based on
two identification strategies.

In indirect comparisons, randomization eliminates the threat of confounding, and
we use proxies to tackle bias arising from shifted, unobserved effect modifiers. We
propose a novel method that extends proximal causal inference to indirect comparison
when individual patient data (IPD) is available in all RCTs. Our proposed estimator also
relies on a pair of proxies, namely a reweighting proxy and an adjustment proxy. The
proxies correspond to identification strategies that mirror participation odds weighting
and the g-formula for transporting causal effects. We remark that while both proxies are
required in the source RCT, only the adjustment proxy needs to be collected in the target
RCT. Our proposed estimator handles both continuous and binary outcomes. We show
that the estimator is robust against misspecifications of the required nuisance functions
of the proxies.

2. Indirect comparison with unmeasured shifted effect modifiers

Consider two treatment pairs, 𝐿 → {0, 1} and 𝐿 → {0,↑1}, where the former is the
treatments investigated in the source RCT 𝑀 = 1 and the latter is those in the target
RCT 𝑀 = 0. This corresponds to the situation where there is a treatment shared by
the two RCTs, in this case 𝐿 = 0, so that the comparison of the treatments 𝐿 = 1
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𝐿 = →1 𝐿 = 0 𝐿 = 1

𝑀 = 𝑁{𝑂 (1) → 𝑂 (0) | 𝑃 = 0}

𝑄 = 𝑁{𝑂 (1) → 𝑂 (→1) | 𝑃 = 0}

Figure 1. Indirect comparison parameters defined on the target RCT population 𝑀 = 0. Treatment
𝐿 = 1 is unavailable in the target RCT.

and 𝐿 = ↑1 may be made with the help of the common treatment arm. Indirect com-
parison of this kind is called anchored comparison (Phillippo et al., 2018). The setup
described here is a subset of network meta-analysis, which usually places interest on
the causal effects comparing at least three different pairs of interventions. The treat-
ment 𝐿 = 1 that we wish to emulate in 𝑀 = 1, also referred to as the missing treatment,
can be a placebo or an active treatment. Additionally in each RCT a set of baseline
covariates 𝑁 is measured. Let 𝑂 (𝑃) denote the potential outcome under the intervention
𝐿 = 𝑃 → {↑1, 0, 1}. In this paper we consider as the target parameter 𝑄 the aver-
age treatment effect (ATE) in the target population comparing treatments 𝐿 = 1 and
𝐿 = 0; that is, 𝑄 = 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 0}. The indirect comparison parameter
𝑆 = 𝑅{𝑂 (1) ↑ 𝑂 (↑1) | 𝑀 = 0} is the difference between 𝑄 and the ATE in the target
RCT, 𝑅{𝑂 (↑1) ↑𝑂 (0) | 𝑀 = 0}. Figure 1 contains a diagram describing the parameters
𝑆 and 𝑄. For the identifiability of 𝑄, the natural effect measure for transportability is the
conditional average treatment effect (CATE). The mean scale is a common choice in
various problems where the outcome is continuous (e.g., body weight) or binary (e.g.,
occurrence of a cardiac arrest).

The fundamental problem of indirect comparison is that the treatment 𝐿 = 1 is never
observed in the target RCT 𝑀 = 0. In order to establish identifiability for the target pa-
rameter in the observed data, we need a set of plausible assumptions which justify the
transportability of the treatment-specific mean from the source population to the target
population. The existing indirect comparison and network meta-analysis literature tend
to assume effect-measure transportability (Phillippo et al., 2018, 2020), which does not
hold when conditioning on the observed baseline covariates cannot completely account
for differences in the effect between RCTs, because there exist unmeasured shifted ef-
fect modifiers. In hope of capturing all effect modifiers, it may be tempting to adjust for
as many baseline or pre-treatment variables as possible in order to achieve valid effect-
measure transportability. However, this strategy is not foolproof, as it may instead result
in additional M-bias (Cinelli et al., 2024). In Supplementary Material §S1, we give ex-
amples of data generating mechanisms where not only does conditional transportability
not hold by means of adjustment, but the bias is further amplified by adjustment.

We propose a weaker version of CATE transportability conditioning on both the
baseline covariates 𝑁 and the unobserved effect modifiers 𝑇.

Assumption 1. pr(𝑁 ,𝑇 | 𝑀 = 0)-almost surely:
(i) (Consistency) 𝑂 (𝑃) = 𝑂 whenever 𝐿 = 𝑃 → {0, 1};

(ii) (Randomization) {𝑂 (1),𝑂 (0),𝑇} |= 𝐿 | (𝑁 , 𝑀 = 1);
(iii) (CATE transportability) 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑁 ,𝑇, 𝑀 = 0} = 𝑅{𝑂 (1) ↑ 𝑂 (0) |

𝑁 ,𝑇, 𝑀 = 1};
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(iv) (Positivity) pr(𝑀 = 1 | 𝑁 ,𝑇)pr(𝐿 = 𝑃 | 𝑁 , 𝑀 = 1) > 0.

Assumption 1(iv) is crucial for the transportability of causal effects from the source
population 𝑀 = 1 to the target population 𝑀 = 0. It requires that all values of {𝑁 ,𝑇}
observable in the target population must also be observable in the source population.
The positivity assumption on trial participation essentially guarantees no extrapolation
of information from the source trial. As we will see in §3, violation of positivity not only
compromises the identifiability of the target parameter but also has great implications
on its estimation with observed data.

The causal assumptions give rise to identifiability of the target parameter in the full
data distribution. Let 𝑈 = pr(𝑀 = 0) be the probability of an individual in the joined
population belonging to the target RCT. We denote the propensity score in the source
trial by 𝑉(𝑃 | 𝑁) = pr(𝐿 = 𝑃 | 𝑁 , 𝑀 = 1) for 𝑃 → {0, 1}. In the source RCT, we also let
𝑂 = (2𝐿↑ 1)𝑂/𝑉(𝐿 | 𝑁) denote a transformed outcome, whose behavior is comparable
to that of the contrast 𝑂 (1) ↑ 𝑂 (0), in the sense that their conditional expectations on
{𝑁 ,𝑇} are equal.

Proposition 1 (Latent identifiability). Suppose Assumption 1 holds. The target pa-
rameter is identifiable as

𝑄 = 𝑅

{
𝑅 (𝑂 | 𝑁 ,𝑇, 𝑀 = 1)

""
𝑀 = 0

}
. (1)

Equivalently,

𝑄 =
1
𝑈

𝑅

{
𝑀

pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇)𝑂

}
. (2)

These identification formulae of 𝑄 are very similar to the transportability results in
Theorem 1 of Dahabreh et al. (2023), where the outcome model and the participa-
tion odds depend on the baseline covariates 𝑁 only. The distinction mainly lies in
their assumptions for the exchangeability of trial participation and subsequently the ex-
changeability of treatment assignment, which hold without the additional unobserved
covariates 𝑇.

Proposition 1 suggests that in order to identify the target parameter 𝑄, we need at
least the knowledge of either the mean outcome difference 𝑅 (𝑂 | 𝑁 = 𝑊,𝑇 = 𝑋, 𝑀 = 1)
or the trial participation odds pr(𝑀 = 0 | 𝑁 = 𝑊,𝑇 = 𝑋)/pr(𝑀 = 1 | 𝑁 = 𝑊,𝑇 = 𝑋).
However, both quantities depend on the unobserved effect modifiers 𝑇, and neither
would be identifiable without further assumptions and/or extra information.

3. Reweighting and adjustment proxies

In this section, we extend the proximal causal inference framework to handle scenarios
in indirect comparison where CATE transportability fails to hold conditionally on the
baseline covariates 𝑁 . We refer to this approach as proximal indirect comparison. The
core idea of proximal indirect comparison is that the knowledge of a pair of proxies
(𝑌 ,𝑍) helps to learn the underlying dependence of 𝑂 (1)↑𝑂 (0) on𝑇, thereby restoring
the identifiability of the target parameter using observed data. We call 𝑌 the reweighting
proxy and 𝑍 the adjustment proxy. The intuition is that 𝑌 will be used to reweight the
samples from the source RCT to match the composition of the target RCT like in (2),
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and 𝑍 will appear in the adjustment formula for transportability in (1), as if we had
adjusted for 𝑇.

3.1. Proximal identifiability

Before discussing identifiability of the parameter, we formally introduce the variables
at our disposition. Specifically, we observe 𝑎

1 = (𝐿, 𝑁 ,𝑂 ,𝑍 , 𝑌) in the source RCT
and 𝑎

0 = (𝑁 ,𝑍) in the target RCT, so the observed variables can be represented by
𝑎 = (𝑀, 𝑀𝐿, 𝑁 , 𝑀𝑂 ,𝑍 , 𝑀𝑌). We describe the following distinction between the observed
data and the full data. Denote the full data distribution over (𝑎,𝑇) by 𝑏

U. We can
marginalize it to a measure 𝑏 over 𝑎. Further, 𝑏1 stands for the conditional probability
measure over 𝑎1 such that 𝑏1 (𝑎1 → ·) = 𝑏(𝑎1 → ·, 𝑀 = 1)/𝑏(𝑀 = 1).

We require that the proxies satisfy a set of conditional independences.

Assumption 2 (Adjustment and reweighting proxies). In 𝑏
U:

(i) {𝑌 ,𝑍 ,𝑇} |= 𝐿 | (𝑁 , 𝑀 = 1);
(ii) 𝑌 |= 𝑍 | (𝑁 ,𝑇, 𝑀 = 1);

(iii) 𝑌 |= 𝑂 | (𝐿, 𝑁 ,𝑇, 𝑀 = 1);
(iv) 𝑍 |= 𝑀 | (𝑁 ,𝑇).

This assumption describes the relations between valid proxies and other variables.
In the source RCT, Assumptions 2(i)–2(iii) essentially require that randomization does
not depend on the proxies, that the proxies are not associated through other unmeasured
variables besides 𝑇, and that 𝑌 has no causal effect on 𝑂 , unless it is mediated through
{𝑁 ,𝑇}. Also, if 𝑌 and 𝑍 occur after randomization, they must be negative control
outcomes in the sense that they can share many causes with 𝑂 but may not be caused by
the treatment 𝐿. Across the two RCTs, Assumption 2(iv) requires that the difference
in the distribution of 𝑍 is totally accounted for by {𝑁 ,𝑇}. A directed acyclic graph
(DAG) encoding conditional independences which are compatible with Assumption 2 is
displayed in Fig. 2. Since the full data distribution can satisfy this assumption in various
ways, we list additional examples of compatible graphs in Fig. S2 in the Supplementary
Material. Some differences to Fig. 2 include 𝑌 being a cause of 𝑇 (𝑌 ↓ 𝑇) and
𝑍 sharing unmeasured causes with 𝑂 (𝑍 ↔ 𝑂 ). However, no direct edge may exist
between 𝑌 and {𝐿,𝑂 ,𝑍} or between 𝑍 and {𝐿, 𝑀, 𝑌}.

Problem-specific effect measures allow for the relaxation of the distribution-level
Assumption 2(iii). In this work, we work with the CATE transportability Assump-
tion 1(iii), and the target parameter is an ATE. It suffices to assume that

𝑅 (𝑂 | 𝐿 = 1, 𝑌 , 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑌 , 𝑁 ,𝑇, 𝑀 = 1)
= 𝑅 (𝑂 | 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1).

That is, we allow 𝑌 ↗ |= 𝑂 | (𝐿, 𝑁 ,𝑇, 𝑀 = 1), as long as 𝑌 is not an effect modifier of 𝐿
on 𝑂 on the CATE scale after adjusting for {𝑁 ,𝑇}.

Heuristically, we want the adjustment proxy𝑍 to emulate the effect of𝑇 in the mean
outcome difference model. Similarly, the reweighting proxy 𝑌 should take the place of
𝑇 in the participation odds model. To this end, we introduce two sets of functions
involving the proxies, which are defined on the full data distribution:

HU =
{
𝑐

U (𝑑, 𝑊) → 𝑒2 (𝑍 , 𝑁; 𝑏1) : 𝑅{𝑂 ↑ 𝑐
U (𝑍 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} = 0

}
,
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QU =
{
𝑓

U (𝑔, 𝑊) → 𝑒2 (𝑌 , 𝑁; 𝑏1) : 𝑅{𝑓U (𝑌 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} = 𝑏
U (𝑀 = 0 | 𝑁 ,𝑇)

𝑏
U (𝑀 = 1 | 𝑁 ,𝑇)

}
,

where the conditions inside the sets hold 𝑏
U (𝑁 ,𝑇 | 𝑀 = 0)-almost surely, and 𝑒2 (𝑕 ; 𝑏1)

is the space of square integrable functions of 𝑕 with respect to the probability measure
𝑏

1.
We refer to the elements of HU and QU, if they exist, as outcome bridge functions

and participation bridge functions, respectively. These bridge functions recover the
unobserved nuisance functions in Proposition 1 after being projected onto a subspace
of the full data distribution.

Assumption 3. Either HU or QU is nonempty.

A sufficient condition for HU or QU to be nonempty is a relevance assumption for the
proxy 𝑍 or 𝑌 , stating that the proxy should at least be correlated with 𝑇 after control-
ling for the baseline covariates. If the bridge functions do not exist, measurements of
the proxies will not grant more information on𝑇 than what can be inferred from adjust-
ing for 𝑁 , making them ineffective in mimicking the dependence of 𝑇 on 𝑀 and of 𝑂 on
𝑇. See the discussions in Kallus et al. (2022), Examples 3 and 4. Some examples of po-
tential unobserved effect modifiers are the standard of care and the social determinants
of health among the RCT participants. These are often high-dimensional covariates that
are not available from the experimental setting. Nonetheless, it may be reasonable to
posit that only a low-dimensional subset of these covariates strongly contributes to ef-
fect modification, such as concomitant medication and employment stability. If this is
true, then the number of proxies does not have to be large for bridge functions to exist.

On the observed data distribution, we define two sets of observed data bridge func-
tions:

H =
{
𝑐(𝑑, 𝑊) → 𝑒2 (𝑍 , 𝑁; 𝑏1) : 𝑅{𝑂 ↑ 𝑐(𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1} = 0

}
,

Q =
{
𝑓(𝑔, 𝑊) → 𝑒2 (𝑌 , 𝑁; 𝑏1) : 𝑅{𝑓(𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1} = 𝑏(𝑀 = 0 | 𝑍 , 𝑁)

𝑏(𝑀 = 1 | 𝑍 , 𝑁)

}
,

where the condition inside H holds on the set {(𝑔, 𝑊) : 𝑏(𝑀 = 1 | 𝑌 = 𝑔, 𝑁 = 𝑊)𝑏(𝑀 =
0 | 𝑁 = 𝑊) > 0}, and the condition inside Q holds 𝑏(𝑍 , 𝑁 | 𝑀 = 0)-almost surely.

Under the conditional independences in Assumption 2, we can relate the outcome
bridge functions 𝑐U (𝑑, 𝑊) to the reweighting proxy 𝑌 and the participation bridge func-
tions 𝑓

U (𝑔, 𝑊) to the adjustment proxy 𝑍 . The existence of the bridge functions on
the full data distribution implies their existence on the observed data distribution under
proper proxy assumptions.

Lemma 1. If Assumptions 2(i)–2(iii) hold, then HU ↘ H. If Assumptions 2(ii) and
2(iv) hold, then QU ↘ Q.

The sets of observed bridge functions give rise to the following identifiability result.

Proposition 2 (Identifiability). Suppose Assumptions 1–3 hold. If H ω ≃ and Q ω ≃,
then the target parameter 𝑄 is identifiable in the observed data distribution 𝑏. For any
𝑐 → H,

𝑄 = 𝑅{𝑐(𝑍 , 𝑁) | 𝑀 = 0},
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𝐿 𝑀𝑁

𝑂

𝑃

𝑄𝑅

Figure 2. A DAG compatible with Assumption 2. Dashed edges can be removed.

and for any 𝑓 → Q,

𝑄 =
1
𝑈

𝑅{𝑀𝑓(𝑌 , 𝑁)𝑂 }.

If there exist solutions to both of the equations in H and Q, then they can essentially
be regarded as the unobservable bridge functions in HU and QU in the identification of
the target parameter.

Rather than CATE transportability, an indirect comparison can also assume mean
transportability 𝑅{𝑂 (1) | 𝑁 ,𝑇, 𝑀 = 1} = 𝑅{𝑂 (1) | 𝑁 ,𝑇, 𝑀 = 0}. An analogous as-
sumption to the existence of an outcome difference bridge function 𝑐

U → HU is the
existence of functions 𝑐̃

U (𝑑, 𝑊) such that 𝑅{𝑂 ↑ 𝑐̃
U (𝑍 , 𝑁) | 𝑁 , 𝐿 = 1,𝑇, 𝑀 = 1} = 0.

This is referred to as unanchored indirect comparison (Phillippo et al., 2018). Unan-
chored indirect comparison is valid only when all shifted prognostic variables, observed
and unobserved, are taken into account. From a practical point of view, the existence of
bridge functions is related to the explanatory power of the proxies relative to the unob-
served variables. The set of proxies required for identifiability of the causal parameter
𝑅{𝑂 (1) | 𝑀 = 0} via the outcome bridge 𝑐̃

U is potentially much larger than what is
needed for the identifiability of 𝑄 via the outcome difference bridge 𝑐

U.

3.2. Connections to other proximal causal inference approaches

Ghassami et al. (2022) described a method for estimating long-term treatment effects
exploiting the internal validity of experimental data while using proxies to account for
confoundedness in observational data. The target population is the one defined by the
observational data, and the short-term outcome plays the role of outcome-inducing
proxy 𝑍 . The treatment bridge function 𝑓 in their work is intended to emulate the
inverse of the propensity score in the confounded data, which depends on unobserved
confounders 𝑇. Imbens et al. (2024) also employed proximal causal inference in their
attempt to estimate long-term treatment effect via data fusion. The selection bridge
function assumed in their work has a similar form as the participation bridge in Q, in
that they both capture the variability of the unobserved variables 𝑇 between two data
sources.

However, the problem studied in these two articles is fundamentally different from
ours, since the authors make a “data combination” assumption, which is Assumption
3 in Ghassami et al. (2022) and Assumptions 3 and 10 in Imbens et al. (2024). The
assumption is that the unobserved variables are independent of the RCT indicator 𝑀,
possibly conditioning on some baseline covariates 𝑁 , but we do not assume this. In
proximal indirect comparison, we wish to capture the difference in distributions of un-
observed variables between the study populations through the use of proxies. Addition-
ally, both bridge functions in these works are assumed on the target population, whereas
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the bridge functions H and Q in proximal indirect comparison are posited on the source
population. In particular, the outcome bridge cannot be defined nor learned on the target
population due to the impossibility of observing certain treatments of interest.

In the appendix of their work, Imbens et al. (2024) provide an additional identifi-
cation result, allowing unobserved variables to vary between experimental population
and observational population. Instead, they require that the treatment is completely ran-
domized and that latent transportability holds on treatment-specific means. Unlike their
setup, we avoid making these assumptions, since our bridge functions do not involve
specific treatments. Our Proposition 2 remains valid under stratified randomization,
which is common in RCTs.

Ghassami et al. (2024) proposed a closely related approach for causal mediation
analysis and front-door adjustment in the presence of hidden mediators. For the identi-
fiability of controlled and uncontrolled treatment-specific means, they assumed a treat-
ment bridge function describing the difference between the unobserved variables under
different interventions (their Assumption 9). Despite the resemblance of the bridge
functions in our works, we are interested in relaxing the CATE transportability for the
estimation of the treatment effect with at least one treatment arm that is not present in
the target population. The unmeasured variables in indirect comparison cannot be a
mediator in that the CATE transportability in Assumption 1(iii) is conditional on 𝑇. In
addition, the RCT indicator 𝑀 is not an intervention nor exposure, so conceptually 𝑇

cannot be considered as a mediator between 𝑀 and 𝑂 .
We make an important remark that for data fusion, it is often not necessary to ob-

serve one group of the proxies in both populations. For example, in Ghassami et al.
(2022) the treatment-inducing proxy is only required in the observational regime. The
short-term outcome 𝑀1 in Imbens et al. (2024), which enjoys similar properties as a
treatment-inducing proxy, appears also in the observational data only. In proximal indi-
rect comparison, no reweighting proxy 𝑌 needs to be observed in the target population.

4. Asymptotic theory for target parameter estimation

Before presenting an estimator for the target parameter, we make a connection between
the sampling scheme and the probability model. In the source trial 𝑀𝐿 = 1, the observed
data is an independent and identically distributed (i.i.d.) sample (𝐿𝐿 , 𝑁𝐿 ,𝑍𝐿 , 𝑌𝐿 ,𝑂𝐿), 𝑖 =
1, 2, . . . , 𝑗1. In the target trial 𝑀𝐿 = 0, the observed data is an i.i.d. sample of (𝑁𝐿 ,𝑍𝐿),
𝑖 = 𝑗1 + 1, 𝑗1 + 2, . . . , 𝑗1 + 𝑗0. For the asymptotic arguments, we require that the ratio
𝑗0/𝑗 approach the fixed number 𝑈 between zero and one when 𝑗 goes to infinity, where
𝑗 = 𝑗0 +𝑗1 is the total number of observations. Then we can consider the observed data
as an i.i.d. sample from 𝑏0, the true data generating mechanism. In this section, we use
subscript 0 to indicate dependence on 𝑏0. We write𝑂0 = (2𝐿↑1)𝑂/𝑉0 (𝐿 | 𝑁). We deal
with the true parameter 𝑄0, which has a causal interpretation under the assumptions in
Proposition 2.

4.1. A nonparametric influence function

We study the target parameter with tools from semiparametric estimation theory un-
der the following regularity conditions on the true data distribution 𝑏0. Let the lin-
ear transformation 𝑘0 : 𝑒2 (𝑍 , 𝑁; 𝑏1

0) ↓ 𝑒2 (𝑌 , 𝑁; 𝑏1
0) be such that (𝑘0𝑐) (𝑔, 𝑊) =
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𝑅𝑀0 {𝑐(𝑍 , 𝑁) | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1}. Moreover, let 𝑙0 be the linear transforma-
tion (𝑙0𝑚) (𝑔, 𝑊) = 𝑅𝑀0 [{𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1] where
𝑚 → 𝑒2 (𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁; 𝑏1

0).

Assumption 4 (Regularity conditions).
(i) 𝑅𝑀0 (𝑂0 | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1) → 𝑒2 (𝑌 , 𝑁; 𝑏1

0), 𝑏0 (𝑀 = 1 | 𝑍 = 𝑑, 𝑁 =
𝑊)/𝑏0 (𝑀 = 0 | 𝑍 = 𝑑, 𝑁 = 𝑊) → 𝑒2 (𝑍 , 𝑁; 𝑏1

0);
(ii) 𝑘0 is bijective;

(iii) range(𝑙0) ↘ 𝑒2 (𝑌 , 𝑁; 𝑏1
0).

(iv) (𝑌 ,𝑍) |= 𝑀0 𝐿 | (𝑁 , 𝑀 = 1) and 𝑉0 (𝑃 | 𝑊) is known.

Define the model

P = {𝑏 → M : (𝑌 ,𝑍) |= 𝐿 | (𝑁 , 𝑀 = 1), 𝑉(𝑃 | 𝑊) known,H ω ≃},

where M is the set of all probability measures over 𝑎. Assumptions 4(i)–4(iii) are not
necessary for proposing regular and asymptotically linear estimators for 𝑄0, but they
enable the characterization of all such estimators of 𝑄0 under P . We do not consider
the propensity score 𝑉0 (𝑃 | 𝑊) as a nuisance function, since the treatments in RCTs are
usually administered according to a predetermined protocol.

It is clear that under Assumptions 4(i)–(ii), we have H0 = {𝑐0} and Q0 = {𝑓0}.
This observation has two implications. First, H0 and Q0 are simultaneously nonempty.
Working under boundedness conditions related to the projected variance of the bridge
functions, Zhang et al. (2023) show that this condition is necessary for the observed
data functional 𝑄0 to be 𝑗

1/2-estimable. Second, the bridge functions 𝑐0 and 𝑓0 are
unique. If other bridge functions exist, the target parameter will be a uniquely identi-
fied functional on possibly nonunique nuisance parameters (Zhang et al., 2023; Bennett
et al., 2023). Although this poses no difficulty to identification of the target parameter,
it largely hinders the study of estimators constructed using estimates of the bridge func-
tions. In Supplementary Material §S3, we give sufficient conditions for establishing the
existence and uniqueness of the observed data bridge functions, namely completeness
assumptions and more regularity conditions on 𝑘0 and its adjoint.

We are now in a position to present a useful characterization of the target parameter
by an influence function.

Proposition 3. Suppose Assumption 4 holds. An influence function of the observed
data target parameter 𝑄0 under the model P is

𝑛0 (𝑜) =
𝑝

𝑈0
𝑓0 (𝑔, 𝑊){𝑞̃0 ↑ 𝑐0 (𝑑, 𝑊)} +

1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0}.

In fact, we can find many influence functions of 𝑄0 under the model restrictions
specified in Assumption 4. We purposefully choose to present 𝑛0 over the efficient one,
which involves an additional nuisance parameter 𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 =
𝑊, 𝑀 = 1). The efficient influence function can be found in the proof of the proposition
in Supplementary Material §S6. In the sequel, we construct an estimator for 𝑄0 from
𝑛0, which is preferred because we only need to estimate the bridge functions 𝑐0 and 𝑓0.
While we do not pursue the possibility here, we remark that asymptotically efficient
estimators, which attain the semiparametric efficiency bound, may be constructed from
the efficient influence function.
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4.2. Doubly robust estimation

In general, we do not have the knowledge of the bridge functions. Therefore, we resort
to two-stage data-adaptive estimation of the target parameter. In the first stage, we
use the observed data to obtain estimates of the bridge functions, which are nuisance
functions to the estimation problem. In the second stage, we plug in the estimated
bridge functions to some valid estimating equation for the target parameter, and an
estimate of the target parameter is obtained as the solution to the estimating equation.

Suppose 𝑐̂ and 𝑓 are nonparametric or semiparametric estimators intended for the
true, unique bridge functions 𝑐0 and 𝑓0. Let 𝑈̂ = 𝑗0/𝑗 be the proportion of samples
from the target RCT. Propositions 2 and 3, together with the form of the influence
function 𝑛0, suggest a natural estimator of the target parameter 𝑄0 as

𝑄 =
1
𝑗

𝑁∑

𝐿=1

[
𝑀𝐿

𝑈̂

𝑓(𝑌𝐿 , 𝑁𝐿){𝑂𝐿 ↑ 𝑐̂(𝑍𝐿 , 𝑁𝐿)} +
1 ↑ 𝑀𝐿

𝑈̂

𝑐̂(𝑍𝐿 , 𝑁𝐿)
]
.

The estimator 𝑄 solves the estimating equation based on 𝑛0. We now characterize its
asymptotic behavior.

Assumption 5 (Regularity conditions).
(i) The function class

G0 =
{
𝑚(𝑜) = 𝑝

𝑈
⇐ 𝑓

⇐{𝑞̃ ↑ 𝑐
⇐} + 1 ↑ 𝑝

𝑈
⇐ 𝑐

⇐ :

𝑈
⇐ → [0, 1], 𝑐⇐ → 𝑒2 (𝑍 , 𝑁; 𝑏1

0), 𝑓⇐ → 𝑒2 (𝑌 , 𝑁; 𝑏1
0)
}

is 𝑏0-Donsker;
(ii) There exists a universal constant 𝑟 > 1 such that 𝑈0 ⇒ 𝑟

↑1, 𝑈̂ ⇒ 𝑟
↑1, 𝑉0 ⇒

𝑟
↑1, |𝑐0 | ⇑ 𝑟 , |𝑓 | ⇑ 𝑟 , 𝑏0 (𝑀 = 1 | 𝑍 , 𝑁) ⇒ 𝑟

↑1, and 𝑅𝑀0 (𝑂2 | 𝑌 , 𝑁 , 𝑀 =
1) ⇑ 𝑟 .

Theorem 1. Suppose Assumptions 4–5 hold and that ⇓ 𝑐̂ ↑ 𝑐̄⇓
𝑀

1
0
= 𝑜𝑀0 (1), ⇓𝑓 ↑

𝑓⇓
𝑀

1
0
= 𝑜𝑀0 (1) for some nonrandom functions 𝑐̄(𝑑, 𝑊), 𝑓(𝑔, 𝑊) in 𝑒2 (𝑏1

0). Then:

1. The estimator 𝑄 is consistent for 𝑄0, if either 𝑐̄ = 𝑐0 or 𝑓 = 𝑓0.
2. The estimator 𝑄 is asymptotically linear with influence function 𝑛0, if 𝑐̄ = 𝑐0,

𝑓 = 𝑓0, and ⇓𝑓 ↑ 𝑓0⇓𝑀1
0
⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
= 𝑜𝑀0 (𝑗↑1/2).

The Donsker class condition on G0 can be relaxed by applying cross-fitting to the
estimation of the bridge functions. When the bridge functions are estimated using
minimax criteria, their convergence in the 𝑒2 (𝑏1

0)-norm can be established following
the arguments from Kallus et al. (2022). A key assumption is the equivalence of the
𝑒2 (𝑏1

0)-norm of the bridge functions and that of the projected bridge functions, the
latter of which is easier to bound. For the outcome bridge function, it amounts to
⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
= 𝑎𝑀0 {⇓𝑘0 ( 𝑐̂ ↑ 𝑐0)⇓𝑀1

0
}. The bijectivity of 𝑘0 from Assumption 4(ii) is

sufficient for the norm equivalence, if 𝑘0 is also a bounded operator.
The estimator 𝑄 is doubly robust in the sense that it is consistent if either the outcome

bridge function 𝑐0 or the participation odds bridge function 𝑓0 is correctly estimated.
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Moreover, the estimator is asymptotically normal under the observed data model P ,
when both bridge functions converge sufficiently fast to the ground truth, for example,
both at the subparametric 𝑜𝑀0 (𝑗↑1/4)-rate. In this case, the squared empirical 𝑒2 (𝑏0)-
norm 𝑗

↑1 ∑𝑁

𝐿=1 𝑛
2
0 (𝑎𝐿) is a consistent estimator of the asymptotic variance of the esti-

mator, where we obtain 𝑛0 by plugging the nuisance estimates into 𝑛0.

5. Numerical results

In this section, we posit parametric models for the bridge functions to illustrate the
method of proximal indirect comparison in numerical studies. Note however, in gen-
eral the parametric assumptions are not necessary, and the asymptotic properties of the
estimator 𝑄 in §4 hold for nonparametric estimators for the bridge functions. Following
Cui et al. (2024), the finite-dimensional parameters in the bridge functions are esti-
mated by the generalized method of moments motivated by their influence functions.
The details are available in Supplemantary Material §S2.

5.1. Simulated data example

We generate the full data (𝑁 ,𝑇, 𝑀, 𝑀𝐿, 𝑀𝑌 ,𝑍 , 𝑀𝑂 ) sequentially from the distributions
described below. The baseline covariates 𝑁 ⇔ ε[Normal{(0, 0, 0)T

, ϑ}], where ε(·) is
the standard normal distribution function and the covariance matrix is

ϑ = ()
*

1 0.25 0.25
0.25 1 0.25
0.25 0.25 1

+,
-
,

and thus are bounded between 0 and 1. The rest of the variables are obtained in the
following way:

𝑇 ⇔ Uniform( [↑1, 0] ↖ [↑1, 0] ↖ [↑1, 0]),
𝑀 | (𝑁 ,𝑇) ⇔ Bernoulli{expit(↑0.625 + 0.5𝑁T1 + 0.5𝑇T1)},

𝐿 | (𝑁 , 𝑀 = 1) ⇔ Bernoulli(0.5),
𝑌 | (𝑇, 𝑁 , 𝑀 = 1) ⇔ Normal(𝑇 + 𝑁 , 0.25Id),

𝑍 | (𝑇, 𝑁) ⇔ Normal(𝑇 + 𝑁 , 0.25Id),
𝑂 | (𝑍 , 𝐿, 𝑁 ,𝑇, 𝑀 = 1) ⇔ Normal(0.5 ↑ 𝐿 +𝑇

T1 + 𝐿𝑇
T1 + 𝑁

T1 +𝑍
T1 + 𝐿𝑍

T1, 0.52).

The parameters are selected so that the probability 𝑈 is close to 0.65. In this data
generating mechanism, 𝑇 is an effect modifier and the target parameter is 𝑄 = 𝑅{𝑅 (𝑂 |
𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1) | 𝑀 = 0}.

Let 𝑠(𝑔, 𝑊) = (1, 𝑔T
, 𝑊

T)T, 𝑡(𝑑, 𝑊) = (1,𝑑T
, 𝑊

T)T. As we show in Supplementary
Material §S4, the underlying bridge functions are unique and have the closed forms
𝑐𝑂0 (𝑑, 𝑊) = 𝑢

T
0𝑡(𝑑, 𝑊) and 𝑓𝑃0 (𝑔, 𝑊) = exp{𝑣T

0𝑠(𝑔, 𝑊)}, where 𝑢0 and 𝑣0 are nuisance
parameter vectors of appropriate dimensions. We compare three estimators, namely 𝑄

proposed in §4, as well as

𝑄𝑄 =
1
𝑗0

∑

𝐿:𝑅𝐿=0
𝑐𝑂̂ (𝑍𝐿 , 𝑁𝐿),
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𝑄𝑆 =
1
𝑗0

∑

𝐿:𝑅𝐿=1
𝑓
𝑃
(𝑌𝐿 , 𝑁𝐿)𝑂𝐿 .

The nuisance parameter estimators with correctly specified 𝑐𝑂 and 𝑓𝑃 were obtained on
the full sample via the generalized method of moments:

𝑢 = arg min
𝑂

.... 1
𝑗1

∑

𝐿:𝑅𝐿=1
𝑠(𝑌𝐿 , 𝑁𝐿){𝑂𝐿 ↑ 𝑐𝑂 (𝑍𝐿 , 𝑁𝐿)}

....
2
,

𝑣 = arg min
𝑃

....1
𝑗

𝑁∑

𝐿=1
{𝑡(𝑍𝐿 , 𝑁𝐿)}3{𝑀𝐿𝑓𝑃 (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}

....
2
.

The cubic of the function 𝑡(𝑑, 𝑊) makes sure that the estimators 𝑄 and 𝑄𝑆 are numeri-
cally distinguishable, as the true bridge function 𝑐𝑂 (𝑑, 𝑊) is linear. We present details
of the claim in Supplementary Material §S4.

To contrast the behavior of the estimators under model misspecifications, we con-
sidered configurations where neither 𝑐 nor 𝑓 was misspecified (experiment 1), where 𝑓

was misspecified (experiment 2), where 𝑐 was misspecified (experiment 3), and where
both 𝑐 and 𝑓 were misspecified (experiment 4). The misspecified models were fitted
by replacing 𝑍 and 𝑌 with |𝑍 |1/2 and |𝑌 |1/2 wherever appropriate. Summary statis-
tics of the estimators from 1000 repeated samples of size 𝑗 → {1000, 2000} are dis-
played in Table 1, where the reference Monte-Carlo target parameter was calculated
by static interventions of 𝐿 when 𝑀 = 0. The standard errors of the estimators for 𝑄𝑄
and 𝑄𝑆 were obtained by plugging in the nuisance parameter estimates in the theoretical
asymptotic variances shown in Supplementary Material §S2. The estimators 𝑄𝑄 and
𝑄𝑆 showed little bias only when 𝑐 and 𝑓 were correctly estimated, respectively. This
was constrasted by 𝑄, which exhibited the double robustness property as expected. The
influence-function-based standard error for 𝑄 also showed robustness against model
misspecification. In Supplementary Material §S4, we present additional simulations
under alternative data generating mechanisms to investigate the behavior of the prox-
imal estimators, including invalid proxies, nonunique bridge functions, weak proxies
and near violation of positivity. In particular, we found that Tikhonov regularization on
the parameters 𝑢 and 𝑣 recovered valid inference for the doubly robust estimator when
the bridge functions were nonuniquely defined.

5.2. Real data example

Proximal indirect comparison allows for treatment effect estimation via transporta-
bility in the presence of unobserved effect modifiers. For a real data application of
our method, we make use of the individual-level patient data from two global weight
management RCTs, namely SCALE [clinicaltrials.gov ID NCT03552757, Davies et al.
(2015)] and STEP-2 [clinicaltrials.gov ID NCT01272232, Davies et al. (2021)]. While
these trials are inherently longitudinal, we ignore this structure for the sole purpose of
illustrating our method. Whenever a subject deviates from the predetermined protocol
at randomization, we treat the subsequent weight measurements as missing.

The active treatments are once-daily liraglutide, 3.0 mg or 1.8 mg in SCALE and
once-weekly semaglutide, 2.4 mg or 1.0 mg in STEP-2, injected subcutaneously, both
of which are glucagon-like pepetide-1 (GLP-1) agonists. Both RCTs are placebo-
controlled with placebo administration matched to their respective active treatments.
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Table 1. Simulation results of experiments 1–4.

𝑁 Experiment Estimator Mean Bias RMSE SE Coverage
1000 1 𝑇𝑀 !2.64 1.03 3.17 3.21 95.7

𝑇𝑁 !2.65 !9.37 3.96 3.99 95.4
𝑇 !2.64 3.28 3.70 3.75 95.4

2 𝑇𝑀 !2.64 1.03 3.17 3.21 95.7
𝑇𝑁 !2.39 251.28 3.95 3.16 86.2
𝑇 !2.64 5.69 3.42 3.08 92.7

3 𝑇𝑀 !2.39 257.16 3.91 3.05 86.6
𝑇𝑁 !2.65 !9.37 3.96 3.99 95.4
𝑇 !2.65 !3.10 4.07 3.84 93.8

4 𝑇𝑀 !2.39 257.16 3.91 3.05 86.6
𝑇𝑁 !2.39 251.28 3.95 3.16 86.2
𝑇 !2.39 251.68 3.93 3.16 87.1

2000 1 𝑇𝑀 !2.65 !5.83 2.28 2.25 94.3
𝑇𝑁 !2.66 !17.61 2.69 2.68 95.3
𝑇 !2.65 !9.46 2.55 2.55 94.8

2 𝑇𝑀 !2.65 !5.83 2.28 2.25 94.3
𝑇𝑁 !2.40 243.48 3.22 2.14 79.0
𝑇 !2.65 !5.31 2.40 2.11 92.3

3 𝑇𝑀 !2.40 249.97 3.25 2.08 77.3
𝑇𝑁 !2.66 !17.61 2.69 2.68 95.3
𝑇 !2.66 !14.11 2.76 2.59 94.1

4 𝑇𝑀 !2.40 249.97 3.25 2.08 77.3
𝑇𝑁 !2.40 243.48 3.22 2.14 79.0
𝑇 !2.40 243.56 3.22 2.14 78.6

Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑1; SE: average of standard error
estimates, 10↑1; Coverage: 95% confidence interval coverage, %. Experiment 1: 𝑄 and 𝑆 correctly

specified; experiment 2: 𝑆 misspecified; experiment 3: 𝑄 misspecified, experiment 4: 𝑄 and 𝑆 misspecified.
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Table 2. Percentages of missing body weight measurements at week 44.

SCALE STEP-2
Liraglutide 3.0 mg Placebo Semaglutide 2.4 mg Placebo

𝑈 402 205 397 393
Missing (%) 21.39 43.41 9.82 10.69

These superiority trials are designed to show the efficacy of semaglutide and liraglutide
for weight loss among overweight or obese adults with type-2 diabetes. However, the
study populations in the RCTs can differ in practice due to the sampling of study partic-
ipants. Since the studies were conducted 5 to 6 years apart, a concern for the transporta-
bility of the treatment effect is a potential drift in social determinants of health which
are unmeasured in both RCTs. The main objective of the statistical analysis is to pro-
vide a head-to-head comparison of the treatments liraglutide versus semaglutide in the
study population of STEP-2, taking into account the unobserved social determinants.

The outcome 𝑂 is chosen as the percentage change from baseline (week 0) to week
44 in body weight. This is the timepoint closest to the end of treatment where body
weight is measured in both RCTs. In both RCTs, we imputed the body weight at week
44 with the last-observation-carried-forward principle. In order to perform an anchored
comparison, we make the assumption that the placebos used in these studies do not have
any meaningful difference in their effect on the outcome, despite the differences in the
frequency of administration and the volume of injection. We restate the parameter 𝑄 =
𝑅{𝑂 (1) ↑𝑂 (0) | 𝑀 = 0}, where 𝐿 = 1 means liraglutide, 3.0 mg, 𝐿 = 0 means placebo,
and 𝑀 = 0 indicates the STEP-2 trial. To balance the study populations, we adjust for
a set of baseline adjustment variables 𝑁 = {baseline body weight, age, sex, body-mass
index, race, region, waist circumference, smoking status, duration of diabetes}.

Our method further requires the selection of appropriate negative controls to account
for these unobserved effect modifiers. For the adjustment proxy 𝑍 , we choose the per-
centage of glycated hemoglobin (HbA1c), the fasting plasma glucose (FPG) level and
the fasting insulin level at baseline. In a review of the impact of social determinants
among type-2 diabetic patients in the United States, Walker et al. (2014) pointed out
that many studies support the link between social determinants on glycemic control
measured in HbA1c. For the reweighting proxy 𝑌 , we select the baseline low-density
lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels as well as
the baseline level of triglycerides. Cholesterol level has previously been found to be
linked to health systems factors and economic development in many countries world-
wide (Venkitachalam et al., 2012). Furthermore, there is no evidence on the existence
of causal pathways from the current lipid level of a person to the future body weight.
Additional assumptions on the proxies are illustrated by the causal graph in Fig. 3. Note
that we assume the levels of HbA1c, FPG and fasting insulin differ between the study
populations only because the social determinants and possibly the baseline adjustment
variables are distributed differently.

To diminish skewness, the measurements for FPG, fasting insulin, HLDL choles-
terol, VLDL cholesterol and triglycerides were log-transformed. Specifically for the
estimation of the bridge functions, the numerical variables among 𝑁 were transformed
into an orthogonal cubic basis, and ridge regularization was applied to the linear pa-
rameters. We compared the multiply robust proximal indirect comparison estimator to
the standard doubly robust estimator proposed by Dahabreh et al. (2020), where CATE
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Figure 3. Hypothesized DAG of the observed and unobserved variables in the data example. The
dashed arrows may or may not be present. BAV: baseline adjustment variables.

Table 3. Results from the indirect comparison analysis with SCALE and STEP-2.

Estimand Standard 95%-CI Proximal 95%-CI
𝑇 = 𝑉 {𝑊 (1) ↑ 𝑊 (0) | 𝑅 = 0} ↑3.80 (↑4.59, ↑3.01) ↑3.82 (↑4.73, ↑2.90)
𝑋 = 𝑉 {𝑊 (1) ↑ 𝑊 (↑1) | 𝑅 = 0} ↑3.09 (↑4.20, ↑1.98) ↑3.08 (↑4.28, ↑1.87)

Standard: estimators without the use of proxies detailed in Supplementary Material §S5; proximal: proximal
indirect comparison estimators; CI: confidence interval.

transportability holds conditional on 𝑁 . The subjects with missing measurements for
𝑁 , 𝑌 or 𝑍 and those with no body weight measurements beyond baseline were re-
moved from the analysis, adding up to 41/846 in SCALE and 26/1210 in STEP-2.
Table 2 shows that the percentages of missing outcomes are drastically different be-
tween the subjects randomized to the liraglutide, 3.0 mg arm and the placebo arm
in the SCALE trial. The difference is less pronounced in the STEP-2 trial, where
missingness in outcome measurements is much less frequent. To obtain estimates of
the indirect comparison estimand 𝑄, we further estimated the average treatment effect
𝑅{𝑂 (↑1) ↑ 𝑂 (0) | 𝑀 = 0} within STEP-2 using the standard doubly robust estimator
(Bang and Robins, 2005), where 𝐿 = ↑1 stands for the once-weekly semaglutide, 2.4
mg treatment. A detailed description of the estimators and postulated nuisance models
can be found in Supplementary Material §S5. Standard errors for all estimators were
calculated as empirical 𝑒2-norms of the corresponding influence functions.

The estimates and the corresponding 95% confidence intervals are displayed in Ta-
ble 3. The proximal estimate and the standard estimate of 𝑄 show a similar weight
loss effect of liraglutide at week 44. If the modelling assumptions hold, we may pos-
tulate that the unobserved social determinants have not altered the effect of the GLP-1
agnonists. The proximal estimate of the indirect comparison parameter 𝑆 is ↑3.08%
versus the standard estimate of ↑3.09%, both indicating a stronger weight loss effect of
semaglutide in the study population of the STEP-2 trial. Note, however, that the confi-
dence interval based on the proximal estimator is slightly wider than that based on the
standard estimator.
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6. Discussion

In this article, we propose a novel method for indirect comparison in the presence of un-
measured, shifted effect modifiers. We tailor the proximal causal inference framework
to the problem of indirect comparison, where the treatment of interest is not observed
among the target population. We require IPD and in particular the existence of a pair
of proxies in the source RCT and that of an adjustment proxy in the target RCT. The
proximal indirect comparison estimator can be bias-free even when the CATE trans-
portability fails to hold conditioning on the observed data. Despite the fact that the
target parameter can be treated as a functional of the observed data, its interpretability
depends on the underlying full data distribution.

A particular challenge for applying proximal indirect comparison is the selection
of proxies in RCTs. For example, safety measurements and vital signs, which are rou-
tinely collected, usually do not affect the outcome, but they tend to be suboptimal proxy
candidates because their distributions do not vary much between populations after con-
trolling for baseline covariates. Data linkage would allow subjects from RCTs to be
identified in the health registry, thereby providing far more potential proxies to choose
from. Besides, the collection of proxy variables can be extended before and after the
running period of the RCTs. When medical history is treated as a proxy, data linkage
also helps avoid the use of self-reported data from questionnaires.

There are many interesting directions for future research. Throughout the develop-
ment of the article we have assumed the availability of IPD in both RCTs. However,
if only aggregate data can be obtained in one of the RCTs, the data likelihood changes
and the bridge functions cannot be estimated with the same integral equations. A pos-
sible solution follows the calibration approach (Josey et al., 2021, 2022) to balance
the moments of baseline covariates and proxies between RCTs. In longitudinal stud-
ies like SCALE and STEP-2 described in §5.2, subjects sometimes deviate from the
treatment plan or drop out before the end of the studies. The extension of proximal
indirect comparison to estimating the full compliance effect is straightforward, if one
is willing to assume CATE transportability at baseline (Breskin et al., 2021) and no un-
measured time-varying confounding within RCTs. Treating noncompliance as a form
of missingness at random, we extend our estimator to this case in Supplementary Mate-
rial §S7. A more general transportability framework for observational longitudinal data
under weaker causal assumptions can build on Ying et al. (2023). Finally beyond indi-
rect comparisons, network meta-analyses may compare more than two active treatments
from different studies. In a dense network, direct evidence can often be strengthened
by indirect evidence. The formulation of proximal causal inference for data fusion is
left for future work.
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S1. M-bias in transportability

Consider a family of structural equation models parameterized by 𝑤 (𝑤 ω 0) as follows:

𝑀 ↙ 𝑥
𝑅
,

𝑇 ↙ 𝑤
↑1

𝑥𝑌 ,

𝐿 ↙ 𝑀𝑥
𝑍,1 ↑ (1 ↑ 𝑀)𝑥

𝑍,2,

𝑁 ↙ 𝑀 + 𝑤𝑇 + 𝑥𝑎 ,

𝑂 (𝑃) ↙ 𝑃𝑁 + 𝑃𝑇 + 𝑁 +𝑇 + 𝑀 + 𝑥
𝑊 (𝑏) , 𝑃 → {↑1, 0, 1},

where the random errors are mutually independent,

𝑥
𝑅
, 𝑥

𝑍,1, 𝑥𝑍,2 ⇔ Bernoulli(0.5),
𝑥𝑌 , 𝑥𝑎 , 𝑥𝑊 (𝑏) ⇔ Normal(0, 1).

In this data model, 𝑁 and 𝑇 are effect modifiers with respect to the average treatment effect
(ATE).

Without conditioning on {𝑁 ,𝑇}, 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 𝑝} = 𝑅 (𝑁 +𝑇 + 𝑥
𝑊 (1) ↑ 𝑥

𝑊 (0) | 𝑀 =
𝑝) = 𝑅 (𝑁 | 𝑀 = 𝑝) = 𝑝. If we were to wrongly assume external validity of the ATE from the
source randomized control trial (RCT) and mistake the value of 𝑄mis

1 = 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 1}
for 𝑄 = 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 0}, the bias would be 𝑄

mis
1 ↑ 𝑄 = 1. When we also observe

baseline covariates 𝑁 , it is tempting to hypothesize conditional average treatment effect (CATE)
transportability instead and attempt to identify 𝑄 by way of this assumption. The density of 𝑇
conditioning on {𝑁 , 𝑀} is

𝑦(𝑋 | 𝑊, 𝑝) ∝ 𝑦(𝑊 | 𝑋, 𝑝)𝑦(𝑋)
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Figure S1. A DAG (left) and its corresponding SWIG (right) illustrating possible M-bias in transportability.
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Figure S2. Acyclic directed mixed graphs compatible with Assumption 2.

∝ exp
{
↑ 1

2
(𝑊 ↑ 𝑝 ↑ 𝑤𝑋)2

}
exp

(
↑ 𝑤

2
𝑋

2

2



= exp
{
↑ 1

2(2𝑤2)↑1

(
𝑋

2 + 𝑝 ↑ 𝑊

𝑤

𝑋

}

∝ exp
{
↑ 1

2(2𝑤2)↑1

(
𝑋 ↑ 𝑊 ↑ 𝑝

2𝑤

2}
,

so 𝑇 | (𝑁 = 𝑊, 𝑀 = 𝑝) ⇔ Normal{(𝑊 ↑ 𝑝)/2𝑤 , (2𝑤2)↑1}. We have the expression for the CATE
𝑅{𝑂 (1) ↑𝑂 (0) | 𝑁 = 𝑊, 𝑀 = 𝑝} = 𝑊 + 𝑅 (𝑇 + 𝑥

𝑊 (1) ↑ 𝑥
𝑊 (0) | 𝑁 = 𝑊, 𝑀 = 𝑝) = 𝑊 + 𝑅 (𝑇 | 𝑁 = 𝑊, 𝑀 =

𝑝) = 𝑊 + (𝑊 ↑ 𝑝)/(2𝑤). In this case, the CATE is clearly not transportable. However, if we were to
mistakenly use the value of 𝑅{𝑂 (1) ↑𝑂 (0) | 𝑁 = 𝑊, 𝑀 = 1} in lieu of 𝑅{𝑂 (1) ↑𝑂 (0) | 𝑁 = 𝑊, 𝑀 =
0}, we would have a wrongly identified parameter 𝑄mis

2 and the bias would be 𝑄mis
2 ↑𝑄 = ↑1/(2𝑤).

Therefore, when |𝑤 | > 1/2, the absolute bias is amplified due to the adjustment for 𝑁 . Note also
that the direction of the bias is flipped when 𝑤 > 0.

In Fig. S1, we present a directed acyclic graph (DAG) and its corresponding single-world
intervention graph (SWIG) that are compatible with the family of structural equations above.
Since, 𝑀 and 𝑇 are 𝑧-separated, there is no marginal dependence between 𝑀 and 𝑇; that is, the
effect modifier 𝑇 is not shifted. However, when we condition on 𝑁 , the paths 𝑀 ↓ 𝑁 ↙ 𝑇 ↓ 𝑂

and 𝑀 ↓ 𝑁 ↙ 𝑇 ↓ 𝑂 (𝑃) are opened. CATE transportability conditioning on 𝑁 is unlikely to
hold given potential association between 𝑀 and 𝑂 (or 𝑂 (𝑃)) through effect modifiers {𝑁 ,𝑇}.

S2. Asymptotic theory for estimators of bridge functions

In this section, we present useful results on the asymptotics of the proximal indirect compari-
son estimators in the simulation study. In particular, we will derive their asymptotic variances
under the assumption of parametric bridge functions. Without loss of generality, we assume the
parametric components have the same dimension.

Assumption S1 (Parametric bridge functions). For every 𝑏 → P , H = {𝑐𝑂0 } and Q = {𝑓𝑃0 }
are singletons, where 𝑢0, 𝑣0 → R𝑐 are Euclidean parameters.

We choose some basis expansions 𝑠′ (𝑔, 𝑊) and 𝑡′ (𝑑, 𝑊) in R𝑐 and define the functions

𝛥
𝑄

𝑂
(𝑜) = 𝑝𝑠′ (𝑔, 𝑊){𝑞̃ ↑ 𝑐𝑂 (𝑑, 𝑊)},
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𝛥
𝑆

𝑃
(𝑜) = 𝑡′ (𝑑, 𝑊){(1 ↑ 𝑝) ↑ 𝑝𝑓𝑃 (𝑔, 𝑊)}.

The Z-estimators 𝑢 and 𝑣 are such that ⇓𝑏𝑁𝛥
𝑄

𝑂̂
⇓ = 𝑜𝑀 (𝑗↑1/2) and ⇓𝑏𝑁𝛥

𝑆

𝑃

⇓ = 𝑜𝑀 (𝑗↑1/2). Note
that the estimation of 𝑣0 need not involve nuisance models for the participation odds pr(𝑀 = 0 |
𝑍 , 𝑁)/pr(𝑀 = 1 | 𝑍 , 𝑁). A similar point was raised in the estimation of parametric treatment
bridge functions to account for unmeasured confounding Cui et al. (2024).

Assumption S2 (Regularity conditions).
(i) For all 𝑢 → R𝑐 , the map 𝑢 ∞↓ 𝑐𝑂 (𝑑, 𝑊) is differentiable with derivative ∈

𝑐𝑂 for all (𝑑, 𝑊),
so that ∈𝛥𝑄

𝑂
= ↑𝑝𝑠′ ∈𝑐𝑂 . 𝑅 sup

𝑂→𝑑 ⇓ ∈𝛥𝑄

𝑂
⇓2

< ∋ for every compact 𝛩 ↘ R𝑐 . ⇓𝑅𝛥𝑄

𝑂
⇓ has a

unique zero point at 𝑢0, and 𝑅 ∈𝛥𝑄

𝑂0 is invertible.
(ii) For all 𝑣 → R𝑐 , the map 𝑣 ∞↓ 𝑓𝑃 (𝑑, 𝑊) is differentiable with derivative ∈𝑓𝑃 for all (𝑔, 𝑊),

so that ∈𝛥𝑆

𝑃
= ↑𝑝𝑡′ ∈𝑓𝑃 . 𝑅 sup

𝑃 →𝑑 ⇓ ∈𝛥𝑆

𝑃
⇓2

< ∋ for every compact 𝛩 ↘ R𝑐 . ⇓𝑅𝛥𝑆

𝑃
⇓ has a

unique zero point at 𝑣0, and 𝑅 ∈𝛥𝑆

𝑃0
is invertible.

Proposition S1. Suppose Assumptions S1–S2 hold. Then:

1. The estimator 𝑢 is asymptotically normal with influence function ↑(𝑅 ∈𝛥𝑄

𝑂0 )↑1
𝛥
𝑄

𝑂0 . The
estimator 𝑄

𝑄
is asymptotically normal with influence function

1 ↑ 𝑀

𝑈

{𝑐𝑂0 ↑ 𝑄} ↑ 1
𝑈

𝑅 (𝑀 ∈𝑐T
𝑂0 ) (𝑅 ∈𝛥𝑄

𝑂0 )
↑1

𝛥
𝑄

𝑂0 .

2. The estimator 𝑣 is asymptotically normal with influence function ↑(𝑅 ∈𝛥𝑆

𝑃0
)↑1

𝛥
𝑆

𝑃0
. The

estimator 𝑄𝑆 is asymptotically normal with influence function

1
𝑈

{
𝑝𝑓𝑃0 𝑞̃ ↑ (1 ↑ 𝑝)𝑄

}
↑ 1
𝑈

𝑅 (𝑀𝑂 ∈𝑓T
𝑃0
) (𝑅 ∈𝛥𝑆

𝑃0
)↑1

𝛥
𝑆

𝑃0
.

Proof. A first-order Taylor expansion of the estimating equations around the true parameters
𝑢0 and 𝑣0 shows their influence functions. The influence functions of 𝑄

𝑄
and 𝑄𝑆 can be obtained

by the same technique, with the exception that 𝑄𝑆 requires an additional expansion around 𝑈. ⊋

S3. Existence and uniqueness of bridge functions

To make statistical inference on the target parameter, we rely on existence and uniqueness of the
bridge functions 𝑐0 and 𝑓0. For the sake of completness, we state sufficient conditions for this
assumption.

We make use of the following completeness conditions on the observed data distribution,
under which H and Q must be either empty sets or singletons.

Assumption S3 (Completeness). 𝑏1-almost surely:
(i) 𝑅{𝑚(𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1} = 0 implies 𝑚(𝑍 , 𝑁) = 0;

(ii) 𝑅{𝑚(𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1} = 0 implies 𝑚(𝑌 , 𝑁) = 0.

Similar completeness assumptions appear in many works on proximal causal inference (Cui
et al., 2024; Tchetgen Tchetgen et al., 2024). They use completeness assumptions to translate
observed data parameters into causal parameters. In our setup, this corresponds to viewing
the identification formulas in Proposition 2 directly as parameters of interest. Then, with As-
sumption 2 and completeness assumptions on the densities 𝑦(𝑋 | 𝑍 = 𝑑, 𝑁 = 𝑊, 𝑀 = 1) and
𝑦(𝑋 | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1), we arrive at H = HU and Q = QU. That is, under these alternative
assumptions, the two parameters of interest will have the right causal interpretation.
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We first introduce some notations. Let 𝑏1 |𝑎=𝑒 denote the conditional probability measure
𝑏1 (· | 𝑁 = 𝑊). For every fixed 𝑊, define the linear transformation 𝑘𝑒 : 𝑒2 (𝑍 ; 𝑏1 |𝑎=𝑒) ↓
𝑒2 (𝑌; 𝑏1 |𝑎=𝑒) such that (𝑘𝑒𝑐) (𝑔) = 𝑅{𝑐(𝑍) | 𝑌 = 𝑔, 𝑁 = 𝑊}. The adjoint of 𝑘𝑒 is then
𝑘
′
𝑒

: 𝑒2 (𝑌; 𝑏1 |𝑎=𝑒) ↓ 𝑒2 (𝑍 ; 𝑏1 |𝑎=𝑒) such that (𝑘′
𝑒
𝑓) (𝑑) = 𝑅{𝑓(𝑌) | 𝑍 = 𝑑, 𝑁 = 𝑊}. When

𝑘𝑒 and 𝑘
′
𝑒

are compact operators, there exist orthonormal sequences ( 𝛬
𝑐
) in 𝑒2 (𝑌; 𝑏1 |𝑎=𝑒) and

(𝑚
𝑐
) in 𝑒2 (𝑍 ; 𝑏1 |𝑎=𝑒) and a positive sequence of real numbers (𝛯

𝑐
) such that 𝑘𝑒𝑚𝑐 = 𝛯

𝑐
𝛬
𝑐

and 𝑘
′
𝑒
𝛬
𝑐
= 𝛯

𝑐
𝑚
𝑐

for all positive integers 𝑤 (Kress, 2014, Theorem 15.16).

Assumption S4 (Regularity conditions). For all 𝑊:
(i) 𝑘𝑒 and 𝑘

′
𝑒

are compact operators;
(ii) 𝑅 (𝑂 | 𝑌 , 𝑁 = 𝑊, 𝑀 = 1) → 𝑒2 (𝑌; 𝑏1 |𝑎=𝑒);

(iii) {pr(𝑀 = 1 | 𝑍 , 𝑁 = 𝑊)}↑1pr(𝑀 = 0 | 𝑍 , 𝑁 = 𝑊) → 𝑒2 (𝑍 ; 𝑏1 |𝑎=𝑒);
(iv)

∑∋
𝑐=1 𝛯

↑2
𝑐

""△𝑅 (𝑂 | 𝑌 , 𝑁 = 𝑊, 𝑀 = 1), 𝛬
𝑐
▽
𝑓2 (𝑔 ;𝑀1 |𝑂=𝑃 )

""2
< ∋;

(v)
∑∋

𝑐=1 𝛯
↑2
𝑐

""{pr(𝑀 = 1 | 𝑍 , 𝑁 = 𝑊)}↑1pr(𝑀 = 0 | 𝑍 , 𝑁 = 𝑊), 𝑚
𝑐
▽
𝑓2 (𝑕 ;𝑀1 |𝑂=𝑃 )

""2
< ∋.

Proposition S2 (Identifiability of bridge functions).
1. Under Assumptions S3(i), S4(i), S4(ii), and S4(iv), H is nonempty and a singleton.
2. Under Assumptions S3(ii), S4(i), S4(iii), and S4(v), Q is nonempty and a singleton.

Proof. We only show the proof of the first index of Proposition S2. The singular value decom-
position of 𝑘𝑒 exists by Assumption S4(i). By definition, the nonemptiness of H follows from
the existence of a solution to the linear integral equation (𝑘𝑒𝑐) (𝑔) = 𝑅 (𝑂 | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1)
in the Hilbert space 𝑒2 (𝑌; 𝑏1 |𝑎=𝑒) for every 𝑊. Applying Picard’s Theorem (Theorem 15.18 in
Kress (2014)), the equation for 𝑐 has a solution due to Assumption S4(ii) and S4(iv). We will
use proof by contradiction to show the second part of the statement. Suppose the contrary that
there exist two solutions 𝑐 ω 𝑐

⇐ to the equation in H, such that 𝑅 (𝑐 ↑ 𝑐
⇐ | 𝑌 , 𝑁 = 𝑊, 𝑀 = 1) = 0

holds 𝑏1 (𝑌 | 𝑁 = 𝑊)-almost surely. Then by AssumptionS3(i), we must have 𝑐 = 𝑐
⇐ almost

surely. The proof for the second index can be similarly obtained using the assumptions shown in
Proposition S2. ⊋

In general, the operators 𝑘𝑒 and 𝑘
′
𝑒

are not compact operators. A sufficient condition for
Assumption S4(i) is

˜
𝑦(𝑑 | 𝑔, 𝑁 , 𝑀 = 1)𝑦(𝑔 | 𝑑, 𝑁 , 𝑀 = 1)d𝑑d𝑔 < ∋, 𝑏1 (𝑁)-almost surely

[see Example 2.3 in Carrasco et al. (2007)]. In this case, 𝑘𝑒 is a Hilbert-Schmidt operator, which
is guaranteed to be compact.

S4. Details of the simulated data example

S4.1. Underlying bridge functions

The baseline covariates 𝑁 , the unobserved variables 𝑇, the negative control outcomes 𝑍 , and the
negative control treatments 𝑌 are multivariate. The rest of the variables are univariate. We use
𝑠, 𝛱, and 𝛴 for scalar, vector, and matrix coefficients. Their dimensions should be clear from the
context. We generated the data sequentially according to (excluding 𝑁 and 𝑇, which can follow
arbitrary joint distributions):

𝑀 | (𝑁 ,𝑇) ⇔ Bernoulli{expit(𝑠𝑖 + 𝛱
T
𝑖𝑒
𝑁 + 𝛱

T
𝑖𝑗
𝑇)},

𝐿 | (𝑁 ,𝑇, 𝑀 = 1) ⇔ Bernoulli(𝑠𝑏), 0 < 𝑠𝑏 < 1,
𝑌 | (𝑁 ,𝑇, 𝑀 = 1) ⇔ Normal(𝛱𝑘 + 𝛴𝑘𝑗𝑇 + 𝛴𝑘𝑒𝑁 , ϑ𝑘),

𝑍 | (𝑁 ,𝑇) ⇔ Normal(𝛱𝑙 + 𝛴𝑙𝑗𝑇 + 𝛴𝑙𝑒𝑁 , ϑ𝑙),
𝑂 | (𝑍 , 𝐿, 𝑁 ,𝑇, 𝑀 = 1) ⇔ Normal(𝑠𝑚 + 𝑠𝑚𝑏𝐿 + 𝛱

T
𝑚𝑗
𝑇 + 𝛱

T
𝑚 (𝑏𝑗) (𝐿𝑇) + 𝛱

T
𝑚𝑒

𝑁
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+ 𝛱
T
𝑚𝑙

𝑍 + 𝛱
T
𝑚 (𝑏𝑙) (𝐿𝑍),𝛯2

𝑚
).

The conditional distribution 𝑍 | (𝐿, 𝑁 ,𝑇, 𝑀 = 1) is the same as the conditional distribution of
𝑍 | (𝑁 ,𝑇, 𝑀 = 1). The conditional expectation

𝑅 (𝑂 | 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1)
= 𝑅{𝑅 (𝑂 | 𝑍 , 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝑍 , 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1) | 𝑁 ,𝑇, 𝑀 = 1}
= 𝑠𝑚𝑏 + 𝛱

T
𝑚 (𝑏𝑗)𝑇 + 𝛱

T
𝑚 (𝑏𝑙)𝑅 (𝑍 | 𝑁 ,𝑇, 𝑀 = 1)

= 𝑠𝑚𝑏 + 𝛱
T
𝑚 (𝑏𝑙) 𝛱𝑙 + (𝛱T

𝑚 (𝑏𝑗) + 𝛱
T
𝑚 (𝑏𝑙)𝛴𝑙𝑗)𝑇 + 𝛱

T
𝑚 (𝑏𝑙)𝛴𝑙𝑒𝑁 .

Let the outcome bridge function 𝑐(𝑍 , 𝑁) = 𝑢0 + 𝑢
T
𝑙
𝑍 + 𝑢

T
𝑒
𝑁 , then

𝑅{𝑐(𝑍 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} = 𝑢0 + 𝑢
T
𝑒
𝑁 + 𝑢

T
𝑙
𝑅 (𝑍 | 𝑁 ,𝑇, 𝑀 = 1)

= 𝑢0 + 𝑢
T
𝑙
𝛱𝑙 + (𝑢T

𝑒
+ 𝑢

T
𝑙
𝛴𝑙𝑒)𝑁 + 𝑢

T
𝑙
𝛴𝑙𝑗𝑇.

Comparing the coefficients in the two expressions, we have the following system of equations:

𝑢0 + 𝑢
T
𝑙
𝛱𝑙 = 𝑠𝑚𝑏 + 𝛱

T
𝑚 (𝑏𝑙) 𝛱𝑙

𝑢
T
𝑒
+ 𝑢

T
𝑙
𝛴𝑙𝑒 = 𝛱

T
𝑚 (𝑏𝑙)𝛴𝑙𝑒

𝑢
T
𝑙
𝛴𝑙𝑗 = 𝛱

T
𝑚 (𝑏𝑗) + 𝛱

T
𝑚 (𝑏𝑙)𝛴𝑙𝑗,

so the parameters of the bridge function are

𝑢0 = 𝑠𝑚𝑏 ↑ 𝛱
T
𝑙
𝛴
↑T
𝑙𝑗

𝛱
𝑚 (𝑏𝑗) ,

𝑢𝑒 = ↑𝛴T
𝑙𝑒

𝛴
↑T
𝑙𝑗

𝛱
𝑚 (𝑏𝑗) ,

𝑢𝑙 = 𝛴
↑T
𝑙𝑗

𝛱
𝑚 (𝑏𝑗) + 𝛱

𝑚 (𝑏𝑙) .

The probability ratio
pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇) = exp(↑𝑠𝑖 ↑ 𝛱

T
𝑖𝑒
𝑁 ↑ 𝛱

T
𝑖𝑗
𝑇).

Let the participation bridge function be

𝑓(𝑌 , 𝑁) = exp(𝑣0 + 𝑣
T
𝑘
𝑌 + 𝑣

T
𝑒
𝑁),

then

𝑅{𝑓(𝑌 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} = exp(𝑣0 + 𝑣
T
𝑒
𝑁)𝑅{exp(𝑣T

𝑘
𝑌) | 𝑁 ,𝑇, 𝑀 = 1}

= exp(𝑣0 + 𝑣
T
𝑒
𝑁) exp

{
𝑣

T
𝑘
(𝛱𝑘 + 𝛴𝑘𝑗𝑇 + 𝛴𝑘𝑒𝑁) +

1
2
𝑣

T
𝑘
ϑ𝑘𝑣𝑘

}

= exp
{
𝑣0 + 𝑣

T
𝑘
𝛱𝑘 +

1
2
𝑣

T
𝑘
ϑ𝑘𝑣𝑘 + (𝑣T

𝑒
+ 𝑣

T
𝑘
𝛴𝑘𝑒)𝑁 + 𝑣

T
𝑘
𝛴𝑘𝑗𝑇

}
,

where we have used the moment generating function of the conditional distribution 𝑌 | (𝑁 ,𝑇, 𝑀 =
1). Comparing the coefficients in the two expressions, we have the following system of equations:

𝑣0 + 𝑣
T
𝑘
𝛱𝑘 +

1
2
𝑣

T
𝑘
ϑ𝑘𝑣𝑘 = ↑𝑠𝑖

𝑣
T
𝑒
+ 𝑣

T
𝑘
𝛴𝑘𝑒 = ↑𝛱T

𝑖𝑒

𝑣
T
𝑘
𝛴𝑘𝑗 = ↑𝛱T

𝑖𝑗
,

so the parameters of the bridge function are

𝑣0 = ↑𝑠𝑖 + 𝛱
T
𝑘
𝛴
↑T
𝑘𝑗

𝛱𝑖𝑗 ↑ 1
2
𝛱

T
𝑖𝑗
𝛴
↑1
𝑘𝑗

ϑ𝑘𝛴
↑T
𝑘𝑗

𝛱𝑖𝑗,

𝑣𝑒 = ↑𝛱𝑖𝑒 + 𝛴
T
𝑘𝑒
𝛴
↑T
𝑘𝑗

𝛱𝑖𝑗,

𝑣𝑘 = ↑𝛴↑T
𝑘𝑗

𝛱𝑖𝑗 .
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S4.2. Justification for the cubic of basis

Suppose we obtain an estimator of 𝑣0 without using the cubic of the basis 𝑡(𝑑, 𝑊), so that

𝑣 = arg min
𝑃

....1
𝑗

𝑁∑

𝐿=1
𝑡(𝑍𝐿 , 𝑁𝐿){𝑀𝐿𝑓𝑃 (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}

....
2
.

The first-order condition of the optimization problem gives

2
{

1
𝑗

𝑁∑

𝐿=1
𝑀𝐿𝑓𝑃

(𝑌𝐿 , 𝑁𝐿)𝑡(𝑍𝐿 , 𝑁𝐿)𝑡T (𝑍𝐿 , 𝑁𝐿)
}{

1
𝑗

𝑁∑

𝐿=1
𝑡(𝑍𝐿 , 𝑁𝐿){𝑀𝐿𝑓𝑃 (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}

}
= 0.

Since the matrix in the first pair of braces is almost surely nonsingular, we have that with proba-
bility 1,

1
𝑗

𝑁∑

𝐿=1
𝑡(𝑍𝐿 , 𝑁𝐿){𝑀𝐿𝑓𝑃 (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)} = 0. (S1)

We compare the two estimators

𝑄 =
1
𝑗

𝑁∑

𝐿=1

[
𝑀𝐿

𝑈̂

𝑓
𝑃
(𝑌𝐿 , 𝑁𝐿){𝑂𝐿 ↑ 𝑐

𝑂̂
(𝑍𝐿 , 𝑁𝐿)} +

1 ↑ 𝑀𝐿

𝑈̂

𝑐
𝑂̂
(𝑍𝐿 , 𝑁𝐿)

]
,

𝑄𝑆 =
1
𝑗0

∑

𝐿:𝑅𝐿=1
𝑓
𝑃
(𝑌𝐿 , 𝑁𝐿)𝑂𝐿 ,

which are the same as 𝑄 and 𝑄𝑆 , except 𝑣 is replaced by 𝑣. Their difference is

𝑄𝑆 ↑ 𝑄 =
1
𝑗

𝑁∑

𝐿=1

1
𝑈̂

{𝑀𝐿𝑓𝑃 (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}𝑐𝑂̂ (𝑍𝐿 , 𝑁𝐿).

Because 𝑐
𝑂̂
(𝑑, 𝑊) = 𝑢

T
𝑡(𝑑, 𝑊) is a linear combination of 𝑡(𝑑, 𝑊), the observation in (S1) shows

that 𝑄𝑆 = 𝑄 almost surely. However, this can be circumvented by using a nonlinear transformation
of 𝑡(𝑑, 𝑊) as the basis function to estimate 𝑣0, as was done in the simulation study, where we
raised 𝑡(𝑑, 𝑊) to the third power elementwise.

S4.3. Additional experiments under assumption violations

In experiment 5, we investigated the behaviour of proximal indirect comparison estimators in
the absence of unmeasured effect modifiers, where 𝑇 was set as a zero vector. To understand
the impact of the violation of the proxy assumptions (Assumption 2(iii) and 2(iv) in the main
text), we replaced the conditional distribution of 𝑂 with 𝑂 | (𝑌 ,𝑍 , 𝐿,𝑇, 𝑀 = 0) ⇔ Normal(0.5 ↑
𝐿 +𝑇

T1 + 𝐿𝑇
T1 + 𝑁

T1 +𝑍
T1 + 𝐿𝑍

T1 + 𝑌
T1 + 𝐿𝑌

T1, 0.52) in experiment 7 and the condition
distribution of 𝑍 with 𝑍 | (𝑁 , 𝑀) ⇔ Normal(𝑀1 + 𝑁 +𝑇, 0.25Id) in experiment 8. In experiment
9, we simulated 𝑇 ⇔ Uniform( [↑1, 0]) as a scalar-valued random variable but maintained the
proxies as vectors, so that the bridge functions are no longer uniquely identified. The importance
of the existence of the bridge functions was studied in experiment 11 by simulating 𝑌 from
𝑌 | (𝑇, 𝑁 , 𝑀 = 0) ⇔ Normal(0.05𝑇+𝑁 , 0.25Id), making 𝑌 nearly uncorrelated with𝑇 given 𝑁 in
the source RCT. Likewise in experiment 12, we simulated𝑍 from𝑍 | (𝑇, 𝑁) ⇔ Normal(0.05𝑇+
𝑁 , 0.25Id) so that 𝑍 is nearly uncorrelated with 𝑇 given 𝑁 . In experiment 13, we examined the
effect on near violation of positivity by changing the conditional probability pr(𝑀 = 1 | 𝑇, 𝑁) to
expit(↑0.675+0.5𝑁T1+2.5𝑇T1) so that the participation odds pr(𝑀 = 0 | 𝑇, 𝑁)/pr(𝑀 = 1 | 𝑇, 𝑁)
is large, as the coefficient of𝑇 is dispropotionally large. Finally in experiments 6 and 10, the data
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Table S1. Additional simulation results of experiments 5–13 with sample size 𝑗 = 1000.

𝑁 Experiment Estimator Mean Bias RMSE SE Coverage
1000 5 𝑇𝑀 0.40 !3.29 60.24 585.37 100.00

𝑇𝑁 0.38 !25.55 9.79 1318.56 97.39
𝑇 0.17 !232.71 140.78 65.29 98.59

6 𝑇𝑀 0.40 !8.56 3.39 63.76 99.80
𝑇𝑁 0.39 !12.37 3.36 42.13 99.50
𝑇 0.39 !13.32 3.36 3.31 94.70

7 𝑇𝑀 !2.84 !93.51 4.87 4.82 95.30
𝑇𝑁 !2.87 !116.60 6.41 6.27 95.70
𝑇 !2.84 !93.01 5.83 5.78 94.80

8 𝑇𝑀 !5.45 !2802.40 52.29 44.69 90.60
𝑇𝑁 !2.01 631.36 33.84 1.65 5.48
𝑇 !5.13 !2487.30 53.51 28.60 55.01

9 𝑇𝑀 !1.83 !169.06 43.99 379.44 100.00
𝑇𝑁 !1.70 !37.91 5.68 150.45 96.70
𝑇 !1.86 !206.71 56.19 28.78 97.49

10 𝑇𝑀 !1.65 3.76 2.39 28.39 99.70
𝑇𝑁 !1.66 !5.54 2.56 27.70 99.50
𝑇 !1.66 !0.08 2.51 2.47 94.20

11 𝑇𝑀 !2.73 !79.91 72.12 725.79 100.00
𝑇𝑁 !2.52 121.77 10.02 24.72 90.67
𝑇 !2.64 8.94 73.71 41.25 95.49

12 𝑇𝑀 !1.09 85.97 60.62 582.12 100.00
𝑇𝑁 !1.10 84.36 6.68 947.45 96.40
𝑇 !1.31 !134.55 70.33 40.68 99.00

13 𝑇𝑀 !2.67 !111.00 31.82 44.00 94.10
𝑇𝑁 !2.22 336.45 19.65 7.44 44.10
𝑇 !2.43 130.62 29.32 18.92 83.47

Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑1; SE: average of standard error
estimates, 10↑1; Coverage: 95% confidence interval coverage, %.

were simulated as in experiments 5 and 9, whereas the bridge functions were estimated with ridge
regularization. That is, the fitted bridge functions were 𝑐

𝑂̂𝑄 (𝑍 , 𝑁) and 𝑓
𝑃𝑄
(𝑌 , 𝑁) where

𝑢𝑛 = arg min
𝑂
⇐

.... 1
𝑗1

∑

𝐿:𝑅𝐿=1
𝑠(𝑌𝐿 , 𝑁𝐿){𝑂𝐿 ↑ 𝑐𝑂

⇐ (𝑍𝐿 , 𝑁𝐿)}
....
2
+ 𝛶

𝑄
(𝑢⇐)T

𝛷
𝑄
𝑢
⇐
,

𝑣𝑛 = arg min
𝑃
⇐

....1
𝑗

𝑁∑

𝐿=1
{𝑡(𝑍𝐿 , 𝑁𝐿)}3{𝑀𝐿𝑓𝑃 ⇐ (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}

....
2
+ 𝛶𝑆 (𝑣⇐)T

𝛷𝑆𝑣
⇐
,

with fixed regularization parameters 𝛶
𝑄
= 𝛶𝑆 = 10↑4 and 𝛷

𝑄
and 𝛷𝑆 being identity matrices

of appropriate dimensions with their upper left corners changed to zero, so that the intercept is
unpenalized. All results from the additional simulation studies are displayed in Tables S1 and S2.

S5. Details of the real data example

S5.1. Description of bridge estimators and standard estimators

Let 𝛹(𝑃, 𝑊, 𝑝) = 𝑅 (𝑂 | 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 𝑝) and by an abuse of notation 𝑦(𝑊) = pr(𝑀 =
1 | 𝑁 = 𝑊), 𝑉(𝑃 | 𝑊, 𝑝) = pr(𝐿 = 𝑃 | 𝑁 = 𝑊, 𝑀 = 𝑝). We assumed linear models for 𝛹 and
log{𝑦/(1 ↑ 𝑦)}. Let 𝑁̃ denote the design vector without intercept from the baseline adjusting
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Table S2. Additional simulation results of experiments 5–13 with sample size 𝑗 = 2000.

𝑁 Experiment Estimator Mean Bias RMSE SE Coverage
2000 5 𝑇𝑀 0.56 154.81 37.69 367.80 100.00

𝑇𝑁 0.40 !2.34 6.72 59.25 98.99
𝑇 0.42 9.49 91.75 39.15 98.79

6 𝑇𝑀 0.42 11.12 2.45 84.90 99.80
𝑇𝑁 0.41 6.37 2.42 33.26 99.80
𝑇 0.41 4.56 2.42 2.32 92.80

7 𝑇𝑀 !2.85 !104.03 3.59 3.37 93.80
𝑇𝑁 !2.87 !124.49 4.40 4.19 95.40
𝑇 !2.86 !110.04 4.08 3.90 94.50

8 𝑇𝑀 !5.60 !2955.11 42.89 31.01 84.30
𝑇𝑁 !2.35 293.72 39.12 2.15 4.41
𝑇 !5.29 !2649.47 51.14 32.02 62.07

9 𝑇𝑀 !1.58 77.82 20.55 144.31 99.70
𝑇𝑁 !1.68 !24.05 4.03 548.32 97.00
𝑇 !1.67 !16.70 26.86 17.81 98.30

10 𝑇𝑀 !1.66 !3.03 1.64 18.46 99.20
𝑇𝑁 !1.67 !8.20 1.78 24.66 99.40
𝑇 !1.66 !7.20 1.73 1.74 95.20

11 𝑇𝑀 !2.78 !131.67 75.44 528.18 100.00
𝑇𝑁 !2.51 136.13 8.89 1529.49 92.30
𝑇 !2.59 51.16 67.84 27.79 92.29

12 𝑇𝑀 !1.08 98.20 43.26 293.16 100.00
𝑇𝑁 !1.11 71.73 4.91 494.91 97.29
𝑇 !0.93 249.01 68.86 29.61 98.99

13 𝑇𝑀 !2.58 !17.43 12.05 11.62 94.80
𝑇𝑁 !2.61 !53.22 17.31 11.60 51.69
𝑇 !2.66 !99.47 17.48 15.17 88.39

Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑1; SE: average of standard error
estimates, 10↑1; Coverage: 95% confidence interval coverage, %.
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Table S3. Additional estimates from the indirect comparison analysis with SCALE and STEP-2.

Estimand Estimate 95%-CI
𝑉 {𝑊 (↑1) ↑ 𝑊 (0) | 𝑅 = 0} ↑6.90 (↑7.68, ↑6.11)
𝑉 {𝑊 (1) ↑ 𝑊 (0) | 𝑅 = 1} ↑3.97 (↑4.71, ↑3.22)

The estimands are direct comparisons of the treatments administered in the respective trials.

variables 𝑁 with numerical variables transformed into the orthogonal cubic basis and categorical
variables transformed into dummy variables. The bridge functions were assumed to follow the
parametric forms 𝑐(𝑑, 𝑊) = 𝑐𝑂 (𝑑, 𝑊) = 𝑢

T
𝑡(𝑑, 𝑊) and 𝑓(𝑔, 𝑊) = 𝑓𝑃 (𝑔, 𝑊) = 𝑣

T
𝑠̃(𝑔, 𝑊), where

𝑡(𝑑, 𝑊) = (1,𝑑, 𝑊T)T and 𝑠̃(𝑔, 𝑊) = (1, 𝑔, 𝑊T)T.
The linear parameters in the bridge functions are fitted using the ridge-regularized generalized

method of moment such that

𝑢𝑛 = arg min
𝑂

.... 1
𝑗1

∑

𝐿:𝑅𝐿=1
𝑠̃(𝑌𝐿 , 𝑁𝐿){𝑂𝐿 ↑ 𝑐𝑂

⇐ (𝑍𝐿 , 𝑁𝐿)}
....
2
+ 𝛶

𝑄,𝑁
𝑢

T
𝛷
𝑄
𝑢,

𝑣𝑛 = arg min
𝑃
⇐

....1
𝑗

𝑁∑

𝐿=1
𝑡(𝑍𝐿 , 𝑁𝐿){𝑀𝐿𝑓𝑃 ⇐ (𝑌𝐿 , 𝑁𝐿) ↑ (1 ↑ 𝑀𝐿)}

....
2
+ 𝛶𝑆,𝑁𝑣

T
𝛷𝑆𝑣,

where 𝛷
𝑄

and 𝛷𝑆 are identity matrices of appropriate dimensions with their upper left corners
changed to zero. The data-adaptive regularization factors 𝛶

𝑄,𝑁
and 𝛶𝑆,𝑁 are chosen with 10-

fold cross validation from a prespecified grid. The models for 𝛹(𝑃, ·, 𝑝) are fitted separately on
the SCALE and STEP-2 samples as well as on each treatment arm to allow for full interaction
between {𝐿, 𝑀} and the other variables. Then the modified target population ATE estimator from
Dahabreh et al. (2020) for 𝑄 is

1
𝑗

𝑁∑

𝐿=1

[
𝑀𝐿

𝑈̂

1 ↑ 𝑦(𝑁𝐿)
𝑦(𝑁𝐿)

(2𝐿𝐿 ↑ 1)
𝑉(𝐿𝐿 | 𝑀𝐿)

{𝑂𝐿 ↑ 𝛹̂(𝐿𝐿 , 𝑁𝐿 , 𝑀𝐿)} +
1 ↑ 𝑀𝐿

𝑈̂

{𝛹̂(1, 𝑁𝐿 , 𝑀𝐿) ↑ 𝛹̂(0, 𝑁𝐿 , 𝑀𝐿)}
]
,

and the modified standard doubly robust ATE estimator from Bang and Robins (2005) for the
parameter 𝑅{𝑂 (↑1) ↑ 𝑂 (0) | 𝑀 = 0} is

1
𝑗0

∑

𝐿:𝑅𝐿=0

[ (↑2𝐿𝐿 ↑ 1)
𝑉(𝐿𝐿 | 0) {𝑂𝐿 ↑ 𝛹̂(𝐿𝐿 , 𝑁𝐿 , 0)} + {𝛹̂(↑1, 𝑁𝐿 , 0) ↑ 𝛹̂(0, 𝑁𝐿 , 0)}

]
.

For comparison, we also computed the ATE estimate for 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 1} by

1
𝑗1

∑

𝐿:𝑅𝐿=1

[ (2𝐿𝐿 ↑ 1)
𝑉(𝐿𝐿 | 1) {𝑂𝐿 ↑ 𝛹̂(𝐿𝐿 , 𝑁𝐿 , 1)} + {𝛹̂(1, 𝑁𝐿 , 1) ↑ 𝛹̂(0, 𝑁𝐿 , 1)}

]
.

The last two estimates are reported along with 95% confidence intervals in Table S3 for reference.

S5.2. PRISMA-IPD checklist

In the following we present the PRISMA-IPD checklist for the reporting of meta-analysis with
IPD (Stewart et al., 2015).

1. Title: Indirect comparison of once-weekly semaglutide 2.4 mg and once-daily liraglutude
3.0 mg in patients with type 2 diabetes from STEP-2 weight management trial.

2. Structured summary: Not applicable.
3. Rationale: The effect of weight loss from semaglutide and liraglutide has never been com-

pared head-to-head on the obese population with type-2 diabetes. The only direct evidence
available from an RCT is from the STEP-8 trial (Rubino et al., 2022) on a nondiabetic pop-
ulation with a relatively small sample size.
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4. Objectives: The average treatment effect on change from baseline (week 0) to week 44
in body weight (%), in the study population of the STEP-2 trial, comparing once-weekly
semaglutide 2.4 mg and once-daily liraglutude 3.0 mg.

5. Protocol and registration: No applicable.
6. Eligibility criteria: All subjects from the SCALE and STEP-2 trials who were randomized

are considered eligible, excluding those with no post-baseline body weight measurement
and those with missing measurements in the baseline variables specified in point 11.

7. Identifying studies-information sources: Not applicable.
8. Identifying studies-search: Not applicable.
9. Study selection processes: The inclusion-exclusion criteria used in the SCALE and STEP-

2 trials are virturally identical.
10. Data collection processes: The IPD were retrieved from the internal trial database in Novo

Nordisk A/S by agreement.
11. Data items: The baseline variables included in the indirect comparison, except the random-

ized treatment, are one of the three groups: the hypothesized treatment effect modifiers of
liraglutide 3.0 mg versus placebo, the adjustment proxies and the reweighting proxies. The
definitions of the proxies can be found in §3 of the manuscript, and the rationale for se-
lecting the proxies is explicated in §5.2. The collected baseline variables from the STEP-2
trial include: randomized treatment (categorical, liraglutide 3.0 mg, liraglutide 1.8 mg and
placebo), body weight (kg, continuous), body-mass index (kg ·m↑2, continuous), smoking
status (categorical, current smoker, previous smoker, never smoked), duration of diabetes
(years, continuous), waist circumference (cm, continuous), age (years, continuous), sex
(binary), race (categorical, white, black and others), region of the clinic (categorical, Eu-
rope, North America and others), hemoglobin A1c (mmol · mol↑1, continuous), fasting
plasma glucose (mmol · L↑1, continuous) and fasting serum insulin (pmol · L↑1, contin-
uous). The baseline variables from the SCALE trial are those from the STEP-2 trial plus
serum high-density lipoprotein (mmol ·L↑1, continuous), serum very low-density lipopro-
tein (mmol ·L↑1, continuous) and serum triglycerides (mmol ·L↑1, continuous), where the
randomized treatment is one of semaglutide 2.4 mg, semaglutide 1.0 mg and placebo. The
outcome from both trials is the change from baseline to week 44 in body weight. Imputa-
tion for missing measurements of week 44 body weight was performed by last observation
carried forward (LOCF).

A1. IPD integrity: See Davies et al. (2015) and Davies et al. (2021). No additional checking
was performed.

12. Risk of bias assessment in individual studies: Subjects’ deviation from protocol was ob-
served in both RCTs, resulting in missing body weight measurements at week 44. LOCF
imputation is likely to yield conservative effects, although bias in the other direction is
also possible.

13. Specification of outcomes and effect measures: The estimand is the change from base-
line to week 44 body weight in the study population of STEP-2, comparing once-weekly
semaglutide, 2.4 mg and once-daily liraglutide, 3.0 mg. The effect measure is the differ-
ence in changes in body weight.

14. Synthesis methods: Refer to §5.2 and earlier expositions within this section for details.
A2. Exploration of variation in effects: No subgroup analysis was performed.
15. Risk of bias across studies: The proximal indirect comparison estimator is susceptible to

bias from the invalidity of proxies (Assumption 2) or the nonexistence of bridge functions.
The target population ATE estimator in Dahabreh et al. (2020) may be biased if there
are unobserved, shifted effect modifiers. Both estimators are susceptible to violation of
positivity or overlap of the study populations of SCALE and STEP-2.

16. Additional analyses: No additional analysis was performed.
17. Study selection and IPD obtained: The studies SCALE and STEP-2 were selected specif-

ically for the comparison of the two GLP-1 receptor agonists for weight management
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among overweight patients with type II diabetes. The IPD were available from Novo
Nordisk.

18. Study characteristics: See Davies et al. (2015) and Davies et al. (2021).
A3. IPD integrity: See Davies et al. (2015) and Davies et al. (2021). No issue was identfied.
19. Risk of bias within studies: No bias assessment was conducted.
20. Results of individual studies: See Table S3.
21. Results of syntheses: See Table 3.
22. Risk of bias across studies: No bias assessment was conducted.
23. Additional analyses: No additional analysis was performed.
24. Summary of evidence: See §5.2.
25. Strengths and limitations: Not evaluated.
26. Conclusions: See §5.2.
A4. Implications: Not evaluated.
27. Funding: See conflict of interest after the main text. The IPD were supplied by Novo

Nordisk A/S.

S6. Proofs

S6.1. Proof of Proposition 1

The conditional average treatment effect is

𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑁 ,𝑇, 𝑀 = 0}
= 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑁 ,𝑇, 𝑀 = 1} [Assumption 1(iii)]
= 𝑅{𝑂 (1) | 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1} ↑ 𝑅{𝑂 (0) | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1}

[Assumption 1(ii) and 1(iv)]

= 𝑅 (𝑂 | 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1). [Assumption 1(i)]

Proceeding from the equation above, it is immediate that the target parameter is

𝑄 = 𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑀 = 0}
= 𝑅 [𝑅{𝑂 (1) ↑ 𝑂 (0) | 𝑁 ,𝑇, 𝑀 = 0} | 𝑀 = 0]
= 𝑅{𝑅 (𝑂 | 𝐿 = 1, 𝑁 ,𝑇, 𝑀 = 1) ↑ 𝑅 (𝑂 | 𝐿 = 0, 𝑁 ,𝑇, 𝑀 = 1) | 𝑀 = 0}

= 𝑅

[
𝑅

{ (2𝐿 ↑ 1)𝑂
pr(𝐿 | 𝑁 ,𝑇, 𝑀 = 1)

"""" 𝑁 ,𝑇, 𝑀 = 1
} """" 𝑀 = 0

]

= 𝑅

[
𝑅

{ (2𝐿 ↑ 1)𝑂
𝑉(𝐿 | 𝑁)

"""" 𝑁 ,𝑇, 𝑀 = 1
} """" 𝑀 = 0

]
[Assumption 1(ii)]

= 𝑅{𝑅 (𝑂 | 𝑁 ,𝑇, 𝑀 = 1) | 𝑀 = 0}.

Then we show the inverse probability weighting representation via the identification formula
above. Starting from the g-formula representation, we write

𝑅{𝑅 (𝑂 | 𝑁 ,𝑇, 𝑀 = 1) | 𝑀 = 0}

= 𝑅

[
𝑅

{
𝑀

pr(𝑀 = 1 | 𝑁 ,𝑇)𝑂
"""" 𝑁 ,𝑇

} """" 𝑀 = 0
]

=
¨

𝑅

{
𝑀

pr(𝑀 = 1 | 𝑁 ,𝑇)𝑂
"""" 𝑁 = 𝑊,𝑇 = 𝑋

}
𝑦(𝑋, 𝑊 | 𝑀 = 0)d𝑋d𝑊,
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and by a simple manipulation of probability densities, showing that 𝑦(𝑋, 𝑊 | 𝑀 = 0) = pr(𝑀 = 0 |
𝑁 = 𝑊,𝑇 = 𝑋)𝑦(𝑊, 𝑋)/pr(𝑀 = 0),

=
¨

1
𝑈

𝑅

{
𝑀

pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇)𝑂

"""" 𝑁 = 𝑊,𝑇 = 𝑋

}
𝑦(𝑋, 𝑊)d𝑋d𝑊

=
1
𝑈

𝑅

{
𝑀

pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇)𝑂

}
.

S6.2. Proof of Lemma 1

By Assumption 2(ii), 2(iii) and 2(i) for any 𝑐
U → HU,

𝑅 (𝑂 | 𝑌 , 𝑁 ,𝑇, 𝑀 = 1) = 𝑅{𝑐U (𝑍 , 𝑁) | 𝑌 , 𝑁 ,𝑇, 𝑀 = 1}.

The first result of the lemma is immediate after integrating both sides of the equation with respect
to the conditional density of 𝑇 given (𝑌 , 𝑁 , 𝑀 = 1).

By Assumption 2(ii), for any 𝑓
U → QU,

𝑅{𝑓U (𝑌 , 𝑁) | 𝑍 , 𝑁 ,𝑇, 𝑀 = 1} = 𝑅{𝑓U (𝑌 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} = pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇) .

The second result of the lemma follows by integrating both sides with respect to the density
𝑦(𝑋 | 𝑍 , 𝑁 , 𝑀 = 1),

𝑅{𝑓U (𝑌 , 𝑁) | 𝑁 ,𝑍 , 𝑀 = 1}

=
ˆ

pr(𝑀 = 0 | 𝑁 , 𝑋)
pr(𝑀 = 1 | 𝑁 , 𝑋) 𝑦(𝑋 | 𝑍 , 𝑁 , 𝑀 = 1)d𝑋

=
ˆ

𝑦(𝑋 | 𝑀 = 0, 𝑁)pr(𝑀 = 0 | 𝑁)
𝑦(𝑋 | 𝑀 = 1, 𝑁)pr(𝑀 = 1 | 𝑁)

𝑦(𝑍 | 𝑋, 𝑁 , 𝑀 = 1)𝑦(𝑋 | 𝑁 , 𝑀 = 1)
𝑦(𝑍 | 𝑁 , 𝑀 = 1) d𝑋

=
pr(𝑀 = 0 | 𝑁)

pr(𝑀 = 1 | 𝑁)𝑦(𝑍 | 𝑀 = 1, 𝑁)

ˆ
𝑦(𝑍 | 𝑋, 𝑁 , 𝑀 = 1)𝑦(𝑋 | 𝑀 = 0, 𝑁)d𝑋

=
pr(𝑀 = 0 | 𝑁)

pr(𝑀 = 1 | 𝑁)𝑦(𝑍 | 𝑀 = 1, 𝑁)

ˆ
𝑦(𝑍 | 𝑋, 𝑁 , 𝑀 = 0)𝑦(𝑋 | 𝑀 = 0, 𝑁)d𝑋

[Assumption 2(iv)]

=
pr(𝑀 = 0 | 𝑁)𝑦(𝑍 | 𝑀 = 0, 𝑁)
pr(𝑀 = 1 | 𝑁)𝑦(𝑍 | 𝑀 = 1, 𝑁)

=
pr(𝑀 = 0 | 𝑍 , 𝑁)
pr(𝑀 = 1 | 𝑍 , 𝑁) .

S6.3. Proof of Proposition 2

Consider the case where HU ω ≃. The g-formula identification given any 𝑐
U → HU is

𝑄 = 𝑅{𝑅 (𝑂 | 𝑁 ,𝑇, 𝑀 = 1) | 𝑀 = 0} (Proposition 1)
= 𝑅 [𝑅{𝑐U (𝑍 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1} | 𝑀 = 0]
= 𝑅 [𝑅{𝑐U (𝑍 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 0} | 𝑀 = 0] [Assumption 2(iv)]
= 𝑅{𝑐U (𝑍 , 𝑁) | 𝑀 = 0},

=
1
𝑈

𝑅

{
𝑀

pr(𝑀 = 0 | 𝑍 , 𝑁)
pr(𝑀 = 1 | 𝑍 , 𝑁) 𝑐

U (𝑍 , 𝑁)
}

and for any 𝑓 → Q ω ≃, we can write the parameter as

=
1
𝑈

𝑅 [𝑀𝑅{𝑓(𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1}𝑐U (𝑍 , 𝑁)]
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=
1
𝑈

𝑅{𝑀𝑓(𝑌 , 𝑁)𝑐U (𝑍 , 𝑁)}

=
1
𝑈

𝑅 [𝑀𝑓(𝑌 , 𝑁)𝑅{𝑐U (𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1}]

which by Lemma 1 is

=
1
𝑈

𝑅 [𝑀𝑓(𝑌 , 𝑁)𝑅{𝑐(𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1}]

= 𝑅{𝑐(𝑍 , 𝑁) | 𝑀 = 0},

for any 𝑐 → H.
Now consider the case where QU ω ≃. The inverse-probability identification given any 𝑓

U →
QU is

𝑄 =
1
𝑈

𝑅

{
𝑀pr(𝑀 = 0 | 𝑁 ,𝑇)
pr(𝑀 = 1 | 𝑁 ,𝑇) 𝑂

}
(Proposition 1)

=
1
𝑈

𝑅 [𝑀𝑂𝑅{𝑓U (𝑌 , 𝑁) | 𝑁 ,𝑇, 𝑀 = 1}]

=
1
𝑈

𝑅 [𝑀𝑂𝑅{𝑓U (𝑌 , 𝑁) | 𝑂 , 𝐿, 𝑁 ,𝑇, 𝑀 = 1}] [Assumptions 2(iii) and 2(i)]

=
1
𝑈

𝑅{𝑀𝑓U (𝑌 , 𝑁)𝑂 },

=
1
𝑈

𝑅{𝑀𝑓U (𝑌 , 𝑁)𝑅 (𝑂 | 𝑌 , 𝑁 , 𝑀 = 1)},

and for any 𝑐 → H ω ≃, we can write the parameter as

=
1
𝑈

𝑅 [𝑀𝑓U (𝑌 , 𝑁)𝑅{𝑐(𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1}]

=
1
𝑈

𝑅{𝑀𝑓U (𝑌 , 𝑁)𝑐(𝑍 , 𝑁)}

=
1
𝑈

𝑅 [𝑀𝑅{𝑓U (𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1}𝑐(𝑍 , 𝑁)],

which by Lemma 1 is

=
1
𝑈

𝑅 [𝑀𝑅{𝑓(𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1}𝑐(𝑍 , 𝑁)]

=
1
𝑈

𝑅{𝑀𝑓(𝑌 , 𝑁)𝑂 },

for any 𝑓 → Q.
Therefore, the parameter is identified when either (i) HU (hence H) and Q are nonempty or

(ii) QU (hence Q) and H are nonempty. This is equivalent to the statement in the proposition.

S6.4. Proof of Proposition 3

We state a useful theorem in functional analysis. The following is an adapted version of Theorem
1.3.1 from Kesavan (2022).

Theorem S1 (Implicit function). Let B1, B2, and B be Banach spaces and let ϖ → B1 ↖ B2
be an open subset. Let 𝛺 : ϖ ↓ B be a mapping such that:

(i) 𝛺 is continuous on ϖ;
(ii) For every (𝑠1, 𝑠2) → ϖ, (𝛻/𝛻𝑠2)𝛺 (𝑠1, 𝑠2) exists and is continuous on ϖ;

(iii) 𝛺 (𝑡1, 𝑡2) = 0, (𝛻/𝛻𝑠2)𝛺 (𝑠1, 𝑠2) |𝑜1=𝑝1 ,𝑜2=𝑝2 is bijective.
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Then there exists an open neighborhood ϖ1 ↖ϖ2 ↘ ϖ of 𝑡1, 𝑡2 such that for each 𝑠1 → ϖ1, there
exists a unique, continuous function 𝛼 : ϖ1 ↓ ϖ2 satisfying 𝛺{𝑠1, 𝛼(𝑠1)} = 0. Moreover, if 𝛺
is differentiable at (𝑡1, 𝑡2), then 𝛼 is differentiable at 𝑡1 with derivative

d
d𝑠1

𝛼(𝑠1)
""""
𝑜1=𝑝1

= ↑
{

𝛻

𝛻𝑠2
𝛺 (𝑠1, 𝑠2)

""""
𝑜1=𝑝1 ,𝑜2=𝑝2

}↑1
𝛻

𝛻𝑠1
𝛺 (𝑠1, 𝑠2)

""""
𝑜1=𝑝1 ,𝑜2=𝑝2

Without loss of generality, assume 𝑏0 has a density 𝑦0 with respect to a dominating measure
𝛽. The density 𝑦0 can be factorized as

𝑦0 (𝑜) =
{
𝑦0 (𝑞 | 𝑃, 𝑔,𝑑, 𝑊, 𝑀 = 1)𝑉0 (𝑃 | 𝑊)𝑦0 (𝑑 | 𝑔, 𝑊, 𝑀 = 1)𝑦0 (𝑔 | 𝑊, 𝑀 = 1)

}
𝑖

𝑦0 (𝑑 | 𝑊, 𝑀 = 0) (1↑𝑖) 𝑦0 (𝑊, 𝑝),

due to the fact that (𝑌 ,𝑍) |= 𝑀0 𝐿 | (𝑁 , 𝑀 = 1). Let 𝑒0
2 (𝑏0) denote the Hilbert space of 𝑒2 (𝑏0)

functions with zero mean under 𝑏0. The tangent space ∈P0 at 𝑏0 → P is the subset of 𝑒
0
2 (𝑏0)

which is the linear closure of the score functions of parametric submodels in P that contain 𝑏0.
We claim that the tangent space is ∈P0 = 𝑒

0
2 (𝑏0) \ ϱ, where ϱ = {𝑝𝑡(𝑔,𝑑, 𝑊){𝑃 ↑ 𝑉0 (1 | 𝑊)} :

𝑡(𝑔,𝑑, 𝑊) → 𝑒2 (𝑏1
0)}. Note that ∈P0 is maximal.

In order to verify the claim, we find a dense subset of ∈P0 by constructing appropriate paramet-
ric submodels. Let 𝛾(𝑊) = 2{1 + exp(↑2𝑊)}↑1, so that 𝛾(0) = 1, and (d𝛾/d𝑊) (0) = 1. Consider
the probability measure 𝑏𝑞 with density 𝑦𝑞 (𝑜) with respect to 𝛽 factorizable as

𝑦𝑞 (𝑜) = {𝑦𝑞 (𝑞 | 𝑃, 𝑔,𝑑, 𝑊, 𝑀 = 1)𝑉0 (𝑃 | 𝑊)𝑦𝑞 (𝑑 | 𝑔, 𝑊, 𝑀 = 1)𝑦𝑞 (𝑔 | 𝑊, 𝑀 = 1)}𝑖

𝑦𝑞 (𝑑 | 𝑊, 𝑀 = 0) (1↑𝑖) 𝑦𝑞 (𝑊, 𝑝),

where

𝑦𝑞 (𝑞 | 𝑃, 𝑔,𝑑, 𝑊, 𝑀 = 1) = 𝑦0 (𝑞 | 𝑃, 𝑔,𝑑, 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑞, 𝑃, 𝑔,𝑑, 𝑊)}´
𝑦0 (𝑞 | 𝑃, 𝑔,𝑑, 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑞, 𝑃, 𝑔,𝑑, 𝑊)}d𝛽(𝑞)

,

𝑦𝑞 (𝑑 | 𝑔, 𝑊, 𝑀 = 1) = 𝑦0 (𝑑 | 𝑔, 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑑, 𝑔, 𝑊)}´
𝑦0 (𝑑 | 𝑔, 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑑, 𝑔, 𝑊)}d𝛽(𝑑)

,

𝑦𝑞 (𝑔 | 𝑊, 𝑀 = 1) = 𝑦0 (𝑔 | 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑔, 𝑊)}´
𝑦0 (𝑔 | 𝑊, 𝑀 = 1)𝛾{𝛿𝑚(𝑔, 𝑊)}d𝛽(𝑔)

,

𝑦𝑞 (𝑑 | 𝑊, 𝑀 = 0) = 𝑦0 (𝑑 | 𝑊, 𝑀 = 0)𝛾{𝛿𝑚(𝑑, 𝑊)}´
𝑦0 (𝑑 | 𝑊, 𝑀 = 0)𝛾{𝛿𝑚(𝑑, 𝑊)d𝛽(𝑑)

,

𝑦𝑞 (𝑊, 𝑝) =
𝑦0 (𝑊, 𝑝)𝛾{𝛿𝑚(𝑊, 𝑝)}´

𝑦0 (𝑊, 𝑝)𝛾{𝛿𝑚(𝑊, 𝑝)}d𝛽(𝑊, 𝑝)
,

that

𝑅𝑀0 {𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) | 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1} = 0,
𝑅𝑀0 {𝑚(𝑍 , 𝑌 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1} = 0,

𝑅𝑀0 {𝑚(𝑌 , 𝑁) | 𝑁 , 𝑀 = 1} = 0,
𝑅𝑀0 {𝑚(𝑍 , 𝑁) | 𝑁 , 𝑀 = 0} = 0,

𝑅𝑀0 {𝑚(𝑁 , 𝑀)} = 0,

and that 𝑝𝑚(𝑞, 𝑔,𝑑, 𝑃, 𝑊), 𝑝𝑚(𝑑, 𝑔, 𝑊), 𝑝𝑚(𝑔, 𝑊), (1 ↑ 𝑝)𝑚(𝑑, 𝑊) and 𝑚(𝑊, 𝑝) are 𝑒
0
2 (𝑏0)-functions.

By construction, 𝑏𝑞 |𝑞=0 = 𝑏0. We can find an open neighborhood ς around zero such that
{𝑏𝑞 : 𝛿 → ς} is a one-dimensional curve parametrized by 𝛿. The propensity score 𝑉0 (𝑃 | 𝑊) is
left out of the parameterization, since it is assumed to be known.
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We now show how {𝑏𝑞 : 𝛿 → ς} can be made into a regular parametric submodel. We invoke
Theorem S1. Let B1 = ς, B2 = 𝑒2 (𝑍 , 𝑁; 𝑏1

0), B = 𝑒2 (𝑌 , 𝑁; 𝑏1
0), 𝑡1 = 0, and 𝑡2 = 𝑐0. Then the

mapping
𝛺 (𝛿, 𝑐) = 𝑅𝑀𝑅 {𝑂0 ↑ 𝑐(𝑍 , 𝑁) | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1}

fulfills the conditions in Theorem S1, with 𝛺 (0, 𝑐0) = 0 from the definition of 𝑐0, and the
derivative is (𝛻/𝛻𝑐)𝛺 (𝛿, 𝑐) = ↑𝑘𝑞 , where (𝑘𝑞𝑠2) (𝑔, 𝑊) = 𝑅𝑀𝑅 {𝑠2 (𝑍 , 𝑁) | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1},
and (𝛻/𝛻𝑐)𝛺 (𝛿, 𝑐) |

𝑞=0,𝑄=𝑄0 = ↑𝑘𝑞 |𝑞=0 = ↑𝑘0, which is bijective by Assumption 4(ii). It follows
from Theorem S1 that there exists a unique, continuous function 𝑐𝑞 (𝑑, 𝑊) on an open subset
ς̃ ↘ ς such that

𝑅𝑀𝑅 [{𝑂0 ↑ 𝑐𝑞 (𝑍 , 𝑁)} | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1] = 0.
Therefore, H𝑞 = {𝑐𝑞} is nonempty, which shows that {𝑏𝑞 : 𝛿 → ς̃} is a submodel in P .

Furthermore, since

𝛻

𝛻𝛿

𝛺 (𝛿, 𝑐)
""""
𝑞=0,𝑄=𝑄0

= 𝑅𝑀0 [{𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}

{𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) + 𝑚(𝑍 , 𝑌 , 𝑁)} | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1]

exists and that its range is contained in 𝑒2 (𝑌 , 𝑁; 𝑏1
0) by Assumption 4(iii), the function 𝑐𝑞 is

differentiable at 𝛿 = 0 with derivative such that

𝛻

𝛻𝛿

𝑐𝑞 (𝑑, 𝑊) =

𝑘
↑1
0 𝑅𝑀0 [{𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}

{𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) + 𝑚(𝑍 , 𝑌 , 𝑁)} | 𝑌 = 𝑔, 𝑁 = 𝑊, 𝑀 = 1]

(𝑑, 𝑊) (S2)

The submodel 𝑏𝑞 (𝑚) constructed in this fashion has score

𝑚(𝑜) = 𝑝{𝑚(𝑞, 𝑔,𝑑, 𝑃, 𝑊) + 𝑚(𝑑, 𝑔, 𝑊) + 𝑚(𝑔, 𝑊)} + (1 ↑ 𝑝)𝑚(𝑑, 𝑊) + 𝑚(𝑊, 𝑝),

where the dependence on 𝑚 is written out. The union of the tangent sets of the submodels {𝑏𝑞 (𝑚) :
𝛿 → ς̃} obtained by varying 𝑚 is

∈P0 =
{
𝑚(𝑜) = 𝑝{𝑚(𝑞, 𝑔,𝑑, 𝑃, 𝑊) + 𝑚(𝑑, 𝑔, 𝑊) + 𝑚(𝑔, 𝑊)} + (1 ↑ 𝑝)𝑚(𝑑, 𝑊) + 𝑚(𝑊, 𝑝) :
𝑅𝑀0 {𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) | 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1} = 0, 𝑅{𝑚(𝑍 , 𝑌 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1} = 0,
𝑅𝑀0 {𝑚(𝑌 , 𝑁) | 𝑁 , 𝑀 = 1} = 0, 𝑅𝑀0 {𝑚(𝑍 , 𝑁) | 𝑁 , 𝑀 = 0} = 0, 𝑅𝑀0 {𝑚(𝑁 , 𝑀)} = 0,

𝑝𝑚(𝑞, 𝑔,𝑑, 𝑃, 𝑊), 𝑝𝑚(𝑑, 𝑔, 𝑊), 𝑝𝑚(𝑔, 𝑊), (1 ↑ 𝑝)𝑚(𝑑, 𝑊), 𝑚(𝑊, 𝑝) → 𝑒
0
2 (𝑏0)

}
.

Any function in 𝑒
0
2 (𝑏0) \ ϱ can be orthogonalized by successive projections, and each of the

spaces is a closed subspace of 𝑒0
2 (𝑏0) corresponding to the individual functions comprising 𝑚(𝑜).

Therefore, ∈P0 = 𝑒
0
2 (𝑏0) \ ϱ, and since this tangent set is maximal, it must be the tangent space

of the model P at 𝑏0.
The target parameter is 𝑄0 = 𝑅𝑀0 {𝑐0 (𝑍 , 𝑁) | 𝑀 = 0}. The Gateaux derivative of 𝑄𝑞 =

𝑅𝑀𝑅 {𝑐𝑞 (𝑍 , 𝑁) | 𝑀 = 0} at 𝛿 = 0 along the submodel {𝑏𝑞 : 𝛿 → ς̃} is

d
d𝛿

𝑄𝑞

""""
𝑞=0

=
𝛻

𝛻𝛿

¨
𝑐𝑞 (𝑑, 𝑊)𝑦𝑞 (𝑑, 𝑊 | 𝑀 = 0)d𝛽(𝑑, 𝑊)

""""
𝑞=0

= 𝑅𝑀0

{
𝛻

𝛻𝛿

𝑐𝑞 (𝑍 , 𝑁)
""""
𝑞=0

"""" 𝑀 = 0
}
+
¨

𝑐0 (𝑑, 𝑊)
𝛻

𝛻𝛿

𝑦𝑞 (𝑑, 𝑊 | 𝑀 = 0)
""""
𝑞=0

d𝛽(𝑑, 𝑊).

(S3)

We now study the two terms separately. The first term in (S3) is

1
𝑈0

𝑅𝑀0

{
𝑀

𝑏0 (𝑀 = 0 | 𝑍 , 𝑁)
𝑏0 (𝑀 = 1 | 𝑍 , 𝑁)

𝛻

𝛻𝛿

𝑐𝑞 (𝑍 , 𝑁)
""""
𝑞=0

}
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which, after substituting the identification equation of 𝑓0, is

=
1
𝑈0

𝑅𝑀0

[
𝑀𝑅𝑀0 {𝑓0 (𝑌 , 𝑁) | 𝑍 , 𝑁 , 𝑀 = 1} 𝛻

𝛻𝛿

𝑐𝑞 (𝑍 , 𝑁)
""""
𝑞=0

]

=
1
𝑈0

𝑅𝑀0

[
𝑀𝑓0 (𝑌 , 𝑁)𝑅𝑀0

{
𝛻

𝛻𝛿

𝑐𝑞 (𝑍 , 𝑁)
""""
𝑞=0

"""" 𝑌 , 𝑁 , 𝑀 = 1
}]
.

Inserting the conditional expectation of the derivative from (S2), we develop the term further as

=
1
𝑈0

𝑅𝑀0


𝑀𝑓0 (𝑌 , 𝑁)𝑅𝑀0 [{𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}

{𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) + 𝑚(𝑍 , 𝑌 , 𝑁)} | 𝑌 , 𝑁 , 𝑀 = 1]


=
1
𝑈0

𝑅𝑀0

(
𝑀𝑓0 (𝑌 , 𝑁){𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}

[𝑀{𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) + 𝑚(𝑍 , 𝑌 , 𝑁) + 𝑚(𝑌 , 𝑁)} + (1 ↑ 𝑀)𝑚(𝑍 , 𝑁) + 𝑚(𝑁 , 𝑀)]


= 𝑅𝑀0

[
𝑀

𝑈0
𝑓0 (𝑌 , 𝑁){𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)}𝑚(𝑎)

]
.

In the second to last step we added the scores 𝑀𝑚(𝑌 , 𝑁) and 𝑚(𝑁 , 𝑀), which is valid because their
products with the leading factor all have zero mean due to the identification equation of 𝑐0. The
score (1 ↑ 𝑀)𝑚(𝑍 , 𝑁) was added, which is allowed, since the factor 𝑀 renders their product zero.

The second term in display (S3) is

1
𝑈0

¨ ∑

𝑖→{0,1}
(1 ↑ 𝑝)𝑐0 (𝑑, 𝑊)

𝛻

𝛻𝛿

{𝑦𝑞 (𝑑 | 𝑊, 𝑀 = 0)𝑦𝑞 (𝑝, 𝑊)}
""""
𝑞=0

d𝛽(𝑑, 𝑊)

↑ 1
𝑈

2
0

¨ ∑

𝑖→{0,1}
(1 ↑ 𝑝) 𝛻

𝛻𝛿

{𝑦𝑞 (𝑑 | 𝑊, 𝑀 = 0)𝑦𝑞 (𝑝, 𝑊)}
""""
𝑞=0

d𝛽(𝑑, 𝑊)𝑅𝑀0 {(1 ↑ 𝑀)𝑐0 (𝑍 , 𝑁)}

=
1
𝑈0

¨ ∑

𝑖→{0,1}
(1 ↑ 𝑝)𝑐0 (𝑑, 𝑊){𝑚(𝑑 | 𝑊) + 𝑚(𝑝, 𝑊)}𝑦0 (𝑑 | 𝑊, 𝑀 = 0)𝑦0 (𝑊, 𝑝)d𝛽(𝑑, 𝑊)

↑ 1
𝑈0

¨ ∑

𝑖→{0,1}
(1 ↑ 𝑝)𝑄0{𝑚(𝑑 | 𝑊) + 𝑚(𝑝, 𝑊)}𝑦0 (𝑑 | 𝑊, 𝑀 = 0)𝑦0 (𝑊, 𝑝)d𝛽(𝑑, 𝑊)

= 𝑅𝑀0

[
1 ↑ 𝑀

𝑈0
{𝑐0 (𝑍 , 𝑁) ↑ 𝑄0}{(1 ↑ 𝑀)𝑚(𝑍 , 𝑁) + 𝑚(𝑁 , 𝑀)}

]

= 𝑅𝑀0

[
1 ↑ 𝑀

𝑈0
{𝑐0 (𝑍 , 𝑁) ↑ 𝑄0}

[𝑀{𝑚(𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) + 𝑚(𝑍 , 𝑌 , 𝑁) + 𝑚(𝑌 , 𝑁)} + (1 ↑ 𝑀)𝑚(𝑍 , 𝑁) + 𝑚(𝑁 , 𝑀)]
]

= 𝑅𝑀0

[
1 ↑ 𝑀

𝑈0
{𝑐0 (𝑍 , 𝑁) ↑ 𝑄0}𝑚(𝑎)

]
.

The scores 𝑀𝑚(𝑂 | 𝑌 ,𝑍 , 𝐿, 𝑁), 𝑀𝑚(𝑍 | 𝑌 , 𝑁) and 𝑀𝑚(𝑌 | 𝑁) were added in the second to last
step, which is allowed because the factor (1 ↑ 𝑀) renders their products zero. Collecting the two
results above, we have that

d
d𝛿

𝑄𝑞

""""
𝑞=0

= 𝑅𝑀0

( [
𝑀

𝑈0
𝑓0 (𝑌 , 𝑁){𝑂0 ↑ 𝑐0 (𝑍 , 𝑁)} + 1 ↑ 𝑀

𝑈0
{𝑐0 (𝑍 , 𝑁) ↑ 𝑄0}

]
𝑚(𝑎)


,

which shows that 𝑛0 (𝑜), the factor next to 𝑚(𝑜), is an influence function of the parameter 𝑄0 at
𝑏0 → P .
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Next, we will show the efficient influence function of 𝑄0. Define the function

𝜀0 (𝑜) = 𝑛0 (𝑜) ↑
𝑝

𝑈0
𝑓0 (𝑔, 𝑊)𝑅𝑀0

[
𝑂

{𝑉0 (𝐿 | 𝑁)}2

"""" 𝑌 = 𝑔,𝑍 = 𝑑, 𝑁 = 𝑊, 𝑀 = 1
]
{𝑃 ↑ 𝑉0 (1 | 𝑊)}.

It is an influence function of 𝑄0, because the term after 𝑛0 (𝑜) is an element of ϱ, and thus
(d/d𝛿)𝑄𝑞 |𝑞=0 = 𝑅𝑀0 {𝜀0 (𝑎)𝑚(𝑎)} for all 𝑚 → ∈P0. The function expands as

𝜀0 (𝑜) =
𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

(2𝑃 ↑ 1)
𝑉0 (𝑃 | 𝑊) {𝑞 ↑ 𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1)}

↑ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)𝑐0 (𝑑, 𝑊) +

1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0}

+ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

(2𝑃 ↑ 1)
𝑉0 (𝑃 | 𝑊) 𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1)

↑ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

∑

𝑏
⇐ →{0,1}

𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃
⇐
, 𝑁 = 𝑊, 𝑀 = 1)

𝑉0 (𝑃⇐ | 𝑊)
{𝑃 ↑ 𝑉0 (1 | 𝑊)}

=
𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

(2𝑃 ↑ 1)
𝑉0 (𝑃 | 𝑊) {𝑞 ↑ 𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1)}

↑ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)𝑐0 (𝑑, 𝑊) +

1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0}

+ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)𝑅𝑀0 (𝑂0 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝑁 = 𝑊, 𝑀 = 1).

To conclude the proof, we check that the function 𝜀0 (𝑜) is indeed an element of ∈P0. Consider
the decomposition that

𝜀0 (𝑜) = 𝑝𝑚
′ (𝑞, 𝑔,𝑑, 𝑃, 𝑊) + 𝑝𝑚

′ (𝑑, 𝑔, 𝑊) + (1 ↑ 𝑝)𝑚′ (𝑑, 𝑊) + 𝑚
′ (𝑊, 𝑝),

where

𝑚
′ (𝑞, 𝑔,𝑑, 𝑃, 𝑊) = 1

𝑈0
𝑓0 (𝑔, 𝑊)

(2𝑃 ↑ 1)
𝑉0 (𝑃 | 𝑊) {𝑞 ↑ 𝑅𝑀0 (𝑂 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1)},

𝑚
′ (𝑑, 𝑔, 𝑊) = 1

𝑈0
𝑓0 (𝑔, 𝑊){𝑅𝑀0 (𝑂0 | 𝑌 = 𝑔,𝑍 = 𝑑, 𝑁 = 𝑊, 𝑀 = 1) ↑ 𝑐0 (𝑑, 𝑊)},

𝑚
′ (𝑑, 𝑊) = 1

𝑈0
[𝑐0 (𝑑, 𝑊) ↑ 𝑅𝑀0 {𝑐0 (𝑑, 𝑊) | 𝑁 = 𝑊, 𝑀 = 0}],

𝑚
′ (𝑊, 𝑝) = 1 ↑ 𝑝

𝑈0
[𝑅𝑀0 {𝑐0 (𝑍 , 𝑁) | 𝑁 = 𝑊, 𝑀 = 0} ↑ 𝑄0] .

We need to check that 𝑅𝑀0 {𝑚′ (𝑂 , 𝑌 ,𝑍 , 𝐿, 𝑁) | 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1} = 0, 𝑅𝑀0 {𝑚′ (𝑍 , 𝑌 , 𝑁) |
𝑌 , 𝑁 , 𝑀 = 1} = 0, 𝑅𝑀0 {𝑚′ (𝑍 , 𝑁) | 𝑁 , 𝑀 = 0} = 0, as well as 𝑅𝑀0 {𝑚′ (𝑁 , 𝑀)} = 0, all of which
hold true by the definition of 𝑐0 and 𝑄0. Therefore, the influence function 𝜀0 (𝑜) → ∈P0 is the
efficient influence function of 𝑄0 at 𝑏0 → P .

S6.5. Proof of Theorem 1

Let

𝜁0 (𝑜) =
𝑝

𝑈0
𝑓0{𝑞̃0 ↑ 𝑐0} +

1 ↑ 𝑝

𝑈0
𝑐0,

𝜁(𝑜) = 𝑝

𝑈̂

𝑓{𝑞̃0 ↑ 𝑐̂} + 1 ↑ 𝑝

𝑈̂

𝑐̂.
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Then 𝜁0, 𝜁 belong to the 𝑏0-Donsker class G0, which is also 𝑏0-Glivenko-Cantelli.
We first show consistency. Consider the difference

𝑄 ↑ 𝑄0 = (𝑏𝑁 ↑ 𝑏0)𝜁 +
(
𝑏0𝜁 ↑

𝑈0
𝑈̂

𝑄0


↑ 𝑈̂ ↑ 𝑈0

𝑈̂

𝑄0. (S4)

The absolute value of the first term of (S4) is bounded by sup
𝑟→G0 | (𝑏𝑁↑𝑏0)𝑚 |, which converges

in probability to zero by the uniform law of large numbers applied to the 𝑏0-Glivenko-Cantelli
class G0. The absolute value of the second term of (S4) is

""""𝑏0𝜁 ↑
𝑈0
𝑈̂

𝑄0

"""" =
"""" 1
𝑈̂

𝑏0{𝑀𝑓(𝑂0 ↑ 𝑐̂) + (1 ↑ 𝑀) 𝑐̂} ↑ 𝑈0
𝑈̂

𝑄0

""""
=
"""" 1
𝑈̂

𝑏0{𝑀𝑓(𝑐0 ↑ 𝑐̂) + 𝑀𝑓0 𝑐̂} ↑
𝑈0
𝑈̂

𝑄0

""""
=
"""" 1
𝑈̂

𝑏0{𝑀(𝑓 ↑ 𝑓0) (𝑐0 ↑ 𝑐̂) + 𝑀𝑓0𝑐0} ↑
𝑈0
𝑈̂

𝑄0

""""
=
"""" 1
𝑈̂

𝑏0{𝑀(𝑓 ↑ 𝑓0) (𝑐0 ↑ 𝑐̂)}
""""

⇑ 𝑟 ⇓𝑓 ↑ 𝑓0⇓𝑀1
0
⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
= 𝑜𝑀0 (1). (S5)

The fourth step above is due to the observation

𝑅𝑀0 {𝑀𝑓0 (𝑌 , 𝑁)𝑐0 (𝑍 , 𝑁)} = 𝑅𝑀0 [𝑀𝑓0 (𝑌 , 𝑁)𝑅𝑀0 {𝑐0 (𝑍 , 𝑁) | 𝑌 , 𝑁 , 𝑀 = 1}]
= 𝑅𝑀0 {𝑀𝑓0 (𝑌 , 𝑁)𝑅𝑀0 (𝑂0 | 𝑌 , 𝑁 , 𝑀 = 1)} = 𝑅𝑀0 {𝑀𝑓0 (𝑌 , 𝑁)𝑂0} = 𝑈0𝑄0.

The absolute value of the third term of (S4) converges in probability to zero by the trivial consis-

tency of 𝑈̂ and Slutsky’s theorem. The triangle inequality shows 𝑄
P↓ 𝑄0.

We now show asymptotic linearity. Working under the additional assumption ⇓𝑓 ↑ 𝑓0⇓𝑀1
0
⇓ 𝑐̂↑

𝑐0⇓𝑀1
0
= 𝑜𝑀0 (𝑗↑1/2), we further express the difference (S4) as

𝑄 ↑ 𝑄0 = (𝑏𝑁 ↑ 𝑏0) (𝜁 ↑ 𝜁0) + 𝑏𝑁𝜁0 ↑ 𝑄0 +
(
𝑏0𝜁 ↑

𝑈0
𝑈̂

𝑄0


↑ 𝑈̂ ↑ 𝑈0

𝑈̂

𝑄0

= 𝑏𝑁

(
𝑛0 + 1 ↑ 𝑀

𝑈0
𝑄0


+ (𝑏𝑁 ↑ 𝑏0) (𝜁 ↑ 𝜁0) ↑

2𝑈̂ ↑ 𝑈0
𝑈̂

𝑄0 +
(
𝑏0𝜁 ↑

𝑈0
𝑈̂

𝑄0



= 𝑏𝑁𝑛0 + (𝑏𝑁 ↑ 𝑏0) (𝜁 ↑ 𝜁0) +
(𝑈̂ ↑ 𝑈0)2

𝑈0𝑈̂
𝑄0 + 𝑜𝑀0 (𝑗↑1/2). (S6)

For the last equality, we use the bound from (S5) but with ⇓𝑓 ↑ 𝑓0⇓𝑀1
0
⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
= 𝑜𝑀0 (𝑗↑1/2).

The second term of (S6) is an empirical process term of order 𝑜𝑀0 (𝑗↑1/2) if ⇓𝜁↑𝜁0⇓𝑀0 = 𝑜𝑀0 (1),
since G0 is 𝑏0-Donsker. Applying the central limit theorem to 𝑈̂ and then Slutsky’s theorem, the
third term of (S6) is 𝑎𝑀0 (𝑗↑1) = 𝑜𝑀0 (𝑗↑1/2). To conclude the proof, we show that ⇓𝜁 ↑ 𝜁0⇓𝑀0
indeed converges in probability to zero under ⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
= 𝑜

𝑀
1
0
(1), ⇓𝑓 ↑ 𝑓0⇓𝑀1

0
= 𝑜

𝑀
1
0
(1) and

the boundedness conditions. We have ⇓𝑓⇓
𝑀

1
0
= 𝑎𝑀0 (1) because it is bounded, and ⇓ 𝑐̂⇓

𝑀
1
0
⇑

⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1
0
+ ⇓𝑐0⇓𝑀1

0
= 𝑜𝑀0 (1) + 𝑎𝑀0 (1) = 𝑎𝑀0 (1). Furthermore, by the boundedness of 𝑓,

the terms ⇓𝑓( 𝑐̂ ↑ 𝑐0)⇓𝑀1
0

and ⇓𝑓𝑐0⇓𝑀1
0

are also bounded in probability. The 𝑒2 (𝑏0)-norm of the

plug-in function 𝜁 is

⇓𝜁⇓𝑀0 ⇑ 𝑟

{
⇓𝑀𝑓𝑂0⇓𝑀0 + ⇓𝑀𝑓( 𝑐̂ ↑ 𝑐0)⇓𝑀0 + ⇓𝑀𝑓𝑐0⇓𝑀0 + ⇓ (1 ↑ 𝑀) 𝑐̂⇓𝑀0

}
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⇑ 𝑟
3{𝑅𝑀0 (𝑀𝑂2)}1/2 + 𝑟

[
𝑅𝑀0

{
𝑀

𝑏0 (𝑀 = 0 | 𝑍 , 𝑁)
𝑏0 (𝑀 = 1 | 𝑍 , 𝑁) 𝑐̂

2
}]1/2

+𝑎𝑀0 (1)

⇑ 𝑟
7/2 + 𝑟

3/2⇓ 𝑐̂⇓
𝑀

1
0
+𝑎𝑀0 (1),

which is indeed bounded in probability. The 𝑒2 (𝑏0)-distance between the plugin and the true
function is

⇓𝜁 ↑ 𝜁0⇓𝑀0

⇑ 𝑟

{
⇓𝑀(𝑓 ↑ 𝑓0)𝑂0⇓𝑀 + ⇓𝑀(𝑓𝑐̂ ↑ 𝑓0𝑐0)⇓𝑀0 + ⇓ (1 ↑ 𝑀) ( 𝑐̂ ↑ 𝑐0)⇓𝑀0 + |𝑈̂ ↑ 𝑈0 |⇓𝜁⇓𝑀0

}
,

and by similar arguments above, we bound the distance by

⇑ 𝑟
2⇓𝑓 ↑ 𝑓0⇓𝑀1

0
+ 𝑟 ⇓ (𝑓 ↑ 𝑓0)𝑐0⇓𝑀1

0
+ 𝑟 ⇓𝑓( 𝑐̂ ↑ 𝑐0)⇓𝑀1

0

+ 𝑟
1/2⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1

0
+ 𝑟 |𝑈̂ ↑ 𝑈0 |𝑎𝑀0 (1)

⇑ 2𝑟2⇓𝑓 ↑ 𝑓0⇓𝑀1
0
+ (𝑟2 + 𝑟

1/2)⇓ 𝑐̂ ↑ 𝑐0⇓𝑀1
0
+ 𝑜𝑀0 (1) = 𝑜𝑀0 (1).

This shows 𝑄 ↑ 𝑄0 = 𝑏𝑁𝑛0 + 𝑜𝑀0 (𝑗↑1/2).

S7. Handling missing outcome

S7.1. Identifiability

In our discussion thus far, we have ignored a common issue in many RCTs: study participants are
typically followed over a period of time, during which some may drop out before the end of study,
and their outcomes are not recorded. When the dropout mechanism is not missing completely
at random, applying the proximal indirect comparison estimator from previous sections to the
nonmissing population may not identify the full-compliance ATE in the target RCT 𝑄 due to
potential selection bias. In this section, we propose an estimator which correctly identifies the
target parameter 𝑄 under a missing-at-random (MAR) dropout pattern.

The binary missingness indicator φ takes the value 0 when a study participant’s outcome
information is missing. Let the conditional probability of no dropout from the source trial be
𝜂(𝑌 ,𝑍 , 𝐿, 𝑁) = pr(φ = 1 | 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1). We assume that the missingness in the source
trial is noninformative of the outcome, conditioning on all other observed variables, which is
formalized below.

Assumption S5 (Missing at random).
(i) φ |= 𝑂 | (𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1);

(ii) 𝜂(𝑌 ,𝑍 , 𝐿, 𝑁) > 0 whenever pr(𝑀 = 1 | 𝑌 ,𝑍 , 𝐿, 𝑁) > 0.

In particular, Assumption S5 requires that the unobserved effect modifiers 𝑇 do not directly
affect the missing pattern. They are allowed to have an indirect effect through the proxies and the
baseline covariates, upon controlling for which the missingness is ignorable. If the outcome is
MAR, one can devise augmented estimators from the influence functions of the target parameter
𝑄 defined on the data without missingness (Tsiatis, 2006). If missing outcomes are also present in
the target RCT, the identifiability of the ATE 𝑄 comparing treatments 𝐿 = 0 and 𝐿 = ↑1 relying
only on randomization is lost.

The observed data model subject to missingness PC is the collection of distributions over
𝑎

C = (𝑀, 𝑀φ, 𝑀𝐿, 𝑁 ,𝑍 , 𝑀𝑌 , 𝑀φ𝑂 ) such that 𝑏C (𝑎C
, 𝑀φ = 1) = 𝜂(𝑌 ,𝑍 , 𝐿, 𝑁)𝑏(𝑎, 𝑀 = 1) and

𝑏
C (𝑎C

, 𝑀 = 0) = 𝑏(𝑎, 𝑀 = 0) for all 𝑏 → P . In this sense, we can write every 𝑏
C → PC as a

function 𝑏
C (𝑏). The definition of the sets of bridge functions H and Q is valid for the model PC
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under MAR, which immediately makes the target parameter identifiable. Note that conditional
mean of the outcome among subjects without missingness in the source trial 𝑅 (𝑂 | φ = 1, 𝑌 =
𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1) is the same as the conditional mean 𝜃(𝑔,𝑑, 𝑃, 𝑊) = 𝑅 (𝑂 | 𝑌 =
𝑔,𝑍 = 𝑑, 𝐿 = 𝑃, 𝑁 = 𝑊, 𝑀 = 1) where the outcome is always observed.

S7.2. Estimation

Proposition S3. Suppose Assumption S5 holds. For 𝑏0 → P under Assumption 4, the efficient
influence function of the target parameter 𝑄0 at 𝑏C

0 → PC is

𝜀
C
0 (𝑜) =

𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

𝜄(2𝑃 ↑ 1)
𝜂0 (𝑔,𝑑, 𝑃, 𝑊)𝑉0 (𝑃 | 𝑊) {𝑞 ↑ 𝜃0 (𝑔,𝑑, 𝑃, 𝑊)}

+ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊){𝜃0 (𝑔,𝑑, 1, 𝑊) ↑ 𝜃0 (𝑔,𝑑, 0, 𝑊) ↑ 𝑐0 (𝑑, 𝑊)} +

1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0}.

Proof. Recall that in the proof of Proposition 3, we have derived the tangent space ∈P0 and
it orthogonal complement ϱ. Therefore, the translation 𝜀(𝑜) + ϱ is the space of all influence
functions of the parameter 𝑄0 at 𝑏0 under the model P . More explicitly, the influence functions
share the form

𝑛0 (𝑜; 𝑡) = 𝜀0 (𝑜) + 𝑝𝑡(𝑔,𝑑, 𝑊){𝑃 ↑ 𝑉0 (1 | 𝑊)},
where 𝑡 → 𝑒2 (𝑏1

0) is arbitrary. Following Example 25.43 in van der Vaart (1998), all influence
functions of 𝑄0 at 𝑏C under the model PC can be characterized as

𝑛
C
0 (𝑜; 𝑡, 𝑠) =

{
𝑝𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
+ (1 ↑ 𝑝)

}
𝑛0 (𝑜; 𝑡) + 𝑝𝑠(𝑔,𝑑, 𝑃, 𝑊){𝜄 ↑ 𝜂0 (𝑔,𝑑, 𝑃, 𝑊)}

=
{

𝑝𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
+ (1 ↑ 𝑝)

} 
𝜀0 (𝑜) + 𝑝𝑡(𝑔,𝑑, 𝑊){𝑃 ↑ 𝑉0 (1 | 𝑊)}]


+ 𝑝𝑠(𝑔,𝑑, 𝑃, 𝑊){𝜄 ↑ 𝜂0 (𝑔,𝑑, 𝑃, 𝑊)}

=
𝑝

𝑈0

𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
𝑓0 (𝑔, 𝑊)

2𝑃 ↑ 1
𝑉0 (𝑃 | 𝑊) {𝑞 ↑ 𝜃0 (𝑔,𝑑, 𝑃, 𝑊)}

+ 𝑝

𝑈0

𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
𝑓0 (𝑔, 𝑊){𝜃0 (𝑔,𝑑, 1, 𝑊) ↑ 𝜃0 (𝑔,𝑑, 0, 𝑊) ↑ 𝑐0 (𝑑, 𝑊)}

+ 1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0} +

𝑝𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
𝑡(𝑔,𝑑, 𝑊){𝑃 ↑ 𝑉0 (1 | 𝑊)}

+ 𝑝𝑠(𝑔,𝑑, 𝑃, 𝑊){𝜄 ↑ 𝜂0 (𝑔,𝑑, 𝑃, 𝑊)}.

To find the efficient influence function, we first optimize over 𝑠. This is equivalent to calculating
the projection of {

𝑝𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
+ (1 ↑ 𝑝)

}
𝑛0 (𝑜; 𝑡)

onto (ϱC)̸, where

ϱC = {𝑝𝑠(𝑔,𝑑, 𝑃, 𝑊){𝜄 ↑ 𝜂0 (𝑔,𝑑, 𝑃, 𝑊)} : 𝑠(𝑔,𝑑, 𝑃, 𝑊) → 𝑒2 (𝑏1
0)}.

Suppose the projection has the form 𝑝{𝜄 ↑ 𝜂0 (𝑔,𝑑, 𝑃, 𝑊)}𝑠′ (𝑔,𝑑, 𝑃, 𝑊). Then the function 𝑠
′

satisfies the equation

𝑅𝑀0

( [
φ𝑛0 (𝑎; 𝑡)

𝜂0 (𝑌 ,𝑍 , 𝐿, 𝑁) ↑ {φ ↑ 𝜂0 (𝑌 ,𝑍 , 𝐿, 𝑁)}𝑠′ (𝑌 ,𝑍 , 𝐿, 𝑁)
]

{φ ↑ 𝜂0 (𝑌 ,𝑍 , 𝐿, 𝑁)}
"""" 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1


= 0.
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The solution is

𝑠
′ (𝑔,𝑑, 𝑃, 𝑊) = 𝑓0 (𝑔, 𝑊)

𝑈0𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
{𝜃0 (𝑔,𝑑, 1, 𝑊) ↑ 𝜃0 (𝑔,𝑑, 0, 𝑊) ↑ 𝑐0 (𝑑, 𝑊)}

+ 𝑡(𝑔,𝑑, 𝑊)
𝜂0 (𝑔,𝑑, 𝑃, 𝑊)

{𝑃 ↑ 𝑉0 (1 | 𝑊)},

which gives the projection

𝑛
C
0 (𝑜; 𝑡,↑𝑠′) = 𝑝

𝑈0
𝑓0 (𝑔, 𝑊)

2𝑃 ↑ 1
𝑉0 (𝑃 | 𝑊)

𝜄

𝜂0 (𝑔,𝑑, 𝑃, 𝑊)
{𝑞 ↑ 𝜃0 (𝑔,𝑑, 𝑃, 𝑊)}

+ 𝑝

𝑈0
𝑓0 (𝑔, 𝑊){𝜃0 (𝑔,𝑑, 1, 𝑊) ↑ 𝜃0 (𝑔,𝑑, 0, 𝑊) ↑ 𝑐0 (𝑑, 𝑊)}

+ 1 ↑ 𝑝

𝑈0
{𝑐0 (𝑑, 𝑊) ↑ 𝑄0}

+ 𝑝{𝑃 ↑ 𝑉0 (1 | 𝑊)}𝑡(𝑔,𝑑, 𝑊). (S7)

We now optimize over 𝑡. Observe that the trailing term (S7) is orthogonal to all other terms of
𝑛

C
0 (𝑜; 𝑡,↑𝑠′). The optimal solution is 𝑡′ = 0. From this we conclude that the efficient influence

function 𝜀
C
0 (𝑜) = 𝑛

C
0 (𝑜; 𝑡′,↑𝑠′) is as stated in Proposition S3. ⊋

In §4, the estimation of the outcome bridge with no missing outcome does not involve any nui-
sance parameter, in that the propensity score is assumed to be known, and 𝑂0 = (2𝐿↑1)𝑂/𝑉0 (𝐿 |
𝑁) can be treated as the de facto outcome in the analysis. However, in the presence of missing-
ness on the outcome, we resort to two-stage estimation of the outcome bridge function. In the
first stage a regression model is fitted for the outcome on the nonmissing participants, so that 𝜃̂ is
an estimator for 𝜃0. Additionally, we fit a binary regression model 𝜂̂ for the probability of non-
missingness 𝜂0. In the second stage, the outcome bridge is estimated by a minimax optimization
problem based on

𝛥
𝑄
⇐
,𝑆

⇐
,𝑠

⇐
,𝑡

⇐ (𝑜) = 𝑓
⇐ (𝑔, 𝑊)

[
2𝑃 ↑ 1
𝑉0 (𝑃 | 𝑊)

𝜄

𝜂
⇐ (𝑔,𝑑, 𝑃, 𝑊) {𝑞 ↑ 𝜃

⇐ (𝑔,𝑑, 𝑃, 𝑊)}

+ 𝜃
⇐ (𝑔,𝑑, 1, 𝑊) ↑ 𝜃

⇐ (𝑔,𝑑, 0, 𝑊) ↑ 𝑐
⇐ (𝑑, 𝑊)

]
.

The intuition is that 𝛥
𝑄
⇐
,𝑆

⇐
,𝑠

⇐
,𝑡

⇐ can be used to construct a doubly-robust estimating equation, in
the sense that for any 𝑓

⇐, the population mean 𝑅
𝑀

C (𝛥𝑄0 ,𝑆⇐
,𝑠

⇐
,𝑡

⇐ | 𝑀 = 1) evaluated at the true
outcome bridge 𝑐0 is zero if either 𝜃⇐ = 𝜃0 or 𝜂⇐ = 𝜂0. The nuisance models are plugged into
𝛥
𝑄
⇐
,𝑆

⇐
,𝑠

⇐
,𝑡

⇐ , giving the estimated outcome bridge

𝑐̂ = arg inf
𝑄
⇐ →H⇐

sup
𝑆
⇐ →Q⇐

{
1
𝑗1

∑

𝐿:𝑅𝐿=1
𝛥
𝑄
⇐
,𝑆

⇐
, 𝑠̂, 𝑡̂

(𝑎𝐿)
}2
,

where H⇐ is the bridge hypothesis class and Q⇐ is the critic class (Kallus et al., 2022). The former
is the postulated model for the outcome bridge, and the latter is the adversarial class of functions
used to construct the worst-case loss. With the nuisance models, we compose an estimator for
the target parameter 𝑄0 motivated by the efficient influence function 𝜀

C
0 from Proposition S3:

𝑄
C =

1
𝑗

𝑁∑

𝐿=1

{
𝑀𝐿

𝑈̂

𝛥
𝑄̂,𝑆̂, 𝑠̂, 𝑡̂

(𝑎𝐿) +
1 ↑ 𝑀𝐿

𝑈̂

𝑐̂(𝑍𝐿 , 𝑁𝐿)
}
.

In Theorem S2, we show that the estimator 𝑄C is multiply-robust under some regularity con-
ditions and convergence of the nuisance models. We use 𝜂0,𝑏 , 𝜂̄𝑏 , 𝜂̂𝑏 , 𝜃0,𝑏 , 𝜃̄𝑏 , and 𝜃̂𝑏 as
shorthand notations for the respective functions fixing the corresponding argument at 𝑃.
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Assumption S6 (Regularity conditions).
(i) The function class

GC
0 =

{
𝑚

C (𝑜) = 𝑝

𝑈
⇐ 𝑓

⇐ 𝜄(2𝑃 ↑ 1)
𝜂
⇐
𝑉

(𝑞 ↑ 𝜃
⇐) + 𝑝

𝑈
⇐ 𝑓

⇐ (𝜃⇐1 ↑ 𝜃
⇐
0 ↑ 𝑐

⇐) + 1 ↑ 𝑝

𝑈
⇐ 𝑐

⇐ :

𝑈
⇐ → [0, 1], 𝑓⇐ → 𝑒2 (𝑌 , 𝑁; 𝑏1

0), 𝜂
⇐
, 𝜃

⇐ → 𝑒2 (𝑌 ,𝑍 , 𝐿, 𝑁; 𝑏1
0), 𝑐

⇐ → 𝑒2 (𝑍 , 𝑁; 𝑏1
0)
}

is 𝑏C
0-Donsker.

(ii) There exists a universal constant 𝑟 > 1 such that 𝑈0 ⇒ 𝑟
↑1, 𝑈̂ ⇒ 𝑟

↑1, 𝑉0 ⇒ 𝑟
↑1,

𝜂0 ⇒ 𝑟
↑1, 𝜂̂ ⇒ 𝑟

↑1, |𝜃0 | ⇑ 𝑟 , |𝑐0 | ⇑ 𝑟 , |𝑓 | ⇑ 𝑟 , 𝑏0 (𝑀 = 1 | 𝑍 , 𝑁) ⇒ 𝑟
↑1, and

𝑅
𝑀

C
0
(𝑂2 | φ = 1, 𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1) ⇑ 𝑟 .

Theorem S2. Suppose Assumption S6 holds and that ⇓ 𝜃̂𝑏 ↑ 𝜃̄𝑏 ⇓
𝑀

C,1
0

= 𝑜
𝑀

C
0
(1), ⇓𝜂̂𝑏 ↑

𝜂̄𝑏 ⇓
𝑀

C,1
0

= 𝑜
𝑀

C
0
(1), ⇓ 𝑐̂ ↑ 𝑐̄⇓

𝑀
C,1
0

= 𝑜
𝑀

C
0
(1), ⇓𝑓 ↑ 𝑓⇓

𝑀
C,1
0

= 𝑜
𝑀

C
0
(1) for some nonrandom functions

𝜃̄𝑏 (𝑔,𝑑, 𝑊), 𝜂̄𝑏 (𝑔,𝑑, 𝑊), 𝑐̄(𝑑, 𝑊) and 𝑓(𝑔, 𝑊) in 𝑒2 (𝑏C,1
0 ). Then:

1. The estimator 𝑄C is consistent for 𝑄0, if either (a) 𝑐̄ = 𝑐0 and 𝜃̄𝑏 = 𝜃0,𝑏 , (b) 𝑐̄ = 𝑐0 and
𝜂̄𝑏 = 𝜂0,𝑏 , (c) 𝑓 = 𝑓0 and 𝜂̄𝑏 = 𝜂0,𝑏 , or (d) 𝑓 = 𝑓0 and 𝜃̄𝑏 = 𝜃0,𝑏 .

2. The estimator 𝑄C is asymptotically linear with influence function 𝜀
C
0, if (a) 𝑐̄ = 𝑐0, 𝑓 = 𝑓0,

𝜂̄𝑏 = 𝜂0,𝑏 , 𝜃̄𝑏 = 𝜃0,𝑏 , and (b) ⇓𝑓↑𝑓0⇓
𝑀

C,1
0

⇓ 𝑐̂↑𝑐0⇓
𝑀

C,1
0

+
∑

𝑏→{0,1} ⇓𝜂̂𝑏↑𝜂0,𝑏 ⇓
𝑀

C,1
0

⇓ 𝜃̂𝑏↑
𝜃0,𝑏 ⇓

𝑀
C,1
0

= 𝑜
𝑀

C
0
(𝑗↑1/2).

Proof. Define

𝜁
C
0 (𝑜) =

𝑝

𝑈0
𝑓0

𝜄(2𝑃 ↑ 1)
𝜂0𝑉0

(𝑞 ↑ 𝜃0) +
𝑝

𝑈0
𝑓0 (𝜃0,1 ↑ 𝜃0,0 ↑ 𝑐0) +

1 ↑ 𝑝

𝑈0
𝑐0,

𝜁
C (𝑜) = 𝑝

𝑈̂

𝑓

𝜄(2𝑃 ↑ 1)
𝜂̂𝑉0

(𝑞 ↑ 𝜃̂) + 𝑝

𝑈̂

𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂) + 1 ↑ 𝑝

𝑈̂

𝑐̂.

Both 𝜁
C
0 and 𝜁

C belong to the 𝑏
C-Donsker class GC

0 , which is also 𝑏
C-Glivenko-Cantelli.

We first show the consistency of 𝑄C. Consider the difference

𝑄
C ↑ 𝑄0 = (𝑏C

𝑁
↑ 𝑏

C
0)𝜁

C +
(
𝑏

C
𝜁

C ↑ 𝑈0
𝑈̂

𝑄0


↑ 𝑈̂ ↑ 𝑈0

𝑈̂

𝑄0. (S8)

The absolute value of the first term of (S8) is bounded by sup
𝑟

C→GC
0
| (𝑏C

𝑁
↑ 𝑏

C
0)𝑚

C | P↓ 0, since
GC

0 is 𝑏C
0-Glivenko-Cantelli. The absolute value of the second term of (S8) is

""""𝑏C
0𝜁

C ↑ 𝑈0
𝑈̂

𝑄0

""""
=
""""𝑏C

0

[
𝑀

𝑈̂

𝑓

2𝐿 ↑ 1
𝑉0

φ
𝜂̂

(𝑂 ↑ 𝜃̂) + 𝑀

𝑈̂

𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂) + 1 ↑ 𝑀

𝑈̂

𝑐̂

]
↑ 𝑈0

𝑈̂

𝑄0

""""
=
"""" 1
𝑈̂

𝑏
C
[
𝑀𝑓

{
𝜂0,1
𝜂̂1

(𝜃0,1 ↑ 𝜃̂1) ↑
𝜂0,0
𝜂̂0

(𝜃0,0 ↑ 𝜃̂0)
}
+ 𝑀𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂) + 𝑀𝑓0 𝑐̂

]
↑ 𝑈0

𝑈̂

𝑄0

""""
=
"""" 1
𝑈̂

𝑏
C
{
𝑀

∑

𝑏→{0,1}
(↑1)1↑𝑏𝑓

𝜂0,𝑏 ↑ 𝜂̂𝑏

𝜂̂𝑏

(𝜃0,𝑏 ↑ 𝜃̂𝑏) + 𝑀𝑓(𝜃0,1 ↑ 𝜃̂1 ↑ 𝜃0,0 + 𝜃̂0)

+ 𝑀𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂) + 𝑀𝑓0 𝑐̂

}
↑ 𝑈0

𝑈̂

𝑄0

""""
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=
"""" 1
𝑈̂

𝑏
C
{
𝑀

∑

𝑏→{0,1}
(↑1)1↑𝑏𝑓

𝜂0,𝑏 ↑ 𝜂̂𝑏

𝜂̂𝑏

(𝜃0,𝑏 ↑ 𝜃̂𝑏)

↑ 𝑀(𝑓 ↑ 𝑓0) ( 𝑐̂ ↑ 𝑐0) + 𝑀𝑐0𝑓0

}
↑ 𝑈0

𝑈̂

𝑄0

""""
⇑ 𝑟

3
∑

𝑏→{0,1}
⇓𝜂̂𝑏 ↑ 𝜂0,𝑏 ⇓

𝑀
C,1
0

⇓ 𝜃̂𝑏 ↑ 𝜃0,𝑏 ⇓
𝑀

C,1
0

+ 𝑟 ⇓ 𝑐̂ ↑ 𝑐0⇓
𝑀

C,1
0

⇓𝑓 ↑ 𝑓0⇓
𝑀

C,1
0

P↓ 0.

The absolute value of the third term of (S8) is trivially 𝑜
𝑀

C
0
(1) due to the consistency of 𝑈̂ and

Slutsky’s theorem. Collecting these three terms, the triangular inequality shows |𝑄C ↑ 𝑄0 | =
𝑜
𝑀

C (1). This shows the first part of the theorem.
We now show the asymptotic linearity of 𝑄C. Working under the additional assumption

∑

𝑏→{0,1}
⇓𝜂̂𝑏 ↑ 𝜂0,𝑏 ⇓

𝑀
C,1
0

⇓ 𝜃̂𝑏 ↑ 𝜃0,𝑏 ⇓
𝑀

C,1
0

+ ⇓ 𝑐̂ ↑ 𝑐0⇓
𝑀

C,1
0

⇓𝑓 ↑ 𝑓0⇓
𝑀

C,1
0

= 𝑜
𝑀

C
0
(𝑗↑1/2),

we further express the difference as

𝑄
C ↑ 𝑄0 = (𝑏C

𝑁
↑ 𝑏

C
0) (𝜁

C ↑ 𝜁
C
0 ) + 𝑏

C
𝑁
𝜁

C
0 ↑ 𝑄0 +

(
𝑏

C
𝜁

C ↑ 𝑈0
𝑈̂

𝑄0


↑ 𝑈̂ ↑ 𝑈0

𝑈̂

𝑄0

= 𝑏
C
𝑁
𝜀

C
0 + (𝑏C

𝑁
↑ 𝑏

C
0) (𝜁

C ↑ 𝜁
C
0 ) +

(𝑈̂ ↑ 𝑈0)2
𝑈0𝑈̂

𝑄0 + 𝑜
𝑀

C
0
(𝑗↑1/2).

The second term is an empirical process term of order 𝑜
𝑀

C
0
(𝑗↑1/2) if ⇓𝜁C↑𝜁C

0 ⇓𝑀C
0
= 𝑜

𝑀
C
0
(1), since

GC
0 is 𝑏C

0-Donsker. By an application of the central limit theorem to 𝑈̂ and Slutsky’s theorem, the
third term is of the order 𝑎

𝑀
C
0
(𝑗↑1) = 𝑜

𝑀
C
0
(𝑗↑1/2). To conclude the proof of the second part of

the theorem, we show that ⇓𝜁C↑𝜁C
0 ⇓𝑀C

0
indeed converges in probability to zero. The 𝑒2 (𝑏C

0)-norm

of the plugin function 𝜁
C is

⇓𝜁C⇓
𝑀

C
0
⇑ 𝑟

{....𝑀𝑓 (2𝐿 ↑ 1)
𝑉0 (𝐿 | 𝑁)

φ
𝜂̂

𝑂

....
𝑀

C
0

+
....𝑀𝑓 (2𝐿 ↑ 1)

𝑉0 (𝐿 | 𝑁)
φ
𝜂̂

𝜃̂

....
𝑀

C
0

+ ⇓𝑀𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂)⇓
𝑀

C
0
+ ⇓ (1 ↑ 𝑀) 𝑐̂⇓

𝑀
C
0

}

⇑ 𝑟
4{𝑅

𝑀
C (𝑂2 | φ = 1, 𝑀 = 1)}1/2 + 𝑟

7/2 ∑

𝑏→{0,1}
⇓ 𝜃̂𝑏 ⇓

𝑀
C,1
0

+
{
𝑟

2
∑

𝑏→{0,1}
⇓ 𝜃̂𝑏 ⇓

𝑀
C,1
0

+ 𝑟
2⇓ 𝑐̂⇓

𝑀
C,1
0

}
+ 𝑟

3/2⇓ 𝑐̂⇓
𝑀

C,1
0

= 𝑎
𝑀

C
0
(1).

This is because the norms of the nuisance estimators ⇓𝑓⇓
𝑀

C,1
0

⇑ 𝑟 = 𝑎
𝑀

C
0
(1), ⇓ 𝑐̂⇓

𝑀
C,1
0

⇑
⇓ 𝑐̂ ↑ 𝑐̄⇓

𝑀
C,1
0

+ ⇓ 𝑐̄⇓
𝑀

C,1
0

= 𝑎
𝑀

C
0
(1) and ⇓ 𝜃̂𝑏 ⇓

𝑀
C,1
0

⇑ ⇓ 𝜃̂𝑏 ↑ 𝜃̄𝑏 ⇓
𝑀

C,1
0

+ ⇓ 𝜃̄𝑏 ⇓
𝑀

C,1
0

= 𝑎
𝑀

C
0
(1) are

bounded by probability. The 𝑒2 (𝑏C
0)-distance between the plugin and the true function is

⇓𝜁C ↑ 𝜁
C
0 ⇓𝑀C

0

⇑ 1
𝑈0

....𝑀(𝑓 ↑ 𝑓0)
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φ
𝜂0

𝑂

....
𝑀

C
0

+ 1
𝑈0

....𝑀𝑓 2𝐿 ↑ 1
𝑉0

φ(𝜂0 ↑ 𝜂̂)
𝜂̂𝜂0

𝑂

....
𝑀

C
0

+ 1
𝑈0

....𝑀(𝑓 ↑ 𝑓0)
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𝑉
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𝜂0

𝜃0
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𝑀

C
0

+ 1
𝑈0

....𝑀𝑓 2𝐿 ↑ 1
𝑉0

φ(𝜂0 ↑ 𝜂̂)
𝜂̂𝜂0

𝜃

....
𝑀

C
0
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+ 1
𝑈0

....𝑀𝑓 2𝐿 ↑ 1
𝑉0

φ
𝜂̂

( 𝜃̂ ↑ 𝜃0)
....
𝑀

C
0

+ 1
𝑈0

⇓𝑀{𝑓( 𝜃̂1 ↑ 𝜃̂0 ↑ 𝑐̂) ↑ 𝑓0 (𝜃0,1 ↑ 𝜃0,0 ↑ 𝑐0)}⇓𝑀C
0

+ 1
𝑈0

⇓ (1 ↑ 𝑀) ( 𝑐̂ ↑ 𝑐0)⇓𝑀C
0
+ |𝑈̂ ↑ 𝑈0 |

𝑈0
⇓𝜁C⇓

𝑀
C
0
,

and by similar arguments above, we bound the distance by

⇑ 𝑟
3 [𝑏C

0{𝑀(𝑓 ↑ 𝑓0)2𝑅𝑀
C
0
(𝑂2 | φ = 1, 𝑌 , 𝑁 , 𝑀 = 1)}]1/2

+ 𝑟
4

∑

𝑏→{0,1}
[𝑏C

0{𝑀(𝜂̂𝑏 ↑ 𝜂0,𝑏)2𝑅𝑀
C
0
(𝑂2 | φ = 1, 𝑌 ,𝑍 , 𝐿 = 𝑃, 𝑁 , 𝑀 = 1)}]1/2

+ 𝑟
3⇓𝑓 ↑ 𝑓0⇓

𝑀
C,𝑁
0

+ 𝑟
5

∑

𝑏→{0,1}
⇓𝜂̂𝑏 ↑ 𝜂0,𝑏 ⇓

𝑀
C,1
0

+ 𝑟
7/2 ∑

𝑏→{0,1}
⇓ 𝜃̂𝑏 ↑ 𝜃0,𝑏 ⇓

𝑀
C,1
0

+ {3𝑟2⇓𝑓 ↑ 𝑓0⇓
𝑀

C,1
0

+ 𝑟
2⇓ 𝜃̂1 ↑ 𝜃0,1⇓

𝑀
C,1
0

+ 𝑟
2⇓ 𝜃̂0 ↑ 𝜃0,0⇓

𝑀
C,1
0

+ 𝑟
2⇓ 𝑐̂ ↑ 𝑐0⇓

𝑀
C,1
0

}

+ 𝑟
3/2⇓ 𝑐̂ ↑ 𝑐0⇓

𝑀
C,1
0

+ 𝑟 |𝑈̂ ↑ 𝑈0 |𝑎𝑀
C
0
(1)

= 𝑜
𝑀

C
0
(1).

We conclude that 𝑄C ↑ 𝑄0 = 𝑏
C
𝑁
𝜀

C
0 + 𝑜

𝑀
C
0
(𝑗↑1/2). ⊋

S7.3. Simulation

In the simulation study for the indirect comparison estimator in the presence of missing outcomes,
we generated the full data (𝑀φ,𝑇, 𝑀, 𝑁 , 𝑀𝐿,𝑂 ,𝑍 , 𝑀𝑌) including an missing indicator φ. We
sampled from the distribution of (𝑇, 𝑀, 𝑁 , 𝑀𝐿,𝑂 ,𝑍 , 𝑀𝑌) specified in §5.1 and drew φ from the
distribution

φ | (𝑌 ,𝑍 , 𝐿, 𝑁 , 𝑀 = 1) ⇔ Bernoulli{expit(0.1𝑌T1 + 0.1𝑍T1 + 0.7𝐿 + 0.3𝑁T1)}.

We only investigated the multiply robust estimator 𝑄C. On the source RCT sample, we fitted the
adherence probability model 𝜂̂(𝑔,𝑑, 𝑃, 𝑊) using a logistic regression linear in all covariates and
the mean outcome model 𝜃̂(𝑔,𝑑, 𝑃, 𝑊) on the subsample where φ = 1 using an ordinary linear
regression with interaction between 𝐿 and (𝑌 ,𝑍 , 𝑁)T. The nuisance estimator of the outcome
difference bridge was subsequently obtained as

𝑢 = arg min
𝑂
⇐

.... 1
𝑗1

∑

𝐿:𝑅𝐿=1
𝛥
𝑄𝑆⇐ ,𝑜, 𝑠̂, 𝑡̂ (𝑎𝐿)

....
2
,

while the estimation of the participation odds bridge remained the same as in the setup without
nonadherence. To demonstrate the robustness against model misspecifications, we considered the
configurations where none of 𝑐, 𝑓, 𝜂, and 𝜃 was misspecified (experiment 14), where 𝑓 and 𝜂

were misspecified (experiment 15), where 𝑓 and 𝜃 were misspecified (experiment 16), where 𝑐

and 𝜂 were misspecified (experiment 17), where 𝑐 and 𝜃 were misspecified (experiment 18) and
where all of 𝑐, 𝑓, 𝜂, and 𝜃 were misspecified (experiment 19). The misspecified models were
fitted by replacing 𝑍 and 𝑌 with |𝑍 |1/2 and |𝑌 |1/2 wherever appropriate. However, the true
model 𝜃0 for 𝜃 does not have an easy closed-form expression. Therefore, all the posited models
for 𝜃 could have been misspecified, whether intentionally or not. The results are displayed in
Table S4. The estimator 𝑄

C retained small empirical biases under model misspecifications as
expected, except when all nuisance models were misspecified. The influence-function-based
standard error in experiments 15–16 where the 𝑓 model was misspecified led to anticonservative
confidence intervals.
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Table S4. Simulation results of experiments 14–19.

𝑁 Experiment Mean Bias RMSE SE Coverage
1000 14 !2.64 1.57 1.19 1.15 93.9

15 !2.64 0.33 1.24 1.12 91.8
16 !2.64 3.08 3.08 2.68 90.7
17 !2.64 5.97 1.24 1.27 95.7
18 !2.63 11.51 3.30 3.16 94.0
19 !2.40 248.88 3.73 2.72 82.3

2000 14 !2.65 !0.36 0.84 0.81 94.1
15 !2.65 !0.24 0.84 0.77 93.1
16 !2.65 !5.38 2.08 1.85 91.7
17 !2.64 2.67 0.86 0.88 95.8
18 !2.65 !3.09 2.23 2.22 95.1
19 !2.39 250.89 3.15 1.85 72.8

Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑1; SE: average of standard error
estimates, 10↑1; Coverage: 95% confidence interval coverage, %.
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Abstract

We consider estimation of the average treatment effect (ATE) when outcome infor-
mation is unavailable from the target population. Instead, we observe the outcome in
multiple source populations and wish to combine the treatment effects therein to make
inference on the target population ATE. Statistical analyses based on transportability
methods typically standardize over subject characteristics to account for differences
between these populations. In contrast to existing works that assume transportability
on the conditional distribution of potential outcomes or conditional treatment-specific
means, we work under a weaker form of effect transportability. In particular, we assume
transportability of conditional average treatment effects across multiple populations,
which may hold with fewer standardization variables. Under this assumption, we de-
rive the semiparametric efficiency bound of the target population ATE. We characterize
a class of doubly robust and asymptotically linear estimators that vary in the weights
assigned to observations from different data sources. Specifically, we propose an ef-
ficient estimator whose asymptotic variance cannot be improved upon unless stronger
transportability assumptions hold. For a low-dimensional summary of effect hetero-
geneity in the target population, we suggest estimating the projected conditional ATE.
We illustrate the use of the proposed estimators on a multi-center weight management
clinical trial for semaglutide, a glucagon-like peptide-1 receptor agonist, on patients
with obesity. Using outcome information from other regions, we estimate the weight
loss effect of semaglutide in the United States subgroup.
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Keywords: Effect modification; Transportability; Meta-analysis; Semiparametric ef-
ficiency bound.

1. Introduction

One of the major tasks in health technology assessment (HTA) is to synthesize new
evidence of interventions on a target population from a pool of existing data sources.
Usually there are non-negligible differences between the target population and the pop-
ulation from which a data source is sampled. Given an intervention effect of inter-
est, researchers compile a set of baseline covariates that summarize the interpopulation
differences. These covariates are referred to as relevant variables for transportability.
Loosely speaking, when individual patient data (IPD) are available, the synthesized ef-
fect on the target population can often be obtained by standardizing the effect from
the data source through adjustment of the relevant variables or by weighting the sam-
ples from the data source to account for the distributional differences of the relevant
variables.

Two practical questions are important when discussing evidence synthesis for the
effect of an intervention. The first is the scope of the relevant variables. The basis
of evidence synthesis methods is transportability of intervention effects across study
populations. For transportability on summary measures involving a single intervention,
the relevant variables requried are called prognostic variables in the meta-analysis lit-
erature. An instance of such summary measures is the conditional mean outcome of a
treatment arm in a clinical trial. For transportability on effect measures, the required
relevant variables are called effect modifiers (VanderWeele and Robins, 2007). They
are a subset of prognostic variables, making them suitable for evidence synthesis as the
total number of collected variables in all populations can be rather limited. Moreover,
transportability on a single-intervention summary measure is unlikely to hold due to
unmeasured factors that impact the outcome level, such as the overall quality of health-
care.

The second question concerns the overlap between populations. For example, if the
data source is a clinical trial, the target population may include a group of subjects
which do not fulfill the inclusion criteria of the trial. When there is a lack of popula-
tion overlap, the synthesized evidence is subject to bias because it relies on extrapolat-
ing intervention effects. The external validity may be restored using a trimmed target
population relative to the source population to avoid extrapolation (Chen et al., 2023).
However, the new, artificially defined target population can be hard to translate into any
sensible cohort in reality. When there are multiple source trials available that examine
the interventions of interest, the overlap may be achieved by treating the source trials
as one collective, large data source. While individual source trials may exhibit overlap
violations with respect to the target population, the risk of unintended extrapolation is
reduced when multiple trials are jointly taken into account.

Recently there has been a large mass of research works on transportability under the
causal inference framework and meta-analysis methods focusing on causal estimands.
Most methods on transportability and generalizability work under the premise of a sin-
gle data source (Lee et al., 2022; Dahabreh et al., 2020; Josey et al., 2021; Li et al.,
2023a). Some of these methods can be extended to handle multiple data sources, but
would instead rely on unnecessarily restrictive transportability assumptions for the in-
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tervention effect of interest. In the context of incorporating external controls in clinical
trials, Li et al. (2023b) derived the efficiency bound for the fused intervention effect as-
suming transportability on the conditional mean under placebo. There is also a general
framework for data fusion with multi-source longitudinal data (Li and Luedtke, 2023).
It hinges on pairwise full overlap across fusible data sources as well as distribution-level
transportability, so it does not answer the two questions that commonly arise in HTA
and causal meta-analysis. Wang et al. (2024b) considered subgroup causal effect esti-
mation under partial overlap across the multi-source data. Their proposal works under
transportability of the conditional distribution of the potential outcome, which we avoid
in this work.

Dahabreh et al. (2023) showed identifiability of the target population average treat-
ment effect (ATE) under a weaker overlap condition by utilizing multiple source trials.
The identifiability relies on pairwise transportability of the conditional average treat-
ment effect (CATE) between the target population and a source trial, but only on the
subset of relevant variables that are common to both study populations. Nonetheless,
neither the semiparametric efficiency bound nor estimation procedures of the identified
parameter has been studied. It is well-known that efficient estimators of a parameter can
sometimes be constructed from the efficient influence function. Through the characteri-
zation of the influence functions, if there is more than one, we can gain insights into the
estimation problem, especially when the identifiability conditions induce restrictions on
the model. We present the efficient influence function of the target population ATE and
propose asymptotically linear estimators, including one that can attain the semipara-
metric efficiency bound. Notably, we retain the weaker identifiability assumptions as in
Dahabreh et al. (2023). Under the same assumptions, we study a simple form of effect
heterogeneity on the target population, specifically the projection of the CATE onto a
prespecified basis expansion.

2. Identifiability under CATE transportability

The data sources are a collection of 𝐿 randomized clinical trials labeled by a discrete
variable 𝑀 → [𝐿], where [𝐿] is a shorthand for the index set {1, . . . ,𝐿}. To any
participant in a source trial, a binary treatment 𝑁 → {0, 1} is administered randomly,
and the outcome 𝑂 is recorded at the end of the study. We assume that the outcome is
real valued. Additionally in all source trials, a common set of baseline covariates 𝑃 is
measured, which contains the relevant variables for transportability. The total number
of subjects from the source trials is denoted by 𝑄0 =

∑
𝐿→ [𝑀] 𝑄0𝐿 . Within the source trial

𝑀 = 𝑅, the observed data is 𝑄0𝐿 independent and identically distributed (i.i.d.) copies
of the tuple (𝑂 , 𝑁, 𝑃). From the target population, an i.i.d. sample of the covariates
𝑃 of size 𝑄1 is collected. The total sample size combining the source and the target
population is thus 𝑄 = 𝑄0 + 𝑄1. We further introduce a binary indicator 𝑆 for whether a
data point belongs to any source trial (𝑆 = 0) or the target population (𝑆 = 1).

The sample sizes of the source trials 𝑄0𝐿 often cannot be controlled by researchers
working on HTA, as they reflect the practical data collection decisions in the respec-
tive clinical trials. A common example is the minimum sample size determined from
power calculations. Although the actual sampling of data is specific to the study popu-
lation, it is helpful to view the complete sample O =

{
{(1↑𝑆𝑁)𝑂𝑁 , (1↑𝑆𝑁)𝑁𝑁 , 𝑃𝑁 , (1↑

𝑆𝑁)𝑀𝑁 ,𝑆𝑁} : 𝑇 = 1, . . . , 𝑄
}
, as an i.i.d. sample from some joint distribution over the



4 Manuscript II

observed data 𝑈 = {(1 ↑ 𝑆)𝑂 , (1 ↑ 𝑆)𝑁, 𝑃 , (1 ↑ 𝑆)𝑀,𝑆}. We make the following
assumption on the sample sizes throughout the paper.

Assumption 1 (Sampling proportions). There exist fixed values 𝑉0𝐿 → (0, 1) such
that the proportions 𝑄0𝐿/𝑄 ↓ 𝑉0𝐿 for 𝑅 → [𝐿] and 𝑄1/𝑄 ↓ 𝑉 when 𝑄 ↓ ↔.

Then we have pr(𝑀 = 𝑅) = 𝑉0𝐿 and pr(𝑆 = 1) = 𝑉, while the marginal proba-
bilities of 𝑀 and 𝑆 do not reflect the relative sizes of the underlying study population
nor the sampling mechanism adopted. We can hypothesize the existence of an artifi-
cial superpopulation from which every data point is drawn. Random sampling in the
superpopulation is asymptotically equivalent to actual biased sampling.

Let𝑂 (𝑊) denote the potential outcome of𝑂 under the static intervention of 𝑊 → {0, 1}.
We define parameter 𝑋 as the target population ATE 𝑌{𝑂 (1) ↑ 𝑂 (0) |𝑆 = 1}. Define
the support of baseline covariates in the target population as X1 = {𝑍 : pr(𝑆 = 1 | 𝑃 =
𝑍) > 0}. Let D𝑂 = {𝑅 : pr(𝑀 = 𝑅 | 𝑃 = 𝑍,𝑆 = 0) > 0}. This is the set of indices of the
source trials whose supports of the baseline covariates cover the value 𝑍 → X1. When
we condition on 𝑀 = 𝑅, it is implicitly understood that we also condition on 𝑆 = 0.

Assumption 2 (Identifiability).
(i) (Overlap) D𝑂 ω ↗ for 𝑍 → X1;

(ii) (Positivity) pr(𝑁 = 𝑊 | 𝑃 = 𝑍,𝑀 = 𝑅) > 0 for 𝑊 → {0, 1}, 𝑍 → X1, and 𝑅 → D𝑂 ;
(iii) (Mean exchangeability) 𝑌{𝑂 (𝑊) | 𝑃 = 𝑍,𝑀 = 𝑅} = 𝑌{𝑂 (𝑊) | 𝑁 = 𝑊

↘
, 𝑃 = 𝑍,𝑀 =

𝑅} for 𝑊, 𝑊↘ → {0, 1}, 𝑍 → X1, and 𝑅 → D𝑂 ;
(iv) (Consistency) 𝑂𝑁 (𝑊) = 𝑂𝑁 if 𝑁𝑁 = 𝑊 for 𝑊 → {0, 1}.
(v) (Transportability) 𝑌{𝑂 (1) ↑ 𝑂 (0) | 𝑃 = 𝑍,𝑆 = 1} = 𝑌{𝑂 (1) ↑ 𝑂 (0) | 𝑃 = 𝑍,𝑀 =

𝑅} for 𝑍 → X1 and 𝑅 → D𝑂 .

Assumptions 2(i)–(ii) and (v) here correspond to Assumptions A5†, A3 and A4‡ in
Dahabreh et al. (2023). Assumption 2(iii) is a weaker version of Assumption A2 in
Dahabreh et al. (2023), which is sufficient for identification of the ATE. Though com-
mon in the causal inference literature, Assumption 2(iv) should be carefully examined
in the source trials, particularly in the context of HTA. For instance, the presence of
multiple versions of placebo can pose challenges to consistency. However, if the dif-
ferences among them are negligible with regards to their acting mechanisms on the
outcome, these placebos can be treated as a single entity. Transportability of the condi-
tional effect measure only requires the transportability assumption to hold conditioning
on shifted effect modifiers instead of all prognostic variables (Colnet et al., 2024). It
should be noted that the scope of effect modifiers is largely dependent on the chosen ef-
fect measure. Furthermore, Assumption 2(v) is conducive to identifiability of the ATE,
but can be futile for identifiability of other marginal causal effects. Therefore, it is
highly advisable to evaluate the validity of such assumptions according to the concrete
intervention effect.

Before presenting identifiability of the target parameter with the observed data, we
introduce the following notations on the observed data distribution. Define the se-
lection score of being in the target population as 𝑎(𝑍) = pr(𝑆 = 1 | 𝑃 = 𝑍), the
selection score of being in the source trial 𝑀 = 𝑅 when in the source population as
𝑏 (𝑅 | 𝑍) = pr(𝑀 = 𝑅 | 𝑃 = 𝑍,𝑆 = 0). In each source trial 𝑀 = 𝑅, the propensity score of
receiving treatment 𝑁 = 𝑊 is 𝑐(𝑊 | 𝑍, 𝑅) = pr(𝑁 = 𝑊 | 𝑃 = 𝑍,𝑀 = 𝑅), and the conditional
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outcome mean under treatment 𝑁 = 𝑊 is 𝑑(𝑊, 𝑍, 𝑅) = 𝑌 (𝑂 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅).
By Assumption 2, when we fix the baseline characteristics, the difference between the
conditional outcome means under the two interventions remains constant for any trial
in the source trial pool; that is, for any 𝑍 → X1 and 𝑅, 𝑅

↘ → D𝑂 , we have

𝑑(1, 𝑍, 𝑅) ↑ 𝑑(0, 𝑍, 𝑅) = 𝑑(1, 𝑍, 𝑅↘) ↑ 𝑑(0, 𝑍, 𝑅↘) = 𝑒(𝑍). (1)

Note that the difference 𝑒(𝑍) does not vary across the source trials for any 𝑍 → X1 and
is a function of the baseline covariates only. For simplicity, we also call this function
the CATE.

Define the model P as the collection of probability measures on 𝑈 that respect the
conditional mean difference restriction (1).

Lemma 1 (Identifiability). Suppose Assumption 2 holds. The target parameter is
identifiable in the observed data distribution 𝑓 → P as

𝑋 = 𝑌{𝑒(𝑃) |𝑆 = 1}. (2)

The g-formula representation of the target parameter on the observed data does not
depend directly on the membership to any source trial 𝑀, while the difference function
𝑒(𝑍) implicitly involves this information, as it is defined strictly on the subset of the
source trials D𝑂 for a given level of baseline covariates 𝑍.

3. Efficient estimation of the transported ATE

3.1. Semiparametric efficiency bound under CATE transportability

For the well-defined observed data target parameter 𝑋, it is natural to study its semi-
parametric efficiency bound as well as estimators that can achieve this bound. We first
motivate the efficient influence function of 𝑋 through a class of candidate estimators.

The representation of 𝑋 as (2) is not unique. For all 𝑔(𝑍, 𝑅) such that 𝑌{𝑔(𝑃 ,𝑀) | 𝑃 =
𝑍,𝑆 = 0} = 1, the target parameter is also identifiable as

𝑋 =
1
𝑉

𝑌

{ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃)

2𝑁 ↑ 1
𝑐(𝑁 | 𝑃 ,𝑀) 𝑔(𝑃 ,𝑀)𝑂

}
. (3)

The function 𝑔 in the inverse probability weighting representation in (3) can be thought
of as assigning trial-specific weights for subjects in the pooled source trial population.
In the special case when 𝑔(𝑍, 𝑅) = 1, the outcomes from all source trials are weighted
the same besides the inverse propensity score of their corresponding treatment arm.
Suppose we have the knowledge of the true nuisance parameters, then the representation
(3) suggests a familiar class of reweighting estimators

1
𝑄0

∑

𝑁:𝑃𝐿=0

𝑎(𝑃𝑁)
1 ↑ 𝑎(𝑃𝑁)

2𝑁𝑁 ↑ 1
𝑐(𝑁𝑁 | 𝑃𝑁 ,𝑀𝑁)

𝑔(𝑃𝑁 ,𝑀𝑁)𝑂𝑁 .

To minimize the variance of estimators in this class, the outcomes from source trials
with a higher conditional variance should be downweighed. Let the conditional variance
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of the outcome under treatment arm 𝑁 = 𝑊 in source trial 𝑀 = 𝑅 be 𝑕 (𝑊, 𝑍, 𝑅) =
var(𝑂 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅) for 𝑍 → X1 and 𝑅 → D𝑂 . Now consider the weighting
function

𝑖(𝑍, 𝑅) =
{
𝑕 (1, 𝑍, 𝑅)
𝑐(1 | 𝑍, 𝑅) +

𝑕 (0, 𝑍, 𝑅)
𝑐(0 | 𝑍, 𝑅)

}↑1
. (4)

It can be rescaled so that the function 𝑖(𝑍, 𝑅)
/∑

𝐿
↘ → [𝑀] 𝑖(𝑍, 𝑅↘)𝑏 (𝑅↘ | 𝑍) can take the

place of 𝑔(𝑍, 𝑅) in (3). This weighting function is optimal in the sense of Lemma 2
below.

In the sequel, we assume the data follows some true distribution 𝑓0 → P , since
the semiparametric efficiency bound is derived under local regularity conditions at 𝑓0.
Quantities defined on 𝑓0 receive the subscript 0.

Assumption 3 (Regularity condition). There exists a universal constant 𝑗 > 1 such
that 𝑐0 (𝑊 | 𝑍, 𝑅) ⊋ 𝑗

↑1,𝑕0 (𝑊, 𝑍, 𝑅) ⫅̸ 𝑗,𝑗↑1 ⫅̸ 𝑖0 (𝑍, 𝑅) ⫅̸ 𝑗, and |𝑘↑𝑑0 (𝑊, 𝑍, 𝑅) | ⫅̸ 𝑗.

Lemma 2 (Efficient influence function). Suppose Assumption 3 holds. The efficient
influence function of 𝑋0 at the distribution 𝑓0 under the nonparametric model P is

𝑙𝑄0 (𝑚) =
1 ↑ 𝑛

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

𝑖0 (𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 𝑛

𝑉0
{𝑒0 (𝑍) ↑ 𝑋0}. (5)

To understand the lemma, consider the ATE 𝑌0{𝑑0 (1, 𝑃 , 𝑅)↑𝑑0 (0, 𝑃 , 𝑅) | 𝑀 = 𝑅} in
the population 𝑀 = 𝑅 defined on the model of probability distributions over 𝑜 (𝑀 = 𝑅)𝑈.
The semiparametric efficiency bound of this parameter (Hirano et al., 2003) is

𝑌0{𝑖↑1
0 (𝑃 , 𝑅) | 𝑀 = 𝑅} + var0{𝑑0 (1, 𝑃 , 𝑅) ↑ 𝑑0 (0, 𝑃 , 𝑅) | 𝑀 = 𝑅},

which consists of an expectation part and a variance part. The semiparametric efficiency
bound ε0 of 𝑋0 has a similar structure. By some algebra, we have

ε0 = 𝑌0𝑙
2
𝑄0 (𝑈) = 1 ↑ 𝑉0

𝑉
2
0

𝑌0

[{
𝑎0 (𝑃)

1 ↑ 𝑎0 (𝑃)

}2{ ∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

}↑1 '''' 𝑆 = 0
]

+ 1
𝑉0

var0{𝑒0 (𝑃) |𝑆 = 1}.

Each data source contributes to ε0 with 𝑖0 (𝑍, 𝑅), which are first weighted by the se-
lection score 𝑏0 (𝑅 | 𝑍) and then inverted to give the inside of the expectation part of the
semiparametric efficiency bound, up to the odds of selection score 𝑎0 (𝑍) and constants.

The following result is a direct consequence of Lemma 2 and its proof.

Corollary 1 (Influence functions). Suppose Assumption 3 holds. The linear sub-
space

ϑ0 =
{

1 ↑ 𝑛

𝑉0
𝑔(𝑍, 𝑅) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} : 𝑌0{𝑔(𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} = 0

}

is the orthogonal complement of the tangent space of the model P at 𝑓0. Consequently,
for any weight function 𝑖̃(𝑍, 𝑅) such that

∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̃(𝑍, 𝑅↘) ω 0 for 𝑍 → X1,

𝑙𝑄̃ (𝑚) is an influence function of 𝑋0.
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Corollary 1 indicates that if we wish to construct estimators based on influence func-
tions, the weights used for the recalibration of observations from different source trials
need not be the optimal weight 𝑖0 in Lemma 2.

3.2. Efficient estimation of the target parameter

The efficient influence function (5) motivates an estimating equation for the target
parameter 𝑋0. In the following, we describe an estimation procedure with crossfit-
ted nuisance parameters (Zheng and van der Laan, 2011; Chernozhukov et al., 2018)
and analyze the resulting crossfitted estimator of 𝑋0. Consider a random partition of
the data into 𝑝 splits with index sets I𝑅 such that ≃

𝑅→ [𝑆 ]I𝑅 = [𝑄]. Without loss of
generality, assume every index set has cardinality 𝑄/𝑝 . Let O↑𝑅 = {𝑈𝑁 : 𝑇 ϖ I𝑅}
denote the observations not belonging to split 𝑞 . On each O↑𝑅 , the proportion of sam-
ples from the target population 𝑉̂𝑅 is a natural estimator of 𝑉0. We have outcome re-
gression models 𝑑̂𝑅 (𝑊, 𝑍, 𝑅) for the conditional outcome mean 𝑑0 (𝑊, 𝑍, 𝑅) of the inter-
vention 𝑁 = 𝑊 in source trial 𝑀 = 𝑅, and a selection score model 𝑏𝑅 (𝑅 | 𝑍) among
the source trials for the probability 𝑏0 (𝑅 | 𝑍). Within each source trial the propensity
scores for treatment assignment 𝑐𝑅 (𝑊 | 𝑍, 𝑅) model the probability 𝑐0 (𝑊 | 𝑍, 𝑅). The
selection score model into the target population 𝑎̂𝑅 (𝑍) approximates the probability
𝑎0 (𝑍). Additionally, we can choose possibly random weights 𝑖̌𝑅 (𝑍, 𝑅) and rescale
them as 𝑖̂𝑅 (𝑍, 𝑅) = 𝑖̌𝑅 (𝑍, 𝑅)/

{∑
𝐿
↘ → [𝑀] 𝑖̌

2
𝑅
(𝑍, 𝑅↘)

}1/2 to ensure that the weight vector
{𝑖̂𝑅 (𝑍, 1), . . . , 𝑖̂𝑅 (𝑍,𝐿)}T is normalized for every 𝑍.

We do not require the sample version of (1). That is, we allow the difference be-
tween the fitted conditional means 𝑑̂𝑅 (1, 𝑍, 𝑅)↑ 𝑑̂𝑅 (0, 𝑍, 𝑅) to vary across 𝑅. Rather, we
estimate the difference function by

𝑒𝑅 (𝑍) =
∑

𝐿→ [𝑀]

𝑖̂𝑅 (𝑍, 𝑅)𝑏𝑅 (𝑅 | 𝑍){𝑑̂𝑅 (1, 𝑍, 𝑅) ↑ 𝑑̂𝑅 (0, 𝑍, 𝑅)}∑
𝐿
↘ → [𝑀] 𝑖̂𝑅 (𝑍, 𝑅↘)𝑏𝑅 (𝑅↘ | 𝑍)

.

In light of the structure of influence functions described in Corollary 1, we propose the
estimator

𝑋 =
1
𝑄

∑

𝑅→ [𝑆 ]

∑

𝑁→I𝑀

𝑟𝑇̂𝑀 (𝑈𝑁),

where

𝑟𝑇̂𝑀 (𝑚) =
1 ↑ 𝑛

𝑉̂𝑅

𝑎̂𝑅 (𝑍)
1 ↑ 𝑎̂𝑅 (𝑍)

𝑖̂𝑅 (𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅 (𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐𝑅 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑̂𝑅 (𝑊, 𝑍, 𝑅)}

+ 𝑛

𝑉̂𝑅

𝑒𝑅 (𝑍)

is indexed by the set of crossfitted nuisance parameters 𝑠𝑅 = {𝑉̂𝑅 , 𝑎̂𝑅 , 𝑏𝑅 , 𝑖̂𝑅 , 𝑐𝑅 , 𝑑̂𝑅 , 𝑒𝑅}.

Assumption 4 (Regularity conditions).
(i) The probability limits with respect to the 𝑡2 (𝑓0)-norm are well-defined for the

nuisance parameter estimates such that

⇐ (𝑎̂𝑅 ↑ 𝑎̄) (𝑃)⇐𝑈0 = 𝑚𝑈0 (1), ⇐ (𝑏𝑅 ↑ 𝑏) (𝑅 | 𝑃)⇐𝑈0 = 𝑚𝑈0 (1),
⇐ (𝑖̂𝑅 ↑ 𝑖̄) (𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0 = 𝑚𝑈0 (1),
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⇐ (𝑐𝑅 ↑ 𝑐) (𝑊 | 𝑃 , 𝑅)}𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0 = 𝑚𝑈0 (1),
⇐{𝑑̂𝑅 (𝑊, 𝑃 , 𝑅) ↑ 𝑑̄(𝑊, 𝑃 , 𝑅)}𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0 = 𝑚𝑈0 (1);

(ii) There exists a universal constant 𝑗 > 1 such that

𝑉0 ⊋ 𝑗
↑1
, 𝑉̂ ⊋ 𝑗

↑1
, 𝑎̂𝑅 (𝑍) ⫅̸ 1 ↑ 𝑗

↑1
, 𝑐0 (𝑊 | 𝑍, 𝑅) ⊋ 𝑗

↑1
, 𝑐𝑅 (𝑊 | 𝑍, 𝑅) ⊋ 𝑗

↑1
,

| 𝑑̂𝑅 (𝑊, 𝑍, 𝑅) | ⫅̸ 𝑗,𝑕0 (𝑊, 𝑍, 𝑅) ⫅̸ 𝑗, |𝑖̂𝑅 (𝑍, 𝑅) | ⫅̸ 𝑗, |𝑖̄(𝑍, 𝑅) | ⫅̸ 𝑗,''∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅 (𝑍, 𝑅↘)

'' ⊋ 𝑗
↑1
,

''∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

'' ⊋ 𝑗
↑1
.

Assumption 5a (Correct specifications). Either 𝑑̄ = 𝑑0 or 𝑐 = 𝑐0, 𝑏 = 𝑏0, and
𝑎̄ = 𝑎0.

Assumption 5b (Rate conditions).
(i) 𝑑̄ = 𝑑0, 𝑐 = 𝑐0, 𝑏 = 𝑏0, and 𝑎̄ = 𝑎0;

(ii) ⇐ ( 𝑑̂𝑅 ↑ 𝑑̄) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0

{
⇐ (𝑐𝑅 ↑ 𝑐) (𝑊 | 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0 +

⇐ (𝑏𝑅 ↑ 𝑏) (𝑅 | 𝑃)⇐𝑈0 + ⇐ (𝑎̂𝑅 ↑ 𝑎̄) (𝑃)⇐𝑈0

}
= 𝑚𝑈0 (𝑄↑1/2).

Theorem 1 (Asymptotic behavior). Suppose Assumption 4 holds. Then:

1. 𝑋

p↓ 𝑋0 under Assumption 5a.
2. 𝑋 ↑ 𝑋0 = 𝑄

↑1 ∑𝑉

𝑁=1 𝑙𝑄̄ (𝑈𝑁) + 𝑚𝑈0 (𝑄↑1/2) under Assumption 5b. Furthermore, 𝑋
achieves the local semiparametric efficiency bound ε0 if there exists a function
𝑢(𝑍) ω 0 such that

𝑖̄(𝑍, 𝑅) = 𝑢(𝑍)𝑖0 (𝑍, 𝑅)
and Assumption 3 holds.

The influence-function-based estimator 𝑋 is doubly robust in the sense that it is
consistent when either the outcome regression model is correctly specified or when
the selection score model for the target population, the selection score model among
source trials, and the propensity score model for the treatment assignment are all cor-
rectly specified. In practice, the propensity score model 𝑐0 is usually known or es-
timable with parametric rates in the respective source trials. Therefore, the product
term ⇐𝑐𝑅 ↑ 𝑐0⇐𝑈0 ⇐ 𝑑̂𝑅 ↑ 𝑑0⇐𝑈0 is often negligible asymptotically. However, the mod-
els {𝑎0, 𝑏0} are generally more complicated because they inherit the complexity of the
sampling procedure, as well as the pragmatic choice of source trials to include in the
analysis. Therefore, it can be important that the CATE estimator 𝑒𝑅 and hence 𝑑̂𝑅 are
correctly specified for the consistency of 𝑋. The asymptotic linearity of the target pa-
rameter estimate further requires that all nuisance estimators converge to the truth at a
reasonable, possibly subparametric rate, such as 𝑚𝑈0 (𝑄↑1/4). This rate is achieved by
flexible curve-fitting algorithms, such as the highly adaptive lasso estimator (Benkeser
and van der Laan, 2016) and the sieve neural network (Chen and White, 1999).

An estimator of the asymptotic variance of 𝑋 is given by the crossfitted squared em-
pirical 𝑡2-norm of the influence function

ε̂ =
1
𝑄

∑

𝑅→ [𝑆 ]

∑

𝑁→I𝑀

{
𝑟𝑇̂𝑀 (𝑈𝑁) ↑

𝑆𝑁

𝑉̂𝑅

𝑋

}2
.

We show its consistency in the Supplementary Material §S2. Therefore, an asymptotic
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(1 ↑ 𝑣)-confidence interval of 𝑋0 is given by 𝑋 ± 𝑄
↑1/2ϱ↑1 (1 ↑ 𝑣/2)ε̂1/2, where ϱ is

the distribution function of a standard normal random variable.

3.3. Choice of weight functions

The choice of weight function 𝑖̂𝑅 (𝑍, 𝑅) does not affect the asymptotic linearity of
the estimator beyond Assumption 4. However, only the particular specification of the
weight function in (4) yields the efficient estimator, up to some scaling function 𝑢(𝑍).
We can pick non-source-specific weights such that 𝑖̂𝑅 (𝑍) is constant in 𝑅 for conve-
nience. For these weights, the asymptotic linearity of 𝑋 can be established without
consistency of 𝑏𝑅 (𝑅 | 𝑍). However, precision may be gained from estimation of the
weights. Suppose there exist two regular asymptotically linear estimators for 𝑋0, one
with the efficient influence function 𝑙𝑄0 , and the other with influence function 𝑙𝑄̃ using
a weight 𝑖̃(𝑍) that does not vary with 𝑅. The difference of their asymptotic variances,
shown in Supplementary Material §S3.1, is

𝑌0 (𝑙2
𝑄0 ↑ 𝑙

2
𝑄̃
) = 𝑌0

(
𝑎0 (𝑃)

𝑉0{1 ↑ 𝑎0 (𝑃)}

[{ ∑

𝐿
↘ → [𝑀]

𝑖0 (𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑃)
}↑1

↑
{ ∑

𝐿
↘ → [𝑀]

𝑖
↑1
0 (𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑃)

}] '''' 𝑆 = 1
)
⫅̸ 0,

where the bound follows from the Cauchy-Schwarz inequality.
A straightforward estimator of the optimal weight function can be constructed by

plugging in the nuisance estimators 𝑐𝑅 (𝑊 | 𝑍, 𝑅) and 𝑕̂𝑅 (𝑊, 𝑍, 𝑅). However, the optimal
weight function involves inverting the fitted conditional variances, which can introduce
numerical instability to the estimator 𝑋. Therefore, nonparametric conditional variance
estimators, such as the local kernel linear regression (Fan and Yao, 1998), may deteri-
orate finite sample performance of the estimator. To circumvent the inconvenience, we
re-express the optimal weight function as the inverse of a conditional expectation

𝑖0 (𝑍, 𝑅) =
(
𝑌0

[{
𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)
𝑐0 (𝑁 | 𝑃 ,𝑀)

}2 '''' 𝑃 = 𝑍,𝑀 = 𝑅

] )↑1
.

Following Hines et al. (2024), we notice that 𝑖0 is the minimizer of the weighted re-
gression loss

𝑌0

({
𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)
𝑐0 (𝑁 | 𝑃 ,𝑀)

}2 [{
𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)
𝑐0 (𝑁 | 𝑃 ,𝑀)

}↑2
↑ 𝑖(𝑃 ,𝑀)

]2 '''' 𝑆 = 0
)
.

Given a function class F , we propose to minimize the empirical loss so that

𝑖̌𝑅,optimal (𝑍, 𝑅) = arg min
𝑊 →F

∑

𝑁:𝑁→I𝑀 ,𝑃𝐿=0

[
↑ 2 𝑤 (𝑃𝑁 ,𝑀𝑁)

+
{
𝑂𝑁 ↑ 𝑑̂𝑅 (𝑁𝑁 , 𝑃𝑁 ,𝑀𝑁)
𝑐𝑅 (𝑁𝑁 | 𝑃𝑁 ,𝑀𝑁)

}2
𝑤

2 (𝑃𝑁 ,𝑀𝑁)
]
. (6)

Under the conditions of Theorem 1, if the estimated weight function is consistent for the
optimal weight function, the resulting target population ATE estimator will be efficient.
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Notably, efficiency does not assume any convergence rate of the weight function beyond
consistency. Nonetheless, if either 𝑑̂𝑅 or 𝑐𝑅 is misspecified or if the hypothesis class
F does not contain functions that can be normalized to 𝑖0, there is no guarantee that
the asymptotic variance of the resulting estimator will be lower than the estimator using
constant weights.

3.4. Semiparametric efficiency bounds under other transportability assumptions

Stronger transportability assumptions typically induce models smaller than P . In the
following, we present the semiparametric efficiency bounds under these models.

Let the model P† contain all probability measures satisfying the conditional mean
restriction

𝑑(𝑊, 𝑍, 𝑅) = 𝑑(𝑊, 𝑍, 𝑅↘) = 𝑑(𝑊, 𝑍), (7)

for 𝑍 → X1, 𝑅, 𝑅↘ → D𝑂 and 𝑊 → {0, 1}. Restriction (7) is implied by the transportabil-
ity of conditional treatment-specific means 𝑌{𝑂 (𝑊) | 𝑃 = 𝑍,𝑀 = 𝑅} = 𝑌{𝑂 (𝑊) | 𝑃 =
𝑍,𝑀 = 𝑅

↘} and Assumptions 2(ii)–(iv). Define 𝑏 (𝑅 | 𝑊, 𝑍) = pr(𝑀 = 𝑅 | 𝑁 = 𝑊, 𝑃 = 𝑍)
and 𝑐(𝑊 | 𝑍) = pr(𝑁 = 𝑊 | 𝑃 = 𝑍,𝑆 = 0).

Assumption 6 (Regularity condition). There exists a universal constant 𝑗 > 1 such
that 𝑐0 (𝑊 | 𝑍) ⊋ 𝑗

↑1, 𝑕0 (𝑊, 𝑍, 𝑅) ⫅̸ 𝑗, and |𝑘 ↑ 𝑑0 (𝑊, 𝑍) | ⫅̸ 𝑗.

Proposition 1. Suppose Assumption 6 holds. The efficient influence function of 𝑋0
at 𝑓0 → P† is

𝑙
†
𝑄

†
0
(𝑚) = 1 ↑ 𝑛

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍)

𝑖
†
0 (𝑊, 𝑍, 𝑅)∑

𝐿
↘ → [𝑀] 𝑖

†
0 (𝑊, 𝑍, 𝑅↘)𝑏0 (𝑅↘ | 𝑊, 𝑍)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍)}

+ 𝑛

𝑉0
{𝑒0 (𝑍) ↑ 𝑋0},

where the weights 𝑖
†
0 (𝑊, 𝑍, 𝑅) = 𝑕

↑1
0 (𝑊, 𝑍, 𝑅). The orthocomplement of the tangent

space of P† at 𝑓0 is

ϑ†
0 =

{
(1 ↑ 𝑛) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍)
𝑥(𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)} : 𝑌0{𝑥(𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑆 = 0} = 0

}
.

For any 𝑖̃(𝑊, 𝑍, 𝑅) such that
∑

𝐿
↘ → [𝑀] 𝑖̃(𝑊, 𝑍, 𝑅↘)𝑏0 (𝑅↘ | 𝑊, 𝑍) ω 0, 𝑙†

𝑄̃
† is an influence

function of 𝑋0.

The weight 𝑖†
0 (𝑊, 𝑍, 𝑅) can be different for observations from different treatment

arms in the same source population, in contrast to the weights 𝑖0 (𝑍, 𝑅) previously seen
in Lemma 2, which are only source-specific. This is a generalization of the result from
Li et al. (2023b) to accommodate multiple source trials.

Consider the model P‡ consisting of probability measures on 𝑈 where the only con-
straint is 𝑂 |= 𝑀 | (𝑁, 𝑃 ,𝑆 = 0). This corresponds to the distribution-level transporta-
bility 𝑂 (𝑊) |= 𝑀 | (𝑃 ,𝑆 = 0) in Wang et al. (2024b). They showed that the efficient
influence function of 𝑋0 under 𝑓0 → P‡ is

𝑙
‡(𝑚) = 1 ↑ 𝑛

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍)} +
𝑛

𝑉0
{𝑒0 (𝑍) ↑ 𝑋0}.
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For completeness, we provide the orthocomplement of the tangent space of the model
P‡ at 𝑓0, which is

ϑ‡
0 =

{
(1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0,

𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) |𝑂 , 𝑁, 𝑃 ,𝑆 = 0} = 0
}
.

The three models discussed so far are nested such that P‡ ⇒ P† ⇒ P . Modulo
regularity assumptions, 𝑙𝑄0 from Lemma 2 and and 𝑙𝑄̃ from Corollary 1 are valid
influence function of 𝑋0 if 𝑓0 belongs to the smaller models P† or P‡.

4. Target-population effect heterogeneity estimation

We have assumed CATE transportability to make inference on the target population
average treatment effect. In many cases, the CATE function itself may be of interest,
such as in meta-analyses with IPD (Rubin, 1992). With the combined sample size from
multiple data sources, we may have enough precision to find a larger body of evidence
than a single-parameter summary of the intervention effect on the target population,
which is often encouraged in HTA. For example, practitioners and policymakers might
seek to identify specific subgroups within the target population who could either benefit
from or be harmed by the intervention, while the outcome and intervention information
is only available from existing clinical trials.

Parametric formulations of causal effect heterogeneity are useful in many clinical
settings thanks to their interpretability. In some applications, it may be reasonable to
describe effect heterogeneity in a semiparametric model where the CATE function 𝑒(𝑍)
is known up to a Euclidean parameter. In §S3.2 of the Supplementary Material, we
derive the efficient score of this parameter. In this section, we describe an alternative
finite-dimensional parameterization of effect heterogeneity related to CATE and present
an efficient estimation strategy.

For a subset of the baseline covariates 𝑦 ⇒ 𝑃 , consider the basis function

𝑧(𝛥) = {𝑧1 (𝛥), . . . ,𝑧𝑋 (𝛥)}T

with a fixed dimension 𝑥 ⊋ 1. A natural description of effect heterogeneity is the
projected CATE (Semenova and Chernozhukov, 2021; Cui et al., 2023), which is the
best approximation of the CATE 𝑒0 (𝑍) in the linear span of the basis 𝑧(𝛥). The function
𝛩

T
0𝑧(𝛥), where

𝛩0 → arg min
𝑌→R𝑁

𝑌0 [{𝑒0 (𝑃) ↑ 𝛩
T
𝑧(𝑦)}2 |𝑆 = 1],

is a low-dimensional characterization of the CATE in the nonparametric model in the
target population. If 𝑦 comprises only categorical variables and the basis 𝑧(𝛥) is
dummy variables, the coefficients in 𝛩0 reduce to subgroup-specific target population
ATEs (Wang et al., 2024b). Let ⇐𝛬⇐ denote the Euclidean norm of 𝛬 → R𝑋 . Under the
following assumption, 𝛩0 is uniquely identifiable.

Assumption 7 (Uniqueness). ⇐𝑧⇐ → 𝑡2 (𝑓0) and 𝑌0{𝑧⇑2 (𝑦) |𝑆 = 1} is invertible.

Proposition 2. Suppose Assumptions 3 and 7 hold. The efficient influence function
of 𝛩0 at 𝑓0 → P is
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𝑙
𝑌

𝑄0 (𝑚) =
[
𝑌0{𝑧⇑2 (𝑦) |𝑆 = 1}

]↑1
𝑧(𝛥)[

1 ↑ 𝑛

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

𝑖0 (𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 𝑛

𝑉0
{𝑒0 (𝑍) ↑ 𝛩

T
0𝑧(𝛥)}

]
.

The efficient influence function 𝑙
𝑌

𝑄0 motivates the crossfitted least-squares estimator

𝛩 =
{

1
𝑄1

∑

𝑁:𝑃𝐿=1
𝑧
⇑2 (𝑦𝑁)

}↑1{1
𝑄

∑

𝑅→ [𝑆 ]

∑

𝑁→I𝑀

𝑧(𝑦𝑁)𝑟𝑇̂𝑀 (𝑈𝑁)
}
.

Denote the support of 𝑦 in the target population by Z1. We have the following result
for 𝛩.

Theorem 2 (Asymptotic behavior). Suppose Assumptions 4 and 7 hold and that
sup

𝑍→Z1 ⇐𝑧(𝛥)⇐ ⫅̸ 𝑗 for a universal constant 𝑗 > 0. Then 𝛩

p↓ 𝛩0 under Assump-
tion 5a, and 𝛩 ↑ 𝛩0 = 𝑄

↑1 ∑𝑉

𝑁=1 𝑙̄
𝑌

𝑄̄
(𝑈𝑁) + 𝑚𝑈0 (𝑄↑1/2) under Assumption 5b.

A pointwise asymptotic (1↑ 𝑣)-confidence interval of 𝛩T
0𝑧(𝛥) for any 𝛥 → Z1 can be

constructed as

𝛩
T
𝑧(𝛥) ± 𝑄

↑1/2ϱ↑1 (1 ↑ 𝑣/2){𝑧T (𝛥)ε̂𝑌

𝑧(𝛥)}1/2
,

where we use the sandwich estimator

ε̂𝑌 =
{

1
𝑄1

∑

𝑁:𝑃𝐿=1
𝑧
⇑2 (𝑦𝑁)

}↑1 [1
𝑄

∑

𝑅→ [𝑆 ]

∑

𝑁→I𝑀

𝑧
⇑2 (𝑦𝑁)

{
𝑟𝑇̂𝑀 (𝑈𝑁) ↑

𝑆𝑁

𝑉̂

𝛩
T
𝑧(𝑦𝑁)

}2]

{
1
𝑄1

∑

𝑁:𝑃𝐿=1
𝑧
⇑2 (𝑦𝑁)

}↑1

of the asymptotic variance ε̄𝑌 = 𝑌0
{
(𝑙𝑌

𝑄̄
)⇑2} of 𝛩. We show its consistency in the

Supplementary Material §S2.
Under stronger regularity assumptions, we establish uniform inference of the pro-

jected CATE over Z1. Let 𝛯min (𝛱) and 𝛯max (𝛱) denote the mininum and maximum
eigenvalues of a matrix 𝛱 .

Assumption 8 (Bounded basis). There exist universal constants 𝑗 ⊋ 1 such that
𝑗

↑1 ⫅̸ inf𝑍→Z1 ⇐𝑧(𝛥)⇐ ⫅̸ sup
𝑍→Z1 ⇐𝑧(𝛥)⇐ ⫅̸ 𝑗 and 𝑗

↑1 ⫅̸ 𝛯min (ε̄𝑌) ⫅̸ 𝛯max (ε̄𝑌) ⫅̸ 𝑗.

Corollary 2 (Weak convergence). Suppose Assumptions 4, 5b, 7, and 8 hold. Then

𝑄
1/2

𝑧
T (𝛥) (𝛩 ↑ 𝛩0)

{𝑧T (𝛥)ε̂𝑌
𝑧(𝛥)}1/2

! T(𝛥) in 𝑟
↔ (Z1),

where 𝑟
↔ (Z1) is the space of bounded functions over Z1, and T(𝛥) is a mean-zero

Gaussian process over Z1 with covariance function

cov0{T(𝛥),T(𝛥↘)} =
𝑧

T (𝛥)ε̄𝑌
𝑧(𝛥↘)

{𝑧T (𝛥)ε̄𝑌𝑧(𝛥)}1/2{𝑧T (𝛥↘)ε̄𝑌
𝑧(𝛥↘)}1/2 .
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A uniform asymptotic (1 ↑ 𝑣)-confidence interval of 𝛩T
0𝑧(𝛥) is

𝛩
T
𝑧(𝛥) ± 𝑄

↑1/2
𝑢𝑎 (1 ↑ 𝑣){𝑧T (𝛥)ε̂𝑌

𝑧(𝛥)}1/2
,

where 𝑢𝑎 is the quantile function of 𝛴 = sup
𝑍→Z1 |T(𝛥) |, the supremum of the Gaussian

process over Z1. The distribution of 𝛴 depends on unknown nuisance parameters. In
practice, it can be approximated via Monte-Carlo methods, such as 𝛶-bootstrap (Belloni
et al., 2015) and multiplier bootstrap (Belloni et al., 2018).

5. Simulated data example

We consider 𝐿 = 3 source trials in the simulation study. The baseline covariates 𝑃 =
(𝑃1, 𝑃2, 𝑃3)T include three continuous measurements. Let 𝑃̃ = (1, 𝑃T)T. We generate
the observed data 𝑈 = {(1 ↑ 𝑆)𝑂 , (1 ↑ 𝑆)𝑁, 𝑃 , (1 ↑ 𝑆)𝑀,𝑆} sequentially as follows:

𝑃 ⇓ 2ϱ[Normal{(0, 0, 0)T
, ς}] ↑ 1,

𝑆 | 𝑃 ⇓ Bernoulli{expit(𝛷T
𝑏
𝑃̃)},

𝑀 | (𝑃 ,𝑆 = 0) ⇓ Multinomial{softmax(1, 𝛷T
𝐿1 𝑃̃ , 𝛷

T
𝐿2 𝑃̃)},

𝑁 | (𝑃 ,𝑀) ⇓ Bernoulli(𝑐𝑐),
𝑂 | (𝑁, 𝑃 ,𝑀) ⇓ Normal{𝑁𝑒(𝑃) + 𝑑(0, 𝑃 ,𝑀),𝛹2 (𝑃 ,𝑀)}.

where

ς = -.
/

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1



,

𝛷𝑏 = {↑ log 3, log(1.5), log(1.5), log(1.5)}T
,

𝛷𝐿1 = {log(1.5), log(1.5), log(1.5), log(1.5)}T
,

𝛷𝐿2 = {↑ log(0.75), log(0.75), log(0.75), log(0.75)}T
,

𝑐𝐿 = 𝑜 (𝑅 = 1)0.5 + 𝑜 (𝑅 = 2)0.4 + 𝑜 (𝑅 = 3)0.6,
𝑒(𝑍) = 1 + 0.5𝑍1 ↑ 0.2𝑍2 + 0.4𝑍3 + exp(0.3𝑍1) + sin(0.25𝑍2) + cos(0.5𝑍3),

𝑑(0, 𝑍, 𝑅) = 0.25𝑅 + 0.7𝑍1 ↑ 0.1𝑍2 ↑ 0.3𝑍3 + (𝑅 ↑ 2) (↑0.2𝑍1 + 0.2𝑍2 ↑ 0.1𝑍3),

and 𝛹
2 (𝑍, 𝑅) is to be specified later.

For simplicity, we work under the simplifying condition that the treatment assign-
ment probability is known in each source trial, which has no impact on the local semi-
parametric efficiency bound of the parameter 𝑋. We considered four estimators with
different weighting functions that share the form

𝑋• =
1
𝑄

5∑

𝑅=1

∑

𝑁→I𝑀

𝑟𝑇̂𝑀,• (𝑈𝑁),

where • → {oracle, overlap, constant, optimal}, the set of nuisance parameter estimates
𝑠𝑅,• includes {𝑖̂𝑅,•, 𝑒𝑅,•}, and the unnormalized weights are

𝑖̌𝑅,oracle (𝑍, 𝑅) = 𝛹
↑2 (𝑍, 𝑅)𝑐0 (1 | 𝑍, 𝑅)𝑐0 (0 | 𝑍, 𝑅),
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𝑖̌𝑅,overlap (𝑍, 𝑅) = 𝑐0 (1 | 𝑍, 𝑅)𝑐0 (0 | 𝑍, 𝑅),
𝑖̌𝑅,constant (𝑍, 𝑅) = 1,

and finally 𝑖̌𝑅,optimal corresponds to the strategy where the optimal weight is learned
through empirical risk minimization (6). The weight function 𝑖̌𝑅,oracle is the oracle
optimal weight function and is used as the benchmark. The weight 𝑖̌𝑅,overlap assumes
homoscedasticity of the outcome across source trials, and 𝑖̌𝑅,constant further ignores the
difference between propensity scores.

To evaluate the performance of the estimators under different weight functions, we
simulated data under three specifications of conditional variances of the outcome:

𝛹
2
1 (𝑍, 𝑅) = 1 + |𝑅 ↑ 2|, (setting 1)

𝛹
2
2 (𝑍, 𝑅) = 2[1 ↑ 0.5|𝑅 ↑ 2|+

{0.2𝑜 (𝑅 = 2) + 0.1𝑜 (𝑅 = 3)}(0.5𝑍T1 + 1.5)]↑1
,

(setting 2)

𝛹
2
3 (𝑍, 𝑅) = 1, (setting 3)

corresponding to homoscedastic error within each trial, trial-specific covariate-dependent
variance, and completely homoscedastic error, respectively. To investigate robustness
against model misspecifications, we computed the estimators under four scenarios: all
nuisance models are correctly specified (experiment 1), only 𝑑(𝑊, 𝑍, 𝑅) is misspecified
(experiment 2), only 𝑏 (𝑅 | 𝑍) and 𝑎(𝑍) are misspecified (experiment 3), and 𝑑(𝑊, 𝑍, 𝑅),
𝑏 (𝑅 | 𝑍), and 𝑎(𝑍) are misspecified (experiment 4). All nuisance models except the
propensity score were fitted with the super learner ensemble learning algorithm (van
der Laan et al., 2007), using random forest, generalized additive model, lasso, and the
null model as base learners. Model misspecifications were performed by replacing
the original 𝑃 with elementwise absolute values |𝑃 |. We simulated datasets of sizes
𝑄 → {1250, 2500}. For each sample size, we generated 1000 datasets. All estimators
were obtained with 5-fold crossfitting. The standard errors were computed by plugging
in the nuisance parameter estimates, including the weight functions.

For the target population ATE 𝑋, summary statistics calculated from the simulation
are displayed in Table 1 and Tables S1–S2 in the Supplementary Material. Under setting
1, the estimators have no Monte-Carlo bias except in experiment 4 when all nuisance
parameter models are misspecified. Under experiment 1 of no model misspecification,
the plug-in standard error estimates lead to the desired confidence interval coverage.
Results from settings 2–3 show similar conclusions, except in setting 3 with sample
size 𝑄 = 1250. The anomaly is attributed to occasional volatile behavior of super learn-
ing with sample splitting, resulting in inflated plug-in standard error estimates. We refer
to the summary statistics based on medians in Table S3. As expected in experiment 1,
the estimators 𝑋oracle and 𝑋optimal have lower Monte-Carlo mean squared errors com-
pared to the estimators 𝑋overlap and 𝑋constant in settings 1–2. No meaningful improvement
of the standard error using 𝑋oracle and 𝑋optimal was observed in setting 3. Similar evi-
dence was found in Table S4, where we calculated the proportion of plug-in standard
error estimates of 𝑋oracle and 𝑋optimal being smaller than that of 𝑋overlap and 𝑋constant. We
highlight the importance of crossfitting for nominal coverage of the confidence interval.
In Tables S5–S7, we show that in all settings, the plug-in standard error in experiment
1 underestimated the uncertainty of the estimator without crossfitting.

For comparison, we also computed the 5-fold crossfitted estimators 𝑋‡ and 𝑋
† that are

asymptotically efficient under alternative probability models P‡ and P†. The nuisance
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Table 1. Summary of simulation results for 𝑋 in setting 1 with crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.11 6.68 9.81 9.42 94.8

𝑑overlap 3.12 7.26 10.08 9.87 94.9
𝑑constant 3.12 7.30 10.06 9.85 94.9
𝑑optimal 3.11 6.54 10.04 9.60 94.6

2 𝑑oracle 3.09 ↑19.68 11.82 10.25 93.5
𝑑overlap 3.09 ↑21.12 12.79 10.54 93.7
𝑑constant 3.09 ↑20.89 12.67 10.51 93.6
𝑑optimal 3.09 ↑21.35 12.80 10.51 93.3

3 𝑑oracle 3.11 1.83 10.12 9.19 93.6
𝑑overlap 3.11 1.64 10.72 9.65 93.2
𝑑constant 3.11 1.80 10.66 9.62 92.8
𝑑optimal 3.11 1.59 10.57 9.37 93.6

4 𝑑oracle 2.96 ↑151.97 19.45 9.87 62.7
𝑑overlap 2.93 ↑172.82 22.06 10.16 56.1
𝑑constant 2.94 ↑170.43 21.75 10.12 57.0
𝑑optimal 2.95 ↑161.72 21.18 10.19 61.4

2500 1 𝑑oracle 3.12 7.30 6.60 6.49 95.3
𝑑overlap 3.12 8.18 6.84 6.81 95.0
𝑑constant 3.12 8.21 6.83 6.80 94.9
𝑑optimal 3.11 7.14 6.63 6.54 95.4

2 𝑑oracle 3.10 ↑5.62 7.53 7.07 93.4
𝑑overlap 3.10 ↑6.18 7.61 7.23 93.3
𝑑constant 3.10 ↑5.96 7.60 7.21 93.3
𝑑optimal 3.10 ↑5.70 7.55 7.10 92.8

3 𝑑oracle 3.11 3.05 6.62 6.29 94.9
𝑑overlap 3.11 3.31 7.00 6.60 93.7
𝑑constant 3.11 3.44 6.97 6.58 93.7
𝑑optimal 3.11 2.95 6.66 6.34 94.8

4 𝑑oracle 2.95 ↑153.11 16.81 6.73 38.7
𝑑overlap 2.93 ↑174.87 18.85 6.84 29.1
𝑑constant 2.94 ↑172.32 18.61 6.83 29.9
𝑑optimal 2.95 ↑158.23 17.32 6.82 38.2

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table 2. Summary of simulation results for 𝑋† and 𝑋
‡ in setting 1 with crossfitting.

𝑉 Estimator Mean Bias RMSE SE Coverage
1250 𝑑

† ↑0.01 ↑3113.81 311.39 8.43 0.0
𝑑
‡ 0.00 ↑3105.59 310.56 8.90 0.0

2500 𝑑
† ↑0.01 ↑3113.98 311.40 5.92 0.0

𝑑
‡ 0.00 ↑3105.55 310.56 6.26 0.0

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.

parameter 𝑑(𝑊, 𝑍) was estimated with super learning. The propensity score 𝑐(𝑊 | 𝑍)
appearing in 𝑋

‡ was estimated by 𝑐(𝑊 | 𝑍) =
∑

𝐿→ [𝑀] 𝑐(𝑊 | 𝑍, 𝑅)𝑏 (𝑅 | 𝑍). Specifically for
𝑋
†, the oracle was substituted for the weight function; that is, 𝑖†(𝑊, 𝑍, 𝑅) = 𝛹

↑2 (𝑍, 𝑅).
Summary statistics for these estimators can be found in Table 2 and Tables S8–S9 in the
Supplementary Material. The data generating mechanism here is compatible with the
testable implication (1) of the CATE transportability Assumption 2(v) in the observed
data distribution. However, stronger transportability assumptions discussed in §3.4 are
violated, so that estimators 𝑋† and 𝑋

‡ suffer from severe bias in this setting.
For the target population projected CATE, we chose 𝑦 = {𝑃1} and the cubic polyno-

mial basis 𝑧(𝑍1) = (1, 𝑍1, 𝑍
2
1, 𝑍

3
1)T. We computed the crossfitted least-squares estimator

𝛩• = (𝛩1,•, 𝛩2,•, 𝛩3,•, 𝛩4,•)T

with different weight functions. Summary statistics of individual 𝛩𝑒 ,• can be found in
Tables S10-S13 in the Supplementary Material, demonstrating the expected behaviors
of these estimators. Again for sample size 𝑄 = 1250 in setting 3, the behavior of the es-
timators under experiment 1 was surprising; see Table S14 for summary statistics based
on medians. We used 𝛶-bootstrap to approximate the 95%-quantile of the Gaussian pro-
cess supremum. In Table S15 in the Supplementary Material, we show that the 95%-
uniform confidence interval for the projected CATE 𝛩

T
𝑧(𝑍1) over 𝑍1 → [↑1, 1] achieves

the nominal coverage under experiment 1 with no model misspecification across all set-
tings.

6. Real data example

STEP-1 (ClinicalTrials.gov ID NCT03548935, Wilding et al., 2021) is a multicenter
randomized controlled trial comparing the weight loss effect of once-weekly semaglu-
tide, 2.4 mg to placebo in addition to a lifestyle intervention. The main inclusion criteria
of STEP-1 are body-mass index (BMI) of at least 30 (or at least 27 with weight-related
co-morbidities) and no diabetes. As an illustration of our method, we regroup the trial
data into four regions and take the study population recruited in the United States as the
target population. The three source populations are defined by the subjects recruited
from the European Union area (Belgium, Denmark, Finland, France, Germany, and
Poland), the United Kingdom, and East Asia (Japan and Taiwan). We choose the target
population based on the assumption that the demographic composition of the United
States is the most varied in these four regions.

The outcome 𝑂 is the percentage change in body weight from baseline (week 0) to
week 68. The target parameter is the ATE 𝑋 = 𝑌{𝑂 (1) ↑ 𝑂 (0) |𝑆 = 1} in the study
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population of STEP-1 recruited in the United States (𝑆 = 1) of semaglutide (𝑁 = 1)
versus placebo (𝑁 = 0). The analysis assumes cross-regional CATE transportability,
conditioning on appropriate baseline characteristics. The baseline covariates 𝑃 used
in the standardization are body weight, age, sex, BMI, waist circumference, smoking
status, diabetic history, and hemoglobin A1c. Note that the interpretation of the ATE
defined on the original scale of body weight and that defined on the change percentage
differ. However, the transportability assumption is the same for both scales, since the
baseline body weight is included in 𝑃 .

We perform a complete-case analysis where subjects with missing body weight mea-
surements at week 68 are removed. The percentage of missing outcomes and the num-
ber of complete cases per region are reported in Table 3. All nuisance parameters ex-
cept the propensity score are fitted with super learning, using gradient-boosted trees,
random forest, a generalized additive model, lasso, and the null model as base learn-
ers. The propensity score within each source region is computed as the proportion of
subjects receiving the active treatment. In particular, the outcome model is fitted on
each combination of treatment and source region, such that the conditional means of
the body weight change under the same treatment are allowed to vary freely across re-
gions. We computed three estimators for the transported ATE using constant weights
𝑋constant, the overlap weights 𝑋overlap, and the learned optimal weights 𝑋optimal. All esti-
mators were computed with 10-fold crossfitting, and plug-in standard errors were used
for the construction of 95%-confidence intervals.

The results are displayed in Table 4. Since outcome and treatment information is
directly available in the target population, we also report the augmented inverse prob-
ability weighting (AIPW) estimator 𝑋AIPW based only on the target population for ref-
erence. The transported ATE estimator with learned optimal weights 𝑋optimal gave a
weight reduction of 12.57 percentage points from baseline. The estimates 𝑋constant and
𝑋overlap both indicated a reduction of 12.75 percentage points up to rounding. These
two estimators are practically identical, since the overlap weights are nearly a constant
in a well-implemented multi-site clinical trial. The plug-in standard error of 𝑋optimal is
slightly higher than that of 𝑋overlap and 𝑋constant. However, this may be observed even
in situations where variance reduction should be expected; see Table S4 in the Supple-
mentary Material. The point estimates of the transported estimators roughly agree, and
they are about 0.5 percentage point higher than the estimate from the AIPW estima-
tor. Besides possible failure to account for all shifted effect modifiers, the discrepancy
between the point estimates 𝑋optimal and 𝑋AIPW may result from the deletion of miss-
ing observations, since patients’ adherence to treatment plans and dropout rates differ
among the regions.

The exact effect estimates given by the crossfitted estimators depend on the num-
ber of splits. In the sensitivty analysis, we compute the same estimators for the target
population ATE with 5-fold crossfitting, 2-fold crossfittting, and no crossfitting. The re-
sults are displayed in Table S16 of the Supplementary Material. The point estimates are
mostly similar to the preceding results. The standard errors of the transported estima-
tors increase as the number of crossfitting folds decreases. Notably, the plug-in standard
errors of the transported estimators without crossfitting appear much lower than those
obtained with crossfitting. On the other hand, the standard error of the AIPW estimator
of barely changes. See §S1 in the Supplementary Material for further discussions.

To investigate treatment effect heterogeneity in the study population from the United
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Table 3. Percentage of missing outcomes and complete cases by region.

US Europe UK Asia
Missing (%) 8.3 4.7 16.5 1.5
Complete (𝑓 ) 700 367 182 133

Table 4. Results for the target population ATE with 10-fold crossfitting.

Estimator Estimate Standard error 95%-confidence interval
𝑑overlap ↑12.75 0.73 (↑14.18, ↑11.32)
𝑑constant ↑12.75 0.73 (↑14.18, ↑11.31)
𝑑optimal ↑12.57 0.75 (↑14.03, ↑11.10)
𝑑AIPW ↑13.21 0.66 (↑14.50, ↑11.92)

States, we calculated three target population projected CATEs onto the basis formed
by baseline body weight, age, and BMI, respectively. In all cases, a polynomial basis
of order 3 was applied. The nuisance parameters were estimated identically as in the
estimation of the target population ATE, and only the estimated optimal weights were
used. The results are plotted in Fig. 1. The percentage reduction in body weight tends
to be smaller with a higher body weight at baseline, while there is no clear trend with
respect to BMI. The treatment effect is less pronounced for elder individuals up to
around 60 years old. We also observe a plateau of weight loss effect for those above 60,
but the estimated projected CATE shows much statistical uncertainty. The discrepancy
in sex is most striking, with females on average losing nearly 6.5 percentage points
more body weight from semaglutide than males.

The outcome scale is paramount to the interpretation of effect heterogeneity. In
the present example, the definition of the outcome, percentage change in body weight,
explicitly involves the body weight at baseline. Fig. S1 in the Supplementary Material
displays the target population projected CATE estimates using body weight at week
68 as the outcome. In contrast, the treatment effect under this outcome appears to
increase with both baseline body weight and BMI. An informed treatment decision
should preferably be based on multiple outcome scales of clinical value.

7. Discussion

In this work, we study efficient estimation of the target population ATE using multiple
data sources. CATE transportability allows for identifiability of the target parameter
but does not constrain the conditional counterfactual distributions nor the conditional
treatment-specific means across the sources. However, if the outcome is bounded, for
instance, binary or positive, the CATE transportability we assume induces potential
variational dependence in the counterfactual distributions. This is mostly innocuous
when the conditional effect size is small, but it may introduce undesired implicit as-
sumptions when the effect is large. A less important technical difficulty lies in the
study of the semiparametric efficiency bound when constraints on the model are not
explicitly stated.

Certain conditional effect measures do not suffer from this problem. However, not
all measures are suitable for transportability. As was pointed out by Colnet et al. (2023),
the causal odds ratio fails to disentangle the risk under placebo, even under a complete
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Figure 1. Target population projected CATE estimates onto baseline body weight, age, sex, and
BMI, respectively. For body weight, age, and BMI, the solid lines are estimates of the projected
CATE, while the pointwise and uniform 95%-confidence intervals are drawn with dashed lines
and shadow. For sex, the point estimates and 95%-confidence intervals are displayed as solid dots
and error bars. F: female; M: male.
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lack of treatment effect heterogeneity. Moreover, noncollapsibility of the odds ratio
leads to a mismatch between conditional and marginal effect measures. For positive
outcomes, transportability on the ratio between conditional treatment-specific means
presents a possibility. This assumption has been adopted for the estimation of target
population causal mean ratio from a single source population (Wang et al., 2024a).

When estimating the CATE, one strategy is to decompose the outcome regression
model as 𝑑(𝑊, 𝑍, 𝑅) = 𝑑(0, 𝑍, 𝑅) + 𝑊𝑒(𝑍) under the constraint in (1). For example,
the nuisance parameters 𝑑(0, 𝑍, 𝑅) and 𝑒(𝑍) can be jointly fitted to obtain an estimate of
CATE. In practice, we may be inclined to use a meta-learner for the estimation of CATE.
Shyr et al. (2024) proposed a multi-study R-learner precisely to leverage the overlap
between the study populations. The samples are given the same weight in the multi-
study R-learner, and it is not robust against the misspecification of nuisance models.
Inspired by the efficient influence function in (5), we give an intuitive construction for
the multi-study DR-learner by constructing pseudo-outcomes 𝑟𝑇̂ (𝑈𝑁) for observations
𝑈𝑁 with 𝑆𝑁 = 0. Regressing 𝑟𝑇̂ (𝑈𝑁) on 𝑃𝑁 with 𝑆𝑁 = 0 produces a fitted CATE. We leave
the investigation of finite sample performance of the multi-study DR-learner for future
work. An alternative line of work is higher-order meta-learners for CATE combining
ideas from the minimax rate results from Kennedy et al. (2024).
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S1. Further details on the simulated and the real data example

We used the implementation of super learning from R-package SuperLearner (Polley et al., 2024).
The base learners and their corresponding names in SuperLearner are the null model (SL.mean),
lasso (SL.glmnet), generalized additive model (SL.gam), random forest (SL.ranger), and gradient
boosting trees (SL.xgboost). Since SuperLearner does not support categorical outcome with more
than two levels, to estimate 𝑠, we fitted ensemble models 𝑠

𝑅
treating the binary indicator 𝑜 (𝑀 =

𝑅) as outcome for each 𝑅 → [𝐿]. To ensure the estimated probabilities summed up to 1, we used
the normalized average

𝑠
𝑅
(𝑅 | 𝑍) = 𝑠

𝑅
(𝑅 | 𝑍)∑

𝐿
↘ → [𝑀] 𝑠𝑅 (𝑅↘ | 𝑍)

.

The conditional means 𝑑̂
𝑅

were fitted separately for each combination of 𝑊 → {0, 1} and 𝑅 → [𝐿].
For the uniform confidence interval, we used 𝛶-bootstrap (Belloni et al., 2015) to approximate

the distribution of the Gaussian process supremum 𝛴 = sup
𝑍→Z |T(𝛥) |. We calculated the plug-

in estimate ε̂𝑌 of the covariance matrix ε𝑌 . In the simulation, the support of 𝑦 = {𝑃1} is
the compact set Z1 = [↑1, 1]. We used an equidistant grid Z̃1 of size 1000 to capture Z1.
Let {𝛷1, . . . , 𝛷𝑔} be 𝛺 = 1000 i.i.d. copies of a 4-dimensional normal random variable with
mean zero and identity covariance matrix. The dimension of the random noise should match
the dimension of the the cubic basis 𝑧(𝛥) = (1, 𝑍1, 𝑍1, 𝑍

3
1)

T. Then we simulated the Gaussian
supremum 𝛴 by

𝛴
𝑕
= max

𝑍→Z̃1

'''' 𝑧
T (𝛥) (ε̂𝑌)1/2

{𝑧T (𝛥)ε̂𝑌
𝑧(𝛥)}1/2 𝛷𝑕

''''
for 𝛻 → [𝛺], and the theoretical quantile 𝑢𝑎 (0.95) was approximated by the 95%-empirical
quantile of the sample {𝛴1, . . . ,𝛴𝑔}.
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For the estimation of the projected CATE in the real data example, we formed a cubic basis
of baseline body weight, age, and BMI after scaling these variables with 1/100, 1/50, and 1/50,
respectively. The inverse of the sample covariance matrix using the scaled variables was more
stable numerically compared to the inverse using raw variables. The projected CATE and the
associated confidence intervals were calculated and presented on the original scale.

In the simulation study, we saw that the plug-in standard error for the non-crossfitted esti-
mators underestimates their variability. We hypothesized that using nonparametric base learners
in super learning for certain nuisance parameters undermines consistency of the standard error
estimator. To investigate the impact of crossfitting on the plug-in standard error estimates of the
target population ATE in the real data example, we changed the base learners in super learning
for different combinations of nuisance parameters. Thus, we re-calculated the transported ATE
estimators replacing the full set of base learners above with only the null model and a generalized
linear model (SL.glm) for {𝑑}, {𝑠}, {𝑎}, {𝑑, 𝑠}, {𝑑, 𝑎}, {𝑠, 𝑎}, and {𝑑, 𝑠, 𝑎} in turn, keeping
the rest of the others unchanged. However, if the true nuisance parameters are not generalized
linear models, we should not expect the estimators to be asymptotically normal. Nevertheless,
the difference between the standard error estimates obtained with and without crossfitting may
still inform which nuisance parameters are responsible for under-estimating the standard error.

The results are displayed in Table S17. As commented in the main text, the weight functions in
the estimators 𝑋constant and 𝑋overlap do not change with the source population. Hence, the standard
errors for these two estimators do not depend on model specification for 𝑠. This partly explains
why the standard errors for the non-crossfitted estimators are particularly optimistic when we
used generalized linear models for {𝑠}. We are not able to single out any nuisance parameters
that can explain the under-estimation of the standard error. We notice a recurring pattern that the
estimator 𝑋optimal has just slightly higher plug-in standard errors than the other two estimators.
This observation suggests that the learned optimal weights might have been constant across the
source populations.

S2. Proofs

S2.1. Proof of Lemma 1

We start with the g-formula representation. We see that for all 𝑍 → X1 and 𝑅 → D𝑂

𝑌{𝑂 (1) ↑ 𝑂 (0) | 𝑃 = 𝑍,𝑆 = 1}
= 𝑌{𝑂 (1) ↑ 𝑂 (0) | 𝑃 = 𝑍,𝑀 = 𝑅}
= 𝑌{𝑂 (1) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌{𝑂 (0) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}
= 𝑌 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)
= 𝑑(1, 𝑍, 𝑅) ↑ 𝑑(0, 𝑍, 𝑅)
= 𝑒(𝑍).

The target parameter

𝑋 = 𝑌{𝑂 (1) ↑ 𝑂 (0) |𝑆 = 1} = 𝑌 [𝑌{𝑂 (1) ↑ 𝑂 (0) |𝑆 = 1, 𝑃} |𝑆 = 1] (Iterated expectation)
= 𝑌{𝑒(𝑃) |𝑆 = 1}.

Below we first show an inverse probability weighting representation via the identification formula
above. For any 𝑔(𝑍, 𝑅) such that 𝑌{𝑔(𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} = 1, we have

1
𝑉

𝑌

{ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃) 𝑔(𝑃 ,𝑀) 2𝑁 ↑ 1

𝑐(𝑁, 𝑃 ,𝑀)𝑂
}
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Table S1. Summary of simulation results for 𝑋 in setting 2 with crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.11 5.40 11.91 11.41 95.1

𝑑overlap 3.11 5.38 12.24 12.18 95.0
𝑑constant 3.11 5.46 12.21 12.13 95.1
𝑑optimal 3.11 5.91 12.35 11.66 94.4

2 𝑑oracle 3.09 ↑18.98 13.33 12.05 93.9
𝑑overlap 3.09 ↑21.00 15.30 12.76 94.4
𝑑constant 3.09 ↑20.79 15.13 12.69 94.2
𝑑optimal 3.09 ↑21.18 14.22 12.34 93.9

3 𝑑oracle 3.11 ↑2.53 12.05 11.36 94.2
𝑑overlap 3.10 ↑5.98 13.01 12.09 93.7
𝑑constant 3.10 ↑5.66 12.93 12.04 93.6
𝑑optimal 3.10 ↑2.85 12.59 11.55 93.8

4 𝑑oracle 2.97 ↑138.70 19.50 11.93 76.3
𝑑overlap 2.94 ↑172.23 24.30 12.62 68.1
𝑑constant 2.94 ↑169.86 23.95 12.55 68.7
𝑑optimal 2.96 ↑150.93 21.47 12.24 73.4

2500 1 𝑑oracle 3.12 7.70 7.99 7.86 95.1
𝑑overlap 3.12 8.58 8.42 8.43 94.8
𝑑constant 3.12 8.62 8.40 8.39 94.8
𝑑optimal 3.12 7.85 8.03 7.94 95.0

2 𝑑oracle 3.10 ↑4.18 8.77 8.33 94.0
𝑑overlap 3.10 ↑5.75 9.07 8.75 94.0
𝑑constant 3.10 ↑5.52 9.04 8.71 94.0
𝑑optimal 3.10 ↑4.73 8.81 8.41 93.8

3 𝑑oracle 3.11 2.25 8.02 7.83 95.2
𝑑overlap 3.11 1.12 8.88 8.36 93.5
𝑑constant 3.11 1.32 8.82 8.33 93.6
𝑑optimal 3.11 2.34 8.10 7.89 95.0

4 𝑑oracle 2.97 ↑137.98 16.16 8.20 60.8
𝑑overlap 2.93 ↑174.52 19.54 8.54 47.9
𝑑constant 2.94 ↑171.97 19.30 8.51 49.0
𝑑optimal 2.96 ↑147.72 17.06 8.29 57.5

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S2. Summary of simulation results for 𝑋 in setting 3 with crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.22 114.51 329.51 16.17 94.7

𝑑overlap 3.22 114.51 329.51 16.17 94.7
𝑑constant 3.22 112.07 321.81 15.99 94.5
𝑑optimal 3.20 95.09 271.40 14.85 94.6

2 𝑑oracle 3.09 ↑20.98 10.66 8.85 93.3
𝑑overlap 3.09 ↑20.98 10.66 8.85 93.3
𝑑constant 3.09 ↑20.75 10.59 8.83 93.3
𝑑optimal 3.09 ↑21.19 11.31 9.07 92.9

3 𝑑oracle 3.18 76.55 224.03 13.28 93.7
𝑑overlap 3.18 76.55 224.03 13.28 93.7
𝑑constant 3.18 74.58 217.57 13.12 94.0
𝑑optimal 3.17 60.85 177.07 12.23 93.1

4 𝑑oracle 2.93 ↑172.89 20.38 8.39 43.5
𝑑overlap 2.93 ↑172.89 20.38 8.39 43.5
𝑑constant 2.94 ↑170.50 20.11 8.38 44.4
𝑑optimal 2.94 ↑169.39 20.59 8.73 46.5

2500 1 𝑑oracle 3.11 7.14 5.65 5.56 95.0
𝑑overlap 3.11 7.14 5.65 5.56 95.0
𝑑constant 3.11 7.16 5.65 5.56 94.7
𝑑optimal 3.11 7.15 5.67 5.61 94.9

2 𝑑oracle 3.10 ↑6.97 6.55 6.09 91.9
𝑑overlap 3.10 ↑6.97 6.55 6.09 91.9
𝑑constant 3.10 ↑6.76 6.55 6.08 92.1
𝑑optimal 3.10 ↑6.03 6.55 6.11 92.0

3 𝑑oracle 3.11 3.77 5.69 5.37 94.2
𝑑overlap 3.11 3.77 5.69 5.37 94.2
𝑑constant 3.11 3.85 5.68 5.37 94.3
𝑑optimal 3.11 3.78 5.72 5.41 94.6

4 𝑑oracle 2.93 ↑175.59 18.51 5.68 13.3
𝑑overlap 2.93 ↑175.59 18.51 5.68 13.3
𝑑constant 2.93 ↑173.06 18.27 5.68 14.1
𝑑optimal 2.95 ↑162.82 17.35 5.84 22.6

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S3. Extra summary of simulation results for 𝑋 in setting 3 with 5-fold crossfitting and
sample size 𝑄 = 1250.

Experiment Estimator Median Bias MAD SE
1 𝑑oracle 3.11 4.32 5.40 7.96

𝑑overlap 3.11 4.32 5.40 7.96
𝑑constant 3.11 4.39 5.35 7.96
𝑑optimal 3.11 2.32 5.36 8.07

2 𝑑oracle 3.08 ↑26.55 6.21 8.63
𝑑overlap 3.08 ↑26.55 6.21 8.63
𝑑constant 3.08 ↑26.37 6.20 8.61
𝑑optimal 3.08 ↑28.52 6.13 8.80

3 𝑑oracle 3.11 1.58 5.48 7.71
𝑑overlap 3.11 1.58 5.48 7.71
𝑑constant 3.11 1.63 5.41 7.71
𝑑optimal 3.11 2.41 5.50 7.82

4 𝑑oracle 2.93 ↑176.63 5.69 8.13
𝑑overlap 2.93 ↑176.63 5.69 8.13
𝑑constant 2.93 ↑173.60 5.73 8.13
𝑑optimal 2.93 ↑173.08 5.71 8.41

Median: median of estimates; Bias: Monte-Carlo bias between median of estimates and truth, 10↑3; MAD:
median average deviation, 10↑2; SE: median of standard error estimates, 10↑2.

Table S4. Comparison of plug-in standard error estimates in simulations.

SEoracle SEoptimal
Setting 𝑉 SEconstant SEoverlap SEconstant SEoverlap
1 1250 99.2 99.2 90.3 91.3

2500 100.0 100.0 99.3 99.5
2 1250 99.7 99.8 95.8 96.8

2500 100.0 100.0 99.8 99.8
3 1250 61.2 100.0 10.2 9.6

2500 63.2 100.0 9.1 7.8

SE: standard error. Values represent the proportions (in percentages) of the upper standard error being
smaller than the lower standard error, such as SEoracle ⫅̸ SEconstant.
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Table S5. Summary of simulation results for 𝑋 in setting 1 without crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.10 ↑10.97 27.51 8.68 92.0

𝑑overlap 3.09 ↑13.50 35.75 9.19 92.3
𝑑constant 3.09 ↑13.61 36.30 9.19 92.4
𝑑optimal 3.10 ↑11.04 27.03 8.38 90.0

2 𝑑oracle 3.07 ↑42.75 11.28 8.84 87.1
𝑑overlap 3.06 ↑46.01 11.60 9.05 88.2
𝑑constant 3.06 ↑45.48 11.56 9.04 88.3
𝑑optimal 3.06 ↑50.58 11.81 8.43 84.9

3 𝑑oracle 3.09 ↑15.89 32.74 8.61 90.2
𝑑overlap 3.09 ↑20.26 44.07 9.15 90.7
𝑑constant 3.09 ↑20.26 44.58 9.15 90.7
𝑑optimal 3.09 ↑16.13 32.90 8.31 87.8

4 𝑑oracle 2.95 ↑162.37 19.01 8.49 50.6
𝑑overlap 2.92 ↑184.06 20.97 8.65 43.9
𝑑constant 2.93 ↑181.59 20.74 8.64 44.7
𝑑optimal 2.94 ↑171.11 19.94 8.11 42.9

2500 1 𝑑oracle 3.11 2.49 6.47 5.95 92.5
𝑑overlap 3.11 3.54 6.71 6.23 92.9
𝑑constant 3.11 3.57 6.71 6.22 92.9
𝑑optimal 3.11 2.84 6.48 5.81 92.2

2 𝑑oracle 3.09 ↑21.40 7.71 6.40 88.5
𝑑overlap 3.08 ↑23.09 7.86 6.55 89.2
𝑑constant 3.09 ↑22.68 7.83 6.53 89.1
𝑑optimal 3.08 ↑26.12 7.79 6.16 86.5

3 𝑑oracle 3.11 ↑0.85 6.57 5.80 92.5
𝑑overlap 3.11 ↑0.35 6.97 6.07 90.5
𝑑constant 3.11 ↑0.24 6.94 6.06 90.4
𝑑optimal 3.11 ↑0.44 6.59 5.65 91.2

4 𝑑oracle 2.95 ↑157.11 17.14 6.12 29.7
𝑑overlap 2.93 ↑178.71 19.17 6.22 21.5
𝑑constant 2.93 ↑176.20 18.93 6.21 22.2
𝑑optimal 2.95 ↑160.81 17.51 5.93 28.7

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S6. Summary of simulation results for 𝑋 in setting 2 without crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.09 ↑16.74 37.31 10.44 91.2

𝑑overlap 3.09 ↑19.89 49.04 11.29 91.6
𝑑constant 3.09 ↑20.07 49.81 11.27 91.4
𝑑optimal 3.09 ↑15.27 34.75 10.05 89.0

2 𝑑oracle 3.07 ↑40.56 12.74 10.43 89.3
𝑑overlap 3.06 ↑45.21 13.16 10.92 89.6
𝑑constant 3.06 ↑44.72 13.11 10.89 89.4
𝑑optimal 3.06 ↑46.18 13.07 9.97 86.3

3 𝑑oracle 3.08 ↑24.54 44.40 10.57 91.1
𝑑overlap 3.08 ↑31.77 60.63 11.47 89.9
𝑑constant 3.08 ↑31.74 61.34 11.44 89.8
𝑑optimal 3.08 ↑23.93 44.24 10.17 88.3

4 𝑑oracle 2.96 ↑149.38 19.05 10.33 65.8
𝑑overlap 2.92 ↑184.23 22.09 10.73 58.2
𝑑constant 2.93 ↑181.77 21.86 10.70 59.0
𝑑optimal 2.95 ↑159.20 19.99 9.83 60.2

2500 1 𝑑oracle 3.11 2.95 7.83 7.15 92.7
𝑑overlap 3.11 4.05 8.26 7.65 92.8
𝑑constant 3.11 4.09 8.24 7.62 92.9
𝑑optimal 3.11 3.58 7.85 6.98 91.8

2 𝑑oracle 3.09 ↑18.85 8.84 7.54 90.2
𝑑overlap 3.09 ↑21.70 9.22 7.91 90.8
𝑑constant 3.09 ↑21.31 9.18 7.88 90.8
𝑑optimal 3.09 ↑22.03 8.87 7.30 88.7

3 𝑑oracle 3.11 ↑1.58 7.93 7.16 92.4
𝑑overlap 3.11 ↑2.29 8.81 7.62 91.4
𝑑constant 3.11 ↑2.11 8.75 7.59 91.2
𝑑optimal 3.11 ↑0.95 8.00 6.95 91.5

4 𝑑oracle 2.97 ↑142.22 16.47 7.46 52.5
𝑑overlap 2.93 ↑178.14 19.81 7.74 38.3
𝑑constant 2.93 ↑175.62 19.57 7.71 39.1
𝑑optimal 2.96 ↑149.93 17.16 7.20 46.8

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S7. Summary of simulation results for 𝑋 in setting 3 without crossfitting.

𝑉 Experiment Estimator Mean Bias RMSE SE Coverage
1250 1 𝑑oracle 3.10 ↑10.02 27.62 7.61 92.1

𝑑overlap 3.10 ↑10.02 27.62 7.61 92.1
𝑑constant 3.10 ↑10.09 28.05 7.62 92.0
𝑑optimal 3.10 ↑8.31 22.03 7.26 91.0

2 𝑑oracle 3.06 ↑47.15 10.79 7.64 85.1
𝑑overlap 3.06 ↑47.15 10.79 7.64 85.1
𝑑constant 3.06 ↑46.59 10.72 7.64 85.0
𝑑optimal 3.05 ↑55.80 11.98 7.27 81.7

3 𝑑oracle 3.09 ↑14.07 34.02 7.57 90.8
𝑑overlap 3.09 ↑14.07 34.02 7.57 90.8
𝑑constant 3.09 ↑14.09 34.42 7.58 90.7
𝑑optimal 3.10 ↑12.39 28.50 7.22 89.0

4 𝑑oracle 2.92 ↑184.26 20.45 7.21 30.5
𝑑overlap 2.92 ↑184.26 20.45 7.21 30.5
𝑑constant 2.93 ↑181.80 20.21 7.21 31.5
𝑑optimal 2.93 ↑180.39 20.56 6.96 30.0

2500 1 𝑑oracle 3.11 2.58 5.53 5.14 93.0
𝑑overlap 3.11 2.58 5.53 5.14 93.0
𝑑constant 3.11 2.59 5.54 5.14 93.1
𝑑optimal 3.11 2.71 5.53 5.01 92.3

2 𝑑oracle 3.08 ↑24.59 6.92 5.53 87.0
𝑑overlap 3.08 ↑24.59 6.92 5.53 87.0
𝑑constant 3.08 ↑24.18 6.90 5.52 87.0
𝑑optimal 3.08 ↑29.26 7.05 5.29 85.3

3 𝑑oracle 3.11 0.16 5.64 4.98 91.7
𝑑overlap 3.11 0.16 5.64 4.98 91.7
𝑑constant 3.11 0.21 5.63 4.98 91.7
𝑑optimal 3.11 0.43 5.65 4.86 90.9

4 𝑑oracle 2.93 ↑179.60 18.87 5.17 8.4
𝑑overlap 2.93 ↑179.60 18.87 5.17 8.4
𝑑constant 2.93 ↑177.09 18.63 5.18 9.6
𝑑optimal 2.94 ↑166.13 17.63 5.07 13.3

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.

Table S8. Summary of simulation results for 𝑋† and 𝑋
‡ in setting 2 with crossfitting.

𝑉 Estimator Mean Bias RMSE SE Coverage
1250 𝑑

† ↑0.00 ↑3111.88 311.22 10.47 0.0
𝑑
‡ 0.00 ↑3105.80 310.59 11.25 0.0

2500 𝑑
† ↑0.00 ↑3111.75 311.19 7.32 0.0

𝑑
‡ 0.00 ↑3105.38 310.54 7.89 0.0

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S9. Summary of simulation results for 𝑋† and 𝑋
‡ in setting 3 with crossfitting.

𝑉 Estimator Mean Bias RMSE SE Coverage
1250 𝑑

† 0.00 ↑3105.60 310.56 7.06 0.0
𝑑
‡ 0.00 ↑3105.60 310.56 7.06 0.0

2500 𝑑
† 0.00 ↑3106.01 310.60 4.97 0.0

𝑑
‡ 0.00 ↑3106.01 310.60 4.97 0.0

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Figure S1. Body weight loss at week 68 conditional on baseline body weight, age, sex, and BMI, respectively.
For body weight, age, and BMI, the solid lines are estimates of the projected CATE, while the pointwise and
uniform 95%-confidence intervals are drawn with dashed lines and shadow. For sex, the point estimates and
95%-confidence intervals are displayed as solid dots and error bars. F: female; M: male.
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Table S10. Summary of simulation results for 𝛩1 in experiment 1.

Crossfitting Setting 𝑉 Estimator Mean Bias RMSE SE Coverage
5-fold 1 1250 𝑌1,oracle 3.00 6.70 14.43 13.19 94.6

𝑌1,overlap 3.00 5.39 14.52 13.86 94.0
𝑌1,constant 3.00 5.48 14.51 13.83 94.0
𝑌1,optimal 3.00 5.82 14.74 13.45 93.9

2500 𝑌1,oracle 3.01 10.26 8.61 8.96 95.2
𝑌1,overlap 3.01 10.85 9.17 9.46 95.8
𝑌1,constant 3.01 10.93 9.15 9.44 95.9
𝑌1,optimal 3.00 10.03 8.65 9.05 96.2

2 1250 𝑌1,oracle 3.00 8.60 18.40 16.52 94.4
𝑌1,overlap 3.00 6.94 18.32 17.69 94.3
𝑌1,constant 3.00 7.05 18.28 17.61 94.1
𝑌1,optimal 3.00 8.75 19.38 16.91 94.3

2500 𝑌1,oracle 3.01 11.76 10.80 11.25 95.3
𝑌1,overlap 3.01 11.82 11.72 12.13 96.3
𝑌1,constant 3.01 11.92 11.68 12.08 96.1
𝑌1,optimal 3.01 11.75 10.85 11.38 95.5

3 1250 𝑌1,oracle 2.76 ↑232.51 756.44 27.07 94.0
𝑌1,overlap 2.76 ↑232.51 756.44 27.07 94.0
𝑌1,constant 2.77 ↑226.90 738.80 26.71 94.0
𝑌1,optimal 2.80 ↑191.26 623.07 24.46 93.6

2500 𝑌1,oracle 3.00 9.40 7.22 7.47 95.5
𝑌1,overlap 3.00 9.40 7.22 7.47 95.5
𝑌1,constant 3.00 9.45 7.23 7.47 95.6
𝑌1,optimal 3.00 9.02 7.25 7.54 95.9

None 1 1250 𝑌1,oracle 2.99 ↑2.49 16.65 11.73 92.5
𝑌1,overlap 2.99 ↑1.19 17.33 12.46 92.1
𝑌1,constant 2.99 ↑1.11 17.46 12.45 91.9
𝑌1,optimal 2.99 ↑2.29 16.32 11.24 90.8

2500 𝑌1,oracle 3.00 6.38 8.37 8.13 94.3
𝑌1,overlap 3.00 7.09 8.92 8.57 94.5
𝑌1,constant 3.00 7.15 8.90 8.55 94.6
𝑌1,optimal 3.00 6.57 8.34 7.91 93.4

2 1250 𝑌1,oracle 3.00 0.65 19.23 14.64 92.3
𝑌1,overlap 3.00 1.25 22.12 15.90 92.5
𝑌1,constant 3.00 1.40 22.25 15.86 92.4
𝑌1,optimal 2.99 ↑1.72 15.98 13.92 90.9

2500 𝑌1,oracle 3.00 7.83 10.50 10.17 94.0
𝑌1,overlap 3.00 8.27 11.38 10.94 94.2
𝑌1,constant 3.00 8.34 11.34 10.90 94.5
𝑌1,optimal 3.00 8.46 10.48 9.89 93.2

3 1250 𝑌1,oracle 2.99 ↑1.38 13.96 9.92 91.7
𝑌1,overlap 2.99 ↑1.38 13.96 9.92 91.7
𝑌1,constant 2.99 ↑1.32 14.08 9.93 91.8
𝑌1,optimal 2.99 ↑2.09 12.67 9.39 91.1

2500 𝑌1,oracle 3.00 5.74 7.01 6.79 94.1
𝑌1,overlap 3.00 5.74 7.01 6.79 94.1
𝑌1,constant 3.00 5.78 7.01 6.79 94.2
𝑌1,optimal 3.00 5.92 6.97 6.59 93.2

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S11. Summary of simulation results for 𝛩2 in experiment 1.

Crossfitting Setting 𝑉 Estimator Mean Bias RMSE SE Coverage
5-fold 1 1250 𝑌2,oracle 0.95 15.96 40.87 38.90 95.0

𝑌2,overlap 0.96 21.22 41.93 40.96 95.0
𝑌2,constant 0.96 20.78 41.86 40.88 95.0
𝑌2,optimal 0.96 19.37 41.83 39.76 95.0

2500 𝑌2,oracle 0.94 ↑0.27 26.20 26.33 94.2
𝑌2,overlap 0.94 0.22 27.89 27.77 94.6
𝑌2,constant 0.94 0.35 27.83 27.72 94.6
𝑌2,optimal 0.94 0.38 26.33 26.59 94.8

2 1250 𝑌2,oracle 0.95 12.40 50.63 48.12 95.3
𝑌2,overlap 0.96 20.01 51.78 51.57 94.8
𝑌2,constant 0.96 19.50 51.63 51.35 94.8
𝑌2,optimal 0.95 15.94 52.29 49.25 94.9

2500 𝑌2,oracle 0.94 ↑1.36 32.55 32.77 94.0
𝑌2,overlap 0.94 ↑1.71 35.57 35.30 94.7
𝑌2,constant 0.94 ↑1.54 35.40 35.15 94.7
𝑌2,optimal 0.94 ↑0.14 32.86 33.14 94.6

3 1250 𝑌2,oracle 1.81 869.87 2727.18 90.97 94.7
𝑌2,overlap 1.81 869.87 2727.18 90.97 94.7
𝑌2,constant 1.79 849.83 2663.63 89.67 94.7
𝑌2,optimal 1.66 724.37 2246.26 81.29 95.8

2500 𝑌2,oracle 0.94 0.27 21.98 21.96 94.4
𝑌2,overlap 0.94 0.27 21.98 21.96 94.4
𝑌2,constant 0.94 0.35 21.97 21.96 94.5
𝑌2,optimal 0.94 1.24 22.08 22.17 94.3

None 1 1250 𝑌2,oracle 0.96 17.90 52.41 35.42 93.4
𝑌2,overlap 0.95 14.58 47.95 37.76 93.7
𝑌2,constant 0.95 14.37 48.29 37.76 93.6
𝑌2,optimal 0.96 19.67 48.91 33.85 92.7

2500 𝑌2,oracle 0.94 ↑1.26 24.92 23.81 93.2
𝑌2,overlap 0.94 ↑0.15 26.56 25.10 93.3
𝑌2,constant 0.94 ↑0.02 26.50 25.06 93.2
𝑌2,optimal 0.94 0.01 24.63 23.14 93.1

2 1250 𝑌2,oracle 0.95 7.47 48.76 43.82 93.5
𝑌2,overlap 0.95 9.68 55.11 47.83 93.5
𝑌2,constant 0.95 9.19 55.27 47.74 93.4
𝑌2,optimal 0.96 24.82 47.47 41.59 92.8

2500 𝑌2,oracle 0.94 ↑1.64 30.92 29.53 93.3
𝑌2,overlap 0.94 ↑1.22 33.85 31.75 93.2
𝑌2,constant 0.94 ↑1.06 33.70 31.63 93.2
𝑌2,optimal 0.94 ↑1.17 30.60 28.69 93.1

3 1250 𝑌2,oracle 0.95 12.43 40.58 30.17 93.7
𝑌2,overlap 0.95 12.43 40.58 30.17 93.7
𝑌2,constant 0.95 12.31 40.96 30.23 93.7
𝑌2,optimal 0.95 14.33 36.64 28.31 92.8

2500 𝑌2,oracle 0.94 ↑0.57 21.00 19.93 93.4
𝑌2,overlap 0.94 ↑0.57 21.00 19.93 93.4
𝑌2,constant 0.94 ↑0.49 20.99 19.93 93.4
𝑌2,optimal 0.94 0.75 20.68 19.33 93.0

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S12. Summary of simulation results for 𝛩3 in experiment 1.

Crossfitting Setting 𝑉 Estimator Mean Bias RMSE SE Coverage
5-fold 1 1250 𝑌3,oracle 0.01 ↑2.67 35.10 30.72 94.2

𝑌3,overlap 0.01 2.80 38.04 32.47 94.3
𝑌3,constant 0.01 2.65 37.88 32.40 94.3
𝑌3,optimal 0.01 ↑0.61 37.68 31.57 94.1

2500 𝑌3,oracle ↑0.00 ↑12.90 19.67 20.33 95.4
𝑌3,overlap ↑0.00 ↑12.22 20.79 21.48 95.9
𝑌3,constant ↑0.00 ↑12.35 20.75 21.43 95.7
𝑌3,optimal ↑0.00 ↑12.65 19.83 20.55 95.7

2 1250 𝑌3,oracle ↑0.00 ↑13.51 40.12 38.22 94.7
𝑌3,overlap 0.00 ↑9.41 41.61 40.95 94.9
𝑌3,constant 0.00 ↑9.47 41.48 40.78 94.9
𝑌3,optimal ↑0.00 ↑13.10 41.79 39.24 94.0

2500 𝑌3,oracle ↑0.00 ↑16.36 24.85 25.65 95.5
𝑌3,overlap ↑0.00 ↑14.15 26.61 27.61 95.8
𝑌3,constant ↑0.00 ↑14.33 26.51 27.50 95.7
𝑌3,optimal ↑0.00 ↑16.00 24.99 25.98 96.3

3 1250 𝑌3,oracle 1.37 1360.26 4266.54 116.66 94.1
𝑌3,overlap 1.37 1360.26 4266.54 116.66 94.1
𝑌3,constant 1.34 1328.58 4166.95 114.62 94.2
𝑌3,optimal 1.13 1120.81 3513.90 101.29 94.1

2500 𝑌3,oracle 0.00 ↑10.78 16.37 16.91 95.6
𝑌3,overlap 0.00 ↑10.78 16.37 16.91 95.6
𝑌3,constant 0.00 ↑10.89 16.38 16.91 95.7
𝑌3,optimal 0.00 ↑9.66 16.45 17.09 95.3

None 1 1250 𝑌3,oracle ↑0.02 ↑29.09 122.85 28.06 92.5
𝑌3,overlap ↑0.03 ↑42.86 154.62 29.99 92.3
𝑌3,constant ↑0.03 ↑43.52 157.16 30.00 92.4
𝑌3,optimal ↑0.02 ↑30.14 120.16 26.78 91.7

2500 𝑌3,oracle ↑0.00 ↑13.93 18.64 18.30 94.8
𝑌3,overlap ↑0.00 ↑13.27 19.65 19.30 94.8
𝑌3,constant ↑0.00 ↑13.36 19.61 19.27 94.8
𝑌3,optimal ↑0.00 ↑13.41 18.45 17.75 94.3

2 1250 𝑌3,oracle ↑0.05 ↑58.44 160.20 34.99 92.5
𝑌3,overlap ↑0.06 ↑72.11 210.91 38.31 92.7
𝑌3,constant ↑0.06 ↑73.22 214.39 38.26 92.6
𝑌3,optimal ↑0.03 ↑45.74 125.73 32.73 91.6

2500 𝑌3,oracle ↑0.00 ↑16.95 23.54 22.99 94.7
𝑌3,overlap ↑0.00 ↑15.39 25.13 24.70 94.3
𝑌3,constant ↑0.00 ↑15.50 25.04 24.60 94.4
𝑌3,optimal ↑0.01 ↑17.03 23.37 22.28 93.8

3 1250 𝑌3,oracle ↑0.02 ↑29.88 119.87 23.88 92.8
𝑌3,overlap ↑0.02 ↑29.88 119.87 23.88 92.8
𝑌3,constant ↑0.02 ↑30.34 121.85 23.93 92.8
𝑌3,optimal ↑0.01 ↑22.01 93.61 22.27 91.2

2500 𝑌3,oracle 0.00 ↑11.90 15.50 15.26 94.8
𝑌3,overlap 0.00 ↑11.90 15.50 15.26 94.8
𝑌3,constant ↑0.00 ↑11.97 15.51 15.26 95.0
𝑌3,optimal 0.00 ↑11.95 15.33 14.78 94.2

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S13. Summary of simulation results for 𝛩4 in experiment 1.

Crossfitting Setting 𝑉 Estimator Mean Bias RMSE SE Coverage
5-fold 1 1250 𝑌4,oracle 0.11 ↑18.93 67.05 61.31 95.7

𝑌4,overlap 0.10 ↑25.60 70.97 64.73 95.9
𝑌4,constant 0.10 ↑24.83 70.68 64.60 95.8
𝑌4,optimal 0.10 ↑23.87 71.00 62.91 95.4

2500 𝑌4,oracle 0.13 5.39 40.92 40.77 94.5
𝑌4,overlap 0.13 5.38 43.16 43.03 95.1
𝑌4,constant 0.13 5.12 43.06 42.95 95.1
𝑌4,optimal 0.13 4.14 41.10 41.19 94.8

2 1250 𝑌4,oracle 0.12 ↑5.75 77.51 75.23 95.9
𝑌4,overlap 0.11 ↑13.73 79.78 80.58 95.8
𝑌4,constant 0.11 ↑12.95 79.51 80.25 95.8
𝑌4,optimal 0.12 ↑8.64 80.28 77.15 95.6

2500 𝑌4,oracle 0.13 7.59 50.81 50.71 94.1
𝑌4,overlap 0.13 9.50 54.96 54.62 94.8
𝑌4,constant 0.13 9.15 54.70 54.40 94.8
𝑌4,optimal 0.13 6.59 51.40 51.34 94.9

3 1250 𝑌4,oracle ↑2.41 ↑2536.78 7955.51 219.02 96.0
𝑌4,overlap ↑2.41 ↑2536.78 7955.51 219.02 96.0
𝑌4,constant ↑2.35 ↑2477.96 7769.95 215.28 95.9
𝑌4,optimal ↑1.98 ↑2099.37 6552.01 190.95 95.7

2500 𝑌4,oracle 0.13 4.73 34.14 33.99 95.0
𝑌4,overlap 0.13 4.73 34.14 33.99 95.0
𝑌4,constant 0.13 4.56 34.13 34.00 95.1
𝑌4,optimal 0.13 3.47 34.36 34.35 94.6

None 1 1250 𝑌4,oracle 0.12 ↑6.78 169.19 56.09 94.5
𝑌4,overlap 0.14 18.10 196.45 59.84 94.3
𝑌4,constant 0.14 19.17 199.60 59.87 94.4
𝑌4,optimal 0.12 ↑7.30 161.31 53.40 93.4

2500 𝑌4,oracle 0.12 ↑1.27 38.39 36.69 93.7
𝑌4,overlap 0.12 ↑1.42 40.54 38.71 93.9
𝑌4,constant 0.12 ↑1.63 40.45 38.64 93.9
𝑌4,optimal 0.12 ↑3.39 37.89 35.60 93.1

2 1250 𝑌4,oracle 0.16 35.46 197.78 69.03 94.3
𝑌4,overlap 0.18 52.05 259.32 75.54 94.7
𝑌4,constant 0.18 53.98 263.47 75.44 94.9
𝑌4,optimal 0.13 2.73 120.05 64.33 93.5

2500 𝑌4,oracle 0.12 ↑0.63 47.56 45.49 93.8
𝑌4,overlap 0.12 0.71 51.51 48.90 93.7
𝑌4,constant 0.12 0.45 51.28 48.72 93.8
𝑌4,optimal 0.12 ↑0.58 46.93 44.10 93.1

3 1250 𝑌4,oracle 0.13 5.51 154.66 47.83 94.1
𝑌4,overlap 0.13 5.51 154.66 47.83 94.1
𝑌4,constant 0.13 6.19 157.16 47.94 94.1
𝑌4,optimal 0.12 ↑3.39 121.97 44.52 93.7

2500 𝑌4,oracle 0.12 ↑1.59 32.22 30.70 94.2
𝑌4,overlap 0.12 ↑1.59 32.22 30.70 94.2
𝑌4,constant 0.12 ↑1.74 32.21 30.71 93.9
𝑌4,optimal 0.12 ↑3.91 31.64 29.73 93.4

Mean: average of estimates; Bias: Monte-Carlo bias, 10↑3; RMSE: root mean squared error, 10↑2;
SE: average of standard error estimates, 10↑2; Coverage: 95% confidence interval coverage, %.
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Table S14. Extra summary of simulation results for 𝛩 in setting 3 and experiment 1 with 5-fold
crossfitting and sample size 𝑄 = 1250.

Estimator Median Bias MAD SE
𝑌1,oracle 3.00 3.21 6.92 10.72
𝑌1,overlap 3.00 3.21 6.92 10.72
𝑌1,constant 3.00 3.72 6.88 10.72
𝑌1,optimal 3.00 2.22 6.99 10.93
𝑌2,oracle 0.95 15.51 22.02 31.61
𝑌2,overlap 0.95 15.51 22.02 31.61
𝑌2,constant 0.95 15.10 22.26 31.63
𝑌2,optimal 0.96 21.56 21.85 32.20
𝑌3,oracle 0.01 ↑6.11 16.15 24.64
𝑌3,overlap 0.01 ↑6.11 16.15 24.64
𝑌3,constant 0.01 ↑6.30 16.15 24.65
𝑌3,optimal 0.01 ↑2.78 16.50 25.15
𝑌4,oracle 0.11 ↑14.50 33.47 49.20
𝑌4,overlap 0.11 ↑14.50 33.47 49.20
𝑌4,constant 0.11 ↑12.23 33.58 49.20
𝑌4,optimal 0.09 ↑36.00 33.73 50.30

Median: median of estimates; Bias: Monte-Carlo bias between median of estimates and truth, 10↑3; MAD:
median average deviation, 10↑2; SE: median of standard error estimates, 10↑2.

Table S15. 95%-uniform coverage of projected CATE in the simulation study.

Crossfitting
Setting 𝑉 Estimator 5-fold None
1 1250 𝑌oracle 94.3 88.4

𝑌overlap 93.1 88.8
𝑌constant 93.4 88.9
𝑌optimal 93.8 86.3

2500 𝑌oracle 94.8 91.7
𝑌overlap 94.6 91.4
𝑌constant 94.8 91.9
𝑌optimal 94.8 90.5

2 1250 𝑌oracle 94.1 88.7
𝑌overlap 92.9 89.4
𝑌constant 93.4 88.7
𝑌optimal 94.2 85.1

2500 𝑌oracle 94.7 91.2
𝑌overlap 94.7 91.3
𝑌constant 94.9 91.3
𝑌optimal 95.4 89.5

3 1250 𝑌oracle 93.5 89.3
𝑌overlap 93.5 89.0
𝑌constant 93.8 88.4
𝑌optimal 93.1 86.9

2500 𝑌oracle 94.4 92.1
𝑌overlap 94.4 91.9
𝑌constant 94.4 92.1
𝑌optimal 95.7 90.3
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Table S16. Results for the target population ATE with 5-fold crossfitting, 2-fold crossfitting, and
without crossfitting.

Crossfitting Estimator Estimate Standard error 95%-confidence interval
5-fold 𝑑overlap ↑13.02 0.72 (↑14.42, ↑11.62)

𝑑constant ↑13.02 0.72 (↑14.42, ↑11.61)
𝑑optimal ↑12.93 0.76 (↑14.41, ↑11.45)
𝑑AIPW ↑13.18 0.66 (↑14.47, ↑11.90)

2-fold 𝑑overlap ↑12.84 0.80 (↑14.41, ↑11.26)
𝑑constant ↑12.82 0.80 (↑14.39, ↑11.24)
𝑑optimal ↑12.69 0.89 (↑14.44, ↑10.94)
𝑑AIPW ↑13.19 0.66 (↑14.48, ↑11.90)

None 𝑑overlap ↑13.02 0.37 (↑13.75, ↑12.29)
𝑑constant ↑13.00 0.37 (↑13.74, ↑12.27)
𝑑optimal ↑12.92 0.35 (↑13.61, ↑12.24)
𝑑AIPW ↑13.21 0.65 (↑14.48, ↑11.94)

=
1
𝑉

𝑌

{ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃) 𝑔(𝑃 ,𝑀) 2𝑁 ↑ 1

𝑐(𝑁, 𝑃 ,𝑀) 𝑑(𝑁, 𝑃 ,𝑀)
}

=
1
𝑉

𝑌

[ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃) 𝑔(𝑃 ,𝑀){𝑑(1, 𝑃 ,𝑀) ↑ 𝑑(0, 𝑃 ,𝑀)}

]

=
1
𝑉

𝑌

{ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃) 𝑔(𝑃 ,𝑀)𝑒(𝑃)

}

=
1
𝑉

𝑌

{ (1 ↑ 𝑆)𝑎(𝑃)
1 ↑ 𝑎(𝑃) 𝑒(𝑃)

}

=
1
𝑉

𝑌{𝑎(𝑃)𝑒(𝑃)}

= 𝑌{𝑒(𝑃) |𝑆 = 1}.

The alternative representation in the lemma is immediate.

S2.2. Proof of Lemma 2

Let 𝑡0
2 (𝑓0) denote the space of mean-zero 𝑡2 (𝑓0)-functions. Consider the linear subspace of

𝑡
0
2 (𝑓0)

⇔P = ⇔P𝑖 ↖ ⇔P𝑗 ↖ ⇔P
𝐿
↖ ⇔P𝑏 ↖ ⇔P𝑂 ,

where ϑ1 ↖ ϑ2 denotes the direct sum of the spaces ϑ1 and ϑ2, and

⇔P𝑖 =
{
(1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0,
𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 ,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 ,𝑀 = 𝑅} =
𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 ,𝑀 = 𝑅

↘} ↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 ,𝑀 = 𝑅
↘}
}
,

⇔P𝑗 =
{
(1 ↑ 𝑛)𝑔(𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝑁, 𝑃 ,𝑀) | 𝑃 ,𝑀} = 0

}
,

⇔P
𝐿
=
{
(1 ↑ 𝑛)𝑔(𝑅, 𝑍) : 𝑌0{𝑔(𝑀, 𝑃) | 𝑃 ,𝑆 = 0} = 0

}
,

⇔P𝑏 =
{
𝑔(𝑛, 𝑍) : 𝑌0{𝑔(𝑆, 𝑃) | 𝑃} = 0

}
,

⇔P𝑂 =
{
𝑔(𝑍) : 𝑌0{𝑔(𝑃)} = 0

}
.

The proof of Lemma 2 consists of two parts. In the first part (Lemma S1), we show the
orthocomplement of the space ⇔P and how to calculate the projection of functions in ⇔P𝑖 onto this
space. In the second part (Lemma 2), we show that ⇔P is exactly the tangent space of the model
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Table S17. Sensitivity analysis for the target population ATE with 10-fold crossfitting and without
crossfitting.

Model Crossfitting Estimator Estimate Standard error 95%-confidence interval
𝑘 10-fold 𝑑overlap ↑12.81 0.73 (↑14.25, ↑11.38)

𝑑constant ↑12.80 0.73 (↑14.24, ↑11.37)
𝑑optimal ↑12.73 0.74 (↑14.18, ↑11.27)

None 𝑑overlap ↑12.96 0.47 (↑13.88, ↑12.04)
𝑑constant ↑12.94 0.47 (↑13.86, ↑12.02)
𝑑optimal ↑12.94 0.45 (↑13.81, ↑12.06)

𝑇 10-fold 𝑑overlap ↑12.77 0.72 (↑14.19, ↑11.35)
𝑑constant ↑12.76 0.72 (↑14.18, ↑11.34)
𝑑optimal ↑12.70 0.75 (↑14.17, ↑11.23)

None 𝑑overlap ↑12.99 0.35 (↑13.67, ↑12.30)
𝑑constant ↑12.97 0.35 (↑13.66, ↑12.28)
𝑑optimal ↑12.82 0.34 (↑13.49, ↑12.15)

𝑙 10-fold 𝑑overlap ↑12.80 0.70 (↑14.17, ↑11.43)
𝑑constant ↑12.80 0.70 (↑14.17, ↑11.42)
𝑑optimal ↑12.72 0.72 (↑14.12, ↑11.32)

None 𝑑overlap ↑12.98 0.51 (↑13.99, ↑11.98)
𝑑constant ↑12.97 0.51 (↑13.98, ↑11.96)
𝑑optimal ↑12.85 0.49 (↑13.82, ↑11.89)

𝑘, 𝑇 10-fold 𝑑overlap ↑12.76 0.72 (↑14.18, ↑11.34)
𝑑constant ↑12.75 0.73 (↑14.17, ↑11.33)
𝑑optimal ↑12.68 0.75 (↑14.15, ↑11.22)

None 𝑑overlap ↑12.96 0.46 (↑13.87, ↑12.05)
𝑑constant ↑12.94 0.46 (↑13.85, ↑12.04)
𝑑optimal ↑12.95 0.45 (↑13.83, ↑12.07)

𝑘, 𝑙 10-fold 𝑑overlap ↑12.85 0.70 (↑14.21, ↑11.48)
𝑑constant ↑12.84 0.70 (↑14.21, ↑11.47)
𝑑optimal ↑12.80 0.71 (↑14.19, ↑11.42)

None 𝑑overlap ↑12.90 0.65 (↑14.18, ↑11.61)
𝑑constant ↑12.88 0.65 (↑14.16, ↑11.60)
𝑑optimal ↑12.94 0.62 (↑14.16, ↑11.72)

𝑇, 𝑙 10-fold 𝑑overlap ↑12.78 0.70 (↑14.15, ↑11.42)
𝑑constant ↑12.78 0.70 (↑14.15, ↑11.41)
𝑑optimal ↑12.81 0.73 (↑14.25, ↑11.38)

None 𝑑overlap ↑12.96 0.51 (↑13.95, ↑11.96)
𝑑constant ↑12.94 0.51 (↑13.94, ↑11.94)
𝑑optimal ↑12.88 0.48 (↑13.82, ↑11.94)

𝑘, 𝑇, 𝑙 10-fold 𝑑overlap ↑12.82 0.70 (↑14.18, ↑11.46)
𝑑constant ↑12.81 0.70 (↑14.18, ↑11.44)
𝑑optimal ↑12.82 0.71 (↑14.20, ↑11.44)

None 𝑑overlap ↑12.88 0.65 (↑14.16, ↑11.60)
𝑑constant ↑12.87 0.66 (↑14.15, ↑11.58)
𝑑optimal ↑12.89 0.64 (↑14.15, ↑11.63)

Model: the model(s) changed from using all base learners to using only the null model and a generalized
linear model.
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P at 𝑓0 under the local regularity conditions (Assumption 3), and the construction of the tangent
space depends on the projection results from Lemma S1.

Lemma S1. The linear space

ϑ =
{
(1 ↑ 𝑛) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝑥(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} : 𝑌0{𝑥(𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} = 0

}

is the orthocomplement of ⇔P in 𝑡
0
2 (𝑓0). Moreover, it is also the orthocomplement of ⇔P𝑖 in

⇔̃P𝑖 = {(1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0}.

Proof. It is trivial to see that ϑ ⇒ ⇔̃P𝑖 . Hence, ϑ is orthogonal to ⇔P• for • → {𝑊, 𝑅, 𝑛, 𝑍},
because ⇔̃P𝑖 is orthogonal to ⇔P• by the decomposition of the Hilbert space 𝑡

0
2 (𝑓0). To prove the

lemma, we need to show that any element in ϑ is orthogonal to all elements in ⇔P𝑖 . For any

𝛯𝑋 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛) 2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

𝑥(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} → ϑ,

𝑟
𝑚
(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) → ⇔P𝑖 ,

their inner product is

↙𝛯𝑋 (𝑂 , 𝑁, 𝑃 ,𝑀,𝑆), 𝑟
𝑚
(𝑂 , 𝑁, 𝑃 ,𝑀,𝑆)∝

𝑛2 (𝑈0 )

= 𝑌0

[
(1 ↑ 𝑆) 2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) 𝑥(𝑃 ,𝑀){𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}𝑔(𝑂 , 𝑁, 𝑃 ,𝑀)
]

= 𝑌0

[
(1 ↑ 𝑆) 2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) 𝑥(𝑃 ,𝑀)𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀)
]

= 𝑌0

[
(1 ↑ 𝑆) 2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) 𝑥(𝑃 ,𝑀)𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀}
]
,

and if we integrate over 𝑁 and 𝑀 conditionally on 𝑆 = 0 and 𝑃 inside the outermost expectation,
the inner product is

= 𝑌0

[
(1 ↑ 𝑆)

∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑃)𝑥(𝑃 , 𝑅)𝛼

𝑚
(𝑃)

]
,

where 𝛼
𝑚
(𝑍) = 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 =

𝑍,𝑀 = 𝑅} does not depend on the value of 𝑅, so

= 𝑌0
[
(1 ↑ 𝑆)𝛼

𝑚
(𝑃)𝑌0{𝑥(𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}

]
= 0.

It follows that ϑ ′ ⇔P , or equivalently stated, ϑ ⇒ ⇔P′.
Every element 𝑟

𝑚
= (1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) → ⇔̃P𝑖 can be written as

𝑟
𝑚
= φ{𝑟

𝑚
|ϑ} + φ{𝑟

𝑚
|ϑ′}.

Since the space 𝑡
0
2 (𝑓0) decomposes as the direct sum

⇔̃P𝑖 ↖ ⇔P𝑗 ↖ ⇔P
𝐿
↖ ⇔P𝑏 ↖ ⇔P𝑂 ,

to prove the lemma, it remains to show that φ{𝑟
𝑚
|ϑ′} → ⇔P𝑖 .

To this end, we proceed to derive the projected space φ{ ⇔̃P𝑖 |ϑ′}. Before doing so, consider
the larger linear subspace

ϑ̃ =
{
(1 ↑ 𝑛) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝛽 (𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} : 𝛽 (𝑍, 𝑅) arbitrary

}
⇒ 𝑡

0
2 (𝑓0).
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For any function 𝛽 (𝑍, 𝑅), the projection of

𝛯̃𝑜 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛) 2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

𝛽 (𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} → ϑ̃

onto the subspace ϑ is

φ{𝛯̃𝑜 |ϑ} = (1 ↑ 𝑛) 2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

[
𝛽 (𝑍, 𝑅) ↑ 𝑖0 (𝑍, 𝑅)

𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}

]

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}.

The legitimacy of the projection can be established by checking for every 𝛯𝑋 → ϑ, the inner
product

↙𝛯̃𝑜 ↑ φ{𝛯̃𝑜 |ϑ}, 𝛯𝑋 (𝑂 , 𝑁, 𝑃 ,𝑀,𝑆)∝
𝑛2 (𝑈0 )

= 𝑌0

[
(1 ↑ 𝑆) {𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}2

{𝑐0 (𝑁 | 𝑃 ,𝑀)}2 𝑖0 (𝑃 ,𝑀) 𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} 𝑥(𝑃 ,𝑀)

]

= 𝑌0

[
(1 ↑ 𝑆) 𝑕0 (𝑁, 𝑃 ,𝑀)

{𝑐0 (𝑁 | 𝑃 ,𝑀)}2 𝑖0 (𝑃 ,𝑀) 𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} 𝑥(𝑃 ,𝑀)

]

= 𝑌0

[
(1 ↑ 𝑆) 𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}

𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} 𝑥(𝑃 ,𝑀)
]

= 𝑌0

[
(1 ↑ 𝑆) 𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}

𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0} 𝑌0{𝑥(𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}
]

= 0,

and that indeed

𝑌0

[
𝛽 (𝑃 ,𝑀) ↑ 𝑖0 (𝑃 ,𝑀) 𝑌0{𝛽 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}

𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 ,𝑆 = 0}

'''' 𝑃 ,𝑆 = 0
]
= 0.

Take an arbitrary element 𝑟
𝑚
→ ⇔̃P𝑖 . Then suppose the projection onto ϑ̃ is

φ{𝑟
𝑚
| ϑ̃} = (1 ↑ 𝑛) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝛽
𝑚
(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)},

so that 𝛽
𝑚
(𝑍, 𝑅) fulfills the equation

𝑌0

(
2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) {𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}
[
𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) ↑ 2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) 𝛽𝑚 (𝑃 ,𝑀){𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}
] '''' 𝑃 ,𝑀

)
= 0.

Direct calculation yields the solution

𝛽
𝑚
(𝑍, 𝑅) = 𝑖0 (𝑍, 𝑅)

[
𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅}
↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}

]
= 𝑖0 (𝑍, 𝑅){cov0 (𝑂 , 𝑔 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ cov0 (𝑂 , 𝑔 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)}.

Then further projecting φ{𝑟
𝑚
| ϑ̃} onto ϑ, we determine that

φ{𝑟
𝑚
|ϑ} = (1 ↑ 𝑛) 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝑥
𝑚
(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)},
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where
𝑥
𝑚
(𝑍, 𝑅) = 𝛽

𝑚
(𝑍, 𝑅) ↑ 𝑖0 (𝑍, 𝑅)

𝑌0{𝛽𝑚 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0} .

In the following, we verify that

φ{𝑟
𝑚
|ϑ′} = (1 ↑ 𝑛)

[
𝑔(𝑘, 𝑊, 𝑍, 𝑅) ↑ 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝑥
𝑚
(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

]
,

where
𝛾
𝑚
(𝑘, 𝑊, 𝑍, 𝑅) = 𝑔(𝑘, 𝑊, 𝑍, 𝑅) ↑ 2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
𝑥
𝑚
(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)},

is indeed an element of ⇔P𝑖 . It is trivial that 𝑌0{𝛾𝑚 (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0. Furthermore,

𝑌0{𝑂𝛾𝑚 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝛾𝑚 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}
= 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}

↑ 𝑥
𝑚
(𝑍, 𝑅)

∑

𝑗→{0,1}

𝑌0 [𝑂 {𝑂 ↑ 𝑑0 (𝑊, 𝑃 ,𝑀)} | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅]
𝑐0 (𝑊 | 𝑍, 𝑅)

= 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}

↑ 𝑥
𝑚
(𝑍, 𝑅)

𝑖0 (𝑍, 𝑅)

=
𝑌0{𝛽𝑚 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}

is constant in the level of 𝑅. This ascertains that φ{𝑟
𝑚
|ϑ′} → ⇔P𝑖 , and the proof is complete ⫆̸

Proof of Lemma 2. The observed data distribution is

𝛿0 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛) =
[
𝛿0 (𝑘 | 𝑊, 𝑍, 𝑅)𝑐0 (𝑊 | 𝑍, 𝑅)𝑏0 (𝑅 | 𝑍){1 ↑ 𝑎0 (𝑍)}

] (1↑𝑏) {𝑎0 (𝑍)}𝑏𝛿0 (𝑍).

Describing the structure of the maximal tangent space. We claim that the tangent space of
the model P at 𝑓0 is ⇔P . To see that the tangent space must have this structure, we consider an
arbitrary, smooth one-dimensional submodel {𝑓𝑝} ⇒ P such that 𝑓𝑝 |𝑝=0 = 𝑓0, whose score
function at 𝑓0 is

d
d𝜀

𝛿𝑝 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛)
''''
𝑝=0

𝛿0 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛)
= 𝑔(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) → 𝑡

0
2 (𝑓0).

By the structure of the observed data density, the score function must be decomposable as the
sum

𝑔(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛){𝑔(𝑘, 𝑊, 𝑍, 𝑅) + 𝑔(𝑊, 𝑍, 𝑅) + 𝑔(𝑅, 𝑍)} + 𝑔(𝑛, 𝑍) + 𝑔(𝑍)
such that

𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅} = 0,
𝑌0{𝑔(𝑁, 𝑃 ,𝑀) | 𝑃 = 𝑍,𝑀 = 𝑅} = 0,

𝑌0{𝑔(𝑀, 𝑃) | 𝑃 = 𝑍,𝑆 = 0} = 0,
𝑌0{𝑔(𝑆, 𝑃) | 𝑃 = 𝑍} = 0,

𝑌0{𝑔(𝑃)} = 0.

The restriction on the tangent space ⇔P𝑖 comes from the conditional moment restriction on the
observed data distribution that 𝑌0 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌0 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅) =
𝑌0 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅

↘) ↑ 𝑌0 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅
↘), i.e.ˆ

𝑘

{
𝛿0 (𝑘 | 1, 𝑍, 𝑅) ↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅)

}
d𝑘 =

ˆ
𝑘

{
𝛿0 (𝑘 | 1, 𝑍, 𝑅↘) ↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅↘)

}
d𝑘,



41

for any 𝑅, 𝑅
↘ → D𝑂 . Differentiating both sides of the equationˆ

𝑘

{
𝛿𝑝 (𝑘 | 1, 𝑍, 𝑅) ↑ 𝛿𝑝 (𝑘 | 0, 𝑍, 𝑅)

}
d𝑘 =

ˆ
𝑘

{
𝛿𝑝 (𝑘 | 1, 𝑍, 𝑅↘) ↑ 𝛿𝑝 (𝑘 | 0, 𝑍, 𝑅↘)

}
d𝑘,

with respect to 𝜀, we have that
ˆ

𝑘

{
𝛿0 (𝑘 | 1, 𝑍, 𝑅)𝑔(𝑘, 𝑁 = 1, 𝑍,𝑀 = 𝑅) ↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅)𝑔(𝑘, 𝑁 = 0, 𝑍,𝑀 = 𝑅)

}
d𝑘

=
ˆ

𝑘

{
𝛿0 (𝑘 | 1, 𝑍, 𝑅↘)𝑔(𝑘, 𝑁 = 1, 𝑍,𝑀 = 𝑅

↘) ↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅↘)𝑔(𝑘, 𝑁 = 0, 𝑍,𝑀 = 𝑅
↘)
}
d𝑘,

or equivalently, defining 𝜁
𝑚
(𝑊, 𝑍, 𝑅) = 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅},

𝜁
𝑚
(1, 𝑍, 𝑅) ↑ 𝜁

𝑚
(0, 𝑍, 𝑅) = 𝜁

𝑚
(1, 𝑍, 𝑅↘) ↑ 𝜁

𝑚
(0, 𝑍, 𝑅↘). (S1)

We also have 𝛼
𝑚
(𝑍) = 𝜁

𝑚
(1, 𝑍, 𝑅) ↑ 𝜁

𝑚
(0, 𝑍, 𝑅) for any 𝑍 → X and 𝑅 → D𝑂 .

Constructing the maximal tangent space. We now show that we can construct parametric
submodels, so that the closed linear span of the scores of these submodels is exactly ⇔P . The
construction of ⇔P• is standard for • → {𝑊, 𝑍, 𝑅, 𝑛} and omitted here. To construct the tangent
subspace ⇔P𝑖 , we only need to find parametric submodels whose score functions form a dense
subset of ⇔P𝑖 . For any 𝑟

𝑚
= (1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) → ⇔P𝑖 , consider the bounded version

𝑟
𝑚,𝑞

(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛)
[
𝑔𝑞 ↑ 𝑌0{𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}

]
→ ⇔̃P𝑖 ,

where 𝑔𝑞 = 𝑔𝑜 ( |𝑔| ⫅̸ 𝛱), for some finite 𝛱 . Then because 𝑟
𝑚,𝑞

→ ⇔̃P𝑖 , its projection onto ⇔P𝑖

is its projection onto ϑ′. Following the proof of Lemma S1, this is

𝑟
′
𝑚,𝑞

(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = φ{𝑟
𝑚,𝑞

| ⇔P𝑖} = φ{𝑟
𝑚,𝑞

|ϑ′}

= (1 ↑ 𝑛)
[
{𝑔𝑞 ↑ 𝑌0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}

↑ 2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

𝑥
𝑚,𝑞

(𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}
]
, (S2)

where

𝛽
𝑚,𝑞

(𝑍, 𝑅) = 𝑖0 (𝑍, 𝑅)
[
cov𝑈0 (𝑂 , 𝑔𝑞 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅)

↑ cov𝑈0 (𝑂 , 𝑔𝑞 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)
]
,

𝑥
𝑚,𝑞

(𝑍, 𝑅) = 𝛽
𝑚,𝑞

(𝑍, 𝑅) ↑ 𝑖0 (𝑍, 𝑅)
𝑌0{𝛽𝑚,𝑞 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0} .

To simplify presentation, for sequences (𝑊𝑉) and (𝛻𝑉), we write 𝑊𝑉 ⫋ 𝛻𝑉 if there is a universal
constant 𝑗 > 0 such that 𝑊𝑉 ⫅̸ 𝑗𝛻𝑉. From Assumption 3, we bound the following quantities:

|𝛽
𝑚,𝑞

(𝑍, 𝑅) | ⫅̸ 𝑖0 (𝑍, 𝑅)
∑

𝑗→{0,1}
𝑕

1/2
0 (𝑊, 𝑍, 𝑅){var𝑈0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}1/2

⫅̸ 𝑖0 (𝑍, 𝑅)
∑

𝑗→{0,1}
𝑕

1/2
0 (𝑊, 𝑍, 𝑅){𝑌0 (𝑔2

𝑞
| 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}1/2

⫋ 1, (S3)

so that |𝑥
𝑚,𝑞

(𝑍, 𝑅) | ⫋ 1 and |𝑟′
𝑚,𝑞

| ⫋ 1 is bounded by some constant dependent on 𝛱 . Then
consider the parametric submodel {𝑓𝑝 (𝑔,𝛱) : 𝜀 → ν} with density

𝛿𝑝 (𝑘, 𝑊, 𝑍, 𝑅, 𝑛) =
[
𝛿𝑝 (𝑘 | 𝑊, 𝑍, 𝑅)𝛿𝑝 (𝑊 | 𝑍, 𝑅)𝛿𝑝 (𝑅 | 𝑍)

] (1↑𝑏)
𝛿𝑝 (𝑛 | 𝑍)𝛿𝑝 (𝑍),
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with

𝛿𝑝 (𝑘 | 𝑊, 𝑍, 𝑅) = 𝛿0 (𝑘 | 𝑊, 𝑍, 𝑅){1 + 𝜀𝑟
′
𝑚,𝑞

(𝑘, 𝑍, 𝑊, 𝑅, 0)},

𝛿𝑝 (𝑊 | 𝑍, 𝑅) =
𝜂{𝜀𝑔(𝑊, 𝑍, 𝑅)}𝑐0 (𝑊 | 𝑍, 𝑅)∑
𝑗
↘ 𝜂{𝜀𝑔(𝑊↘, 𝑍, 𝑅)}𝑐0 (𝑊↘ | 𝑍, 𝑅)

,

𝛿𝑝 (𝑅 | 𝑍) = 𝜂{𝜀𝑔(𝑅, 𝑍)}𝑏0 (𝑅 | 𝑍)∑
𝐿
↘ 𝜂{𝜀𝑔(𝑅↘, 𝑍)}𝑏0 (𝑅↘ | 𝑍)

,

𝛿𝑝 (𝑛 | 𝑍) =
𝜂{𝜀𝑔(𝑛, 𝑍)}{𝑎0 (𝑍)}𝑏{1 ↑ 𝑎0 (𝑍)}(1↑𝑏)∑

𝑏
↘ 𝜂{𝜀𝑔(𝑛↘, 𝑍)}{𝑎0 (𝑍)}𝑏↘ {1 ↑ 𝑎0 (𝑍)}(1↑𝑏↘ ) ,

𝛿𝑝 (𝑍) =
𝜂{𝜀𝑔(𝑍)}𝛿0 (𝑍)´

𝜂{𝜀𝑔(𝑍↘)}𝛿0 (𝑍↘)d𝑍↘
,

and

𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅} = 0,
𝑌0{𝑔(𝑁, 𝑃 ,𝑀) | 𝑃 = 𝑍,𝑀 = 𝑅} = 0,

𝑌0{𝑔(𝑀, 𝑃) | 𝑃 = 𝑍,𝑆 = 0} = 0,
𝑌0{𝑔(𝑆, 𝑃) | 𝑃 = 𝑍} = 0,

𝑌0{𝑔(𝑃)} = 0,

where 𝜂(𝑍) = 2{1 + exp(↑2𝑍)}↑1 (see, for example, Bickel et al., 1993, p. 53), ν is an open
neighborhood around 0 such that 𝛿𝑝 (𝑚) ⊋ 0. Such a set ν exists because 𝑟

′
𝑚,𝑞

is bounded. We
verify that {𝑓𝑝 (𝑔,𝛱) : 𝜀 → ν} ⇒ P . It is obvious that 𝑓0 (𝑔,𝛱) = 𝑓0. Additionally, for any
𝑍 → X1 and 𝑅, 𝑅

↘ → D𝑂 ,

𝑌𝑈𝑂 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌𝑈𝑂 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)
= 𝑌𝑈𝑂 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅

↘) ↑ 𝑌𝑈𝑂 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅
↘), (S4)

because

𝑌𝑈𝑂 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌𝑈𝑂 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)
= {𝑌0 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌0 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)}

+ 𝜀{𝑌0 (𝑂𝑟′𝑚,𝑞 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌0 (𝑂𝑟′𝑚,𝑞 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)}

is a quantity not depending on 𝑅.
Furthermore, {𝑟′

𝑚,𝑞
: 𝑟

𝑚
→ ⇔P𝑖 ,𝛱 < ↔} is dense in ⇔P𝑖 in the 𝑡2 (𝑓0)-sense, which we show

below. We bound the 𝑡2 (𝑓0)-distance between 𝑟
𝑚

and 𝑟
′
𝑚,𝑞

by

⇐𝑟
𝑚
↑ 𝑟

′
𝑚,𝑞

⇐𝑈0 ⫅̸ ⇐ (1 ↑ 𝑆) (𝑔 ↑ 𝑔𝑞 )⇐𝑈0 (S5)

+ ⇐ (1 ↑ 𝑆)𝑌0 (𝑔𝑞 | 𝑁, 𝑃 ,𝑀)⇐𝑈0 (S6)

+
(1 ↑ 𝑆) 2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀) 𝑥𝑚,𝑞 (𝑃 ,𝑀){𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}

𝑈0

. (S7)

We argue that every term in the display above tends to zero as 𝛱 tends to infinity. The limit of
the norm (S5) is zero because bounded functions are dense in 𝑡2 (𝑓0). We have |𝑔𝑞 | ⫅̸ |𝑔|, so by
dominated convergence, lim𝑞↓↔ 𝑌0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅) = 0, because lim𝑞↓↔ 𝑔𝑞 = 𝑔

and 𝑌0 (𝑔 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅) = 0 by definition. Since

{𝑌0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}2 ⫅̸ 𝑌0 (𝑔2
𝑞

| 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)
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⫅̸ 𝑌0 (𝑔2 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅),

𝑓0-almost surely and (1↑ 𝑛)𝑔 → 𝑡2 (𝑓0), dominated convergence now shows that lim
𝑞∞↔ ⇐ (1↑

𝑆)𝑌0 (𝑔𝑞 | 𝑁, 𝑃 ,𝑀)⇐𝑈0 = 0, so the limit of (S6) is zero.
Since

|{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}{𝑔𝑞 ↑ 𝑌0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}|
⫋ |𝑔𝑞 | + 𝑌0 ( |𝑔𝑞 | | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅) | ⫋ |𝑔| + 𝑌0 ( |𝑔| | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

and the rightmost function is integrable with respect to 𝑓0 (𝑂 | 𝑁, 𝑃 ,𝑀), 𝑓0 (𝑁, 𝑃 ,𝑀 |𝑆 = 0)-
almost surely, we have

lim
𝑞∞↔

cov𝑈0 (𝑂 , 𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅) = 𝑌0 (𝑂𝑔 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

from lim
𝑞∞↔{𝑔𝑞 ↑ 𝑌0 (𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)} = 𝑔. Then we have

lim
𝑞∞↔

𝑌0{𝛽𝑚,𝑞 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0} = 𝛼
𝑚
(𝑍)𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}. (S8)

Moreover,

𝛽
2
𝑚,𝑞

(𝑍, 𝑅) = 𝑖
2
0 (𝑍, 𝑅) [cov𝑈0 (𝑂 , 𝑔𝑞 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅)

↑ cov𝑈0 (𝑂 , 𝑔𝑞 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅)]2

⫋
∑

𝑗→{0,1}
cov2

𝑈0
(𝑂 , 𝑔𝑞 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

⫅̸
∑

𝑗→{0,1}
𝑕0 (𝑊, 𝑍, 𝑅)𝑌0 (𝑔2

𝑞
| 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

⫋
∑

𝑗→{0,1}
𝑌0 (𝑔2 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

⫋
∑

𝑗→{0,1}
𝑐0 (𝑊 | 𝑍, 𝑅)𝑌0 (𝑔2 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)

= 𝑌0 (𝑔2 | 𝑃 = 𝑍,𝑀 = 𝑅),

so that

𝑥
2
𝑚,𝑞

(𝑍, 𝑅) =
[
𝛽
𝑚,𝑞

(𝑍, 𝑅) + 𝑖0 (𝑍, 𝑅)
𝑌0{𝛽𝑚,𝑞 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}

]2

⫅̸ 2𝛽2
𝑚,𝑞

(𝑍, 𝑅) + 2𝑖2
0 (𝑍, 𝑅)

[
𝑌0{𝛽𝑚,𝑞 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖0 (𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}

]2

⫋ 𝑌0 (𝑔2 | 𝑃 = 𝑍,𝑀 = 𝑅) + 𝑌0{𝛽2
𝑚,𝑞

(𝑃 ,𝑀) | 𝑃 = 𝑍,𝑆 = 0}

⫋ 𝑌0 (𝑔2 | 𝑃 = 𝑍,𝑀 = 𝑅) + 𝑌0 (𝑔2 | 𝑃 = 𝑍,𝑆 = 0) → 𝑡1 (𝑓0).

Expression (S7) can be bounded by 𝑈 (⇐ (1 ↑ 𝑆)𝑥
𝑚,𝑞

(𝑃 ,𝑀)⇐𝑈0 ). Another application of domi-
nated convergence yields lim

𝑞∞↔ ⇐ (1 ↑ 𝑆)𝑥
𝑚,𝑞

(𝑃 ,𝑀)⇐𝑈0 = 0, because by (S8),

lim
𝑞∞↔

𝑥
2
𝑚,𝑞

(𝑍, 𝑅) =


lim
𝑞∞↔

𝑥
𝑚,𝑞

(𝑍, 𝑅)
2

= 0,

so the limit of (S7) is zero. The denseness follows from lim
𝑞∞↔ ⇐𝑟

𝑚
↑ 𝑟

′
𝑚,𝑞

⇐𝑈0 = 0 for any
𝑟
𝑚
→ ⇔P𝑖 .
Therefore, the closed linear span of {𝑟′

𝑚,𝑞
: 𝑟

𝑚
→ ⇔P𝑖 ,𝛱 < ↔} is exactly ⇔P𝑖 .
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Calculating the pathwise derivative. We next compute the pathwise derivative of 𝑋𝑝 , the
target parameter on 𝑓𝑝 , along the submodel {𝑓𝑝 : 𝜀 → ν} at 𝑓0. To express the target parameter
as a function of only the observed data and its density, we notice that

𝑋𝑝 = 𝑌𝑈𝑂 {𝑒𝑝 (𝑃) |𝑆 = 1}

=
1
𝑉𝑝

ˆ
𝑒𝑝 (𝑍)𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

=
1
𝑉𝑝

ˆ ∑

𝐿→ [𝑀]
𝑏𝑝 (𝑅 | 𝑍)𝑒𝑝 (𝑍)𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

=
1
𝑉𝑝

ˆ ∑

𝐿→ [𝑀]
𝑏𝑝 (𝑅 | 𝑍){𝑑𝑝 (1, 𝑍, 𝑅) ↑ 𝑑𝑝 (0, 𝑍, 𝑅)}𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

=
1
𝑉𝑝

ˆ ∑

𝐿→ [𝑀]
𝑏𝑝 (𝑅 | 𝑍)

ˆ
𝑘{𝛿𝑝 (𝑘 | 1, 𝑍, 𝑅) ↑ 𝛿𝑝 (𝑘 | 0, 𝑍, 𝑅)}d𝑘𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍.

The pathwise derivative of 𝑋𝑝 evaluated at the true model is

d
d𝜀

𝑋𝑝

''''
𝑝=0

=
d
d𝜀

´ ∑
𝐿→ [𝑀] 𝑏𝑝 (𝑅 | 𝑍)

´
𝑘{𝛿𝑝 (𝑘 | 1, 𝑍, 𝑅) ↑ 𝛿𝑝 (𝑘 | 0, 𝑍, 𝑅)}d𝑘𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍´

𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

''''
𝑝=0

,

which by the product rule is

=
1
𝑉0

d
d𝜀

ˆ ∑

𝐿→ [𝑀]
𝑏𝑝 (𝑅 | 𝑍)

ˆ
𝑘{𝛿𝑝 (𝑘 | 1, 𝑍, 𝑅) ↑ 𝛿𝑝 (𝑘 | 0, 𝑍, 𝑅)}d𝑘𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

''''
𝑝=0

↑ 𝑋0
𝑉0

d
d𝜀

ˆ
𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)d𝑍

''''
𝑝=0

=
1
𝑉0

ˆ ∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑍)

ˆ
𝑘

(
d
d𝜀

{𝛿0 (𝑘 | 1, 𝑍, 𝑅; 𝜀) ↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅; 𝜀)}
''''
𝑝=0

)

d𝑘𝑎0 (𝑍)𝛿0 (𝑍)d𝑍

(S9)

+ 1
𝑉0

ˆ
d
d𝜀

∑

𝐿→ [𝑀]
𝑏𝑝 (𝑅 | 𝑍)

''''
𝑝=0

𝑒0 (𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍 (S10)

+ 1
𝑉0

ˆ
𝑒0 (𝑍)

(
d
d𝜀

𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)
''''
𝑝=0

)
d𝑍 (S11)

↑ 𝑋0
𝑉0

ˆ (
d
d𝜀

𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)
''''
𝑝=0

)
d𝑍. (S12)

We study the expressions separately. We have

(S9) =
1
𝑉0

ˆ ∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑍)

ˆ
𝑘

{
𝛿0 (𝑘 | 1, 𝑍, 𝑅)𝑔(𝑘, 𝑁 = 1, 𝑍,𝑀 = 𝑅)

↑ 𝛿0 (𝑘 | 0, 𝑍, 𝑅)𝑔(𝑘, 𝑁 = 0, 𝑍,𝑀 = 𝑅)
}
d𝑘𝑎0 (𝑍)𝛿0 (𝑍)d𝑍

=
1
𝑉0

ˆ ∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑍)𝛼

𝑚
(𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍

=
1
𝑉0

ˆ
𝛼
𝑚
(𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍,
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(S10) =
1
𝑉

ˆ (
d
d𝜀

1
''''
𝑝=0

)
𝑒0 (𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍 = 0.

We observe that

d
d𝜀

𝑎𝑝 (𝑍)𝛿𝑝 (𝑍)
''''
𝑝=0

= 𝑎0 (𝑍)𝛿0 (𝑍){𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)},

and therefore

(S11) + (S12) =
1
𝑉0

ˆ
{𝑒0 (𝑍) ↑ 𝑋0}𝑎0 (𝑍)𝛿0 (𝑍){𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)}d𝑍.

Collecting the terms, the pathwise derivative is

d
d𝜀

𝑋𝑝

''''
𝑝=0

=
1
𝑉0

ˆ
𝛼
𝑚
(𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍 +

1
𝑉0

ˆ
{𝑒0 (𝑍) ↑ 𝑋0}𝑎0 (𝑍)𝛿0 (𝑍){𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)}d𝑍

Finding the efficient influence function. We claim that the efficient influence function of 𝑋0 in
the model P is as displayed in Lemma 2.

The inner product of 𝑙𝑄0 and any score 𝑔(𝑚) → ⇔P of the model P at 𝑓0 is

𝑌0{𝑙𝑄0 (𝑈)𝑔(𝑈)}

= 𝑌0

[ (1 ↑ 𝑆) (2𝑁 ↑ 1)𝑎0 (𝑃)
𝑉0𝑐0 (𝑁 | 𝑃 ,𝑀){1 ↑ 𝑎0 (𝑃)}

𝑖0 (𝑃 ,𝑀)∑
𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

{𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}𝑔(𝑂 , 𝑁, 𝑃 ,𝑀)
]

(S13)

+ 𝑌0

[
𝑆

𝑉0
{𝑒0 (𝑃) ↑ 𝑋0}{𝑔(𝑆, 𝑃) + 𝑔(𝑃)}

]
. (S14)

Since the score 𝑔(𝑘, 𝑊, 𝑍, 𝑅) must satisfy 𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0, it follows that

(S13) = 𝑌0

{ (1 ↑ 𝑆) (2𝑁 ↑ 1)𝑎0 (𝑃)
𝑉0𝑐0 (𝑁 | 𝑃 ,𝑀){1 ↑ 𝑎0 (𝑃)}

𝑖0 (𝑃 ,𝑀)∑
𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀)
}

= 𝑌0

[ (1 ↑ 𝑆) (2𝑁 ↑ 1)𝑎0 (𝑃)
𝑉0𝑐0 (𝑁 | 𝑃 ,𝑀){1 ↑ 𝑎0 (𝑃)}

𝑖0 (𝑃 ,𝑀)∑
𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

𝜁
𝑚
(𝑁, 𝑃 ,𝑀)

]

= 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

𝑖0 (𝑃 ,𝑀)∑
𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

{𝜁
𝑚
(1, 𝑃 ,𝑀) ↑ 𝜁

𝑚
(0, 𝑃 ,𝑀)}

]

= 𝑌0

{ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

𝛼
𝑚
(𝑃)𝑌0

(
𝑖0 (𝑃 ,𝑀)∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

'''' 𝑃 ,𝑆 = 0
)}

= 𝑌0

{ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

𝛼
𝑚
(𝑃)

}

= 𝑌0

{
𝑎0 (𝑃)
𝑉0

𝛼
𝑚
(𝑃)

}

=
1
𝑉0

ˆ
𝛼
𝑚
(𝑍)𝑎0 (𝑍)𝛿0 (𝑍)d𝑍.

On the other hand, we have

(S14) = 𝑌0

[
𝑆

𝑉0
{𝑒0 (𝑃) ↑ 𝑋0}{𝑔(𝑆, 𝑃) + 𝑔(𝑃)}

]

=
1
𝑉0

ˆ
{𝑒0 (𝑍) ↑ 𝑋0}{𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)}𝑎0 (𝑍)𝛿0 (𝑍)d𝑍.
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Therefore, it is clear that

𝑌0{𝑙𝑄0 (𝑈)𝑔(𝑈)} = (S13) + (S14) =
d
d𝜀

𝑋𝑝

''''
𝑝=0

,

so 𝑙𝑄0 is an influence function. To show that 𝑙𝑄0 is the efficient influence function, it remains
to verify that 𝑙𝑄0 lies in the tangent space ⇔P .

The function 𝑙𝑄0 can be decomposed into the sum

𝑙𝑄0 (𝑚) = (1 ↑ 𝑛)𝑔∈ (𝑘, 𝑊, 𝑍, 𝑅) + 𝑔
∈ (𝑛, 𝑍) + 𝑔

∈ (𝑍),

where

𝑔
∈ (𝑘, 𝑊, 𝑍, 𝑅) = (2𝑊 ↑ 1)𝑎0 (𝑍)

𝑉0𝑐0 (𝑊 | 𝑍, 𝑅){1 ↑ 𝑎0 (𝑍)}
𝑖0 (𝑍, 𝑅)∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)},

𝑔
∈ (𝑛, 𝑍) = 𝑛 ↑ 𝑎0 (𝑍)

𝑉0
{𝑒0 (𝑍) ↑ 𝑋0},

𝑔
∈ (𝑍) = 𝑎0 (𝑍)

𝑉0
{𝑒0 (𝑍) ↑ 𝑋0}.

It is trivial to verify that 𝑌0{𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0, 𝑌0{𝑔∈ (𝑆, 𝑃) | 𝑃} = 0, as well as
𝑌0{𝑔∈ (𝑃)} = 0, so 𝑔

∈ (𝑆, 𝑃) → ⇔P𝑏 and 𝑔
∈ (𝑃) → ⇔P𝑂 . Now for any 𝑅 → D𝑂 ,

𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}
= 𝑌0 [{𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅]

↑ 𝑌0 [{𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅]

=
𝑎0 (𝑍)

𝑉0{1 ↑ 𝑎0 (𝑍)}
𝑖0 (𝑍, 𝑅)∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

{
𝑕0 (1, 𝑍, 𝑅)
𝑐0 (1 | 𝑍, 𝑅) +

𝑕0 (0, 𝑍, 𝑅)
𝑐0 (0 | 𝑍, 𝑅)

}

=
𝑎0 (𝑍)

𝑉0{1 ↑ 𝑎0 (𝑍)}
1∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

,

which does not depend on the value of 𝑅. This shows that

𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅}
= 𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅

↘}↑𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅
↘},

for any 𝑅, 𝑅
↘ → D𝑂 , and thus (1 ↑ 𝑛)𝑔∈ (𝑘, 𝑊, 𝑍, 𝑅) → ⇔P𝑖 . ⫆̸

S2.3. Proof of Corollary 1

The first part of Corollary 1 is a direct result from the proof of Lemma 2. To prove the second
part of Corollary 1, note that the space of the influence functions of the parameter 𝑋0 can be char-
acterized by the translation 𝑙𝑄0 + ⇔P′, where 𝑙𝑄0 is the efficient influence function in Lemma 2.
Therefore, if we choose

𝜃𝑄̃ (𝑚) = (1 ↑ 𝑛)𝑎0 (𝑍)
𝑉0{1 ↑ 𝑎0 (𝑍)}

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅){

𝑖̃(𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̃(𝑍, 𝑅↘) ↑

𝑖0 (𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖0 (𝑍, 𝑅↘)

}
{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)},

for 𝑖̃ as stated in Corollary 1, then 𝜃𝑄̃ → ⇔P′, and 𝑙̃ = 𝑙𝑄0 + 𝜃𝑄̃ is an influence function of 𝑋0.
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S2.4. Proof of Theorem 1

We quote a lemma from Kennedy (2024). For any function 𝑤 of the data and 𝑞 → [𝑝], let

P
𝑉,𝑅

𝑤 =
𝑝

𝑄

∑

𝑁→I𝑀

𝑤 (𝑈𝑁).

Lemma S2. Let 𝑤
𝑅

be a random function which only depends on the sample O↑𝑅 = {𝑈𝑁 :
𝑇 ϖ I

𝑅
}. Then (P

𝑉,𝑅
↑ 𝑓0) 𝑤𝑅 = 𝑈𝑈0 (𝑄↑1/2⇐ 𝑤

𝑅
⇐𝑈0 ).

Proof. By the Markov inequality conditional on O↑𝑅 , for 𝛶 > 0,

pr
{ | (𝑄/𝑝)1/2 (P

𝑉,𝑅
↑ 𝑓0) 𝑤𝑅 |2

⇐ 𝑤
𝑅
⇐2
𝑈0

⊋ 𝛶

'''' O↑𝑅

}
⫅̸

𝑓0 ( 𝑤𝑅 ↑ 𝑓0 𝑤𝑅)2

𝛶⇐ 𝑤
𝑅
⇐2
𝑈0

⫅̸
1
𝛶

.

Marginally, we have pr{|(𝑄/𝑝)1/2 (P
𝑉,𝑅

↑ 𝑓0) 𝑤𝑅 |/⇐ 𝑤𝑅 ⇐𝑈0 ⊋ 𝛶
1/2} ⫅̸ 𝛶

↑1. Therefore, we also
have | (𝑄/𝑝)1/2 (P

𝑉,𝑅
↑ 𝑓0) 𝑤𝑅 |/⇐ 𝑤𝑅 ⇐𝑈0 = 𝑈𝑈0 (1), and the lemma follows, since 𝑝 does not

depend on 𝑄. ⫆̸

Define

𝑟𝑇̄ (𝑚) =
1 ↑ 𝑛

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

𝑖̄(𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)} +
𝑛

𝑉0
𝑒0 (𝑍),

𝑟
𝑇̂𝑀 (𝑚) =

1 ↑ 𝑛

𝑉̂

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̂
𝑅
(𝑍, 𝑅)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
2𝑊 ↑ 1

𝑐
𝑅
(𝑊 | 𝑍, 𝑅) {𝑘 ↑ 𝑑̂

𝑅
(𝑊, 𝑍, 𝑅)}

+ 𝑛

𝑉̂

𝑒
𝑅
(𝑍).

Lemma S3. If Assumption 4 is satisfied, then ⇐𝑟
𝑇̂𝑀 ⇐𝑈0 = 𝑈𝑈0 (1) for every 𝑞 → [𝑝].

Proof. Let

𝜄
𝑅
(𝑊, 𝑍, 𝑅) = 𝑎̂

𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̂
𝑅
(𝑍, 𝑅)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
1

𝑐
𝑅
(𝑊 | 𝑍, 𝑅) ⫋ 1.

We also have

|𝑒
𝑅
(𝑍) | ⫅̸

∑

𝐿→ [𝑀]

∑

𝑗→{0,1}

''
𝑖̂
𝑅
(𝑍, 𝑅)𝑏

𝑅
(𝑅 | 𝑍) 𝑑̂

𝑅
(𝑊, 𝑍, 𝑅)

''''∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑍, 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑍)

'' ⫋ 1.

Then

⇐𝑟
𝑇̂𝑀 ⇐2

𝑈0

⫋ 𝑓0 [(1 ↑ 𝑆)𝜄2
𝑅
(𝑁, 𝑃 ,𝑀){𝑂 ↑ 𝑑̂

𝑅
(𝑁, 𝑃 ,𝑀)}2] + 𝑓0{𝑎0 (𝑃)𝑒2

𝑅
(𝑃)}

⫋ 𝑓0 [(1 ↑ 𝑆){𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}2] + 𝑓0 [(1 ↑ 𝑆) ( 𝑑̂
𝑅
↑ 𝑑̄)2 (𝑁, 𝑃 ,𝑀)]

+ 𝑓0 [(1 ↑ 𝑆) ( 𝑑̄2 + 𝑑
2
0) (𝑁, 𝑃 ,𝑀)] + 1

⫋ 𝑓0 [(1 ↑ 𝑆)𝑕0 (𝑁, 𝑃 ,𝑀)] + max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ ( 𝑑̂
𝑅
↑ 𝑑̄) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐2

𝑈0
+ 1

⫋ 𝑚𝑈0 (1) + 1 = 𝑈𝑈0 (1).

⫆̸
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Lemma S4. If Assumptions 4 and 5b(i) are satisfied, then ⇐𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄ ⇐𝑈0

p↓ 0 for every
𝑞 → [𝑝].

Proof. We first show consistency of 𝑒
𝑅

. By the triangular inequality,

⇐ (𝑒
𝑅
↑ 𝑒0) (𝑃)⇐𝑈0

⫅̸
∑

𝑗→{0,1}

∑

𝐿→ [𝑀]

{(
𝑓0

[ {
𝑖̂
𝑅
(𝑃 , 𝑅) (𝑏

𝑅
↑ 𝑏0) (𝑅 | 𝑃) 𝑑̂

𝑅
(𝑊, 𝑃 , 𝑅)

}2

{∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

}2

] )1/2

+
∑

𝑗→{0,1}

∑

𝐿→ [𝑀]

(
𝑓0

[ {(𝑖̂
𝑅
↑ 𝑖̄) (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃) 𝑑̂

𝑅
(𝑊, 𝑃 , 𝑅)

}2

{∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

}2

] )1/2

+
∑

𝑗→{0,1}

∑

𝐿→ [𝑀]

(
𝑓0

[{
1

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

↑ 1∑
𝐿
↘ → [𝑀] 𝑖̄(𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑃)

}2

{
𝑖̄(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃) 𝑑̂

𝑅
(𝑊, 𝑃 , 𝑅)

}2
] )1/2

+
∑

𝑗→{0,1}

∑

𝐿→ [𝑀]

(
𝑓0

[ {
𝑖̄(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃) ( 𝑑̂

𝑅
↑ 𝑑0) (𝑊, 𝑃 , 𝑅)

}2

{∑
𝐿
↘ → [𝑀] 𝑖̄(𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑃)

}2

] )1/2

⫋ max
𝐿→ [𝑀]

⇐ (𝑏
𝑅
↑ 𝑏0) (𝑅 | 𝑃)⇐𝑈0 + max

𝐿→ [𝑀]
⇐ (𝑖̂

𝑅
↑ 𝑖̄) (𝑃 , 𝑅)𝑜{𝑠0 (𝑅 | 𝑃) > 0}⇐𝑈0

+ max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ ( 𝑑̂
𝑅
↑ 𝑑0) (𝑊, 𝑃 , 𝑅)𝑜{𝑠0 (𝑅 | 𝑃) > 0}⇐𝑈0 = 𝑚𝑈0 (1).

We write 𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄ as a sum such that

𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄ =

1 ↑ 𝑛

𝑉̂
𝑅

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̂
𝑅
(𝑍, 𝑅)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
2𝑊 ↑ 1

𝑐
𝑅
(𝑊 | 𝑍, 𝑅) (𝑑0 ↑ 𝑑̂) (𝑊, 𝑍, 𝑅)

↑ 1 ↑ 𝑛

𝑉̂
𝑅

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̂
𝑅
(𝑍, 𝑅)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
2𝑊 ↑ 1

𝑐
𝑅
(𝑊 | 𝑍, 𝑅)𝑐0 (𝑊 | 𝑍, 𝑅)

(𝑐
𝑅
↑ 𝑐0) (𝑊 | 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 1 ↑ 𝑛

𝑉̂
𝑅

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

(𝑖̂
𝑅
↑ 𝑖̄) (𝑍, 𝑅)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
2𝑊 ↑ 1

𝑐0 (𝑊 | 𝑍, 𝑅)
{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 1 ↑ 𝑛

𝑉̂
𝑅

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̄(𝑍, 𝑅)
∑

𝐿
↘ → [𝑀] (𝑏0 ↑ 𝑏

𝑅
) (𝑅↘ | 𝑍)𝑖̂

𝑅
(𝑍, 𝑅↘)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 1 ↑ 𝑛

𝑉̂
𝑅

𝑎̂
𝑅
(𝑍)

1 ↑ 𝑎̂
𝑅
(𝑍)

𝑖̄(𝑍, 𝑅)
∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍) (𝑖̄ ↑ 𝑖̂

𝑅
) (𝑍, 𝑅↘)

∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑍)𝑖̂𝑅

(𝑍, 𝑅↘)
∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 1 ↑ 𝑛

𝑉̂
𝑅

(𝑎̂
𝑅
↑ 𝑎0) (𝑍)

{1 ↑ 𝑎0 (𝑍)}{1 ↑ 𝑎̂
𝑅
(𝑍)}

𝑖̄(𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}
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+ (1 ↑ 𝑛) (𝑉0 ↑ 𝑉̂
𝑅
)

𝑉0𝑉̂𝑅

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

𝑖̄(𝑍, 𝑅)∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑍)𝑖̄(𝑍, 𝑅↘)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍, 𝑅)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍, 𝑅)}

+ 𝑛

𝑉̂
𝑅

(𝑒 ↑ 𝑒0) (𝑍) +
𝑛(𝑉0 ↑ 𝑉̂

𝑅
)

𝑉0𝑉̂𝑅
𝑒0 (𝑍)

By the triangular inequality,

⇐𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄ ⇐𝑈0

⫅̸
(
𝑓0

[
1 ↑ 𝑎0 (𝑃)

𝑉̂
2
𝑅

𝑎̂
2
𝑅
(𝑃)

{1 ↑ 𝑎̂
𝑅
(𝑃)}2

∑

𝐿→ [𝑀]

𝑖̂
2
𝑅
(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)

{
∑

𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑃)𝑖̂𝑅

(𝑃 , 𝑅↘)}2

∑

𝑗→{0,1}

𝑐0 (𝑊 | 𝑃 , 𝑅)
𝑐

2
𝑅
(𝑊 | 𝑃 , 𝑅)

(𝑑0 ↑ 𝑑̂)2 (𝑊, 𝑃 , 𝑅)
] )1/2

+
(
𝑓0

[
1 ↑ 𝑎0 (𝑃)

𝑉̂
2
𝑅

𝑎̂
2
𝑅
(𝑃)

{1 ↑ 𝑎̂
𝑅
(𝑃)}2

∑

𝐿→ [𝑀]

𝑖̂
2
𝑅
(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃){∑

𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑃)𝑖̂𝑅

(𝑃 , 𝑅↘)
}2

∑

𝑗→{0,1}

(𝑐
𝑅
↑ 𝑐0)2 (𝑊 | 𝑃 , 𝑅)

𝑐
2
𝑅
(𝑊 | 𝑃 , 𝑅)𝑐0 (𝑊 | 𝑃 , 𝑅)

𝑕0 (𝑊, 𝑃 , 𝑅)
] )1/2

+
(
𝑓0

[
1 ↑ 𝑎0 (𝑃)

𝑉̂
2
𝑅

𝑎̂
2
𝑅
(𝑃)

{1 ↑ 𝑎̂
𝑅
(𝑃)}2

∑

𝐿→ [𝑀]

(𝑖̂
𝑅
↑ 𝑖̄)2 (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)𝑖↑1

0 (𝑃 , 𝑅){∑
𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑃)𝑖̂𝑅

(𝑃 , 𝑅↘)
}2

] )1/2

+
(
𝑓0

[
1 ↑ 𝑎0 (𝑃)

𝑉̂
2
𝑅

𝑎̂
2
𝑅
(𝑃)

{1 ↑ 𝑎̂
𝑅
(𝑃)}2

{ ∑

𝐿
↘ → [𝑀]

(𝑏0 ↑ 𝑏
𝑅
) (𝑅↘ | 𝑃)𝑖̂

𝑅
(𝑃 , 𝑅↘)

}2

∑
𝐿→ [𝑀] 𝑖̄

2 (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)𝑖↑1
0 (𝑃 , 𝑅){∑

𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑃)𝑖̂𝑅

(𝑃 , 𝑅↘)
}2{∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖̄(𝑃 , 𝑅↘)

}2

] )1/2

+
(
𝑓0

[
1 ↑ 𝑎0 (𝑃)

𝑉̂
2
𝑅

𝑎̂
2
𝑅
(𝑃)

{1 ↑ 𝑎̂
𝑅
(𝑃)}2

{ ∑

𝐿
↘ → [𝑀]

𝑏0 (𝑅↘ | 𝑃) (𝑖̂𝑅
↑ 𝑖̄) (𝑃 , 𝑅↘)

}2

∑
𝐿→ [𝑀] 𝑖̄

2 (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)𝑖↑1
0 (𝑃 , 𝑅){∑

𝐿
↘ → [𝑀] 𝑏𝑅 (𝑅↘ | 𝑃)𝑖̂𝑅

(𝑃 , 𝑅↘)
}2{∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖̄(𝑃 , 𝑅↘)

}2

] )1/2

+
(
𝑓0

[
1
𝑉̂

2
𝑅

(𝑎̂
𝑅
↑ 𝑎0)2 (𝑃)

{1 ↑ 𝑎0 (𝑃)}{1 ↑ 𝑎̂
𝑅
(𝑃)}2

∑

𝐿→ [𝑀]

𝑖̄
2 (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)𝑖↑1

0 (𝑃 , 𝑅){∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖̄(𝑃 , 𝑅↘)

}2

] )1/2

+
(
𝑓0

[ (𝑉0 ↑ 𝑉̂
𝑅
)2

𝑉
2
0𝑉̂

2
𝑅

𝑎
2
0 (𝑃)

1 ↑ 𝑎0 (𝑃)
∑

𝐿→ [𝑀]

𝑖̄
2 (𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)𝑖↑1

0 (𝑃 , 𝑅){∑
𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖̄(𝑃 , 𝑅↘)

}2

] )1/2

+
(
𝑓0

[
𝑎0 (𝑃)
𝑉̂

2
𝑅

(𝑒 ↑ 𝑒0)2 (𝑃)
] )1/2

+
(
𝑓0

[
𝑎0 (𝑃) (𝑉0 ↑ 𝑉̂

𝑅
)2

𝑉
2
0𝑉̂

2
𝑅

𝑒
2 (𝑃)

] )1/2

⫋ max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ ( 𝑑̂
𝑅
↑ 𝑑0) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0

+ max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ (𝑐
𝑅
↑ 𝑐0) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0

+ max
𝐿→ [𝑀]

⇐ (𝑖̂
𝑅
↑ 𝑖̄) (𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0
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+ max
𝐿→ [𝑀]

⇐ (𝑏
𝑅
↑ 𝑏0) (𝑅 | 𝑃)⇐𝑈0 + ⇐ (𝑎̂

𝑅
↑ 𝑎0) (𝑃)⇐𝑈0 + ⇐ (𝑒

𝑅
↑ 𝑒0) (𝑃)⇐𝑈0 + |𝑉̂

𝑅
↑ 𝑉0 |,

which converges in probability to zero by assumption and by ⇐ (𝑒
𝑅
↑ 𝑒0) (𝑃)⇐𝑈0 = 𝑚𝑈0 (1) shown

earlier in the proof. ⫆̸

Proof of Theorem 1. The difference between the estimator and the target parameter decom-
poses as

𝑋 ↑ 𝑋0 =
1
𝑝

∑

𝑅→ [𝑆 ]

{
(P

𝑉,𝑅
↑ 𝑓0)𝑟𝑇̂𝑀 +

(
𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0

𝑉̂
𝑅

𝑋0

)
↑ 𝑉̂

𝑅
↑ 𝑉0
𝑉̂
𝑅

𝑋0

}
. (S15)

The second term in (S15) is, using 𝑋0 = 𝑌0{𝑎0 (𝑃)𝑒0 (𝑃)}/𝑉0,

𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0
𝑉̂
𝑅

𝑋0 =
1
𝑉̂
𝑅

𝑓0

{ {1 ↑ 𝑎0 (𝑃)}𝑎̂𝑅 (𝑃)
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑

𝐿→ [𝑀]

𝑖̂
𝑅
(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}

(2𝑊 ↑ 1)𝑐0 (𝑊 | 𝑃 , 𝑅)
𝑐
𝑅
(𝑊 | 𝑃 , 𝑅) (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

}
(S16)

+ 𝑓0

[
𝑎0 (𝑃)
𝑉̂
𝑅

(𝑒
𝑅
↑ 𝑒0) (𝑃)

]
.

Developing from (S16),

(S16) = 𝑓0

[ {1 ↑ 𝑎0 (𝑃)}𝑎̂𝑅 (𝑃)
𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑

𝐿→ [𝑀]

𝑖̂
𝑅
(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}

(2𝑊 ↑ 1)𝑐0 (𝑊 | 𝑃 , 𝑅)
𝑐
𝑅
(𝑊 | 𝑃 , 𝑅) (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

]

= 𝑓0

[ {1 ↑ 𝑎0 (𝑃)}𝑎̂𝑅 (𝑃)
𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)
∑

𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}

(2𝑊 ↑ 1) (𝑐0 ↑ 𝑐
𝑅
) (𝑊 | 𝑃 , 𝑅)

𝑐
𝑅
(𝑊 | 𝑃 , 𝑅) (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

]

+ 𝑓0

( {1 ↑ 𝑎0 (𝑃)}𝑎̂𝑅 (𝑃)
𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)
∑

𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

[𝑒0 (𝑃) ↑ {𝑑̂
𝑅
(1, 𝑃 , 𝑅) ↑ 𝑑̂

𝑅
(0, 𝑃 , 𝑅)}]

)
. (S17)

Continuing from the last expression,

(S17) = 𝑓0

[ (𝑎̂
𝑅
↑ 𝑎0) (𝑃)

𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)
∑

𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}
(𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

]

+ 𝑓0

(
𝑎0 (𝑃)
𝑉̂
𝑅

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅) (𝑏0 ↑ 𝑏
𝑅
) (𝑅 | 𝑃)

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}
(𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

)

+ 𝑓0

(
𝑎0 (𝑃)
𝑉̂
𝑅

[
𝑒0 (𝑃) ↑

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏
𝑅
(𝑅 | 𝑃)

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

{𝑑̂
𝑅
(1, 𝑃 , 𝑅) ↑ 𝑑̂

𝑅
(0, 𝑃 , 𝑅)}

⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌
=𝑟𝑀 (𝑠)

] )
.
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Collecting all relevant terms,

𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0
𝑉̂
𝑅

𝑋0

= 𝑓0

[ {1 ↑ 𝑎0 (𝑃)}𝑎̂𝑅 (𝑃)
𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)
∑

𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}

(2𝑊 ↑ 1) (𝑐0 ↑ 𝑐
𝑅
) (𝑊 | 𝑃 , 𝑅)

𝑐
𝑅
(𝑊 | 𝑃 , 𝑅) (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

]

+ 𝑓0

(
𝑎0 (𝑃)
𝑉̂
𝑅

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅) (𝑏0 ↑ 𝑏
𝑅
) (𝑅 | 𝑃)

∑
𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}
(𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

)

+ 𝑓0

( (𝑎̂
𝑅
↑ 𝑎0) (𝑃)

𝑉̂
𝑅
{1 ↑ 𝑎̂

𝑅
(𝑃)}

∑
𝐿→ [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅)𝑏0 (𝑅 | 𝑃)
∑

𝐿
↘ → [𝑀] 𝑖̂𝑅

(𝑃 , 𝑅↘)𝑏
𝑅
(𝑅↘ | 𝑃)

∑

𝑗→{0,1}
(𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅)

)
.

The representation of the second-order remainder above can be bounded as''''𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0
𝑉̂
𝑅

𝑋0

''''
⫋ max

𝐿→ [𝑀]
max

𝑗→{0,1}
𝑓0{|(𝑐0 ↑ 𝑐

𝑅
) (𝑊 | 𝑃 , 𝑅) | | (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅) |}

+ max
𝐿→ [𝑀]

max
𝑗→{0,1}

𝑓0{|(𝑏0 ↑ 𝑏
𝑅
) (𝑅 | 𝑃) | | (𝑑0 ↑ 𝑑̂

𝑅
) (𝑊, 𝑃 , 𝑅) |}

+ max
𝐿→ [𝑀]

max
𝑗→{0,1}

𝑓0{|(𝑎̂𝑅 ↑ 𝑎0) (𝑃) | | (𝑑0 ↑ 𝑑̂
𝑅
) (𝑊, 𝑃 , 𝑅) |}

⫅̸ max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ ( 𝑑̂
𝑅
↑ 𝑑0) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0{

max
𝐿→ [𝑀]

max
𝑗→{0,1}

⇐ (𝑐
𝑅
↑ 𝑐0) (𝑊 | 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) > 0}⇐𝑈0

+ ⇐ (𝑎̂
𝑅
↑ 𝑎0) (𝑃)⇐𝑈0 + max

𝐿→ [𝑀]
⇐ (𝑏

𝑅
↑ 𝑏0) (𝑅 | 𝑃)⇐𝑈0

}
.

We first show consistency of 𝑋. The estimation error is bounded by

|𝑋 ↑ 𝑋0 | ⫅̸
1
𝑝

∑

𝑅→ [𝑆 ]

{
| (P

𝑉,𝑅
↑ 𝑓0)𝑟𝑇̂𝑀 | +

''''𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0
𝑉̂
𝑅

𝑋0

'''' + |𝑉̂
𝑅
↑ 𝑉0 |
𝑉̂
𝑅

𝑋0

}
.

Since the number of splits does not scale with 𝑄, we focus on the terms in the braces for every
𝑞 → [𝑝]. The first term converges in probability to zero by Lemmas S2–S3. The second term
converges in probability to zero by Assumption 5a. The third term converges in probability to
zero by an application of Slutsky’s theorem because 𝑉̂

𝑅

p↓ 𝑉0. Therefore, we have 𝑋

p↓ 𝑋0.
To show asymptotic linearly, we further decompose (S15) as

𝑋 ↑ 𝑋0 = P𝑉𝑙𝑄̄ + 1
𝑝

∑

𝑅→ [𝑆 ]

{
(P

𝑉,𝑅
↑ 𝑓0) (𝑟𝑇̂𝑀 ↑ 𝑟𝑇̄) +

(
𝑓0𝑟𝑇̂𝑀 ↑ 𝑉0

𝑉̂
𝑅

𝑋0

)
+ (𝑉̂

𝑅
↑ 𝑉0)2

𝑉̂
𝑅
𝑉0

𝑋0

}
.

The second term is 𝑚𝑈0 (𝑄↑1/2) by Lemmas S2 and S4. The third term is 𝑚𝑈0 (𝑄↑1/2) by Assump-
tion 5b. By the central limit theorem, 𝑉̂

𝑅
↑ 𝑉0 = 𝑈𝑈0 (𝑄↑1/2), and the last term is 𝑈𝑈 (𝑄↑1) =

𝑚𝑈0 (𝑄↑1/2) by Slutsky’s theorem. ⫆̸

Remark S1. When 𝑑̂
𝑅
(1, 𝑍, 𝑅) ↑ 𝑑̂

𝑅
(0, 𝑍, 𝑅) = 𝑑̂

𝑅
(1, 𝑍, 𝑅↘) ↑ 𝑑̂

𝑅
(0, 𝑍, 𝑅↘) and 𝑖̂

𝑅
(𝑍, 𝑅) =

𝑖̂
𝑅
(𝑍, 𝑅↘) for all 𝑅, 𝑅

↘ → [𝐿], the error from nuisance model estimation no longer involves
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the product term max
𝐿→ [𝑀] ⇐ (𝑏𝑅 ↑ 𝑏0) (𝑅 | 𝑃)⇐𝑈0 max

𝑗→{0,1} ⇐ ( 𝑑̂𝑅 ↑ 𝑑0) (𝑊, 𝑃 , 𝑅)𝑜{𝑏0 (𝑅 | 𝑃) >
0}⇐𝑈0 .

S2.5. Proof of Proposition 1

The tangent space at 𝑓0 → P† is

⇔P† = ⇔P†
𝑖
↖ ⇔P𝑗 ↖ ⇔P

𝐿
↖ ⇔P𝑏 ↖ ⇔P𝑂 ,

where ⇔P•, • → {𝑊, 𝑅, 𝑛, 𝑍}, are as in the proof of Lemma 2, and

⇔P†
𝑖
=
{
(1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0,

𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀 = 𝑅} = 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀 = 𝑅
↘}
}
.

Along the parametric submodel {𝑓𝑝} with score function 𝑔(𝑚), the pathwise derivative of

𝑋𝑝 = 𝑌𝑈𝑂 {𝑑𝑝 (1, 𝑃) ↑ 𝑑𝑝 (0, 𝑃) | 𝑀 = 1}

at 𝜀 = 0 is

d
d𝜀

𝑋𝑝

''''
𝑝=0

=
1
𝑉0

ˆ
{𝜁

𝑚
(1, 𝑍) ↑ 𝜁

𝑚
(0, 𝑍)}𝑎0 (𝑍)𝛿0 (𝑍)d𝑍

+ 1
𝑉0

ˆ
{𝑑(1, 𝑍) ↑ 𝑑(0, 𝑍) ↑ 𝑋0}𝑎0 (𝑍)𝛿0 (𝑍){𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)}d𝑍, (S18)

where 𝜁
𝑚
(𝑊, 𝑍) = 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅} which does not depend on 𝑅 → D𝑂 .

We will verify that 𝑙† is an influence function by showing that

d
d𝜀

𝑋𝑝

''''
𝑝=0

= 𝑌0{𝑙†(𝑈)𝑔(𝑈)}.

For any 𝑔(𝑚) → ⇔P†, the inner product

𝑌0{𝑙†(𝑈)𝑔(𝑈)}

= 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

2𝑁 ↑ 1
𝑐0 (𝑁 | 𝑃)

𝑖
†
0 (𝑁, 𝑃 ,𝑀)

∑
𝐿→ [𝑀] 𝑖

†
0 (𝑁, 𝑃 , 𝑅)𝑏0 (𝑅 | 𝑁, 𝑃)

{𝑂 ↑ 𝑑0 (𝑁, 𝑃)}𝑔(𝑂 , 𝑁, 𝑃 ,𝑀)
]

(S19)

+ 𝑌0

[
𝑆

𝑉0
{𝑒0 (𝑃) ↑ 𝑋0}{𝑔(𝑆, 𝑃) + 𝑔(𝑃)}

]
. (S20)

The second term in the display above is equal to the second term in the derivative (S18). The first
term is

(S19) = 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

2𝑁 ↑ 1
𝑐0 (𝑁 | 𝑃)

𝑖
†
0 (𝑁, 𝑃 ,𝑀)

∑
𝐿→ [𝑀] 𝑖

†
0 (𝑁, 𝑃 , 𝑅)𝑏0 (𝑅 | 𝑁, 𝑃)

𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀}
]

= 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

2𝑁 ↑ 1
𝑐0 (𝑁 | 𝑃)

𝑖
†
0 (𝑁, 𝑃 ,𝑀)

∑
𝐿→ [𝑀] 𝑖

†
0 (𝑁, 𝑃 , 𝑅)𝑏0 (𝑅 | 𝑁, 𝑃)

𝜁
𝑚
(𝑁, 𝑃)

]
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= 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

2𝑁 ↑ 1
𝑐0 (𝑁 | 𝑃) 𝜁𝑚 (𝑁, 𝑃)

]

= 𝑌0

[ (1 ↑ 𝑆)𝑎0 (𝑃)
𝑉0{1 ↑ 𝑎0 (𝑃)}

{𝜁
𝑚
(1, 𝑃) ↑ 𝜁

𝑚
(0, 𝑃)}

]

=
1
𝑉0

ˆ
{𝜁

𝑚
(1, 𝑍) ↑ 𝜁

𝑚
(0, 𝑍)}𝑎0 (𝑍)𝛿0 (𝑍)d𝑍.

Therefore, 𝑙† is a gradient of 𝑋0. To show that it is the efficient influence function, we check that
𝑙
† → ⇔P†. This amounts to verifying that

𝑔
∈ (𝑘, 𝑊, 𝑍, 𝑅) = 1

𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍)

𝑖
†
0 (𝑊, 𝑍, 𝑅)∑

𝐿
↘ → [𝑀] 𝑖

†
0 (𝑊, 𝑍, 𝑅↘)𝑏 (𝑅↘ | 𝑊, 𝑍)

{𝑘 ↑ 𝑑0 (𝑊, 𝑍)}

satisfies 𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀 = 𝑅} = 𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀 = 𝑅
↘}. By direct

calculation,

𝑌0{𝑂𝑔∈ (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}

=
1
𝑉0

𝑌0

[
𝑎0 (𝑃)

1 ↑ 𝑎0 (𝑃)
2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃)
𝑖
†
0 (𝑁, 𝑃 ,𝑀)

∑
𝐿
↘ → [𝑀] 𝑖

†
0 (𝑁, 𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑁, 𝑃)

{𝑂 ↑ 𝑑0 (𝑁, 𝑃)}𝑂
'''' 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅

]

=
1
𝑉0

𝑌0

[
𝑎0 (𝑃)

1 ↑ 𝑎0 (𝑃)
2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃)
𝑖
†
0 (𝑁, 𝑃 ,𝑀)

∑
𝐿
↘ → [𝑀] 𝑖

†
0 (𝑁, 𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑁, 𝑃)

𝑕0 (𝑁, 𝑃 ,𝑀)
'''' 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅

]

=
1
𝑉0

𝑎0 (𝑍)
1 ↑ 𝑎0 (𝑍)

2𝑊 ↑ 1
∑

𝐿
↘ → [𝑀] 𝑖

†
0 (𝑊, 𝑍, 𝑅↘)𝑏0 (𝑅↘ | 𝑊, 𝑍)

,

which is constant in 𝑅. This observation concludes the proof of the first part.
For the second part, we follow the arguments in the proof of Lemma S1. Define

ϑ̃† =
{
(1 ↑ 𝑛) (2𝑊 ↑ 1)

𝑐0 (𝑊 | 𝑍)
𝛽 (𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)} : 𝛽 (𝑊, 𝑍, 𝑅) arbitrary

}
⇒ 𝑡

0
2 (𝑓0).

The projection of any

𝛯̃𝑜 = (1 ↑ 𝑛) (2𝑊 ↑ 1)
𝑐0 (𝑊 | 𝑍)

𝛽 (𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)} → ϑ̃†

onto ϑ† is

φ{𝛯̃𝑜 |ϑ†} = (1 ↑ 𝑛) (2𝑊 ↑ 1)
𝑐0 (𝑊 | 𝑍)

[
𝛽 (𝑊, 𝑍, 𝑅)

↑ 𝑖
†
0 (𝑊, 𝑍, 𝑅)

𝑌0{𝛽 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖†

0 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}

]
{𝑘 ↑ 𝑑0 (𝑊, 𝑍)}.

Take any 𝑟
𝑚
(𝑘, 𝑊, 𝑍, 𝑅, 𝑛) = (1 ↑ 𝑛)𝑔(𝑘, 𝑊, 𝑍, 𝑅) → ⇔̃P𝑖 , its projection onto ϑ̃† is

φ{𝑟
𝑚
| ϑ̃†} = (1 ↑ 𝑛) (2𝑊 ↑ 1)

𝑐0 (𝑊 | 𝑍)
𝛽
𝑚
(𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)},
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where

𝛽
𝑚
(𝑊, 𝑍, 𝑅) = (2𝑊 ↑ 1)𝑖†

0 (𝑊, 𝑍, 𝑅)𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}.

Hence,

φ{𝑟
𝑚
|ϑ†} = (1 ↑ 𝑛) (2𝑊 ↑ 1)

𝑐0 (𝑊 | 𝑍)
𝑥
𝑚
(𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)},

where

𝑥
𝑚
(𝑊, 𝑍, 𝑅) = 𝛽

𝑚
(𝑊, 𝑍, 𝑅) ↑ 𝑖

†
0 (𝑊, 𝑍, 𝑅)

𝑌0{𝛽𝑚 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖†

0 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}
.

Now 𝑟
𝑚
↑ φ{𝑟

𝑚
|ϑ†} = (1 ↑ 𝑛)𝛾

𝑚
(𝑘, 𝑊, 𝑍, 𝑅), where

𝛾
𝑚
(𝑘, 𝑊, 𝑍, 𝑅) = 𝑔(𝑘, 𝑊, 𝑍, 𝑅) ↑ (2𝑊 ↑ 1)

𝑐0 (𝑊 | 𝑍)
𝑥
𝑚
(𝑊, 𝑍, 𝑅){𝑘 ↑ 𝑑0 (𝑊, 𝑍)}.

We obviously have 𝑌0{𝛾𝑚 (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅} = 0, and

𝑌0{𝑂𝛾𝑚 (𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}

= 𝑌0{𝑂𝑔(𝑂 , 𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅} ↑ 2𝑊 ↑ 1
𝑐0 (𝑊 | 𝑍)

𝑥
𝑚
(𝑊, 𝑍, 𝑅)𝑕0 (𝑊, 𝑍, 𝑅)

=
𝑌0{𝛽𝑚 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}
𝑌0{𝑖†

0 (𝑁, 𝑃 ,𝑀) | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑆 = 0}
,

which does not depend on 𝑅. Therefore, φ{𝑟
𝑚
| (ϑ†)′} → ⇔P†

𝑖
. Together with the decomposition

𝑟
𝑚
= 𝑟

𝑚
↑ φ{𝑟

𝑚
|ϑ†} + φ{𝑟

𝑚
|ϑ†}, we conclude that ⇔P† = (ϑ†)′.

S2.6. Proof of Proposition 2

Consider the parametric submodel {𝑓𝑝 : 𝜀 → ν} with score function 𝑔(𝑚). Suppose

𝛩𝑝 → arg min
𝑌→R𝑁

𝑌𝑈𝑂 [{𝑒𝑝 (𝑃) ↑ 𝛩
T
𝑧(𝑦)}2 |𝑆 = 1] .

Then 𝛩𝑝 must fulfill the first-order condition

𝑌𝑈𝑂

[
𝑧(𝑦){𝑒𝑝 (𝑃) ↑ 𝛩

T
𝑝
𝑧(𝑦)}

''
𝑆 = 1

]
= 0.

By the implicit function theorem, there exists a function 𝛩𝑝 of 𝜀 such that 𝛩𝑝 |𝑝=0 = 𝛩0 and that
it is differentiable at 𝜀 = 0 with derivative

d
d𝜀

𝛩𝑝

''''
𝑝=0

=
[
𝑌0

{
𝑧
⇑2 (𝑦) |𝑆 = 1

}]↑1 d
d𝜀

𝑌𝑈𝑂

[
𝑧(𝑦){𝑒𝑝 (𝑃) ↑ 𝛩

T
0𝑧(𝑦)}

''
𝑆 = 1

] ''''
𝑝=0

.

The uniqueness of 𝛩0 is ensured by Assumption 7. The Gateaux derivative

d
d𝜀

𝑌𝑈𝑂

[
𝑧(𝑦){𝑒𝑝 (𝑃) ↑ 𝛩

T
0𝑧(𝑦)}

''
𝑆 = 1

] ''
𝑝=0

=
1
𝑉0

𝑌0

[
𝑆𝑧(𝑦) d

d𝜀
𝑒𝑝 (𝑃)

''''
𝑝=0

]
+ d

d𝜀
𝑌𝑈𝑂

[
𝑆𝑧(𝑦){𝑒0 (𝑃) ↑ 𝛩

T
0𝑧(𝑦)}

]
𝑓𝑝 (𝑆 = 1)

''''
𝑝=0

=
1
𝑉0

ˆ
𝑧(𝛥)𝛼

𝑚
(𝑍){1 ↑ 𝑎0 (𝑍)}𝛿0 (𝑍)d𝑍

+ 1
𝑉0

ˆ 
𝑧(𝛥){𝑒0 (𝑍) ↑ 𝛩

T
0𝑧(𝛥)} ↑ 𝑌0 [𝑧(𝑦){𝑒0 (𝑃) ↑ 𝛩

T
0𝑧(𝑦)} |𝑆 = 1]⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌

=0


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𝑎0 (𝑍)𝛿0 (𝑍){𝑔(𝑆 = 1, 𝑍) + 𝑔(𝑍)}d𝑍

= 𝑌0

( [
1 ↑ 𝑆

𝑉0
𝑧(𝑦) 𝑎0 (𝑃)

1 ↑ 𝑎0 (𝑃)
𝑖0 (𝑃 ,𝑀)∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)
2𝑁 ↑ 1

𝑐0 (𝑁 | 𝑃 ,𝑀)

{𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)} + 𝑆

𝑉0
{𝑒0 (𝑃) ↑ 𝛩

T
0𝑧(𝑦)}

]
𝑔(𝑈)

)
.

This shows that 𝑙𝑌0 is a gradient of 𝛩0. Since 𝑙𝑌0 → ⇔P , it is the efficient influence function of 𝛩0.

S2.7. Proof of Theorem 2

We first show consistency of 𝛩. Define

𝜘̂ =
1
𝑄1

∑

𝑁:𝑃𝐿=1
𝑧
⇑2 (𝑦𝑁), 𝜘0 = 𝑌0{𝑧⇑2 (𝑦) |𝑆 = 1}.

Decompose the error by

𝛩 ↑ 𝛩0 =
1
𝑝

∑

𝑅→ [𝑆 ]
𝜘̂↑1P

𝑉,𝑅
𝑧𝑟

𝑇̂𝑀 ↑ 𝛩0

=
1
𝑝

∑

𝑅→ [𝑆 ]
𝜘̂↑1 (P

𝑉,𝑅
↑ 𝑓0)𝑧𝑟𝑇̂𝑀

+ 1
𝑝

∑

𝑅→ [𝑆 ]
𝜘̂↑1

[
𝑓0𝑧𝑟𝑇̂𝑀 ↑ 𝑉0

𝑉̂
𝑅

𝜘0𝛩0

]

+ 1
𝑝

∑

𝑅→ [𝑆 ]

[
𝑉0
𝑉̂
𝑅

𝜘̂↑1𝜘0 ↑ Id
]
𝛩0. (S21)

By the law of large numbers, every entry of the matrix 𝜘̂
𝑒𝑅

converges in probability to the corre-
sponding entry in (𝜘0)𝑒𝑅 for 𝜅 , 𝑞 → [𝑥]. Since the dimension 𝑥 is finite, we have

⇐𝜘̂ ↑ 𝜘0⇐ ⫅̸
{ ∑

𝑒 ,𝑅→ [𝑋 ]
|𝜘̂

𝑒𝑅
↑ (𝜘0)𝑒𝑅 |2

}1/2 p↓ 0.

By the continuous mapping theorem, ⇐𝜘̂↑1 ↑ 𝜘↑1
0 ⇐ = 𝑚𝑈0 (1). In the following, we com-

bine the matrix-norm convergence with vector-norm convergence using Slutsky’s theorem, since
⇐𝑁𝑉𝛬𝑉⇐ = 𝑚𝑈0 (1) if ⇐𝑁𝑉⇐⇐𝛬𝑉⇐ = 𝑚𝑈0 (1). The first term of (S21) converges in probability to 0
due to the boundedness of |𝑧𝑒 (𝛥) | for 𝜅 → [𝑥] and Lemmas S2–S3. Consider the third term of

(S21). It converges in probability to 0 because 𝑉̂
𝑅

p↓ 𝑉0, and by the continuous mapping theorem
⇐ (𝑉0/𝑉̂𝑅)𝜘̂↑1𝜘0 ↑ Id⇐ p↓ 0. The second term also converges in probability to 0 because

𝑓0𝑧𝑟𝑇̂𝑀 ↑ 𝑉0
𝑉̂
𝑅

𝜘0𝛩0


=
𝑓0𝑧(𝑦)

{
𝑟
𝑇̂𝑀 (𝑈) ↑ 𝑆

𝑉̂
𝑅

𝑒0 (𝑃) +
𝑆

𝑉̂
𝑅

𝑒0 (𝑃) ↑
𝑆

𝑉̂
𝑅

𝑧
T (𝑦)𝛩0

}
=
𝑓0𝑧(𝑦)

{
𝑟
𝑇̂𝑀 (𝑈) ↑ 𝑆

𝑉̂
𝑅

𝑒0 (𝑃)
},

which can be seen to be 𝑚𝑈0 (1) by modifying the steps of bounding |𝑓0𝑟𝑇̂𝑀 ↑ (𝑉0/𝑉̂𝑅)𝑋0 | in the
proof of Theorem 1 and by using that |𝑧 | ⫅̸ 𝑗. The consistency of 𝛩 is established.
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To show asymptotic linearity, we further make the following decomposition:

𝛩 ↑ 𝛩0 = (P𝑉 ↑ 𝑓0)𝑙𝑌𝑄̄

+ (𝜘̂↑1 ↑ 𝜘↑1
0 ) (P𝑉 ↑ 𝑓0)𝑧(𝑦)

{
𝑟𝑇̄ (𝑈) ↑ 𝑆

𝑉0
𝑧

T (𝑦)𝛩0

}

+ 1
𝑝

∑

𝑅→ [𝑆 ]
𝜘̂↑1 (P

𝑉,𝑅
↑ 𝑓0)𝑧(𝑟𝑇̂𝑀 ↑ 𝑟𝑇̄)

+ 1
𝑝

∑

𝑅→ [𝑆 ]
𝜘̂↑1

[
𝑓0𝑧𝑟𝑇̂𝑀 ↑ 𝑉0

𝑉̂
𝑅

𝜘0𝛩0

]

+ 1
𝑝

∑

𝑅→ [𝑆 ]

𝑉0 ↑ 𝑉̂
𝑅

𝑉̂
𝑅

(𝜘̂↑1𝜘0 ↑ Id)𝛩0

+ 1
𝑝

∑

𝑅→ [𝑆 ]

(𝑉̂
𝑅
↑ 𝑉0)2

𝑉0𝑉̂𝑅
𝛩0. (S22)

Following the arguments in the proof of Theorem 1, all terms of (S22) are 𝑚𝑈0 (𝑄↑1/2).

S2.8. Proof of Corollary 2

Lemma S5. Suppose Assumption 4 holds. Then ε̂
p↓ ε̄ if 𝑋

p↓ 𝑋0.

Proof. Since ε̂ =
∑

𝑅→ [𝑆 ] ε̂𝑅
/𝑝 for a finite number of splits, it suffices to show consistency

of every ε̂
𝑅

. We make the following decomposition:

ε̂
𝑅
= P

𝑉,𝑅

{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝑋

}2

= P
𝑉,𝑅

[{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝑋

}
↑
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝑋0

}]2

+ 2P
𝑉,𝑅

[{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝑋

}
↑
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝑋0

}] {
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝑋0

}

+ P
𝑉,𝑅

{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝑋0

}2
. (S23)

The third term in (S23) converges in probability to ε̄ by the law of large numbers. By the Cauchy-
Schwarz inequality, the second term in (S23) is bounded by the product of the square root of the
first term and ε̄1/2. It remains to show that the first term in (S23) is 𝑚𝑈0 (1). We have

P
𝑉,𝑅

[{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝑋

}
↑
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝑋0

}]2
⫅̸ 2P

𝑉,𝑅
(𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄)2 + 2𝑉̂

𝑅

(
𝑋

𝑉̂
𝑅

↑ 𝑋0
𝑉0

)2
(S24)

Applying the Markov inequality conditional on the data O↑𝑅 = {𝑈𝑁 : 𝑇 ϖ I
𝑅
}, for any 𝛶 > 0,

pr
{P

𝑉,𝑅
(𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄)2

⇐𝑟
𝑇̂𝑀 ↑ 𝑟𝑇̄ ⇐2 ⊋ 𝛶

'''' O↑𝑅

}
⫅̸

1
𝛶

.

Hence, marginally P
𝑉,𝑅

(𝑟
𝑇̂𝑀 ↑𝑟𝑇̄)2 = 𝑈𝑈0 (⇐𝑟𝑇̂𝑀 ↑𝑟𝑇̄ ⇐2), which is 𝑚𝑈0 (1) as shown in the proof of

Theorem 1. The second term on the righthand side of (S24) is also 𝑚𝑈0 (1) from the consistency
of 𝑉̂ and 𝑋 followed by an application of Slutsky’s theorem. ⫆̸
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Lemma S6. Suppose Assumptions 4, 7, and 8 hold. Then ⇐ε̂𝑌 ↑ ε̄𝑌 ⇐
p↓ 0 if ⇐𝛩 ↑ 𝛩⇐ p↓ 0.

Proof. From the proof of Theorem 2, we have ⇐𝜘̂↑1 ↑ 𝜘↑1
0 ⇐ = 𝑚𝑈0 (1). Let

𝜆̂
𝑅
= P

𝑉,𝑅
𝑧
⇑2 (𝑦)

{
𝑟
𝑇̂𝑀 (𝑈) ↑ 𝑆

𝑉̂
𝑅

𝛩
T
𝑧(𝑦)

}2
, 𝜆 = 𝑌0

[
𝑧
⇑2 (𝑦)

{
𝑟𝑇̄ (𝑈) ↑ 𝑆

𝑉0
𝛩

T
0𝑧(𝑦)

}2]
.

Then for 𝜅 , 𝜅
↘ → [𝑥], every entry (𝜆̂

𝑅
)𝑒 𝑒↘ can be decomposed as

(𝜆̂
𝑅
)𝑒 𝑒↘

= P
𝑉,𝑅

𝑧𝑒 (𝑦)𝑧𝑒↘ (𝑦)
{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝛩
T
𝑧(𝑦)

}2

= P
𝑉,𝑅

𝑧𝑒 (𝑦)𝑧𝑒↘ (𝑦)
[{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝛩
T
𝑧(𝑦)

}
↑
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝛩

T
0𝑧(𝑦)

}]2

+ 2P
𝑉,𝑅

𝑧𝑒 (𝑦)𝑧𝑒↘ (𝑦)
[{
𝑟
𝑇̂𝑀 ↑ 𝑆

𝑉̂
𝑅

𝛩
T
𝑧(𝑦)

}
↑
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝛩

T
0𝑧(𝑦)

}] {
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝛩

T
0𝑧(𝑦)

}

+ P
𝑉,𝑅

𝑧𝑒 (𝑦)𝑧𝑒↘ (𝑦)
{
𝑟𝑇̄ ↑ 𝑆

𝑉0
𝛩

T
0𝑧(𝑦)

}2
.

Following the proof of Lemma S5, we can show that |𝜆̂𝑒 𝑒
↘ ↑𝜆𝑒 𝑒

↘ | = 𝑚𝑈0 (1) if ⇐𝛩↑ 𝛩⇐ = 𝑚𝑈0 (1),
because sup

𝑍→Z1 |𝑧𝑒 (𝛥) | ⫅̸ 𝑗. Since the dimension 𝑥 does not depend on 𝑄, we have ⇐𝜆̂ ↑𝜆⇐ =
𝑚𝑈0 (1). The consistency of (ε̂𝑌)𝑅 can now be established by the continuous mapping theorem,
hence the consistency of ε̂𝑌 . ⫆̸

Proof of Corollary 2. In the following, we treat 𝛥 → Z1 as an indexing parameter. Let 𝜇̄2
𝑌
(𝛥) =

𝑧
T (𝛥)ε̄𝑌𝑧(𝛥) and 𝜇̂

2
𝑌
(𝛥) = 𝑧

T (𝛥)ε̂𝑌𝑧(𝛥). Define three stochastic processes

T̂𝑉 (𝛥) =
𝑄

1/2
𝑧

T (𝛥) (𝛩 ↑ 𝛩0)
𝜇̂𝑌 (𝛥)

,

T̃𝑉 (𝛥) =
𝑄

1/2
𝑧

T (𝛥) (𝛩 ↑ 𝛩0)
𝜇̄𝑌 (𝛥)

,

T𝑉 (𝛥) =
G𝑉𝑧

T (𝛥)𝑙𝑌
𝑄̄

𝜇̄𝑌 (𝛥)

Define the function class

F =
{
𝑧

T (𝛥)𝑙𝑌
𝑄̄

𝜇̄𝑌 (𝛥)
: 𝛥 → Z1

}
.

By Assumption 8, 𝜇̄↑1
𝑌

(𝛥) ⫅̸ 𝛯
↑1/2
min (ε̄𝑌)⇐𝑧(𝛥)⇐↑1 ⫋ 1 and ⇐ε̄𝑌𝑧

⇑2 (𝛥)⇐ ⫅̸ 𝛯max (ε̄𝑌)⇐𝑧(𝛥)⇐2 ⫋
1. The partial derivative satisfies

𝜈

𝜈𝑧(𝛥)
𝑧

T (𝛥)𝑙𝑌
𝑄̄

𝜇̄𝑌 (𝛥)
⫋ ⇐𝑙𝑌

𝑄̄
⇐.

Applying Theorems 2.7.17 and 2.5.6 from van der Vaart and Wellner (2023) in this order, we see
that F is 𝑓0-Donsker, since

''''𝑧
T (𝛥)𝑙𝑌

𝑄̄

𝜇̄𝑌 (𝛥)
↑
𝑧

T (𝛥↘)𝑙𝑌
𝑄̄

𝜇̄𝑌 (𝛥↘)

'''' ⫋ ⇐𝑙𝑌
𝑄̄
⇐⇐𝑧(𝛥) ↑ 𝑧(𝛥↘)⇐
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and {𝑧(𝛥) : 𝑗↑1 ⫅̸ ⇐𝑧(𝛥)⇐ ⫅̸ 𝑗, 𝛥 → Z1} represents a compact set in R𝑋 . We have

T𝑉 ! T, in 𝑟
↔ (Z1),

where T is the mean-zero Gaussian process stated in the corollary.
We now show that ⇐T̂𝑉 ↑ T𝑉⇐Z1 = 𝑚𝑈0 (1), which by the continuous mapping theorem (van

der Vaart and Wellner, 2023, Theorem 1.3.6), proves the corollary combined with the weak con-
vergence above. The standard error estimator is uniformly consistent, because

 𝜇̂𝑌

𝜇̄𝑌

↑ 1

Z1

⫅̸

𝜇̂

2
𝑌

𝜇̄
2
𝑌

↑ 1

Z1

⫅̸ sup
𝑍→Z1

''''𝑧
T (𝛥) (ε̂𝑌 ↑ ε̄𝑌)𝑧(𝛥)
𝑧

T (𝛥)ε̄𝑌𝑧(𝛥)

''''
⫅̸ 𝛯

↑1
min (ε̄𝑌)⇐ε̂𝑌 ↑ ε̄𝑌 ⇐

p↓ 0,

which follows from the consistency of ε̂𝑌 in Lemma S6. We bound the difference of the two
stochastic processes by

⇐T̂𝑉 ↑ T𝑉⇐Z1 =
(T̃𝑉 ↑ T𝑉)

𝜇̄𝑌

𝜇̂𝑌

+ T𝑉

(
𝜇̄𝑌

𝜇̂𝑌

↑ 1
)

Z1

⫅̸ ⇐T̃𝑉 ↑ T𝑉⇐Z1

 𝜇̄𝑌

𝜇̂𝑌


Z1

+ ⇐T𝑉⇐Z1

 𝜇̄𝑌

𝜇̂𝑌

↑ 1

Z1

.

Since ⇐𝜇̄𝑌/𝜇̂𝑌 ⇐Z1 = 1 + 𝑚𝑈0 (1) = 𝑈𝑈0 (1) and ⇐T𝑉⇐Z1 = 𝑈𝑈0 (1) from Theorem 2.14.2 in van
der Vaart and Wellner (2023), it remains to show ⇐T̃𝑉 ↑ T𝑉⇐Z1 = 𝑚𝑈0 (1). Clearly,

T̃𝑉 (𝛥) ↑ T𝑉 (𝛥) =
𝑄

1/2
𝑧

T (𝛥) (𝛩 ↑ 𝛩0)
𝜇̄𝑌 (𝛥)

↑
G𝑉𝑧

T (𝛥)𝑙𝑌
𝑄̄

𝜇̄𝑌 (𝛥)

=
𝑄

1/2
𝑧

T (𝛥)
𝜇̄𝑌 (𝛥)

𝜉𝑉,

where we have used (S22) from the proof of Theorem 2, and 𝜉𝑉 denotes the 𝑚𝑈0 (𝑄↑1/2) terms
in (S22). Since ⇐𝑧(𝛥)⇐ ⫋ 1 and 𝜇̄

↑1
𝑌

(𝛥) ⫅̸ 𝛯
↑1/2
min (ε̄𝑌)⇐𝑧(𝛥)⇐↑1 ⫋ 1, we have ⇐T̃𝑉 ↑ T𝑉⇐Z1 =

𝑚𝑈0 (1). ⫆̸

S3. Subsidiary results

S3.1. Asymptotic variance reduction under difference transportability

We present details for the difference of asymptotic variances when 𝑖̃(𝑍, 𝑅) = 𝑖̃(𝑍) ω 0 that
corresponds to the discussion in §3 in the main text.

By direct calculation, the difference is

𝑌0 (𝑙2
𝑄0 ↑ 𝑙

2
𝑄̃
)

= 𝑌0

( (1 ↑ 𝑆){𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}2

1
{𝑐0 (𝑁 | 𝑃 ,𝑀)}2

[{
𝑖0 (𝑃 ,𝑀)∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

}2
↑ 1

]

{𝑂 ↑ 𝑑0 (𝑁, 𝑃 ,𝑀)}2
)
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= 𝑌0

( (1 ↑ 𝑆){𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}2

𝑕0 (𝑁, 𝑃 ,𝑀)
{𝑐0 (𝑁 | 𝑃 ,𝑀)}2

[{
𝑖0 (𝑃 ,𝑀)∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

}2
↑ 1

] )

= 𝑌0

( (1 ↑ 𝑆){𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}2

{
𝑕0 (1, 𝑃 ,𝑀)
𝑐0 (1 | 𝑃 ,𝑀) +

𝑕0 (0, 𝑃 ,𝑀)
𝑐0 (0 | 𝑃 ,𝑀)

}
⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌

{𝑄0 (𝑠,𝑐) }↑1 [{
𝑖0 (𝑃 ,𝑀)∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

}2
↑ 1

] )

= 𝑌0

( (1 ↑ 𝑆){𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}2

∑

𝐿→ [𝑀]
𝑏0 (𝑅 | 𝑃){𝑖0 (𝑃 , 𝑅)}↑1

[{
𝑖0 (𝑃 , 𝑅)∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖0 (𝑃 , 𝑅↘)

}2
↑ 1

] )

= 𝑌0

( {𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}

[{ ∑

𝐿
↘ → [𝑀]

𝑖0 (𝑃 , 𝑅↘)𝑏0 (𝑅↘ | 𝑃)
}↑1

↑
{ ∑

𝐿
↘ → [𝑀]

𝑏0 (𝑅↘ | 𝑃){𝑖0 (𝑃 , 𝑅↘)}↑1
}])

.

Alternatively, using Corollary 1, we have that 𝑙𝑄̃ ↑ 𝑙𝑄0 is orthogonal to the tangent space at
𝑓0 but 𝑙𝑄0 lies in the tangent space, so that 𝑌{𝑙2 ↑ 𝑙̃

2} = ↑𝑌{𝑙 ↑ 𝑙̃}2 ⫅̸ 0 directly by the
Pythagorean theorem.

The difference of asymptotic variances for 𝑖0 (𝑍, 𝑅) and 𝑖̃(𝑍, 𝑅) such that 𝑖̃(𝑍, 𝑅) ω 0 for
some 𝑅 is

𝑌0 (𝑙2
𝑄0 ↑ 𝑙

2
𝑄̃
) = 𝑌0

( {𝑎0 (𝑃)}2

𝑉
2
0{1 ↑ 𝑎0 (𝑃)}

[
1∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃)𝑖0 (𝑃 , 𝑅)

↑
∑

𝐿→ [𝑀] 𝑏0 (𝑅 | 𝑃){𝑖0 (𝑃 , 𝑅)}↑1{𝑖̃(𝑃 , 𝑅)}2

{
∑

𝐿
↘ → [𝑀] 𝑏0 (𝑅↘ | 𝑃)𝑖̃(𝑃 , 𝑅↘)}2

] )
.

S3.2. Parametric conditional average treatment effect

Consider the class of functions of the baseline covariates ϰ = {𝑒𝑌 (𝑍) : 𝛩 → R𝑋}, where 𝑒𝑌 (𝑍)
is a known, smooth function of 𝛩, and the true CATE is 𝑒0 (𝑍) = 𝑒𝑌0 (𝑍) for some unique 𝛩0.
Under the transportability assumption, the conditional mean of the outcome can be expressed as
𝑑0 (𝑊, 𝑍, 𝑅) = 𝑑0 (0, 𝑍, 𝑅) + 𝑊𝑒𝑌0 (𝑍). Define the semiparametric model

Psp = {𝑓 → P : 𝑌 (𝑂 | 𝑁 = 1, 𝑃 = 𝑍,𝑀 = 𝑅) ↑ 𝑌 (𝑂 | 𝑁 = 0, 𝑃 = 𝑍,𝑀 = 𝑅) = 𝑒𝑌 (𝑍)}.

Lemma S7. Suppose there is a universal constant 𝑗 > 0 such that |𝑂 ↑ 𝑑0 (0, 𝑃 ,𝑀) ↑
𝑁𝑒𝑌0 (𝑃) | ⫅̸ 𝑗 under 𝑓0. The efficient score of 𝛩0 under the model 𝑓0 → Psp is

𝜋𝑌0 (𝑚) = (1 ↑ 𝑛) ⇔𝑒𝑌0 (𝑍)
{
𝑊 ↑ {𝑕0 (1, 𝑍, 𝑅)}↑1

𝑐0 (1 | 𝑍, 𝑅)
{𝑕0 (1, 𝑍, 𝑅)}↑1

𝑐0 (1 | 𝑍, 𝑅) + {𝑕0 (0, 𝑍, 𝑅)}↑1
𝑐0 (0 | 𝑍, 𝑅)

}

{𝑕0 (𝑊, 𝑍, 𝑅)}↑1 [
𝑘 ↑ {𝑑0 (0, 𝑍, 𝑅) + 𝑊𝑒𝑌0 (𝑍)}

]
. (S25)

Consequently, the efficient influence function of 𝛩0 is 𝑙𝑌0 (𝑚) = [𝑌0{𝜋⇑2
𝑌0

(𝑈)}]↑1
𝜋𝑌0 (𝑚).
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Proof. Define the transformation 𝜌 = 𝑂 ↑ {𝑑(0, 𝑃 ,𝑀) + 𝑁𝑒𝑌 (𝑃)} if 𝑆 = 0 and denote its
density by 𝛿𝑡 (𝜃 | 𝑊, 𝑍, 𝑅). The likelihood of the data can be factorized as

𝛿0 (𝑚) = 𝛿0 (𝑍)𝑎0 (𝑍)𝑏{1 ↑ 𝑎0 (𝑍)}1↑𝑏{𝑏0 (𝑅 | 𝑍)𝑐0 (𝑊 | 𝑍, 𝑅)𝛿0 (𝑘 | 𝑊, 𝑍, 𝑅)}1↑𝑏

= 𝛿0 (𝑍)𝑎0 (𝑍)𝑏{1 ↑ 𝑎0 (𝑍)}1↑𝑏{𝑏0 (𝑅 | 𝑍)𝑐0 (𝑊 | 𝑍, 𝑅)𝛿0𝑡 (𝜃 | 𝑊, 𝑍, 𝑅)}1↑𝑏
.

Let 𝑔𝑡 (𝜃, 𝑊, 𝑍, 𝑅) = (d/d𝜃)𝛿0𝑡 (𝜃 | 𝑊, 𝑍, 𝑅)/𝛿0𝑡 (𝜃 | 𝑊, 𝑍, 𝑅). The nuisance tangent space at 𝑓0 →
Psp is

⇔Psp = ⇔P𝑘 + ( ⇔P𝑡 ↖ ⇔P𝑗 ↖ ⇔P
𝐿
↖ ⇔P𝑏 ↖ ⇔P𝑂),

where ⇔P𝑗 , ⇔P
𝐿

, ⇔P𝑏, and ⇔P𝑂 are as defined in the proof of Lemma 2, and

⇔P𝑡 =
{
(1 ↑ 𝑛)𝑔(𝜃, 𝑊, 𝑍, 𝑅) : 𝑌0{𝑔(𝜌, 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0,

𝑌0{𝜌𝑔(𝜌, 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = 0
}
,

⇔P𝑘 =
{
(1 ↑ 𝑛)𝑔𝑡 (𝜃, 𝑊, 𝑍, 𝑅)𝑔(𝑍, 𝑅) : 𝑔(𝑍, 𝑅) → 𝑡2 (𝑓0)

}
.

A standard result of semiparametric regression gives that

⇔P ↘
𝑡
= {(1 ↑ 𝑛)𝜃𝑔(𝑊, 𝑍, 𝑅) : 𝑔(𝑊, 𝑍, 𝑅) → 𝑡2 (𝑓0)}

is the orthogonal complement of the subspace ⇔P𝑡 ↖ ⇔P𝑗 ↖ ⇔P
𝐿
↖ ⇔P𝑏 ↖ ⇔P𝑂 .

Define 𝜍(𝑊, 𝑍, 𝑅) = {𝑌 (𝜃2 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅)}↑1. The orthogonal projection of the
subspace ⇔P𝑘 onto ⇔P ↘

𝑡
is

φ{ ⇔P𝑘 | ⇔P ↘
𝑡
} = {(1 ↑ 𝑛)𝑔(𝑍, 𝑅)𝜍(𝑊, 𝑍, 𝑅)𝜃 : 𝑔(𝑍, 𝑅) → 𝑡2 (𝑓0)}.

Now we show that this is true. Take an arbitrary element 𝜎 (𝑚) = (1 ↑ 𝑛)𝑔𝑡 (𝜃, 𝑊, 𝑍, 𝑅)𝑔(𝑍, 𝑅) →
⇔P𝑘 . We can verify that 𝜎∈ (𝑚) = ↑(1 ↑ 𝑛)𝑔(𝑍, 𝑅)𝜍(𝑊, 𝑍, 𝑅)𝜃 is indeed the projection φ{𝜎 | ⇔P ↘

𝑡
} =

𝜎
∈ (𝑚). This is because the difference

𝜎 (𝑚) ↑ 𝜎
∈ (𝑚) = (1 ↑ 𝑛)𝑔(𝑍, 𝑅){𝑔𝑡 (𝜃, 𝑊, 𝑍, 𝑅) + 𝜍(𝑊, 𝑍, 𝑅)𝜃}

is orthogonal to ⇔P ↘
𝑡

, since for arbitrary 𝑔(𝑊, 𝑍, 𝑅),

𝑌0 [(1 ↑ 𝑆)𝜌𝑔(𝑁, 𝑃 ,𝑀)𝑔(𝑃 ,𝑀){𝑔𝑡 (𝜌, 𝑁, 𝑃 ,𝑀) + 𝜍(𝑁, 𝑃 ,𝑀)𝜌}]
= 𝑌0 [(1 ↑ 𝑆)𝑔(𝑁, 𝑃 ,𝑀)𝑔(𝑃 ,𝑀)𝑌{𝜌𝑔𝑡 (𝜌, 𝑁, 𝑃 ,𝑀) + 𝜍(𝑁, 𝑃 ,𝑀)𝜌2 | 𝑁, 𝑃 ,𝑀}]
= 𝑌0 [(1 ↑ 𝑆)𝑔(𝑁, 𝑃 ,𝑀)𝑔(𝑃 ,𝑀){(↑1) + 1}] = 0,

where we have used the equality that 𝑌0{𝜌𝑔𝑡 (𝜌, 𝑁, 𝑃 ,𝑀) | 𝑁, 𝑃 ,𝑀} = ↑1, as a result of differ-
entiating the moment restriction

´
𝜃𝛿0𝑡 (𝜃 | 𝑊, 𝑍, 𝑅) = 0 with respect to 𝜃.

The score function of 𝛩 is

𝛹𝑌 (𝑚) = ↑(1 ↑ 𝑛)𝑔𝑡 (𝜃, 𝑊, 𝑍, 𝑅)𝑊 ⇔𝑒𝑌 (𝑍).

The projection is

φ{𝛹𝑌 | ⇔P ↘
𝑡
} = (1 ↑ 𝑛)𝑌{𝛹𝑌 (𝑈)𝜌 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}𝜍(𝑊, 𝑍, 𝑅)𝜃.

Let 𝑥(𝑊, 𝑍, 𝑅) = 𝑌0{𝛹𝑌 (𝑈)𝜌 | 𝑁 = 𝑊, 𝑃 = 𝑍,𝑀 = 𝑅}. We further project φ{𝛹𝑌 | ⇔P ↘
𝑡
} onto the

space φ{ ⇔P𝑘 | ⇔P ↘
𝑡
}. Assume the projection takes the form

φ
[
φ{𝛹𝑌 | ⇔P ↘

𝑡
}
''φ( ⇔P𝑘 | ⇔P ↘

𝑡
)
]
= (1 ↑ 𝑛)𝑔∈ (𝑍, 𝑅)𝜍(𝑊, 𝑍, 𝑅)𝜃.

The function 𝑔
∈ (𝑍, 𝑅) is the solution to the equation

𝑌0{𝜍(𝑁, 𝑃 ,𝑀)𝜌{𝑥(𝑁, 𝑃 ,𝑀)𝜍(𝑁, 𝑃 ,𝑀)𝜌 ↑ 𝑔
∈ (𝑃 ,𝑀)𝜍(𝑁, 𝑃 ,𝑀)𝜌} | 𝑃 ,𝑀} = 0,
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which yields

𝑔
∈ (𝑍, 𝑅) = 𝑌0{𝑥(𝑁, 𝑃 ,𝑀)𝜍(𝑁, 𝑃 ,𝑀) | 𝑃 = 𝑍,𝑀 = 𝑅}

𝑌0{𝜍(𝑁, 𝑃 ,𝑀) | 𝑃 = 𝑍,𝑀 = 𝑅}

=
𝑥(1, 𝑍, 𝑅)𝜍(1, 𝑍, 𝑅)𝑐0 (1 | 𝑍, 𝑅) + 𝑥(0, 𝑍, 𝑅)𝜍(0, 𝑍, 𝑅)𝑐0 (0 | 𝑍, 𝑅)

𝜍(1, 𝑍, 𝑅)𝑐0 (1 | 𝑍, 𝑅) + 𝜍(0, 𝑍, 𝑅)𝑐0 (0 | 𝑍, 𝑅) .

The efficient score of 𝛩 is the projection

𝜋𝑌 (𝑚) = φ{𝛹𝑌 | ⇔P′
sp}

= φ{𝛹𝑌 | ⇔P ↘
𝑡
} ↑ φ

[
φ{𝛹𝑌 | ⇔P ↘

𝑡
}
''φ( ⇔P𝑘 | ⇔P ↘

𝑡
)
]

= (1 ↑ 𝑛){𝑥(𝑊, 𝑍, 𝑅) ↑ 𝑔
∈ (𝑍, 𝑅)}𝜍(𝑊, 𝑍, 𝑅)𝜃.

Using the generalized information equality [Equation (5) in Newey (1990)] or by direct calcula-
tion, 𝑌0{𝛹𝑌 (𝑈)𝜌 | 𝑁, 𝑃 ,𝑀} = ↑𝑌0{(𝜈/𝜈𝛩)𝜌 | 𝑁, 𝑃 ,𝑀}, so that 𝑥(𝑊, 𝑍, 𝑅) = 𝑊 ⇔𝑒𝑌 (𝑍). Then

𝜋𝑌 (𝑚) = (1 ↑ 𝑛) ⇔𝑒𝑌 (𝑍)
{
𝑊 ↑ 𝜍(1, 𝑍, 𝑅)𝑐0 (1 | 𝑍, 𝑅)

𝜍(1, 𝑍, 𝑅)𝑐0 (1 | 𝑍, 𝑅) + 𝜍(0, 𝑍, 𝑅)𝑐0 (0 | 𝑍, 𝑅)

}
𝜍(𝑊, 𝑍, 𝑅)𝜃.

⫆̸

Since the semiparametric model Psp is induced by a conditional mean restriction, it follows
that any score 𝜋𝑌0 (𝑚) obtained by replacing 𝑕0 with an arbitrary 𝑕̄ ω 0 is Neyman orthogonal
(Chernozhukov et al., 2018). Making explicit its dependence on the nuisance parameters, a score
function of 𝛩0 can be represented as 𝜋𝑌{𝑚; 𝑑̄(0, 𝑍, 𝑅), 𝑕̄ (𝑊, 𝑍, 𝑅), 𝑐(𝑊, 𝑍, 𝑅)}. It suggests a doubly
robust estimating equation in the sense that 𝑓0𝜋𝑌 (𝑈) = 0 if either 𝑑̄(0, 𝑍, 𝑅) = 𝑑0 (0, 𝑍, 𝑅) or
𝑐(𝑊 | 𝑍, 𝑅) = 𝑐0 (𝑊 | 𝑍, 𝑅). The double robustness is attractive because the propensity scores are
generally known in clinical trials. The efficiency theory remains the same if one plugs in the true
propensity scores, in which case the empirical mean squared error of the resulting estimator is
potentially larger compared to if one estimates the propensity scores from the data.
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Abstract

Augmenting the control arm in clinical trials with external data can improve statisti-
cal power for demonstrating treatment effects. In many time-to-event outcome trials,
participants are subject to truncation by death. Direct application of methods for com-
peting risks analysis on the joint data may introduce bias, for example, due to covariate
shifts between the populations. In this work, we consider transportability of the con-
ditional cause-specific hazard of the event of interest under the control treatment. Un-
der this assumption, we derive semiparametric efficiency bounds of causal cumulative
incidences. This allows for quantification of the theoretical efficiency gain from in-
corporating the external controls. We propose triply robust estimators that can achieve
the efficiency bounds, where the trial controls and external controls are made compara-
ble through time-specific weights in a martingale integral. We conducted a simulation
study to show the precision gain of the proposed fusion estimators compared to their
counterparts without utilizing external controls. As a real data application, we used two
cardiovascular outcome trials conducted to assess the safety of glucagon-like peptide-1
agonists. Incorporating the external controls from one trial into the other, we observed
a decrease in the standard error of the treatment effects on adverse non-fatal cardiovas-
cular events with all-cause death as the competing risk.

Keywords: Data fusion; Transportability; Competing risks; Randomized controlled
trial.



2 Manuscript III

1. Introduction

Randomized control trials (RCTs) are the gold standard for evaluation of new treat-
ments. Nonetheless, demonstrating the expected efficacy may require a substantial
sample size, thereby requiring long duration of trials and driving up overall costs. Mo-
tivated by these issues, recent years have seen a growing interest in the use of historical
data in clinical trials. In rare-disease trials, where it may be impractical and uneth-
ical to randomize a patient to the standard of care, regulatory bodies have discussed
the feasibility of replacing trial controls with an external control arm (Food and Drug
Administration, 2023; European Medicines Agency, 2023). Another example is hybrid
control designs, in which the control arm in a clinical trial is augmented with external
controls. The external controls should match the characteristics of the trial controls
to avoid introducing bias, and their transportability should be carefully assessed in the
planning phase of trials.

Leveraging external controls in clinical trials is an instance of data fusion. Despite
the ubiquity of time-to-event outcomes in clinical trials, current literature on data fusion
in causal inference mostly deals with continuous or binary outcomes. In this work, we
consider external control augmentation for the estimation of treatment effects on the
time-to-event, where an individual is subject to multiple modes of failure. Specifically,
we wish to make inference on cumulative incidence functions defined on the counter-
factual event time.

In the estimand framework, many transportability studies in survival analysis es-
timate the risk difference from at-risk indicators at predetermined timepoints (Ram-
agopalan et al., 2022; Zuo et al., 2022; Dang et al., 2023). Unless the censoring rate is
ignorable, risk estimators constructed from dichotomized event times suffer from cen-
soring bias. Lee et al. (2022) and Cao et al. (2024) provide a more formal treatment
of the problem in generalizing treatment effects from a clinical trial to its superpopu-
lation. They propose estimators for the target population counterfactual survival curve
assuming transportability of the survival time distribution after conditioning on relevant
baseline covariates. However, if the data contains competing events, their identification
formula directly corresponds to the all-cause survival function, rather than the esti-
mands desired here. Moreover, in our application, we observe the outcome for both
trial participants and external controls, hence requiring separate estimation strategies
(Colnet et al., 2024).

To accommodate competing risks, we work under the assumption of transportability
of the cause-specific hazards, which are natural objects of interest in multi-state mod-
els. Although other assumptions can be postulated, they are either unnecessarily strong,
such as transportability of the joint distribution of the event time and type, or lacking
of interpretability in the data generating process, such as transportability of the sub-
distribution function (Fine and Gray, 1999). We construct semiparametrically efficient
estimators by studying the nonparametric efficient influence functions of the parame-
ters. The resulting estimators show robustness against model misspecification different
from existing nonparametric estimators for cumulative incidence functions without data
fusion (Rytgaard et al., 2023).

In the absence of competing risks, a related line of work extends dynamic borrowing
methods to survival analysis (Kwiatkowski et al., 2024; Tan et al., 2022; Li et al., 2022;
Sengupta et al., 2023). These methods control the extent to which external controls are
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incorporated into the target population by modifying the data likelihood. They estimate
the hazard ratio between the active arm and the control arm, which has been criticized
for lacking causal interpretation. In contrast, we directly assume hazard transportability
and consider robust estimators for marginal causal parameters with efficiency gain.

2. Identifiability of causal cumulative incidence difference

Without loss of generality, we consider two types of events: the event of interest (𝐿 = 1)
and the competing event (𝐿 = 2). For the underlying event time 𝑀 and event type 𝐿

censored by the censoring time 𝑁, we observe the right-censored versions 𝑀 = 𝑀 → 𝑁

and 𝐿 = 𝑂 (𝑀 ⊋ 𝑁)𝐿 with a maximum observation period of (0, 𝑃]. Data is collected
independently from two populations: the target population (𝑄 = 1) and the source
population (𝑄 = 0). Besides the outcome tuple (𝑀 , 𝐿), a set of baseline covariates 𝑅 is
also observed in both populations. In our application, the target population is the study
population of an RCT with both an active treatment (𝑆 = 1) and a control treatment
(𝑆 = 0), while the source population contributes only controls. The supports of the
baseline covariates in the RCT population and in the external control population are
denoted by X1 and X0, respectively.

The observed data is sampled in a non-nested fashion, where random sampling is
performed separately within the target population and the external control population
(Dahabreh et al., 2021). More concretely, we have a probability sample (𝑀𝐿 , 𝐿𝐿 , 𝑆𝐿 , 𝑅𝐿)
from the target population for 𝑇 = 1, 2, . . . , 𝑈1 and another probability sample (𝑀𝐿 , 𝐿𝐿 , 𝑅𝐿)
from the external control population for 𝑇 = 𝑈1 + 1, 𝑈1 + 2, . . . , 𝑈1 + 𝑈0. The total sample
size is denoted by 𝑈. For the asymptotic arguments that appear later, we need the
following condition on the sampling scheme.

Assumption 1 (Stable sampling probability). As 𝑈 ↑ ↓, 𝑈1/𝑈 ↑ 𝑉 ↔ (0, 1).

When the sample size 𝑈 is large, we may view the joint sample as a random sample
from some superpopulation distribution of 𝑊 = (𝑀 , 𝐿,𝑄𝑆, 𝑅 ,𝑄) such that pr(𝑄 = 1) =
𝑉.

We are interested in the causal 𝑃-time cumulative incidence difference in the target
population for both event types. Under a specific treatment, the causal 𝑃-time cumula-
tive incidence is defined as the average probability of having an event by time 𝑃, had
all subjects in the target population received that treatment. Let the potential outcomes
{𝑀 (𝑋), 𝐿 (𝑋)} denote time to event and event type under the static intervention 𝑋 = 0, 1.
The population-level target parameters defined before can be represented by

𝑌𝑀 (𝑋) = pr{𝑀 (𝑋) ⊋ 𝑃, 𝐿 (𝑋) = 𝑍 | 𝑄 = 1}, 𝑌𝑀 = 𝑌𝑀 (1) ↗ 𝑌𝑀 (0),

for event type 𝑍 ↔ {1, 2}.

Assumption 2 (Causal assumptions).
(i) (Consistency) 𝑀𝐿 (𝑋) = 𝑀𝐿 and 𝐿𝐿 (𝑋) = 𝐿𝐿 if 𝑆𝐿 = 𝑋 for 𝑋 ↔ {0, 1};

(ii) (Randomization) {𝑀 (𝑋), 𝐿 (𝑋)} |= 𝑆 | (𝑅 ,𝑄 = 1) and pr(𝑆 = 𝑋 | 𝑅 ,𝑄 = 1) > 0
for 𝑋 ↔ {0, 1}.

With Assumption 2, the target parameters defined on the counterfactual data distri-
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bution are identifiable from the uncensored data distribution. Let 𝑎1 𝑀 (𝑏 | 𝑋, 𝑐) = pr(𝑀 ⊋
𝑏, 𝐿 = 𝑍 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1) and 𝑎0 𝑀 (𝑏 | 𝑐) = pr(𝑀 ⊋ 𝑏, 𝐿 = 𝑍 | 𝑅 = 𝑐,𝑄 = 0) be
the conditional cumulative incidence functions. The causal 𝑃-time cause 𝑍 cumulative
incidence under the intervention 𝑋 is identified by the g-formula

𝑌𝑀 (𝑋) = 𝑑{𝑎1 𝑀 (𝑃 | 𝑋, 𝑅) | 𝑄 = 1}.

To identify the parameter 𝑌𝑀 (𝑋) with the observed data, some conditions on the cen-
soring time are needed. Denote the survival functions of the all-cause event time by
𝑒1 (𝑏 | 𝑋, 𝑐) = pr(𝑀 > 𝑏 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1) and 𝑒0 (𝑏 | 𝑐) = pr(𝑀 > 𝑏 | 𝑅 = 𝑐,𝑄 = 0),
and denote the survival functions of the censoring time by 𝑒

𝑁

1 (𝑏 | 𝑋, 𝑐) = pr(𝑁 > 𝑏 | 𝑆 =
𝑋, 𝑅 = 𝑐,𝑄 = 1) and 𝑒

𝑁

0 (𝑏 | 𝑐) = pr(𝑁 > 𝑏 | 𝑅 = 𝑐,𝑄 = 0).

Assumption 3 (Censoring).
(i) (Positivity of censoring time) For all 𝑏 ↔ (0, 𝑃],

𝑒1 (𝑏 | 𝑋, 𝑐) > 0 ↘ 𝑒
𝑁

1 (𝑏 | 𝑋, 𝑐) > 0, for 𝑋 ↔ {0, 1}, 𝑐 ↔ X1;
𝑒0 (𝑏 | 𝑐) > 0 ↘ 𝑒

𝑁

0 (𝑏 | 𝑐) > 0, for 𝑐 ↔ X1 ≃ X0.

(ii) (Independent censoring) (𝑀 , 𝐿) |= 𝑁 | (𝑆, 𝑅 ,𝑄 = 1); (𝑀 , 𝐿) |= 𝑁 | (𝑅 ,𝑄 = 0).

Under Assumption 3, the observed data likelihood at the realization 𝑓 = (𝑏, 𝑍 , 𝑋, 𝑐, 𝑔)
of 𝑊 ⇐ 𝑕 factorizes as

d𝑕(𝑓) = d𝑕(𝑐){𝑖(𝑐)𝑗1 (𝑋 | 𝑐)}𝑂{1 ↗ 𝑖(𝑐)}(1↗𝑂)[
{dA1 𝑀 (𝑏 | 𝑋, 𝑐)}𝑃 ( 𝑀ω0)

𝑒1 (𝑏↗ | 𝑋, 𝑐)
]
𝑂
[
{dA0 𝑀 (𝑏 | 𝑐)}𝑃 ( 𝑀ω0)

𝑒0 (𝑏↗ | 𝑐)
] (1↗𝑂)

( [
dA𝑁

1 (𝑏 | 𝑋, 𝑐){1 ↗ ⇒A11 (𝑏 | 𝑋, 𝑐) ↗ ⇒A12 (𝑏 | 𝑋, 𝑐)}
]
𝑃 ( 𝑀=0)

𝑒
𝑁

1 (𝑏↗ | 𝑋, 𝑐)
)
𝑂

( [
dA𝑁

0 (𝑏 | 𝑐){1 ↗ ⇒A01 (𝑏 | 𝑐) ↗ ⇒A02 (𝑏 | 𝑐)}
]
𝑃 ( 𝑀=0)

𝑒
𝑁

0 (𝑏↗ | 𝑐)
) (1↗𝑂)

where 𝑖(𝑐) = 𝑕(𝑄 = 1 | 𝑅 = 𝑐) is the target population selection score, 𝑗1 (𝑋 | 𝑐) =
𝑕(𝑆 = 𝑋 | 𝑅 = 𝑐,𝑄 = 1) is the treatment propensity score in the RCT, and the in-
finitesimal increment of the conditional cumulative hazards of the events and censoring
are

dA1 𝑀 (𝑏 | 𝑋, 𝑐) =
d𝑎1 𝑀 (𝑏 | 𝑋, 𝑐)
𝑒1 (𝑏↗ | 𝑋, 𝑐) , dA𝑁

1 (𝑏 | 𝑋, 𝑐) = ↗
d𝑒𝑁1 (𝑏 | 𝑋, 𝑐)
𝑒
𝑁

1 (𝑏↗ | 𝑋, 𝑐) ,

dA0 𝑀 (𝑏 | 𝑐) =
d𝑎0 𝑀 (𝑏 | 𝑐)
𝑒0 (𝑏↗ | 𝑐) , dA𝑁

0 (𝑏 | 𝑐) = ↗
d𝑒𝑁0 (𝑏 | 𝑐)
𝑒
𝑁

0 (𝑏↗ | 𝑐) .

Given Assumptions 2–3, the parameter 𝑌𝑀 (𝑋) can be identified as a functional of the
observed data distribution. In Supplementary Material §S1, we relate the quantities
defined in the observed data distribution to those defined in the uncensored data distri-
bution.
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3. Semiparametric theory for cumulative incidence

3.1. Transportability of the cause-specific hazard of the event of interest

We propose a key transportability assumption under which the RCT controls and the
external controls are compatible. In data fusion, we adjust for prognostic variables with
shifted distribution between the target population and the source population, so that
conditional on these variables, the intervened populations are comparable in a certain
respect. The baseline covariates 𝑅 are obviously sufficient for this purpose if

{𝑘1 (0) (𝑃), 𝑘2 (0) (𝑃)} |= 𝑄 | 𝑅 . (1)

This strong condition states that the entire event processes under the control treatment
become interchangeable between the populations, once the baseline covariates are con-
trolled for. We will discuss an example where 1 is violated, but a weaker transportability
assumption sufficient for our purpose is fulfilled.

We motivate the assumption in the simplified case where the time to event is ob-
served on a discrete grid. Let ⇒𝑘𝑀 (0) (𝑏) = 𝑂{𝑀 (0) = 𝑏, 𝐿 (0) = 𝑍} be the counter-
factual indicator for an event of type 𝑍 occurring at time 𝑏 ↔ {1, . . . , 𝑃} under the
control treatment and let 𝑘𝑀 (0) (𝑏) =

∑
𝑄

𝑅=1 ⇒𝑘𝑀 (0) (𝑙). In addition to the variables in
the previous section, we introduce shifted, unobserved prognostic variables 𝑚, whose
existence may violate (1), because 𝑄 and ⇒𝑘1 (0) (𝑏) cannot be d-separated without
blocking 𝑚. Consider a time-discretized data generating process encoded by the single-
world intervention graph (Richardson and Robins, 2013) displayed in Figure 1. At
any timepoint, the variables 𝑚 directly affect the competing event ⇒𝑘2 (0) (𝑏) but act
only indirectly on the event of interest ⇒𝑘1 (0) (𝑏) through the history of the events
{𝑘1 (0) (𝑏 ↗ 1), 𝑘2 (0) (𝑏 ↗ 1)}. In this case, it holds that

⇒𝑘1 (0) (𝑏) |= 𝑄 | {𝑘1 (0) (𝑏 ↗ 1), 𝑘2 (0) (𝑏 ↗ 1), 𝑅} (2)

for the event of interest without conditioning on the unobserved 𝑚. By definition,

pr{⇒𝑘1 (0) (𝑏) = 1 | 𝑘1 (0) (𝑏 ↗ 1) = 0, 𝑘2 (0) (𝑏 ↗ 1) = 0, 𝑅 ,𝑄}
= pr{𝑀 (0) = 𝑏, 𝐿 (0) = 1 | 𝑀 (0) ⫅̸ 𝑏, 𝑅 ,𝑄},

so the conditional independence (2) is equivalent to transportability of the cause-specific
hazard of the event of interest.

In continuous time, an analogous formulation to (2) is the following.

Assumption 4 (Transportability of conditional cause 1 hazard). A11 (0) (𝑏 | 𝑐) =
A01 (0) (𝑏 | 𝑐) for 𝑐 ↔ X1 ≃ X0.

The interpretation is that for two subjects with the same baseline covariates, one in
the RCT and one in the external population, given they have not experienced any event,
the probability with which they immediately experience the event of interest are the
same. Unobserved variables like 𝑚 can also be time-varying, as long as they have no
direct effect on the event of interest.
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𝑄 𝑚

𝑅

𝑆 0 ⇒𝑘1 (0) (1)

⇒𝑘2 (0) (1) · · ·

⇒𝑘1 (0) (𝑏)

⇒𝑘2 (0) (𝑏)

𝑘1 (0) (𝑏 ↗ 1), 𝑘2 (0) (𝑏 ↗ 1)
𝑅

𝑘1 (0) (𝑏), 𝑘2 (0) (𝑏 ↗ 1)
𝑅 ,𝑚

Figure 1. Discrete-time single-world intervention graph of a data generating process satisfying
Assumptions 2 and 4.

3.2. Semiparametric efficiency bound

If Assumption 2 is satisfied, Assumption 4 further implies that

dA11 (𝑏 | 0, 𝑐) = dA01 (𝑏 | 𝑐), 𝑐 ↔ X1 ≃ X0. (3)

Consider the model P of observed data distributions over 𝑊 such that for any 𝑕 ↔ P ,
the distribution of 𝑆 ⇑ 0 is degenerate when 𝑄 = 1, and the conditional cause 1 hazard
under the control treatment 𝑆 = 0 is transportable in the sense of (3). Since the hazard
increments in (3) are not population-specific, we define dA•1 (𝑏 | 0, 𝑐) for all 𝑐 ↔ X1⇓X0
such that dA•1 (𝑏 | 0, 𝑐) = dA11 (𝑏 | 0, 𝑐) if 𝑐 ↔ X1 and dA•1 (𝑏 | 0, 𝑐) = dA01 (𝑏 | 𝑐) if
𝑐 ↔ X0.

In Proposition S1 of the Supplementary Material, we characterize the semiparametric
efficiency bounds of the parameters 𝑌1 (0) and 𝑌2 (0) in model P under general formula-
tions of the event processes with competing risks. To gain insights on how the external
controls can be most efficiently integrated under the transportability assumption of the
cause 1 hazard, in Lemma 1 below, we state the efficient influence functions under a
mild regularity condition on the cumulative hazards. Let A be the class of functions
A : (0, 𝑃] ↑ [0,↓) which are càdlàg non-decreasing with finite variation and jump
sizes no larger than 1. For any A,A⇔ ↔ A, let A |= ⇒ A⇔ denote that ⇒A(𝑏)⇒A⇔ (𝑏) = 0
for 𝑏 ↔ (0, 𝑃].

Assumption 5 (Disjoint discontinuity points). A11 (𝑏 | 0, 𝑐) ↖⇒ A12 (𝑏 | 0, 𝑐) for 𝑐 ↔
X1 and A01 (𝑏 | 𝑐) ↖⇒ A02 (𝑏 | 𝑐) for 𝑐 ↔ X1 ≃ X0.

In words, the first part of Assumption 5 states that the conditional cumulative hazards
A11 (𝑏 | 0, 𝑐) and A12 (𝑏 | 0, 𝑐) under the control treatment do not share any discontinuity
point for any baseline covariates in the target population. When there are jump points in
the distribution function of the underlying event time𝑀 for a countable set of timepoints,
the assumption implies that the probability that events of type 1 and type 2 are observed
at the same time is 0. By Assumption 4, this also implies that ⇒A01 (𝑏 | 𝑐)⇒A12 (𝑏 | 0, 𝑐) =
0 for 𝑐 ↔ X1 ≃ X0. The second part of the assumption can be interpreted analogously.
Assumption 5 is certainly satisfied if 𝑀 has a continuous distribution. The assumption
is also satisfied if the conditional cumulative hazard of either cause is continuous. We
will revisit Assumption 5 when we construct estimators for the target parameters.
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For 𝑋 ↔ {0, 1} and 𝑍 , 𝑛 ↔ {1, 2}, let 𝑘𝑀 (𝑏) = 𝑂 (𝑀 ⊋ 𝑏, 𝐿 = 𝑍) denote the counting
process for the observed event of type 𝑍 and define

𝑜• (𝑏 | 𝑐) = 𝑖(𝑐)𝑗1 (0 | 𝑐) (𝑒1𝑒
𝑁

1 ) (𝑏 | 0, 𝑐) + {1 ↗ 𝑖(𝑐)}(𝑒0𝑒
𝑁

0 ) (𝑏 | 𝑐),
𝑜1 (𝑏 | 𝑋, 𝑐) = 𝑗1 (𝑋 | 𝑐) (𝑒1𝑒

𝑁

1 ) (𝑏 | 𝑋, 𝑐),

𝑝𝑆 𝑀 (𝑏 | 𝑋, 𝑐) = 𝑂 ( 𝑍 = 𝑛)𝑒1 (𝑏↗ | 𝑋, 𝑐) ↗
𝑎1 𝑀 (𝑃 | 𝑋, 𝑐) ↗ 𝑎1 𝑀 (𝑏 | 𝑋, 𝑐)

1 ↗ ⇒A1𝑆 (𝑏 | 𝑋, 𝑐)
.

Lemma 1 (Semiparametric efficiency bounds). Suppose Assumptions 3 and 5 hold.
For 𝑋 ↔ {0, 1} and 𝑍 ↔ {1, 2}, the efficient influence function of 𝑌𝑀 (𝑋) at 𝑕 ↔ P is

𝑞𝑀 (𝑋) (𝑊) = 𝑂 (𝑆 = 𝑋)
𝑉

ˆ
𝑇

0

{
𝑂 (𝑋 = 0)𝑖(𝑅)
𝑜• (𝑏↗ | 𝑅) + 𝑂 (𝑋 = 1)𝑄

𝑜1 (𝑏↗ | 1, 𝑅)

}
𝑝1 𝑀 (𝑏 | 𝑋, 𝑅){

d𝑘1 (𝑏) ↗ 𝑂 (𝑀 ⫅̸ 𝑏)dA11 (𝑏 | 𝑋, 𝑅)
}

+ 𝑄

𝑉

ˆ
𝑇

0

𝑂 (𝑆 = 𝑋)
𝑜1 (𝑏↗ | 𝑋, 𝑅)𝑝2 𝑀 (𝑏 | 𝑋, 𝑅)

{
d𝑘2 (𝑏) ↗ 𝑂 (𝑀 ⫅̸ 𝑏)dA12 (𝑏 | 𝑋, 𝑅)

}

+ 𝑄

𝑉

{𝑎1 𝑀 (𝑃 | 𝑋, 𝑅) ↗ 𝑌𝑀 (𝑋)}.

The semiparametric efficiency bound of 𝑌𝑀 (𝑋) at 𝑕 ↔ P is 𝑑𝑈𝑞
2
𝑀
(𝑋).

The efficient influence functions of the parameters 𝑌𝑀 (1) are identical to those pre-
sented by Eq. (4) in Rytgaard et al. (2023), with the only difference being that they are
restricted to the distribution on the RCT population. Since the nuisance parameters in
𝑞𝑀 (1) (𝑊) are all variationally independent of the cumulative hazards A11 (𝑏 | 0, 𝑐) and
A01 (𝑏 | 𝑐), Assumption 4 does not change the characterization of the efficient estimators
of 𝑌𝑀 (1).

On the other hand, comparing the efficient influence function 𝑞1 (0) (𝑊) with the
influence function of 𝑌1 (0) without using the information of external controls, we notice
that the inverse weight 1/𝑜• (𝑏↗ | 𝑐) is applied for efficient use of data. We can write

𝑜• (𝑏 | 𝑐) = pr(𝑀 > 𝑏,𝑁 > 𝑏, 𝑆 = 0 | 𝑅 = 𝑐) = 𝑕(𝑆 = 0 | 𝑅 = 𝑐)𝑕(𝑀 > 𝑏 | 𝑆 = 0, 𝑅 = 𝑐),

which is a product of the probability of receiving the control treatment and the survival
function of an event of any type, including censoring, defined on the artificial population
conjoining the whole external population and the subset of the target population under
the control treatment. It should be noted, however, that the function 𝑝11 (𝑏 | 0, 𝑐) is
identifiable from the target population only. Therefore, the predictable process in the
event-of-interest martingale integral from 𝑞1 (0) (𝑊) is a combination of pooled and
unpooled quantities across populations.

Corollary 1. Under the same conditions in Lemma 1, the semiparametric efficiency
bound of 𝑌1 (0) under P is at least as low as that under the model where restriction (3)
is removed. The reduction is

𝑑

[
𝑖(𝑅){1 ↗ 𝑖(𝑅)}

𝑉
2

ˆ
𝑇

0

(𝑒0𝑒
𝑁

0 ) (𝑏↗ | 𝑅)
𝑜1 (𝑏↗ | 0, 𝑅)𝑜• (𝑏↗ | 𝑅)

𝑝
2
11 (𝑏 | 0, 𝑅){1 ↗ ⇒A11 (𝑏 | 0, 𝑅)}dA11 (𝑏 | 0, 𝑅)

]
.
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In words, incorporating the external controls helps drop the lowest possible variance
attainable by a regular estimator of the target parameter 𝑌1 (0) under the transportability
assumption, if two conditions are met. First, there is an overlap in the distributions of
the baseline covariates between the populations. Second, in this overlapped population,
there is a non-trivial time span in the observation period during which an individual is
at risk of experiencing the event of interest.

Corollary 1 shows that the variance reduction is accumulated over time with respect
to the cumulative hazard A11 (𝑏 | 0, 𝑐), and the time-varying factors that determine the
size of variance reduction cannot be teased apart. We give some intuition on when
the use of external controls provides large precision gain. The product integral of any
A ↔ A is denoted by (εA) (𝑏) = ε

𝑅↔ (0,𝑄 ] {1 ↗ dA(𝑏)}. Note that

(𝑒0𝑒
𝑁

0 ) (𝑏↗ | 𝑐)
𝑜• (𝑏↗ | 𝑐) =

{
𝑖(𝑐)𝑗1 (0 | 𝑐)

(εA12𝑒
𝑁

1 ) (𝑏↗ | 0, 𝑐)
(εA02𝑒

𝑁

0 ) (𝑏↗ | 𝑐) + {1 ↗ 𝑖(𝑐)}
}↗1

𝑂

{
(𝑒0𝑒

𝑁

0 ) (𝑏↗ | 𝑐) > 0
}
.

All other factors being equal, the reduction is more pronounced when the ratio between
the product of product integrals

(εA12𝑒
𝑁

1 ) (𝑏↗ | 0, 𝑐)
(εA02𝑒

𝑁

0 ) (𝑏↗ | 𝑐)

is smaller. In the extreme scenario where the said ratio is simply 0, the variance reduc-
tion formula gives

𝑑

[
𝑖(𝑅)
𝑉

2 𝑂{𝑖(𝑅) < 1}
ˆ

𝑇

0
𝑂

{
(𝑒0𝑒

𝑁

0 ) (𝑏↗ | 𝑅) > 0
}

𝑝
2
11 (𝑏 | 0, 𝑅)

𝑜1 (𝑏↗ | 0, 𝑅) {1 ↗ ⇒A11 (𝑏 | 0, 𝑅)}dA11 (𝑏 | 0, 𝑅)
]
.

Effectively, the maximum possible reduction is the portion of asymptotic variance re-
sulting from the martingale 𝑘1 (𝑏) ↗

´
𝑄

0 𝑂 (𝑀 ⫅̸ 𝑙)dA11 (𝑙 | 0, 𝑅) on the region where the
indicator 𝑂

{
𝑖(𝑅) < 1, (𝑒0𝑒

𝑁

0 ) (𝑏↗ | 𝑅) > 0
}

stays 1. In practical terms, when the hazard
of the competing risk is much higher for subjects under the control treatment or when
censoring occurs much earlier in the target population, the variance reduction is larger.
Intuitively, it is most beneficial to incorporate the external controls on the ground of
hazard transportability when the hazard of the event of interest cannot be estimated
well from the target population alone otherwise, due to the lack of such events in the
observed data.

3.3. Estimation

In the following, we discuss the construction of estimators that asymptotically achieve
the semiparametric efficiency bounds in Lemma 1. We present results for the parameter
𝑌1 (0) only. An estimator for 𝑌2 (0) and its properties can be derived analogously. The
estimators of the parameters 𝑌1 (1) and 𝑌2 (1) do not involve the external control sample,
and thus the estimation strategy for these parameters follows directly from Rytgaard
et al. (2023).
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Suppose for the nuisance parameters, we have estimators
{
Â•1 (𝑏 | 0, 𝑐), Â12 (𝑏 | 0, 𝑐), Â02 (𝑏 | 𝑐), Â𝑁

1 (𝑏 | 0, 𝑐), Â𝑁

0 (𝑏 | 𝑐)
}
↙ A

and that 𝑗1 (0 | 𝑐) and 𝑖̂(𝑐) are valid probabilities. The cumulative incidence function
of cause 1 in the RCT sample are estimated by

𝑎̂11 (𝑏 | 0, 𝑐) =
ˆ

𝑄

0
𝑒1 (𝑙↗ | 0, 𝑐)dÂ•1 (𝑙 | 0, 𝑐),

where the integral is in the Lebesgue–Stieltjes sense, and the conditional survival func-
tion of the all-cause event time 𝑀 is estimated by

𝑒1 (𝑏 | 0, 𝑐) = (εÂ•1εÂ12) (𝑏 | 0, 𝑐).

The survival functions of the censoring time are the product integrals 𝑒
𝑁

1 = εÂ𝑁

1 and
𝑒
𝑁

0 = εÂ𝑁

0 , respectively. Observing the efficient influence function 𝑞1 (0) given in
Lemma 1, we define the uncentered efficient influence function and its plug-in version
as

𝑟1 (0) (𝑊) = 𝑞1 (0) (𝑊) + 𝑄

𝑉

𝑌1 (0),

𝑟1 (0) (𝑊) = 1 ↗ 𝑆

𝑉̂

𝑖̂(𝑅)
ˆ

𝑇

0

𝑝̂•1 (𝑏 | 0, 𝑅)
𝑜̂• (𝑏↗ | 𝑅)

{
d𝑘1 (𝑏) ↗ 𝑂 (𝑀 ⫅̸ 𝑏)dÂ•1 (𝑏 | 0, 𝑅)

}

+ 𝑄 (1 ↗ 𝑆)
𝑉̂

ˆ
𝑇

0

𝑝̂21 (𝑏 | 0, 𝑅)
𝑜̂1 (𝑏 | 0, 𝑅)

{
d𝑘2 (𝑏) ↗ 𝑂 (𝑀 ⫅̸ 𝑏)dÂ12 (𝑏 | 0, 𝑅)

}

+ 𝑄

𝑉̂

𝑎̂11 (𝑃 | 0, 𝑅),

where

𝑒0 (𝑏 | 𝑐) = (εÂ•1) (𝑏 | 0, 𝑐) (εÂ02) (𝑏 | 𝑐),
𝑜̂• (𝑏 | 𝑐) = 𝑖̂(𝑐)𝑗1 (0 | 𝑐) (𝑒1𝑒

𝑁

1 ) (𝑏 | 0, 𝑐) + {1 ↗ 𝑖̂(𝑐)}(𝑒0𝑒
𝑁

0 ) (𝑏 | 𝑐),
𝑜̂1 (𝑏 | 𝑐) = 𝑗1 (0 | 𝑐) (𝑒1𝑒

𝑁

1 ) (𝑏 | 0, 𝑐),

𝑝̂•1 (𝑏 | 0, 𝑐) = 𝑒1 (𝑏↗ | 0, 𝑐) ↗ 𝑎̂11 (𝑃 | 0, 𝑐) ↗ 𝑎̂11 (𝑏 | 0, 𝑐)
1 ↗ ⇒Â•1 (𝑏 | 0, 𝑐)

,

𝑝̂21 (𝑏 | 0, 𝑐) = ↗ 𝑎̂11 (𝑃 | 0, 𝑐) ↗ 𝑎̂11 (𝑏 | 0, 𝑐)
1 ↗ ⇒Â12 (𝑏 | 0, 𝑐)

.

We propose the estimator

𝑌1 (0) =
1
𝑈

𝑉∑

𝐿=1
𝑟1 (0) (𝑊𝐿)

of 𝑌1 (0).

Assumption 6 (Probability limits). There exist probability limits 0 ⊋ 𝑖̄(𝑐) ⊋ 1,
0 ⊋ 𝑗1 (0 | 𝑐) ⊋ 1 such that ∝ (𝑖̂ ↗ 𝑖̄) (𝑅)∝𝑈 = 𝑓𝑈 (1), ∝ (𝑗1 ↗ 𝑗1) (0 | 𝑅)∝𝑈 = 𝑓𝑈 (1), and

{
Ā•1 (𝑏 | 0, 𝑐), Ā12 (𝑏 | 0, 𝑐), Ā02 (𝑏 | 𝑐), Ā𝑁

1 (𝑏 | 0, 𝑐), Ā𝑁

0 (𝑏 | 𝑐)
}
↙ A
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such that ++++𝑂{𝑖(𝑅) > 0} sup
𝑄↔ (0,𝑇 ]

|Â•1 ↗ Ā•1 | (𝑏 | 0, 𝑅)
++++
𝑈

= 𝑓𝑈 (1),
++++𝑂{𝑖(𝑅) > 0} sup

𝑄↔ (0,𝑇 ]
|Â12 ↗ Ā12 | (𝑏 | 0, 𝑅)

++++
𝑈

= 𝑓𝑈 (1),
++++𝑂{0 < 𝑖(𝑅) < 1} sup

𝑄↔ (0,𝑇 ]
|Â02 ↗ Ā02 | (𝑏 | 𝑅)

++++
𝑈

= 𝑓𝑈 (1),
++++𝑂{𝑖(𝑅) > 0} sup

𝑄↔ (0,𝑇 ]
|Â𝑁

1 ↗ Ā𝑁

1 | (𝑏 | 0, 𝑅)
++++
𝑈

= 𝑓𝑈 (1),
++++𝑂{0 < 𝑖(𝑅) < 1} sup

𝑄↔ (0,𝑇 ]
|Â𝑁

0 ↗ Ā𝑁

0 | (𝑏 | 𝑅)
++++
𝑈

= 𝑓𝑈 (1).

Theorem 1 (Asymptotic behavior). Suppose Assumptions 3 and 6 as well as As-
sumption S1 in the Supplementary Material hold. Then 𝑌1 (0)

p↑ 𝑌1 (0) if
(i) Ā•1 = A•1 and Ā12 = A12;

(ii) Ā•1 = A•1, 𝑗1 = 𝑗1, and 𝑖̄ = 𝑖; or
(iii) Ā12 = A12, Ā02 = A02, Ā𝑁

1 = A𝑁

1 , Ā𝑁

0 = A𝑁

0 , 𝑗1 = 𝑗1, and 𝑖̄ = 𝑖.
Moreover,

𝑌1 (0) ↗ 𝑌1 (0) =
1
𝑈

𝑉∑

𝐿=1
𝑞1 (0) (𝑊𝐿) + 𝑓𝑈 (𝑈↗1/2)

if Ā•1 = A•1, Ā12 = A12, Ā02 = A02, Ā𝑁

1 = A𝑁

1 , Ā𝑁

0 = A𝑁

0 , 𝑗1 = 𝑗1, 𝑖̄ = 𝑖, and
Assumption S2 in the Supplementary Material is satisfied.

The first part of Theorem 1 shows that the estimator 𝑌1 (0) constructed from the
efficient influence function is triply robust against model misspecification. The consis-
tency of 𝑌1 (0) hinges on correct estimation of at least one of the cause-specific hazards,
namely A•1 (𝑏 | 0, 𝑐) or A12 (𝑏 | 0, 𝑐). In particular, if the cause 1 hazard does not converge
to the underlying hazard, the cause 2 hazards in both populations need to be modeled
correctly. Conditions for the asymptotic linearity of 𝑌1 (0) are given in the second part
of Theorem 1. Apart from requiring the consistency of all nuisance models in their
respective sense, the von Mises expansion of 𝑌1 (0) around the true parameter 𝑌1 (0)
demands that the two remainder terms in Assumption S2 converge as fast as 𝑓𝑈 (𝑈↗1/2);
see Remark S2 for details.

The estimator 𝑌1 (0) attains the semiparametric efficiency bound in the model where
the conditional cause 1 hazard under the control treatment is transportable. However,
there is no free lunch. Compared to estimators that do not rely on the external controls,
the proposed data fusion estimator involve additional nuisance models for the selection
score 𝑖 and the cumulative hazards A02 and A𝑁

0 . If these models are not correctly
estimated, we have no guarantee that 𝑌1 (0) will be more efficient than estimators based
solely on the RCT sample.

A final remark should be made in connection with Assumption 5. When tied event
times are observed for event types 1 and 2, the plug-in estimators based on the efficient
influence function under Assumption 5 might be unfounded. We can avoid this issue
if the event times are continuous by nature, and it is harmless to break the ties by nu-
merical perturbations. Otherwise, we can turn to fully discrete-time methods (Benkeser
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et al., 2018) or derive estimators based on Proposition S1 to handle mixed event time
distributions.

3.4. Restricted mean time lost

Another interpretable parameter in competing risks analysis is the 𝑃-restricted mean
time lost to cause 𝑍 (Andersen, 2013), defined as

𝑠𝑀 (𝑋) = 𝑑 (𝑂{𝐿 (𝑋) = 𝑍}[𝑃 ↗ {𝑀 (𝑋) → 𝑃}] | 𝑄 = 1).
We can extend the definition of the parameter 𝑌𝑀 (𝑋) to the population cumulative in-
cidence of event type 𝑍 under intervention 𝑋 at time 𝑏, which is 𝑌𝑀 (𝑋, 𝑏) = pr{𝑀 (𝑋) ⊋
𝑏, 𝐿 (𝑋) = 𝑍 | 𝑄 = 1}. Given Assumptions 2–3, the parameter 𝑠𝑀 (𝑋) is identifiable as
𝑠𝑀 (𝑋) =

´
𝑇

0 𝑌𝑀 (𝑋, 𝑏)d𝑏, where 𝑌𝑀 (𝑋, 𝑏) is treated as an observed data parameter. If we
view 𝑌𝑀 (𝑋, 𝑏) as a function of time, then 𝑠𝑀 (𝑋) is simply the area under the cumulative
incidence function capped at 𝑃.

Restricted mean times lost are Hadamard differentiable functionals of the cumulative
incidence functions. Hence, their efficient influence functions can be obtained from
Lemma 1 by the chain rule.

Corollary 2. Under the same conditions as in Lemma 1, the efficient influence func-
tion of 𝑠𝑀 (𝑋) at 𝑕 ↔ P is 𝑡𝑀 (𝑋) (𝑊) =

´
𝑇

0 𝑞𝑀 (𝑋, 𝑏) (𝑊)d𝑏, where 𝑞𝑀 (𝑋, 𝑏) is the efficient
influence function of 𝑌𝑀 (𝑋, 𝑏).

Fusion estimators for 𝑠𝑀 (𝑋) are straightforward integrals of the fusion estimators
𝑌𝑀 (𝑋, 𝑏) for 𝑌𝑀 (𝑋, 𝑏) over time 𝑏. The asymptotics of these estimators can be established
under conditions similar to those inside Theorem 1. Particularly for asymptotic lin-
earity of 𝑠̂1 (0), the rate conditions in Assumption S2 should be modified according to
Remark S3 in the Supplementary Material.

4. Simulation study

We investigated the performance of the fusion estimators compared to the RCT-only
estimators in a simulation study. The data at baseline (𝑅 ,𝑄, 𝑆) were generated sequen-
tially in the following manner:

𝑅 ⇐ 2ϑ[Normal{(0, 0, 0)T
, ϖ}] ↗ 1,

𝑄 | 𝑅 ⇐ Bernoulli{𝑖(𝑅)},
𝑆 | (𝑅 ,𝑄) ⇐ Bernoulli(0.5𝑄),

where 𝑖(𝑅) = expit(↗0.2 + 0.4𝑅1 + 0.2𝑅2 + 0.3𝑅3), ϑ is the distribution function of
the standard normal distribution, and the covariance matrix is

ϖ = ,-
.

1 0.25 0.25
0.25 1 0.25
0.25 0.25 1

/

.

The uncensored event times were simulated from distributions with the following mul-
tiplicative hazards:

𝑉11 (𝑏 | 𝑆, 𝑅) = 𝑉1 (𝑏) exp(0.5𝑆 + 0.2𝑅1 + 0.7𝑅3),
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𝑉12 (𝑏 | 𝑆, 𝑅) = 𝑉2 (𝑏) exp(1 + 0.05𝑆 + 0.8𝑅1 + 0.5𝑅2),
𝑉01 (𝑏 | 𝑅) = 𝑉1 (𝑏) exp(0.2𝑅1 + 0.7𝑅3),
𝑉02 (𝑏 | 𝑅) = 𝑉2 (𝑏) exp(0.5𝑅1 + 0.8𝑅2 ↗ 0.3𝑅3),

where the baseline hazards 𝑉1 (𝑏) and 𝑉2 (𝑏) both correspond to the hazard of the Weibull
distribution with shape parameter 0.7 and scale parameter 0.2. In other words, 𝑉𝑂 (𝑏) =
0.2·0.7𝑏0.7↗1. The censoring times were simulated from distributions with the following
multiplicative hazards:

𝑉
𝑁

1 (𝑏 | 𝑆, 𝑅) = 𝑉
𝑁 (𝑏) exp{0.5 + 0.05(1 ↗ 𝑆)𝑅1 ↗ 0.05𝑅3},

𝑉
𝑁

0 (𝑏 | 𝑅) = 𝑉
𝑁 (𝑏) exp(0.05𝑅2),

where the baseline hazard 𝑉
𝑁 (𝑏) is the hazard of the Weibull distribution with shape

parameter 0.7 and scale parameter 0.24. Under this data generating mechanism, the
proportion of samples from the external control population was around 55%.

The target population selection score 𝑖̂(𝑐) and the propensity score of treatment in
the target population 𝑗1 (𝑋 | 𝑐) were estimated using logistic regressions. The cause 1
hazard under the control treatment dÂ•1 (𝑏 | 0, 𝑐) was fitted with a Cox model combining
all samples under the control treatment and the event indicator 𝑂 (𝐿 = 1). The cause 2
hazards under the control treatment dÂ𝑂2 (𝑏 | 0, 𝑐) were fitted with a Cox model within
the respective population using the event indicator 𝑂 (𝐿 = 2). The two cause-specific
hazards under the active treatment dÂ1 𝑀 (𝑏 | 1, 𝑐) were obtained with a multi-state Cox
model in the RCT population using the state indicator 𝐿. The hazards of the censor-
ing were fitted with a Cox model for each treatment within the respective population
using the event indicator 𝑂 (𝐿 = 0). The nuisance function estimates 𝑒𝑂 , 𝑎̂𝑂 𝑀 , 𝑒

𝑁

𝑂
were

subsequently computed using the hazard estimates.
As an example, we present the nuisance estimators required for the estimator 𝑌1 (0),

which included 𝑒1 (𝑏 | 0, 𝑐), 𝑎̂11 (𝑏 | 0, 𝑐), 𝑒𝑁1 (𝑏 | 0, 𝑐), 𝑒0 (𝑏 | 𝑐), and 𝑒
𝑁

0 (𝑏 | 𝑐). The cumu-
lative hazard estimates from Cox models are càdlàg step functions. The approximation
⇒Â•1 (𝑙 | 0, 𝑐) ′ 1↗exp{↗⇒Â•1 (𝑙 | 0, 𝑐)} was applied due to possible jumps whose sizes
exceed one, ensuring that it fell between 0 and 1. The survival function of the compos-
ite event in the RCT population was approximated by 𝑒1 (𝑏 | 0, 𝑐) = exp

{
↗Â•1 (𝑏 | 0, 𝑐) ↗

Â12 (𝑏 | 0, 𝑐)
}
. The cumulative incidence function of the event of interest was computed

using the Lebesgue-Stieltjes integral 𝑎̂11 (𝑏 | 0, 𝑐) =
´
𝑄

0 𝑒1 (𝑙↗ | 0, 𝑐)dÂ•1 (𝑙 | 0, 𝑐). Sim-
ilarly, the survival function of the composite event in the external control population
was 𝑒0 (𝑏 | 𝑐) = exp

{
↗Â•1 (𝑏 | 0, 𝑐) ↗ Â02 (𝑏 | 𝑐)

}
. The Cox-estimated cumulative hazard

Â•1 (𝑏 | 0, 𝑐) did not share any discontinuity points with Â02 (𝑏 | 𝑐), since there were no
ties among event times of different types. The survival functions of the censoring time
are 𝑒

𝑁

1 (𝑏 | 0, 𝑐) = exp
{
↗Â𝑁

1 (𝑏 | 0, 𝑐)
}

and 𝑒
𝑁

0 (𝑏 | 𝑐) = exp
{
↗Â𝑁

0 (𝑏 | 𝑐)
}
, respectively.

We simulated data of sample size 𝑈 ↔ {750, 1500} from the described data generating
mechanism. The proposed estimator 𝑌1 (0, 𝑏) for the cumulative incidence of the event
of interest under control treatment was computed for three time points 𝑏 ↔ {0.25, 1, 2}.
The standard error of 𝑌1 (0, 𝑏) was estimated by 𝑈

↗1/2 times the empirical 𝑢2-norm of
the efficient influence function 𝑞1 (0). The estimators 𝑌2 (0, 𝑏), 𝑌1 (1, 𝑏), and 𝑌2 (1, 𝑏) for
other cumulative incidences and the estimators 𝑌1{𝑏} and 𝑌2{𝑏} for the average treat-
ment effects were also computed using the respective efficient influence functions. To
demonstrate the gain in precision, we compared the estimated asymptotic variance of
the estimators above to the estimators that would be efficient if only the RCT data was
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Table 1. Simulation results for estimators of cumulative incidences.

𝑉 Estimand 𝑄 Type Mean Bias RMSE SE Coverage Reduction
750 𝑊1 (0, 𝑄 ) 0.25 + 0.07 5.73 1.17 1.15 94.5 66.84

↗ 0.07 8.20 2.15 2.05 92.7 ·
1 + 0.14 3.66 1.60 1.60 95.1 69.42

↗ 0.14 5.50 2.99 2.92 92.3 ·
2 + 0.19 2.03 1.82 1.84 94.8 69.20

↗ 0.19 ↗4.92 3.46 3.35 93.5 ·
𝑊1 (𝑄 ) 0.25 + 0.04 ↗3.03 2.70 2.76 95.1 27.35

↗ 0.04 ↗5.50 3.17 3.25 96.3 ·
1 + 0.08 8.53 3.68 3.77 95.6 29.58

↗ 0.08 6.69 4.50 4.50 95.1 ·
2 + 0.09 14.66 4.07 4.23 96.2 30.43

↗ 0.09 21.61 5.04 5.08 94.7 ·
1500 𝑊1 (0, 𝑄 ) 0.25 + 0.07 1.79 0.81 0.81 94.3 68.31

↗ 0.07 3.51 1.42 1.46 94.9 ·
1 + 0.14 3.60 1.09 1.13 95.5 70.17

↗ 0.14 ↗0.17 2.07 2.07 94.2 ·
2 + 0.19 2.23 1.25 1.30 96.0 70.13

↗ 0.19 ↗5.99 2.38 2.39 94.8 ·
𝑊1 (𝑄 ) 0.25 + 0.04 ↗3.05 2.00 1.95 94.1 27.73

↗ 0.04 ↗4.77 2.28 2.30 95.2 ·
1 + 0.07 ↗6.90 2.76 2.66 93.6 29.93

↗ 0.07 ↗3.13 3.24 3.18 94.0 ·
2 + 0.09 ↗12.92 3.06 2.99 94.2 30.98

↗ 0.09 ↗4.70 3.59 3.60 95.1 ·

Type: fusion estimator (+) or RCT-only estimator (↗); Mean: average of estimates; Bias: Monte-Carlo bias,
10↗4; RMSE: root mean squared error, 10↗2; SE: average of standard error estimates, 10↗2; Coverage: 95%
confidence interval coverage, %; Reduction: average of percentage reduction in squared standard error
estimates, %.

available. The exact expressions of all other estimators can be found in Supplementary
Materials §S3. As an alternative effect measure, we also considered the treatment ef-
fect as the difference between restricted mean times lost capped at 𝑏 ↔ {0.25, 1, 2}. The
calculations were repeated 1000 times for each sample size.

Summary statistics of selected estimators from the simulation study are reported in
Tables 1–2. Results for the remaining estimators are deferred to Tables S1–S4 in the
Supplementary Material. All estimators have small empirical bias. The averages of
the plug-in standard errors align with the empirical root mean squared errors. The
coverage of the 95%-confidence intervals constructed from these plug-in standard errors
appears largely correct. The percentage reduction in variance is higher for the control
parameters 𝑌1 (0, 𝑏) and 𝑠1 (0, 𝑏) than it is for the treatment effects 𝑌1{𝑏} and 𝑠1{𝑏}. This
should be expected since the parameters 𝑌1 (1, 𝑏) and 𝑠1 (1, 𝑏), and thus their estimators,
do not use information from external controls.

5. Real data example

In this data example, we use data from the clinical trials SUSTAIN-6 (ClinicalTri-
als.gov ID NCT01720446, Marso et al., 2016a) and LEADER (ClinicalTrials.gov ID
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Table 2. Simulation results for estimators of restricted mean times lost.

𝑉 Estimand 𝑄 Type Mean Bias RMSE SE Coverage Reduction
750 𝑋1 (0, 𝑄 ) 0.25 + 0.01 ↗0.20 0.20 0.20 94.6 64.49

↗ 0.01 0.66 0.36 0.35 92.1 ·
1 + 0.10 ↗4.03 1.17 1.16 94.6 67.61

↗ 0.10 0.12 2.12 2.07 93.0 ·
2 + 0.26 ↗18.36 2.78 2.74 93.4 68.04

↗ 0.26 ↗19.14 5.06 4.89 92.4 ·
𝑋1 (𝑄 ) 0.25 + 0.01 ↗0.36 0.46 0.47 94.9 26.45

↗ 0.01 ↗1.21 0.55 0.56 95.9 ·
1 + 0.05 ↗0.03 2.62 2.73 96.0 28.21

↗ 0.05 ↗4.18 3.14 3.22 94.3 ·
2 + 0.14 2.81 6.04 6.33 96.5 29.05

↗ 0.14 3.58 7.37 7.52 95.3 ·
1500 𝑋1 (0, 𝑄 ) 0.25 + 0.01 ↗0.08 0.14 0.14 94.2 66.55

↗ 0.01 0.15 0.25 0.25 93.7 ·
1 + 0.10 ↗2.50 0.81 0.82 95.0 68.40

↗ 0.10 ↗3.70 1.46 1.47 94.7 ·
2 + 0.26 ↗9.76 1.88 1.94 95.2 68.73

↗ 0.26 ↗16.13 3.48 3.49 95.2 ·
𝑋1 (𝑄 ) 0.25 + 0.01 ↗0.62 0.34 0.34 94.6 26.69

↗ 0.01 ↗0.85 0.39 0.40 94.9 ·
1 + 0.05 ↗4.73 2.01 1.94 93.5 28.43

↗ 0.05 ↗3.54 2.31 2.29 94.8 ·
2 + 0.13 ↗17.48 4.67 4.49 93.0 29.33

↗ 0.14 ↗11.11 5.39 5.35 94.6 ·

Type: fusion estimator (+) or RCT-only estimator (↗); Mean: average of estimates; Bias: Monte-Carlo bias,
10↗4; RMSE: root mean squared error, 10↗2; SE: average of standard error estimates, 10↗2; Coverage: 95%
confidence interval coverage, %; Reduction: average of percentage reduction in squared standard error
estimates, %.
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Table 3. Numbers of randomized subjects and events by arm in SUSTAIN-6 and
LEADER.

SUSTAIN-6 LEADER
(once-weekly) (once-daily)

Semaglutide Placebo Liraglutide Placebo
1.0 mg 0.5 mg 1.0 mg 0.5 mg 1.8 mg 1.8 mg

Total 822 826 825 824 4668 4672
Non-fatal cardiovascular event 29 38 48 53 242 271
All-cause death 23 24 21 27 135 155

Total: total number of randomized subjects at baseline; the other numbers count the non-fatal cardiovascular
events and all-cause deaths on or before day 728.

NCT01179048, Marso et al., 2016b). The overall objective is to incorporate the con-
trols collected in LEADER (𝑄 = 0) in the statistical analysis on the study population
of SUSTAIN-6 (𝑄 = 1) to boost the precision of estimates. The number of subjects
randomized to placebo is 1649 in SUSTAIN-6 and 4672 in LEADER. The placebos
are both subcutaneous injections matched to their corresponding active treatment. The
frequency of injection is once daily in LEADER but once weekly in SUSTAIN-6. We
proceed by regarding the three placebos as the same intervention.

We define the event of interest as the composite event of nonfatal myocardial infarc-
tion or nonfatal stroke (𝐿 = 1), which we refer to as the non-fatal cardiovascular event.
We treat death from all causes as the competing event (𝐿 = 0). Time-zero in the analysis
is the time of treatment or placebo randomization. The first set of parameters we consid-
ered were the cumulative incidences 𝑌𝑀 (𝑋, 𝑏) for both events at week 26, week 52, week
78, and week 104 in the study population of SUSTAIN-6 of once-weekly semaglutide,
1.0 mg (𝑆 = 1), as well as the average treatment effects 𝑌𝑀 {𝑏} = 𝑌𝑀 (1, 𝑏) ↗ 𝑌𝑀 (0, 𝑏). We
set the limit of the time span as the end of the follow-up period in SUSTAIN-6. We also
considered the restricted mean times lost to the events 𝑠𝑀 (𝑋) capped at week 26, week
52, week 78, and week 104 and the corresponding effect 𝑠𝑀 {𝑏} = 𝑠𝑀 (1, 𝑏) ↗ 𝑠𝑀 (0, 𝑏).
See Table 3 for a breakdown of sample sizes by randomization arm and the numbers of
events observed until week 104.

The main analysis was carried out under the transportability assumption that the
cause-specific hazard of the event of interest under placebo, conditioning on relevant
baseline covariates, is the same in the study population of SUSTAIN-6 and that of
LEADER. The baseline covariates 𝑅 to adjust for included age, sex, weight, duration of
type-2 diabetes, glycated hemoglobin level, systolic and diastolic blood pressure, level
of low-density lipoprotein cholesterol, smoking status, as well as history of ischemic
heart disease, myocardial infarction, heart failure, ischemic stroke, and hypertension.
The inclusion-exclusion criteria for the studies are highly comparable. Therefore, the
transportability assumption implies that any difference in the marginal hazard of the
event of interest can be attributed to the differences in the rates of death, in the rates
of censoring, and/or in the baseline characteristics induced by sampling. The causal
and transportability assumptions are compatible with the local independence graph
(Didelez, 2008) without right-censoring in Figure 2. The cause-specific hazards and
hazards of censoring were estimated with the Cox proprotional hazards model. The
hazards in the RCT sample were fitted separately within the treatment arms to ensure
full treatment-covariate interaction and per-stratum baseline hazards.
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𝑆

𝑅

𝑄

𝑘1

𝑘2

Baseline covariates

All-cause death

Non-fatal adverse
cardiovascular event

Treatment assignment

SUSTAIN-6/LEADER

Figure 2. Hypothesized local independence graph of the variables used in the data example. The
nodes 𝑘𝑀 (𝑏) are uncensored versions of the counting processes.

The results are reported in Tables 4–5. We highlight the results at week 104. The
fusion estimate of 𝑌1{104} demonstrates a decrease of 2.72 percentage points [95%-
confidence interval: (↗4.33,↗1.12)] in the cumulative incidence of non-fatal cardio-
vascular event by semaglutide. There appears to be no evidence for semaglutide’s effect
on the cumulative incidence of all-cause death 𝑌2{104}. Semaglutide does not seem to
lower the risk of non-fatal cardiovascular event because of an increased risk of cardio-
vascular death. The restricted mean time lost to non-fatal cardiovascular event 𝑠1{104}
reduces by 1.15 week [95%-confidence interval: (↗2.24,↗0.07)] with semaglutide.
Again, semaglutide does not appear to change the restricted mean time lost to all-cause
death. The estimates and confidence intervals for time points before week 104 do not
hint at any treatment effect on non-fatal cardiovascular event, except for 𝑌1{78}. The
results for treatment-specific parameters are displayed in Tables S6–S7 of the Supple-
mentary Material.

For treatment effects of semaglutide in terms of 𝑌1{𝑏} and 𝑠1{𝑏}, the fusion point
estimate and the RCT-only estimates are rather comparable. On the other hand, the
length of confidence intervals is shortened by approximately 9% for all treatment ef-
fects. Despite the inclusion of external controls amounting to nearly three times the
controls in SUSTAIN-6, the precision gain is hardly impressive. We believe the infor-
mation bottleneck is the lack of subjects receiving the active treatment, since the size of
the placebo group in SUSTAIN-6 was already twice as large as that of the semaglutide
1.0 mg group. This is supported by the observation that the percentage reduction in
standard errors is above 20% for the under-placebo parameters 𝑌1 (0, 𝑏) and 𝑠1 (0, 𝑏).

To mimic the setup where the size of the control arm is much smaller than the size
of the treatment arm, we randomly discarded 75% of the controls from SUSTAIN-
6 and repeated the analysis. The resulting fusion estimators for the treatment effects
exhibited some deviation from the RCT-only estimators, but a large precision gain at
approximately 45–50% was observed; see Tables S10 and S11. Finally, to evaluate the
impact of omitted variable bias, we performed a sensitivity analysis by removing history
of cardiovascular diseases from the set of baseline covariates. While the reduction in
standard errors was twice as large compared to the main analysis, there was also a more
substantial difference between point estimates of 𝑌1{104} and 𝑠1{𝑏}; see Tables S8
and S9. It is thus unclear whether the transportability assumption holds at all with this
restricted set of baseline covariates. Further details on the data example and results
from the additional analysis are available in Supplementary Material §S4.
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Table 4. Cumulative incidence differences in the real data example.

Estimand 𝑄 (weeks) Type Estimate (%) 95%-CI (%) Reduction
𝑊1{𝑄 } 26 + ↗0.26 (↗1.27, 0.75) 8.31

↗ ↗0.39 (↗1.49, 0.71) .
52 + ↗0.61 (↗1.87, 0.64) 8.65

↗ ↗0.73 (↗2.10, 0.65) .
78 + ↗1.99 (↗3.40, ↗0.57) 9.18

↗ ↗1.78 (↗3.34, ↗0.22) .
104 + ↗2.72 (↗4.33, ↗1.12) 9.76

↗ ↗2.56 (↗4.33, ↗0.78) .
𝑊2{𝑄 } 26 + ↗0.49 (↗1.05, 0.07) ↗0.00

↗ ↗0.49 (↗1.05, 0.07) .
52 + ↗0.38 (↗1.26, 0.50) ↗0.00

↗ ↗0.38 (↗1.26, 0.50) .
78 + 0.05 (↗1.17, 1.28) ↗0.00

↗ 0.05 (↗1.17, 1.28) .
104 + ↗0.21 (↗1.71, 1.28) ↗0.00

↗ ↗0.21 (↗1.71, 1.28) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.

Table 5. Restricted mean time lost differences in the real data example.

Estimand 𝑄 (weeks) Type Estimate (weeks) 95%-CI (weeks) Reduction
𝑋1{𝑄 } 26 + ↗0.10 (↗0.23, 0.03) 10.32

↗ ↗0.11 (↗0.25, 0.04) .
52 + ↗0.22 (↗0.62, 0.18) 9.02

↗ ↗0.26 (↗0.70, 0.18) .
78 + ↗0.59 (↗1.31, 0.13) 8.87

↗ ↗0.62 (↗1.41, 0.18) .
104 + ↗1.15 (↗2.24, ↗0.07) 9.00

↗ ↗1.14 (↗2.33, 0.04) .
𝑋2{𝑄 } 26 + ↗0.05 (↗0.13, 0.03) ↗0.00

↗ ↗0.05 (↗0.13, 0.03) .
52 + ↗0.12 (↗0.37, 0.13) ↗0.00

↗ ↗0.12 (↗0.37, 0.13) .
78 + ↗0.21 (↗0.68, 0.27) ↗0.00

↗ ↗0.21 (↗0.68, 0.27) .
104 + ↗0.24 (↗1.02, 0.53) ↗0.00

↗ ↗0.24 (↗1.02, 0.53) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.
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6. Discussion

In this work, we assume transportability of the conditional cause-specific hazard of
the event of interest between the RCT population and the external control population.
We have considered estimation of the cumulative incidence functions and restricted
mean times lost with external controls. In fact, this assumption also allows us to derive
estimators with improved precision for other estimands in competing risks analysis,
including the average hazard with survival weights (Uno and Horiguchi, 2023) and
separable effects (Stensrud et al., 2022). We comment in Supplementary Material §S5
that weaker transportability assumptions for competing risks analysis can be difficult to
interpret.

In practice, the risk of introducing bias to RCT data when incorporating external con-
trols should be evaluated. One approach is to carry out the analysis with the data fusion
estimator for precision gain. Then, post-hoc model diagnostics such as likelihood ratio
tests or other omnibus tests may be performed to assess the validity of the transporta-
bility assumption. A more principled approach may be to integrate the estimated bias
to make an informed decision of whether the RCT-only estimator should be retained.
For instance, following Yang et al. (2023), a test-then-pool estimator for the cumulative
incidence 𝑌1 (0) can be constructed from the estimators 𝑌1 (0) with and without external
controls via a score test. This is left for future work.

We focus on treatment policy estimands, which ignore treatment trajectories after
randomization. Consequently, we do not adjust for post-baseline variables. However,
by omitting these variables, we may fail to establish transportability of the cause-
specific hazard. In SUSTAIN-6 and LEADER, when subjects experienced non-fatal
adverse events, they could receive drop-in medications. If these decisions were based
on different treatment guidelines and policies between the two populations, subjects
with similar baseline characteristics might have rather different event rates. This is a
particular concern for using historical controls in RCTs. Future research can focus on
fusion estimates that allow for history beyond baseline.
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S1. Notations on the observed data distribution

In the main text, we make use of three models: the counterfactual data distribution, the uncen-
sored data distribution, and the observed data distribution. All three models encompass the pop-
ulation indicator 𝑄, the baseline covariates 𝑅 , and the treatment 𝑄𝑆, whereas the counterfactual
data distribution contains the potential outcomes {𝑀 (1),𝑀 (0), 𝐿 (1), 𝐿 (0)}, the uncensored data
distribution contains the uncensored event time and event type plus the censoring time (𝑀 , 𝐿,𝑁),
and the observed data distribution contains the censored event time and event type (𝑀 , 𝐿). With
Assumption 2, we identify the causal parameters in the uncensored data distribution. We now
connect the observed data quantities to their uncensored counterparts using Assumption 3.

Recall the (observed) event counting process 𝑘𝑀 (𝑏) = 𝑂 (𝑀 ⊋ 𝑏, 𝐿 = 𝑍) for 𝑍 = 1, 2. Let 𝑘𝑁 (𝑏) =
𝑂 (𝑀 ⊋ 𝑏, 𝐿 = 0) be the censoring counting process. Define (F𝑄 )𝑄↔ (0,𝑇 ] as the filtration in which
the 𝑣-algebra F𝑄 = 𝑣

[{
𝑘1 (𝑙), 𝑘2 (𝑙), 𝑘𝑁 (𝑙),𝑄𝑆, 𝑅 ,𝑄; 0 < 𝑙 ⊋ 𝑏

}]
contains the observed

information up to time 𝑏 (inclusive). The event counting process 𝑘𝑀 (𝑏) has a compensator such
that

𝑤̃𝑌 𝑀 (𝑏 | 𝑆, 𝑅) = 𝑘𝑀 (𝑏) ↗ ϱ̃𝑌 𝑀 (𝑏 | 𝑆, 𝑅), 𝑄 = 1

𝑤̃𝑌 𝑀 (𝑏 | 𝑅) = 𝑘𝑀 (𝑏) ↗ ϱ̃𝑌 𝑀 (𝑏 | 𝑅), 𝑄 = 0,

is a martingale adapted to (F𝑄 ). Standard results in time-to-event analysis shows that the com-
pensator satisfies a multiplicative hazard structure such that the increment of the compensator
factorizes as

dϱ̃𝑌 𝑀 (𝑏 | 𝑆, 𝑅) = 𝑂 (𝑀 ⫅̸ 𝑏)dÃ𝑌 𝑀 (𝑏 | 𝑆, 𝑅), 𝑄 = 1,

dϱ̃𝑌 𝑀 (𝑏 | 𝑅) = 𝑂 (𝑀 ⫅̸ 𝑏)dÃ𝑌 𝑀 (𝑏 | 𝑅), 𝑄 = 0,
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where

dÃ1 𝑀 (𝑏 | 𝑋, 𝑐) =
d𝑕(𝑀 ⊋ 𝑏, 𝐿 = 𝑍 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1)

𝑕(𝑀 ⫅̸ 𝑏 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1)
,

dÃ0 𝑀 (𝑏 | 𝑐) =
d𝑕(𝑀 ⊋ 𝑏, 𝐿 = 𝑍 | 𝑅 = 𝑐,𝑄 = 0)

𝑕(𝑀 ⫅̸ 𝑏 | 𝑅 = 𝑐,𝑄 = 0)
.

Consider the filtration (G𝑄 ) where G𝑄 = 𝑣

[{
𝑘1 (𝑙+), 𝑘2 (𝑙+), 𝑘𝑁 (𝑙),𝑄𝑆, 𝑅 ,𝑄; 0 < 𝑙 ⊋ 𝑏

}]
.

The quantity associated with the observed censoring counting process

𝑄𝑤̃
𝑁

𝑌
(𝑏 | 𝑆, 𝑅) + (1 ↗ 𝑄)𝑤̃𝑁

𝑌
(𝑏 | 𝑅)

is a martingale adapted to (G𝑄 ), where 𝑤̃
𝑁

𝑌
(𝑏 | 𝑆, 𝑅) = 𝑘

𝑁 (𝑏)↗ϱ̃𝑁

𝑌
(𝑏 | 𝑆, 𝑅), 𝑤̃𝑁

𝑌
(𝑏 | 𝑅) = 𝑘

𝑁 (𝑏)↗
ϱ̃𝑁

𝑌
(𝑏 | 𝑅),

dϱ̃𝑁

𝑌
(𝑏 | 𝑆, 𝑅) =

{
𝑂 (𝑀 ⫅̸ 𝑏, 𝐿 = 0) + 𝑂 (𝑀 > 𝑏, 𝐿 ω 0)

}
dÃ𝑁

𝑌
(𝑏 | 𝑆, 𝑅)

and

dÃ𝑁

1 (𝑏 | 𝑋, 𝑐) =
d𝑕(𝑀 ⊋ 𝑏, 𝐿 = 0 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1)

𝑕[{𝑀 ⫅̸ 𝑏, 𝐿 = 0} ⇓ {𝑀 > 𝑏, 𝐿 ω 0} | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1]
,

dÃ𝑁

0 (𝑏 | 𝑐) =
d𝑕(𝑀 ⊋ 𝑏, 𝐿 = 0 | 𝑅 = 𝑐,𝑄 = 0)

𝑕[{𝑀 ⫅̸ 𝑏, 𝐿 = 0} ⇓ {𝑀 > 𝑏, 𝐿 ω 0} | 𝑅 = 𝑐,𝑄 = 0]
.

Under Assumption 3, the cause-specific hazards defined on the uncensored data distribution
are identifiable from the observed data with Ã

𝑂 𝑀
(𝑏 | 𝑋, 𝑐) = A

𝑂 𝑀
(𝑏 | 𝑋, 𝑐), and so is the censoring

hazard with Ã𝑁

𝑂
(𝑏 | 𝑋, 𝑐) = A𝑁

𝑂
(𝑏 | 𝑋, 𝑐). Therefore, the survival function of the composite event

and the cumulative incidence function of event type 𝑍 is subsequently identifiable in the observed
data distribution as the product integral

𝑒
𝑂
(𝑏 | 𝑋, 𝑐) = {ε(A

𝑂1 + A
𝑂2)}(𝑏 | 𝑋, 𝑐) =

{
ε
(
Ã
𝑂1 + Ã

𝑂2
)}
(𝑏 | 𝑋, 𝑐) = 𝑒

𝑂
(𝑏 | 𝑋, 𝑐)

and the Lebesgue-Stieltjes integral

𝑎
𝑂 𝑀

(𝑏 | 𝑋, 𝑐) =
ˆ

𝑄

0
𝑒
𝑂
(𝑙↗ | 𝑋, 𝑐)dA

𝑂 𝑀
(𝑙 | 𝑋, 𝑐) =

ˆ
𝑄

0
𝑒
𝑂
(𝑙↗ | 𝑋, 𝑐)dÃ

𝑂 𝑀
(𝑙 | 𝑋, 𝑐) = 𝑎̃

𝑂 𝑀
(𝑏 | 𝑋, 𝑐).

S2. Proofs

S2.1. Proof of Lemma 1

We show the efficient influence function of 𝑌1 (0) without Assumption 5. Define

𝑥1 (𝑏 | 𝑋, 𝑐) = 𝑕(𝑀 > 𝑏 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1),
𝑥0 (𝑏 | 𝑐) = 𝑕(𝑀 > 𝑏 | 𝑅 = 𝑐,𝑄 = 0),

𝑎̃1 𝑀 (𝑏 | 𝑋, 𝑐) =
ˆ

𝑄

0
𝑒1 (𝑙↗ | 𝑋, 𝑐)dÃ1 𝑀 (𝑙 | 𝑋, 𝑐).

Lemma 1 is a special case of the following result.

Proposition S1. The efficient influence function of 𝑌1 (0) at 𝑕 ↔ P is

𝑞1 (0) (𝑊) = 𝑄 (1 ↗ 𝑆)𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑦1 (𝑏 | 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧11 (𝑏 | 𝑆, 𝑅)d𝑤̃11 (𝑏 | 𝑆, 𝑅)
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+ (1 ↗ 𝑄)𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑦0 (𝑏 | 𝑅)
𝑥0 (𝑏↗ | 𝑅) 𝑧11 (𝑏 | 0, 𝑅)d𝑤̃01 (𝑏 | 𝑅)

+ 𝑄

𝑉

(1 ↗ 𝑆)
𝑗1 (0 | 𝑅)

ˆ
𝑇

0

1
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧21 (𝑏 | 𝑆, 𝑅)d𝑤̃12 (𝑏 | 𝑆, 𝑅)

+ 𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
, (S1)

where

𝑧
𝑆1 (𝑏 | 𝑆, 𝑅) = 𝑂 (𝑛 = 1)𝑒1 (𝑏↗ | 𝑆, 𝑅) ↗ 𝑎̃11 (𝑃 | 𝑆, 𝑅) ↗ 𝑎̃11 (𝑏 | 𝑆, 𝑅)

1 ↗ ⇒Ã11 (𝑏 | 𝑆, 𝑅) ↗ ⇒Ã12 (𝑏 | 𝑆, 𝑅)

𝑦• (𝑏 | 𝑅) = {1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)}𝑧11 (𝑏 | 0, 𝑅)
{

1 ↗ 𝑖(𝑅)
𝑥1 (𝑏↗ | 0, 𝑅) +

𝑖(𝑅)𝑗1 (0 | 𝑅)
𝑥0 (𝑏↗ | 𝑅)

}

𝑦1 (𝑏 | 𝑅) =
1

𝑦• (𝑏 | 𝑅)

{
1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)

𝑥0 (𝑏↗ | 𝑅) 𝑧11 (𝑏 | 0, 𝑅)

+ ⇒Ã12 (𝑏 | 0, 𝑅)
𝑥1 (𝑏↗ | 0, 𝑅)

1 ↗ 𝑖(𝑅)
𝑖(𝑅)𝑗1 (0 | 𝑅) 𝑧21 (𝑏 | 0, 𝑅)

}

𝑦0 (𝑏 | 𝑅) =
1

𝑦• (𝑏 | 𝑅)

{
1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)
𝑥1 (𝑏↗ | 0, 𝑅) 𝑧11 (𝑏 | 0, 𝑅) ↗

⇒Ã12 (𝑏 | 0, 𝑅)
𝑥1 (𝑏↗ | 0, 𝑅) 𝑧21 (𝑏 | 0, 𝑅)

}
.

The efficient influence function of 𝑌2 (0) at 𝑕 ↔ P is

𝑞2 (0) (𝑊) = 𝑄 (1 ↗ 𝑆)𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑦1 (𝑏 | 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧12 (𝑏 | 𝑆, 𝑅)d𝑤̃11 (𝑏 | 𝑆, 𝑅)

+ (1 ↗ 𝑄)𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑦0 (𝑏 | 𝑅)
𝑥0 (𝑏↗ | 𝑅) 𝑧12 (𝑏 | 0, 𝑅)d𝑤̃01 (𝑏 | 𝑅)

+ 𝑄

𝑉

(1 ↗ 𝑆)
𝑗1 (0 | 𝑅)

ˆ
𝑇

0

1
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧22 (𝑏 | 𝑆, 𝑅)d𝑤̃12 (𝑏 | 𝑆, 𝑅)

+ 𝑄

𝑉

{
𝑎̃12 (𝑃 | 0, 𝑅) ↗ 𝑌2 (0)

}
. (S2)

Proof. We define the observed data distribution for the censoring time as 𝛥10 (𝑏 | 𝑋, 𝑐) =
𝑕(𝑀 ⊋ 𝑏, 𝐿 = 0 | 𝑆 = 𝑋, 𝑅 = 𝑐,𝑄 = 1) and 𝛥00 (𝑏 | 𝑐) = 𝑕(𝑀 ⊋ 𝑏, 𝐿 = 0 | 𝑅 = 𝑐,𝑄 = 0) for
𝑋 ↔ {0, 1}. The observed data density can be factorized as

d𝑕(𝑀 , 𝐿, 𝑆, 𝑅 ,𝑄) = {d𝛥1𝑍 (𝑀 | 𝑆, 𝑅)𝑗1 (𝑆 | 𝑅)𝑖(𝑅)}𝑌 [d𝛥0𝑍 (𝑀 | 𝑅){1↗𝑖(𝑅)}]1↗𝑌d𝑕(𝑅).

Consider the parametric submodel for the observed data density for the event time and event type:

d𝛥1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩) = d𝛥1𝑆 (𝑏 | 𝑋, 𝑐){1 + 𝛩𝛬1 (𝑏, 𝑛 , 𝑋, 𝑐)},
d𝛥0𝑆 (𝑏 | 𝑐; 𝛩) = d𝛥0𝑆 (𝑏 | 𝑐){1 + 𝛩𝛬0 (𝑏, 𝑛 , 𝑐)},

for 𝑋 ↔ {0, 1} and 𝑛 ↔ {0, 1, 2}, where 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) and 𝛬0 (𝑀 , 𝐿, 𝑅) are functions with finite
variance that satisfy 𝑑{𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) | 𝑆, 𝑅 ,𝑄 = 1} = 0 and 𝑑{𝛬0 (𝑀 , 𝐿, 𝑅) | 𝑅 ,𝑄 = 0} = 0.
The submodel must further obey the restriction dÃ11 (𝑏 | 0, 𝑐; 𝛩) = dÃ01 (𝑏 | 𝑐; 𝛩) for 𝑏 ↔ (0, 𝑃], or
equivalently,

d𝛥11 (𝑏 | 0, 𝑐; 𝛩)
𝑥1 (𝑏↗ | 0, 𝑐; 𝛩) =

d𝛥01 (𝑏 | 𝑐; 𝛩)
𝑥0 (𝑏↗ | 𝑐; 𝛩) . (S3)

The Gateaux derivative of the cumulative hazard increment dÃ1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩) for 𝑛 ↔ {0, 1, 2} is

d
d𝛩

dÃ1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩)

𝑎=0
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=
d
d𝛩

d𝛥1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩)
𝑥1 (𝑏↗ | 𝑋, 𝑐; 𝛩)


𝑎=0

=
1

𝑥1 (𝑏↗ | 𝑋, 𝑐)
d
d𝛩

d𝛥1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩)

𝑎=0

↗ d𝛥1𝑆 (𝑏 | 𝑋, 𝑐)
𝑥

2
1 (𝑏↗ | 𝑋, 𝑐)

d
d𝛩

𝑥1 (𝑏↗ | 𝑋, 𝑐; 𝛩)

𝑎=0

=
1

𝑥1 (𝑏↗ | 𝑋, 𝑐)
d
d𝛩

d𝛥1𝑆 (𝑏 | 𝑋, 𝑐; 𝛩)

𝑎=0

↗ d𝛥1𝑆 (𝑏 | 𝑋, 𝑐)
𝑥

2
1 (𝑏↗ | 𝑋, 𝑐)

d
d𝛩

ˆ
𝑏↔ [𝑄 ,↓)

∑

𝑀↔{0,1,2}
d𝛥1 𝑀 (𝛯 | 𝑋, 𝑐; 𝛩)


𝑎=0

= dÃ1𝑆 (𝑏 | 𝑋, 𝑐)
{
𝛬1 (𝑏, 𝑛 , 𝑋, 𝑐) ↗

∑

𝑀↔{0,1,2}

ˆ
𝑏↔ [0,↓)

𝛬1 (𝛯, 𝑍 , 𝑋, 𝑐)
d𝛥1 𝑀 (𝛯 | 𝑋, 𝑐)
𝑥1 (𝑏↗ | 𝑋, 𝑐)

}
.

Similarly, for 𝑛 ↔ {0, 1, 2}, we have

d
d𝛩

dÃ0𝑆 (𝑏 | 𝑐; 𝛩)

𝑎=0

= dÃ0𝑆 (𝑏 | 𝑐)
{
𝛬0 (𝑏, 𝑛 , 𝑐) ↗

∑

𝑀↔{0,1,2}

ˆ
𝑏↔ [𝑄 ,↓)

𝛬0 (𝛯, 𝑍 , 𝑐)
d𝛥0 𝑀 (𝛯 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

}
.

Therefore, differentiating both sides of (S3) with respect to 𝛩 and evaluating at zero, the restriction
on the scores of the hazards is

dÃ11 (𝑏 | 0, 𝑐)
{
𝛬1 (𝑏, 1, 0, 𝑐) ↗

ˆ
𝑏↔ [𝑄 ,↓)

∑

𝑆↔{0,1,2}
𝛬1 (𝛯, 𝑛 , 0, 𝑐)

d𝛥1𝑆 (𝛯 | 0, 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐)

}

= dÃ01 (𝑏 | 𝑐)
{
𝛬0 (𝑏, 1, 𝑐) ↗

ˆ
𝑏↔ [𝑄 ,↓)

∑

𝑆↔{0,1,2}
𝛬0 (𝛯, 𝑛 , 𝑐)

d𝛥0𝑆 (𝛯 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

}
.

With some algebra, the score restriction can be expressed as a conditional expectation restriction:

𝑑

[
𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 ,𝑄 = 1
]

= 𝑑

[
𝛬0 (𝑀 , 𝐿, 𝑅)

d𝑤̃01 (𝑏 | 𝑅)
𝑥0 (𝑏↗ | 𝑅)

 𝑅 ,𝑄 = 0
]
. (S4)

For the rest of the components in the observed data density, we also choose appropriate perturba-
tion functions, or score functions, such that d𝑕(𝑀 , 𝐿, 𝑆, 𝑅 ,𝑄; 𝛩) equals d𝑕(𝑀 , 𝐿, 𝑆, 𝑅 ,𝑄) when
𝛩 = 0. The closed linear subspace of all possible choices of these perturbation functions is the
tangent space of the model P at 𝑕, which is

∞P = ∞P1 ∈ ∞P2 ∈ ∞P3 ∈ ∞P4,

where V1 ∈ V2 denotes the direct sum of vector spaces V1 and V2,

∞P1 =
{
𝑄𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) + (1 ↗ 𝑄)𝛬0 (𝑀 , 𝐿, 𝑅) : 𝑑{𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) | 𝑆, 𝑅 ,𝑄 = 1} = 0,

𝑑{𝛬0 (𝑀 , 𝐿, 𝑅) | 𝑅 ,𝑄 = 0} = 0, 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) and 𝛬0 (𝑀 , 𝐿, 𝑅) satisfy (S4)
}
,

∞P2 =
{
𝑄𝛬1 (𝑆, 𝑅) : 𝑑{𝛬1 (𝑆, 𝑅) | 𝑅 ,𝑄 = 1} = 0

}
,

∞P3 =
{
𝛬(𝑄, 𝑅) : 𝑑{𝛬(𝑄, 𝑅) | 𝑅} = 0

}
,

∞P4 =
{
𝛬(𝑅) : 𝑑{𝛬(𝑅)} = 0

}
.

The decomposition of the tangent space follows from the product structure of the observed data
likelihood. Differentiating the target parameter along some submodel {𝑕𝑎} with score function

𝛬(𝑊) = 𝑄𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅) + (1 ↗ 𝑄)𝛬0 (𝑀 , 𝐿, 𝑅) + 𝑄𝛬(𝑆, 𝑅) + 𝛬(𝑄, 𝑅) + 𝛬(𝑅),
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we have

d
d𝛩

𝑌1 (0; 𝛩)

𝑎=0

=
d
d𝛩

ˆ
X

ˆ
𝑇

0
dÃ11 (𝑏 | 0, 𝑐; 𝛩)𝑒1 (𝑏↗ | 0, 𝑐; 𝛩)d𝑕(𝑐 | 𝑄 = 1; 𝛩)


𝑎=0

=
ˆ
X

ˆ
𝑇

0

d
d𝛩

dÃ11 (𝑏 | 0, 𝑐; 𝛩)

𝑎=0

𝑒1 (𝑏↗ | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1) (S5)

↗
ˆ
X

ˆ
𝑇

0

ˆ
𝑄↗

0

d
d𝛩

dÃ11 (𝑙 | 0, 𝑐; 𝛩)

𝑎=0

+ d
d𝛩

dÃ12 (𝑙 | 0, 𝑐; 𝛩)

𝑎=0

1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)
d𝑎̃11 (𝑏 | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1) (S6)

+
ˆ
X

𝑎̃11 (𝑃 | 0, 𝑐)
d
d𝛩

d𝑕(𝑐 | 𝑄 = 1; 𝛩)

𝑎=0

, (S7)

where the outermost integral is over the set X = X1 ⇓ X0.
We proceed by analyzing the terms separately. First, the term (S5) is

ˆ
X

ˆ
𝑇

0
𝛬1 (𝑏, 1, 0, 𝑐)dÃ11 (𝑏 | 0, 𝑐)𝑒1 (𝑏↗ | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)

↗
ˆ
X

ˆ
𝑇

0

ˆ
𝑏↔ [𝑄 ,↓)

∑

𝑆↔{0,1,2}
𝛬1 (𝛯, 𝑛 , 0, 𝑐)

d𝛥1𝑆 (𝛯 | 0, 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐)

dÃ11 (𝑏 | 0, 𝑐)𝑒1 (𝑏↗ | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)

=
ˆ
X

𝑑

[
𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑇

0

𝑒1 (𝑏↗ | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
]

d𝑕(𝑐 | 𝑄 = 1).

The term (S6) is a sum of two terms, which for 𝑛 ↔ {1, 2} can be seen to be

↗
ˆ
X

ˆ
𝑇

0

ˆ
𝑅↔ (0,𝑄 )

d
d𝛩

dÃ1𝑆 (𝑙 | 0, 𝑐; 𝛩)

𝑎=0

1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)
d𝑎̃11 (𝑏 | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)

= ↗
ˆ
X

ˆ
𝑇

0

ˆ
𝑅↔ (0,𝑄 )

𝛬1 (𝑙, 𝑛 , 0, 𝑐)dÃ1𝑆 (𝑙 | 0, 𝑐)
1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)

d𝑎̃11 (𝑏 | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)

+
ˆ
X

ˆ
𝑇

0

ˆ
𝑅↔ (0,𝑄 )

{ ´
𝑏↔ [𝑅,↓)

∑
𝑀↔{0,1,2} 𝛬1 (𝛯, 𝑍 , 0, 𝑐)d𝛥1 𝑀 (𝛯 | 0, 𝑐)

}
𝑥1 (𝑙↗ | 0, 𝑐){1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)}

dÃ1𝑆 (𝑙 | 0, 𝑐)d𝑎̃11 (𝑏 | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)

= ↗
ˆ
X

ˆ
𝑅↔ (0,𝑇 )

ˆ
𝑄↔ (𝑅,𝑇 ]

d𝑎̃11 (𝑏 | 0, 𝑐)
𝛬1 (𝑙, 𝑛 , 0, 𝑐)dÃ1𝑆 (𝑙 | 0, 𝑐)

1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)
d𝑕(𝑐 | 𝑄 = 1)

+
ˆ
X

ˆ
𝑅↔ (0,𝑇 )

ˆ
𝑄↔ (𝑅,𝑇 ]

d𝑎̃11 (𝑏 | 0, 𝑐)
{ ´

𝑏↔ [𝑅,↓)
∑

𝑀↔{0,1,2} 𝛬1 (𝛯, 𝑍 , 0, 𝑐)d𝛥1 𝑀 (𝛯 | 0, 𝑐)
}

𝑥1 (𝑙↗ | 0, 𝑐){1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐) ↗ ⇒Ã12 (𝑙 | 0, 𝑐)}
dÃ1𝑆 (𝑙 | 0, 𝑐)d𝑕(𝑐 | 𝑄 = 1)
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= ↗
ˆ
X

𝑑

[
𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑅↔ (0,𝑇 )

𝑎̃11 (𝑃 | 𝑆, 𝑅) ↗ 𝑎̃11 (𝑙 | 𝑆, 𝑅)
1 ↗ ⇒Ã11 (𝑙 | 𝑆, 𝑅) ↗ ⇒Ã12 (𝑙 | 𝑆, 𝑅)

d𝑘
𝑆
(𝑙)

𝑥1 (𝑙↗ | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
]
d𝑕(𝑐 | 𝑄 = 1)

+
ˆ
X

𝑑

[
𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑅↔ (0,𝑇 )

𝑎̃11 (𝑃 | 𝑆, 𝑅) ↗ 𝑎̃11 (𝑙 | 𝑆, 𝑅)
1 ↗ ⇒Ã11 (𝑙 | 𝑆, 𝑅) ↗ ⇒Ã12 (𝑙 | 𝑆, 𝑅)

𝑂 (𝑀 ⫅̸ 𝑙)dÃ1𝑆 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
]
d𝑕(𝑐 | 𝑄 = 1)

= ↗
ˆ
X

𝑑

[
𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑇

0

𝑎̃11 (𝑃 | 𝑆, 𝑅) ↗ 𝑎̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅){1 ↗ ⇒Ã11 (𝑏 | 𝑆, 𝑅) ↗ ⇒Ã12 (𝑏 | 𝑆, 𝑅)}

d𝑤̃1𝑆 (𝑏 | 𝑆, 𝑅)
 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1

]
d𝑕(𝑐 | 𝑄 = 1).

The last term (S7) is
ˆ
X

{𝑎̃11 (𝑃 | 0, 𝑐) ↗ 𝑌1 (0)}{𝛬(1, 𝑐) + 𝛬(𝑐)}d𝑕(𝑐 | 𝑄 = 1).

Collecting the terms yields that

d
d𝛩

𝑌1 (0; 𝛩)

𝑎=0

=
ˆ
X

𝑑

[ ˆ
𝑇

0

{
𝑧11 (𝑏 | 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) + 𝑧21 (𝑏 | 𝑆, 𝑅)

d𝑤̃12 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅)

}

𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)
 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1

]
d𝑕(𝑐 | 𝑄 = 1)

+
ˆ
X

{𝑎̃11 (𝑃 | 0, 𝑐) ↗ 𝑌1 (0)}{𝛬(1, 𝑐) + 𝛬(𝑐)}d𝑕(𝑐 | 𝑄 = 1),

and by replacing integrals with expectations, we have

= 𝑑

[
𝑄 (1 ↗ 𝑆)
𝑉𝑗1 (𝑆 | 𝑅) 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)
ˆ

𝑇

0

{
𝑧11 (𝑏 | 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) + 𝑧12 (𝑏 | 𝑆, 𝑅)

d𝑤̃12 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅)

}]

+ 𝑑

[
𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
{𝛬(𝑄, 𝑅) + 𝛬(𝑅)}

]
.

In the following we show that the function 𝑞1 (0) (𝑊) displayed in (S1) is indeed a gradient of the
parameter 𝑌1 (0) by verifying that

𝑑{𝑞1 (0) (𝑊)𝛬(𝑊)} = d
d𝛩

𝑌1 (0; 𝛩)

𝑎=0

for the score 𝛬(𝑊) of an arbitrary submodel {𝑕𝑎} ↙ P . The inner product

𝑑{𝑞1 (0) (𝑊)𝛬(𝑊)}

= 𝑑

{ (1 ↗ 𝑆)𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑄𝑦1 (𝑏 | 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧11 (𝑏 | 𝑆, 𝑅)d𝑤̃11 (𝑏 | 𝑆, 𝑅)𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

}

+ 𝑑

{
𝑖(𝑅)
𝑉

ˆ
𝑇

0

(1 ↗ 𝑄)𝑦0 (𝑏 | 𝑅)
𝑥0 (𝑏↗ | 𝑅) 𝑧11 (𝑏 | 0, 𝑅)d𝑤̃01 (𝑏 | 𝑅)𝛬0 (𝑀 , 𝐿, 𝑅)

}
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+ 𝑑

{ (1 ↗ 𝑆)
𝑉𝑗1 (𝑆 | 𝑅)

ˆ
𝑇

0

𝑄

𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝑧21 (𝑏 | 𝑆, 𝑅)d𝑤̃12 (𝑏 | 𝑆, 𝑅)𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)
}

+ 𝑑

[
𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
{𝛬(𝑄, 𝑅) + 𝛬(𝑅)}

]
.

The first two terms of the right hand side of the equation can be simplified by (S4), so that they
sum up to

𝑑

{
𝑄 (1 ↗ 𝑆)𝑖(𝑅)

𝑉

ˆ
𝑇

0
𝑦1 (𝑏 | 𝑅)𝑧11 (𝑏 | 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

}

+ 𝑑

[ (1 ↗ 𝑄)𝑖(𝑅)
𝑉

𝑑

{ ˆ
𝑇

0
𝑦0 (𝑏 | 𝑅)𝑧11 (𝑏 | 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅)

𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)
 𝑆 = 0, 𝑅 ,𝑄 = 1

}]

= 𝑑

{
𝑖(𝑅)
𝑉

𝑑

 ˆ
𝑇

0
[𝑖(𝑅)𝑗1 (𝑆 | 𝑅)𝑦1 (𝑏 | 𝑅) + {1 ↗ 𝑖(𝑅)}𝑦0 (𝑏 | 𝑅)]

𝑧11 (𝑏 | 𝑆, 𝑅)
d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

 𝑆 = 0, 𝑅 ,𝑄 = 1
}

= 𝑑

{
𝑄 (1 ↗ 𝑆)
𝑉𝑗1 (𝑆 | 𝑅) 𝛬1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑇

0
𝑧11 (𝑏 | 𝑆, 𝑅)

d𝑤̃11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅)

}
,

where in the last step we used the identity

𝑖(𝑐)𝑗1 (0 | 𝑐)𝑦1 (𝑏 | 𝑐) + {1 ↗ 𝑖(𝑐)}𝑦0 (𝑏 | 𝑐) = 1.

This can be established by direct calculation:

𝑖(𝑐)𝑗1 (0 | 𝑐)𝑦1 (𝑏 | 𝑐) + {1 ↗ 𝑖(𝑐)}𝑦0 (𝑏 | 𝑐)

=
1

𝑦• (𝑏 | 𝑐)

[
{1 ↗ ⇒Ã11 (𝑏 | 0, 𝑐)}𝑧11 (𝑏 | 0, 𝑐)

{
1 ↗ 𝑖(𝑐)

𝑥1 (𝑏↗ | 0, 𝑐) +
𝑖(𝑐)𝑗1 (0 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

}]

= 1.

We have established that 𝑞1 (0) (𝑊) is indeed a gradient of 𝑌1 (0).
In order to show that 𝑞1 (0) is the efficient influence function, it remains to ascertain 𝑞1 (0) (𝑊)

itself is a score of the model at 𝑕. To proceed further, we decompose 𝑞1 (0) (𝑊) into the following
functions:

𝛬
⇔
1 (𝑀 , 𝐿, 𝑆, 𝑅) =

𝑖(𝑅) (1 ↗ 𝑆)
𝑉

ˆ
𝑇

0

𝑦1 (𝑏 | 𝑅)𝑧11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

+ (1 ↗ 𝑆)
𝑉𝑗1 (𝑆 | 𝑅)

ˆ
𝑇

0

𝑧21 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃12 (𝑏 | 𝑆, 𝑅),

𝛬
⇔
0 (𝑀 , 𝐿, 𝑅) =

𝑖(𝑅)
𝑉

ˆ
𝑇

0

𝑦0 (𝑏 | 𝑅)𝑧11 (𝑏 | 0, 𝑅)
𝑥0 (𝑏↗ | 𝑅) d𝑤̃01 (𝑏 | 𝑅),

𝛬
⇔ (𝑄, 𝑅) = 𝑄 ↗ 𝑖(𝑅)

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
,

𝛬
⇔ (𝑅) = 𝑖(𝑅)

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
,

such that

𝑞1 (0) (𝑊) = 𝑄𝛬
⇔
1 (𝑀 , 𝐿, 𝑆, 𝑅) + (1 ↗ 𝑄)𝛬⇔0 (𝑀 , 𝐿, 𝑅) + 𝛬

⇔ (𝑄, 𝑅) + 𝛬
⇔ (𝑅).
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It is trivial to show that 𝛬⇔ (𝑄, 𝑅) and 𝛬
⇔ (𝑅) are valid scores by noting that 𝑑{𝛬⇔ (𝑄, 𝑅) | 𝑅} = 0

and 𝑑{𝛬⇔ (𝑅)} = 0, so 𝛬
⇔ (𝑄, 𝑅) ↔ ∞P3 and 𝛬

⇔ (𝑅) ↔ ∞P4. Since 𝛬
⇔
1 (𝑀 , 𝐿, 𝑆, 𝑅) and 𝛬

⇔
0 (𝑀 , 𝐿, 𝑅)

are zero-mean martingales adapted to the filtration (F𝑄 ) at time 𝑃, it is also clear that

𝑑{𝛬⇔1 (𝑀 , 𝐿, 𝑆, 𝑅) | 𝑆, 𝑅 ,𝑄 = 1} = 0, 𝑑{𝛬⇔0 (𝑀 , 𝐿, 𝑅) | 𝑅 ,𝑄 = 0} = 0.

We will now verify that 𝛬⇔0 and 𝛬
⇔
1 fulfill (S4) in the integral form. We do so by computing

both sides of (S4) substituting 𝛬
⇔
1 for 𝛬1 and 𝛬

⇔
0 for 𝛬0. For any 0 < 𝑏 ⊋ 𝑃, we calculate the

conditional expectation

𝑑

{
𝛬
⇔
1 (𝑀 , 𝐿, 𝑆, 𝑅)

ˆ
𝑄

0

d𝑤̃11 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
}

=
1
𝑉

𝑑

[ ˆ
𝑄

0

d𝑤̃11 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅)

ˆ
𝑄

0

{
𝑖(𝑅)𝑦1 (𝑙 | 𝑅)𝑧11 (𝑙 | 𝑆, 𝑅)

𝑥1 (𝑙↗ | 𝑆, 𝑅) d𝑤̃11 (𝑙 | 𝑆, 𝑅)

+ 1
𝑗1 (𝑆 | 𝑅)

𝑧21 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅) d𝑤̃12 (𝑙 | 𝑆, 𝑅)

}  𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
]
,

and by the property of the martingale product and the corresponding predictable covariation pro-
cess (Fleming and Harrington, 1991, Theorem 2.3.4), the term above is

=
1
𝑉

𝑑

[ ˆ
𝑄

0

d𝑤̃11 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅) ,

ˆ
𝑄

0

{
𝑖(𝑅)𝑦1 (𝑙 | 𝑅)𝑧11 (𝑙 | 𝑆, 𝑅)

𝑥1 (𝑙↗ | 𝑆, 𝑅) d𝑤̃11 (𝑙 | 𝑆, 𝑅)

1
𝑗1 (𝑆 | 𝑅)

𝑧21 (𝑙 | 𝑆, 𝑅)
𝑥1 (𝑙↗ | 𝑆, 𝑅) d𝑤̃12 (𝑙 | 𝑆, 𝑅)

}  𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
]

=
1
𝑉

𝑑

{ ˆ
𝑄

0

𝑦1 (𝑙 | 𝑅)𝑧11 (𝑙 | 𝑆, 𝑅)
{𝑥1 (𝑙↗ | 𝑆, 𝑅)}2 𝑖(𝑅)d∋𝑤̃11△(𝑙 | 𝑆, 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
}

+ 1
𝑉

𝑑

{ ˆ
𝑄

0

𝑧21 (𝑙 | 𝑆, 𝑅)
{𝑥1 (𝑙↗ | 𝑆, 𝑅)}2

d∋𝑤̃11, 𝑤̃12△(𝑙 | 𝑆, 𝑅)
𝑗1 (𝑆 | 𝑅)

 𝑆 = 0, 𝑅 = 𝑐,𝑄 = 1
}
,

and evaluating the predictable (co-)variation processes with the help of Theorem 2.6.1 of Fleming
and Harrington (1991), finally gives

=
1
𝑉

ˆ
𝑄

0

dÃ11 (𝑙 | 0, 𝑐)
𝑥1 (𝑙↗ | 0, 𝑐){

𝑖(𝑐)𝑦1 (𝑙 | 𝑐)𝑧11 (𝑙 | 0, 𝑐){1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐)} ↗
𝑧21 (𝑙 | 0, 𝑐)
𝑗1 (0 | 𝑐) ⇒Ã12 (𝑙 | 0, 𝑐)

}
. (S8)

On the other hand,

𝑑

{
𝛬
⇔
0 (𝑀 , 𝐿, 𝑅)

ˆ
𝑄

0

d𝑤̃01 (𝑙 | 𝑅)
𝑥0 (𝑙↗ | 𝑅)

 𝑅 = 𝑐,𝑄 = 0
}

=
1
𝑉

𝑑

{ ˆ
𝑄

0

d𝑤̃01 (𝑙 | 𝑅)
𝑥0 (𝑙↗ | 𝑅)

ˆ
𝑄

0
𝑖(𝑅)𝑦0 (𝑙 | 𝑅)𝑧11 (𝑙 | 0, 𝑅)

𝑥0 (𝑙↗ | 𝑅) d𝑤̃01 (𝑙 | 𝑅)
 𝑅 = 𝑐,𝑄 = 0

}

=
1
𝑉

𝑑

{ ˆ
𝑄

0
𝑖(𝑅)𝑦0 (𝑙 | 𝑅)𝑧11 (𝑙 | 0, 𝑅)

{𝑥0 (𝑙↗ | 𝑅)}2 d∋𝑤̃01△(𝑙 | 𝑅)
 𝑅 = 𝑐,𝑄 = 0

}

=
1
𝑉

ˆ
𝑄

0

dÃ11 (𝑙 | 0, 𝑐)
𝑥0 (𝑙↗ | 𝑅) 𝑖(𝑐)𝑦0 (𝑙 | 𝑐)𝑧11 (𝑙 | 0, 𝑐){1 ↗ ⇒Ã11 (𝑙 | 0, 𝑐)}. (S9)

The restriction (S4) holds if (S8) and (S9) are equal. Therefore, we only need to show that for
𝑏 ↔ (0, 𝑃],
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𝑖(𝑐){1 ↗ ⇒Ã11 (𝑏 | 0, 𝑐)}𝑧11 (𝑏 | 0, 𝑐)
{

𝑦1 (𝑏 | 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐) ↗

𝑦0 (𝑏 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

}

=
⇒Ã12 (𝑏 | 0, 𝑐)

𝑥1 (𝑏↗ | 0, 𝑐)𝑗1 (0 | 𝑐) 𝑧21 (𝑏 | 0, 𝑐). (S10)

The difference in the braces is

𝑦1 (𝑏 | 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐) ↗

𝑦0 (𝑏 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

=
1

𝑦• (𝑏 | 𝑐)
⇒Ã12 (𝑏 | 𝑋, 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐) 𝑧21 (𝑏 | 0, 𝑐)

{
1 ↗ 𝑖(𝑐)

𝑖(𝑐)𝑗1 (0 | 𝑐)𝑥1 (𝑏↗ | 0, 𝑐) +
1

𝑥0 (𝑏↗ | 𝑐)

}

=
1

𝑖(𝑐)
1

𝑦• (𝑏 | 𝑐)

{
1 ↗ 𝑖(𝑐)

𝑥1 (𝑏↗ | 0, 𝑐) +
𝑖(𝑐)𝑗1 (0 | 𝑐)
𝑥0 (𝑏↗ | 𝑐)

}

⇒Ã12 (𝑏 | 0, 𝑐)
𝑥1 (𝑏↗ | 0, 𝑐)𝑗1 (0 | 𝑐) 𝑧21 (𝑏 | 0, 𝑐),

which by inserting the definition of 𝑦• (𝑏 | 𝑐) is simply

=
1

𝑖(𝑐){1 ↗ ⇒Ã11 (𝑏 | 0, 𝑐)}𝑧11 (𝑏 | 0, 𝑐)
⇒Ã12 (𝑏 | 0, 𝑐)

𝑥1 (𝑏↗ | 0, 𝑐)𝑗1 (0 | 𝑐) 𝑧21 (𝑏 | 0, 𝑐),

and therefore (S10) holds.
That the terms (S8) and (S9) are equal shows that 𝑄𝛬

⇔
1 (𝑀 , 𝐿, 𝑆, 𝑅) + (1↗𝑄)𝛬⇔0 (𝑀 , 𝐿, 𝑅) ↔ ∞P1.

Therefore, 𝑞1 (0) (𝑊) belongs to the tangent space ∞P of the model P at 𝑕. Hence, it is the efficient
influence function of 𝑌1 (0).

The proof of 𝑞2 (0) (𝑊) being the efficient influence function of 𝑌2 (0) at 𝑕 ↔ P can be obtained
by slightly modifying the derivations above and is thus omitted. ⫆̸

Remark S1. Inspecting the proof of Proposition S1, we find two more influence functions
of the parameter 𝑌1 (0) in the model P . The first influence function is obtained by replacing
both 𝑦1 (𝑏 | 𝑐) and 𝑦0 (𝑏 | 𝑐) with [{1 ↗ 𝑖(𝑐)} + 𝑖(𝑐)𝑗1 (0 | 𝑐)]↗1 in 𝑞1 (0). The second one is
obtained by replacing 𝑦1 (𝑏 | 𝑐) with {𝑖(𝑐)𝑗1 (0 | 𝑐)}↗1 and 𝑦0 (𝑏 | 𝑐) with 0 in 𝑞1 (0). In this
case, the resulting influence function is identical to the one proposed in Rytgaard et al. (2023) but
restricted to the RCT population.

Lemma 1 is a simplification of the expressions of the efficient influence functions in Proposi-
tion S1 under Assumptions 3 and 5.

Proof of Lemma 1. Under Assumptions 3 and 5, we rewrite the following quantities from the
main text using only the observed data distribution:

𝑜• (𝑏 | 𝑐) = 𝑖(𝑐)𝑗1 (0 | 𝑐)𝑥1 (𝑏 | 0, 𝑐) + {1 ↗ 𝑖(𝑐)}𝑥0 (𝑏 | 𝑐),
𝑜1 (𝑏 | 𝑋, 𝑐) = 𝑗1 (𝑋 | 𝑐)𝑥1 (𝑏 | 𝑋, 𝑐),

𝑝
𝑆1 (𝑏 | 𝑋, 𝑐) = 𝑂 (𝑛 = 1)𝑒1 (𝑏 | 𝑋, 𝑐) ↗

𝑎̃11 (𝑃 | 𝑋, 𝑐) ↗ 𝑎̃11 (𝑏 | 𝑋, 𝑐)
1 ↗ ⇒Ã

𝑆1 (𝑏 | 0, 𝑅)
.

Let

𝑞
⇔
1 (0) (𝑊) = (1 ↗ 𝑆)𝑖(𝑅)

𝑉

ˆ
𝑇

0

𝑧11 (𝑏 | 𝑆, 𝑅)
𝑜• (𝑏↗ | 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

+ 𝑄 (1 ↗ 𝑆)
𝑉

ˆ
𝑇

0

𝑧21 (𝑏 | 𝑆, 𝑅)
𝑜1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃12 (𝑏 | 𝑆, 𝑅) +

𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}

𝑞
†
1 (0) (𝑊) = (1 ↗ 𝑆)𝑖(𝑅)

𝑉

ˆ
𝑇

0

𝑝11 (𝑏 | 𝑆, 𝑅)
𝑜• (𝑏↗ | 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)
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+ 𝑄 (1 ↗ 𝑆)
𝑉

ˆ
𝑇

0

𝑝21 (𝑏 | 𝑆, 𝑅)
𝑜1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃12 (𝑏 | 𝑆, 𝑅) +

𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
.

The function 𝑞
†
1 (0) (𝑊) is the expression appearing on the right-hand side of the statement of the

efficient influence function in the lemma. To show the lemma, we need to check for 𝑞1 (0) (𝑊)
from Proposition S1 that

𝑑

{
𝑞1 (0) (𝑊) ↗ 𝑞

⇔
1 (0) (𝑊)

}2 = 0, 𝑑

{
𝑞
⇔
1 (0) (𝑊) ↗ 𝑞

†
1 (0) (𝑊)

}2 = 0,

so that 𝑞1 (0) (𝑊) = 𝑞
†
1 (0) (𝑊) 𝑕-almost surely. Noting that (1 ↗ 𝑄)d𝑤̃11 (𝑏 | 0, 𝑅) = (1 ↗

𝑄)d𝑤̃01 (𝑏 | 𝑅) and

𝑧11 (𝑏 | 0, 𝑅)
𝑦• (𝑏 | 𝑅)

1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)
𝑥1 (𝑏↗ | 0, 𝑅)𝑥0 (𝑏↗ | 𝑅) =

1
𝑜• (𝑏↗ | 𝑅) ,

the 𝑢2 (𝑕)-norm of the difference 𝑑

{
𝑞1 (0) (𝑊) ↗ 𝑞

⇔
1 (0) (𝑊)

}2 is the expectation of the sum of
two squared martingales

𝑑

{
𝑞1 (0) (𝑊) ↗ 𝑞

⇔
1 (0) (𝑊)

}2

= 𝑑

[
𝑄 (1 ↗ 𝑆)

𝑉

𝑂{𝑖(𝑅) > 0}
ˆ

𝑇

0

1
𝑦• (𝑏 | 𝑅)

⇒Ã12 (𝑏 | 0, 𝑅)
𝑥

2
1 (𝑏↗ | 0, 𝑅)

1 ↗ 𝑖(𝑅)
𝑗1 (0 | 𝑅)

(𝑧11𝑧21) (𝑏 | 0, 𝑅)d𝑤̃11 (𝑏 | 0, 𝑅)
]2

+ 𝑑

{
1 ↗ 𝑄

𝑉

𝑖(𝑅)
ˆ

𝑇

0

1
𝑦• (𝑏 | 𝑅)

⇒Ã12 (𝑏 | 0, 𝑅)
𝑥1 (𝑏↗ | 0, 𝑅)𝑥0 (𝑏↗ | 𝑅)

(𝑧11𝑧21) (𝑏 | 0, 𝑅)d𝑤̃01 (𝑏 | 𝑅)
}2

= 𝑑

[
𝑄 (1 ↗ 𝑆)

𝑉
2 𝑂{𝑖(𝑅) > 0}

ˆ
𝑇

0

1
𝑦

2
• (𝑏 | 𝑅)

⇒Ã2
12 (𝑏 | 0, 𝑅)

𝑥
4
1 (𝑏↗ | 0, 𝑅)

{1 ↗ 𝑖(𝑅)}2

𝑗
2
1 (0 | 𝑅)

(𝑧11𝑧21)2 (𝑏 | 0, 𝑅)d∋𝑤̃11△(𝑏 | 0, 𝑅)
]

+ 𝑑

{
1 ↗ 𝑄

𝑉
2 𝑖

2 (𝑅)
ˆ

𝑇

0

1
𝑦

2
• (𝑏 | 𝑅)

⇒Ã2
12 (𝑏 | 0, 𝑅)

𝑥
2
1 (𝑏↗ | 0, 𝑅)𝑥2

0 (𝑏↗ | 𝑅)

(𝑧11𝑧21)2 (𝑏 | 0, 𝑅)d∋𝑤̃01△(𝑏 | 𝑅)
}

= 𝑑

[
𝑄 (1 ↗ 𝑆)

𝑉
2 𝑂{𝑖(𝑅) > 0}

ˆ
𝑇

0

1
𝑦

2
• (𝑏 | 𝑅)

⇒Ã2
12 (𝑏 | 0, 𝑅)

𝑥
4
1 (𝑏↗ | 0, 𝑅)

{1 ↗ 𝑖(𝑅)}2

𝑗
2
1 (0 | 𝑅)

(𝑧11𝑧21)2 (𝑏 | 0, 𝑅)𝑂 (𝑀 ⫅̸ 𝑏){1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)}dÃ11 (𝑏 | 0, 𝑅)
]

+ 𝑑

{
1 ↗ 𝑄

𝑉
2 𝑖

2 (𝑅)
ˆ

𝑇

0

1
𝑦

2
• (𝑏 | 𝑅)

⇒Ã2
12 (𝑏 | 0, 𝑅)

𝑥
2
1 (𝑏↗ | 0, 𝑅)𝑥2

0 (𝑏↗ | 𝑅)

(𝑧11𝑧21)2 (𝑏 | 0, 𝑅)𝑂 (𝑀 ⫅̸ 𝑏){1 ↗ ⇒Ã01 (𝑏 | 𝑅)}dÃ01 (𝑏 | 𝑅)
}

= 0.



31

The last equality is a direct consequence of Assumption 5, that is, ⇒Ã11 (𝑏 | 0, 𝑐)⇒Ã12 (𝑏 | 0, 𝑐) = 0
and ⇒Ã01 (𝑏 | 𝑐)⇒Ã12 (𝑏 | 0, 𝑐) = 0 for any 𝑐 ↔ X0 ≃ X1. Similarly, we have

𝑑

{
𝑞
⇔
1 (0) (𝑊) ↗ 𝑞

†
1 (0) (𝑊)

}2

= 𝑑

{ (1 ↗ 𝑆)𝑖(𝑅)
𝑉

ˆ
𝑇

0

(𝑧11 ↗𝑝11) (𝑏 | 𝑆, 𝑅)
𝑜• (𝑏↗ | 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

}2

+ 𝑑

{
𝑄 (1 ↗ 𝑆)

𝑉

ˆ
𝑇

0

(𝑧21 ↗𝑝21) (𝑏 | 𝑆, 𝑅)
𝑜1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃12 (𝑏 | 𝑆, 𝑅)

}2

= 𝑑

{ (1 ↗ 𝑆)𝑖2 (𝑅)
𝑉

2

ˆ
𝑇

0

(𝑧11 ↗𝑝11)2 (𝑏 | 𝑆, 𝑅)
𝑜

2
• (𝑏↗ | 𝑅)

d∋𝑤̃11△(𝑏 | 𝑆, 𝑅)
}

+ 𝑑

{
𝑄 (1 ↗ 𝑆)

𝑉
2

ˆ
𝑇

0

(𝑧21 ↗𝑝21)2 (𝑏 | 𝑆, 𝑅)
𝑜

2
1 (𝑏↗ | 𝑆, 𝑅)

d∋𝑤̃12△(𝑏 | 𝑆, 𝑅)
}

= 𝑑

[ (1 ↗ 𝑆)𝑖2 (𝑅)
𝑉

2

ˆ
𝑇

0

⇒Ã2
12 (𝑏 | 0, 𝑅){

1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)
}2{1 ↗ ⇒(Ã11 + Ã12) (𝑏 | 0, 𝑅)

}2

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑎̃11 (𝑏 | 0, 𝑅)

}2

𝑜
2
• (𝑏↗ | 𝑅)

𝑂 (𝑀 ⫅̸ 𝑏)
{
1 ↗ ⇒Ã11 (𝑏 | 0, 𝑅)

}
dÃ11 (𝑏 | 0, 𝑅)

]

+ 𝑑

[
𝑄 (1 ↗ 𝑆)

𝑉
2

ˆ
𝑇

0

⇒Ã2
11 (𝑏 | 0, 𝑅){

1 ↗ ⇒Ã12 (𝑏 | 0, 𝑅)
}2{1 ↗ ⇒(Ã11 + Ã12) (𝑏 | 0, 𝑅)

}2

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑎̃11 (𝑏 | 0, 𝑅)

}2

𝑜
2
1 (𝑏↗ | 0, 𝑅)

𝑂 (𝑀 ⫅̸ 𝑏)
{
1 ↗ ⇒Ã12 (𝑏 | 0, 𝑅)

}
dÃ12 (𝑏 | 0, 𝑅)

]

= 0.

The last equality follows from Assumption 5, ⇒Ã11 (𝑏 | 0, 𝑐)⇒Ã12 (𝑏 | 0, 𝑐) = 0 for any 𝑐 ↔ X1.
The equivalence for the efficient influence function 𝑞2 (0) (𝑊) can be argued analogously. ⫆̸

S2.2. Proof of Corollary 1

Let P̃ be the same as the model P but the restriction dÃ11 (𝑏 | 0, 𝑐) = dÃ01 (𝑏 | 𝑐) is removed. The
semiparametric efficiency bound of 𝑌1 (0) under 𝑕 ↔ P̃ can be characterized by the variance of
the efficient influence function

𝑞̃1 (0) (𝑊) = 𝑄

𝑉

1 ↗ 𝑆

𝑗1 (𝑆 | 𝑅)

ˆ
𝑇

0

𝑧11 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

+ 𝑄

𝑉

1 ↗ 𝑆

𝑗1 (𝑆 | 𝑅)

ˆ
𝑇

0

𝑧21 (𝑏 | 𝑆, 𝑅)
𝑥1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃12 (𝑏 | 𝑆, 𝑅)

+ 𝑄

𝑉

{
𝑎̃11 (𝑃 | 0, 𝑅) ↗ 𝑌1 (0)

}
.

See Remark S1 for the justification of this claim. Then the variance of the difference in the
efficient influence functions under these two models with respect to 𝑕 ↔ P is

𝑑{𝑞1 (0) (𝑊) ↗ 𝑞̃1 (0) (𝑊)}2

= 𝑑

{
𝑖(𝑅)
𝑉

(1 ↗ 𝑆)
ˆ

𝑇

0

𝑝11 (𝑏 | 𝑆, 𝑅)
𝑜• (𝑏↗ | 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

↗ 𝑄

𝑉

(1 ↗ 𝑆)
ˆ

𝑇

0

𝑝11 (𝑏 | 𝑆, 𝑅)
𝑜1 (𝑏↗ | 𝑆, 𝑅) d𝑤̃11 (𝑏 | 𝑆, 𝑅)

}2
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= 𝑑

[
1 ↗ 𝑆

𝑉

ˆ
𝑇

0

{
𝑖(𝑅)

𝑜• (𝑏↗ | 𝑅) ↗
𝑄

𝑜1 (𝑏↗ | 𝑆, 𝑅)

}
𝑝11 (𝑏 | 𝑆, 𝑅)d𝑤̃11 (𝑏 | 𝑆, 𝑅)

]2

= 𝑑


1 ↗ 𝑆

𝑉

ˆ
𝑇

0

{
𝑖(𝑅)

𝑜• (𝑏↗ | 𝑅) ↗
𝑄

𝑜1 (𝑏↗ | 𝑆, 𝑅)

}
𝑝11 (𝑏 | 𝑆, 𝑅)d𝑤̃11 (𝑏 | 𝑆, 𝑅)



= 𝑑

[
1 ↗ 𝑆

𝑉
2

ˆ
𝑇

0

{
𝑖(𝑅)

𝑜• (𝑏↗ | 𝑅) ↗
𝑄

𝑜1 (𝑏↗ | 𝑆, 𝑅)

}2
{𝑝11 (𝑏 | 𝑆, 𝑅)}2d∋𝑤̃11△(𝑏 | 𝑆, 𝑅)

]

= 𝑑

[
1 ↗ 𝑆

𝑉
2

ˆ
𝑇

0

{
𝑖(𝑅)

𝑜• (𝑏↗ | 𝑅) ↗
𝑄

𝑜1 (𝑏↗ | 𝑆, 𝑅)

}2

{𝑝11 (𝑏 | 𝑆, 𝑅)}2
𝑂 (𝑀 ⫅̸ 𝑏){1 ↗ ⇒Ã•1 (𝑏 | 𝑆, 𝑅)}dÃ•1 (𝑏 | 𝑆, 𝑅)

]

= 𝑑

[
1
𝑉

2

ˆ
𝑇

0

{ {𝑖(𝑅)}2

𝑜• (𝑏↗ | 𝑅) +
𝑖(𝑅)

𝑜1 (𝑏↗ | 0, 𝑅) ↗
2{𝑖(𝑅)}2

𝑜• (𝑏↗ | 𝑅)

}

{𝑝11 (𝑏 | 0, 𝑅)}2{1 ↗ ⇒Ã•1 (𝑏 | 0, 𝑅)}dÃ•1 (𝑏 | 0, 𝑅)
]

= 𝑑

[
𝑖(𝑅)
𝑉

2

ˆ
𝑇

0

{
1

𝑜1 (𝑏↗ | 0, 𝑅) ↗
𝑖(𝑅)

𝑜• (𝑏↗ | 𝑅)

}

{𝑝11 (𝑏 | 0, 𝑅)}2{1 ↗ ⇒Ã•1 (𝑏 | 0, 𝑅)}dÃ•1 (𝑏 | 0, 𝑅)
]

= 𝑑

[
𝑖(𝑅){1 ↗ 𝑖(𝑅)}

𝑉
2

ˆ
𝑇

0

(𝑒0𝑒
𝑁

0 ) (𝑏↗ | 𝑅)
𝑜1 (𝑏↗ | 0, 𝑅)𝑜• (𝑏↗ | 𝑅)

{𝑝11 (𝑏 | 0, 𝑅)}2{1 ↗ ⇒Ã•1 (𝑏 | 0, 𝑅)}dÃ•1 (𝑏 | 0, 𝑅)
]
.

The expression in the statement of the corollary follows from Assumptions 3 and 5.

S2.3. Proof of Theorem 1

We first state the deferred assumptions in the statement of Theorem 1.

Assumption S1 (Regularity conditions).
(i) There exists a universal constant 𝑁 > 1 such that

𝑉̂ ⫅̸ 𝑁
↗1

, 𝑗1 (0 | 𝑐) ⫅̸ 𝑁
↗1

, 𝑗1 (0 | 𝑐) ⫅̸ 𝑁
↗1

,

(εÂ•1) (𝑃 | 0, 𝑐) ⫅̸ 𝑁
↗1

, (εĀ•1) (𝑃 | 0, 𝑐) ⫅̸ 𝑁
↗1

,

(εÂ12) (𝑃 | 0, 𝑐) ⫅̸ 𝑁
↗1

, (εĀ12) (𝑃 | 0, 𝑐) ⫅̸ 𝑁
↗1

,

wherever 𝑖(𝑐) > 0, and

(εÂ02) (𝑃 | 𝑐) ⫅̸ 𝑁
↗1

, (εĀ02) (𝑃 | 𝑐) ⫅̸ 𝑁
↗1

,

(εÂ𝑁

0 ) (𝑃 | 𝑐) ⫅̸ 𝑁
↗1

, (εĀ𝑁

0 ) (𝑃 | 𝑐) ⫅̸ 𝑁
↗1

,

wherever 𝑖(𝑐){1 ↗ 𝑖(𝑐)} > 0;
(ii) {𝑐 : 𝑖̄(𝑐) > 0} ↙ X1;

(iii) For 𝑐 ↔ X1,{
Â•1 (𝑏 | 0, 𝑐),A•1 (𝑏 | 0, 𝑐)

}
↖⇒

{
Â12 (𝑏 | 0, 𝑐),A12 (𝑏 | 0, 𝑐), Â02 (𝑏 | 𝑐),A02 (𝑏 | 𝑐)

}
,{

Â•1 (𝑏 | 0, 𝑐), Ā•1 (𝑏 | 0, 𝑐)
}
↖⇒

{
Â12 (𝑏 | 0, 𝑐), Ā12 (𝑏 | 0, 𝑐), Ā02 (𝑏 | 𝑐),

Ā𝑁

1 (𝑏 | 0, 𝑐), Ā
𝑁

0 (𝑏 | 𝑐)
}
,{

Â12 (𝑏 | 0, 𝑐), Ā12 (𝑏 | 0, 𝑐)
}
↖⇒

{
Ā•1 (𝑏 | 0, 𝑐), Ā𝑁

1 (𝑏 | 0, 𝑐)
}
;
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(iv) 𝑟1 (0) and 𝑟1 (0) belong to some 𝑕-Donsker class.

Assumption S2 (Rate conditions). The following integrals converge sufficiently fast:

𝑕

[ ˆ
𝑇

0

{
𝑖̂(𝑅)𝑜

⇔
•

𝑜̂
⇔
•
(𝑏↗ | 𝑅) ↗ 𝑖(𝑅)εA12

εÂ12
(𝑏↗ | 0, 𝑅)

}

𝑝̂•1 (𝑏 | 0, 𝑅)
{
1 ↗ ⇒Â•1 (𝑏 | 0, 𝑅)

}
d

εA•1
εÂ•1


(𝑏 | 0, 𝑅)

]
= 𝑓𝑈 (𝑈↗1/2), (AS2.1)

𝑕

[
𝑖(𝑅)

ˆ
𝑇

0

{
𝑗1 (0 | 𝑅)𝑒𝑁1 (𝑏↗ | 0, 𝑅)
𝑗1 (0 | 𝑅)𝑒𝑁1 (𝑏↗ | 0, 𝑅)

↗ 1
}
εA•1
εÂ•1

(𝑏↗ | 0, 𝑅)

𝑝̂12 (𝑏 | 0, 𝑅)
{
1 ↗ ⇒Â12 (𝑏 | 0, 𝑅)

}
d

εA12
εÂ12


(𝑏 | 0, 𝑅)

]
= 𝑓𝑈 (𝑈↗1/2), (AS2.2)

where

𝑜
⇔
• (𝑏 | 𝑅) = 𝑖(𝑅)𝑗1 (0 | 𝑅){(εA12)𝑒𝑁1 }(𝑏 | 0, 𝑅) + {1 ↗ 𝑖(𝑅)}{(εA02)𝑒𝑁0 }(𝑏 | 𝑅).

Remark S2. Since estimators for cumulative hazards often contain jumps, the convergence
is stated in terms of the means of stochastic integrals (Westling et al., 2024). When the event
time distribution is absolutely continuous with respect to the Lebesgue measure and the condi-
tional cumulative hazards are estimated by continuous functions, the remainder terms will admit
a more conventional product structure. This is because the Cauchy-Schwarz inequality can be
applied with respect to the product measure of 𝑕 marginalized to the support X1 ⇓ X0 of 𝑅 and
the Lebesgue measure over the time interval (0, 𝑃]; refer to Rytgaard et al. (2023) for precise
formulations.

Remark S3. To establish asymptotic linearity of the estimator 𝑠̂1 (0), the same convergence
rates of the remainder terms (AS2.1)–(AS2.2) should hold when swapping 𝑝̂•1 (𝑏 | 0, 𝑅) and
𝑝̂12 (𝑏 | 0, 𝑅) out for

ˆ
𝑇

𝑄

{
𝑒1 (𝑏↗ | 0, 𝑅) ↗ 𝑎̂11 (𝑙 | 0, 𝑅) ↗ 𝑎̂11 (𝑏 | 0, 𝑅)

1 ↗ ⇒Â•1 (𝑏 | 0, 𝑅)

}
d𝑙,

ˆ
𝑇

𝑄

𝑎̂11 (𝑙 | 0, 𝑅) ↗ 𝑎̂11 (𝑏 | 0, 𝑅)
1 ↗ ⇒Â12 (𝑏 | 0, 𝑅)

d𝑙.

We will use the following lemmas from the literature.

Lemma S1 (Integration by parts, Fleming and Harrington, 1991, Theorem A.1.2). Let 𝑎 :
[0,↓) ↑ R and 𝑥 : [0,↓) ↑ R be càdlàg functions of bounded variation on any finite interval.
Then

𝑎 (𝑏)𝑥 (𝑏) ↗ 𝑎 (𝑙)𝑥 (𝑙) =
ˆ
(𝑅,𝑄 ]

𝑎 (𝛯↗)d𝑥 (𝛯) +
ˆ
(𝑅,𝑄 ]

𝑥 (𝛯)d𝑎 (𝛯).

Lemma S2 (Duhamel and backward equations, Gill and Johansen, 1990). Let 𝑎 : [0,↓) ↑
R and 𝑥 : [0,↓) ↑ R be càdlàg functions of bounded variation on any finite interval. Then


𝑏↔ (𝑅,𝑄 ]

{1 + d𝑎 (𝛯)} ↗


𝑏↔ (𝑅,𝑄 ]
{1 + d𝑥 (𝛯)}

=
ˆ
𝑏↔ (𝑅,𝑄 ]


𝑐↔ (𝑅,𝑏)

{1 + d𝑎 (𝛱)}d(𝑎 ↗ 𝑥) (𝛯)


𝑐↔ (𝑏,𝑄 ]
{1 + d𝑥 (𝛱)}, (Duhamel)
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
𝑏↔ (𝑅,𝑄 ]

{1 + d𝑎 (𝛯)} ↗ 1 =
ˆ
𝑏↔ (𝑅,𝑄 ]


𝑐↔ (𝑏,𝑄 ]

{1 + d𝑎 (𝛱)}d𝑎 (𝛯). (backward)

To make the notations more compact, we use the symbol 𝑒 to represent the product integral εA
for A ↔ A, and superscripts and subscripts in A are carried over to 𝑒. For example, 𝑒•1 (𝑏 | 0, 𝑐) =
(εA•1) (𝑏 | 0, 𝑐). We use the nuisance parameters with checkmarks as a placeholder for either the
probability limits in Assumption 6 (with bars) or the estimated nuisance parameters (with hats).
Define

𝛴1 (𝑏 | 𝑅) = 𝑒1 (𝑏 | 0, 𝑅) ↗ 𝑎̌11 (𝑃 | 0, 𝑅) + 𝑎̌11 (𝑏 | 0, 𝑅),
𝛴2 (𝑏 | 𝑅) = ↗𝑎̌11 (𝑃 | 0, 𝑅) + 𝑎̌11 (𝑏 | 0, 𝑅),
𝛶̌1 (𝑏 | 𝑅) = 𝑖̌(𝑐)𝑗1 (0 | 𝑅) (𝑒12𝑒

𝑁

1 ) (𝑏↗ | 0, 𝑅) + {1 ↗ 𝑖̌(𝑅)}(𝑒02𝑒
𝑁

0 ) (𝑏↗ | 𝑅),
𝛶1 (𝑏 | 𝑅) = 𝑖(𝑐)𝑗1 (0 | 𝑅) (𝑒12𝑒

𝑁

1 ) (𝑏↗ | 0, 𝑅) + {1 ↗ 𝑖(𝑅)}(𝑒02𝑒
𝑁

0 ) (𝑏↗ | 𝑅),
𝛶̌2 (𝑏 | 𝑅) = 𝑗1 (0 | 𝑅) (𝑒•1𝑒𝑁1 ) (𝑏↗ | 0, 𝑅),
𝛶2 (𝑏 | 𝑅) = 𝑗1 (0 | 𝑅) (𝑒•1𝑒𝑁1 ) (𝑏↗ | 0, 𝑅).

The function obtained by substituting all nuisance parameters in 𝑟1 (0) by their version with the
checkmark can be written in terms of the quantities above as

𝑟1 (0) (𝑊) =
3∑

𝑑=1
𝑟1𝑑 (0) (𝑊),

where

𝑟11 (0) (𝑊) = 1 ↗ 𝑆

𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛴1

𝛶̌1
(𝑏 | 𝑅) d𝑤̌•1

𝑒•1
(𝑏 | 0, 𝑅),

𝑟12 (0) (𝑊) = 𝑄 (1 ↗ 𝑆)
𝑉̌

ˆ
𝑇

0

𝛴2
𝛶̌2

(𝑏 | 𝑅) d𝑤̌12
𝑒12

(𝑏 | 0, 𝑅),

𝑟13 (0) (𝑊) = 𝑄

𝑉̌

𝑎̌11 (𝑏 | 0, 𝑅).

The following lemma will be used in two versions by substituting the nuisance parameters
with checkmark with their estimates and the probability limits of their estimators, respectively.

Lemma S3. Suppose Assumptions 6 and S1 hold. Then

𝑕

{
𝑟1 (0) ↗

𝑉

𝑉̌

𝑟1 (0)
}

= 𝑕

[
1
𝑉̌

ˆ
𝑇

0

{
𝑖̌(𝑅) 𝛶1

𝛶̌1
(𝑏 | 𝑅) ↗ 𝑖(𝑅) 𝑒12

𝑒12
(𝑏↗ | 0, 𝑅)

}
𝛴1 (𝑏 | 𝑅)d


1 ↗ 𝑒•1

𝑒•1


(𝑏 | 0, 𝑅)

]

+ 𝑕

[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

{
𝛶2
𝛶̌2

(𝑏 | 𝑅) ↗ 𝑒•1
𝑒•1

(𝑏↗ | 0, 𝑅)
}
𝛴2 (𝑏 | 𝑅)d


1 ↗ 𝑒12

𝑒12


(𝑏 | 0, 𝑅)

]
.

Proof. We have

𝑕𝑟11 (0) = 𝑕

{
1 ↗ 𝑆

𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛴1

𝛶̌1
(𝑏 | 𝑅) d𝑤̌•1

𝑒•1
(𝑏 | 0, 𝑅)

}

= 𝑕

{
1 ↗ 𝑆

𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛴1

𝛶̌1
(𝑏 | 𝑅)𝑂 (𝑀 ⫅̸ 𝑏) d(A•1 ↗ Ǎ•1)

𝑒•1
(𝑏 | 0, 𝑅)

}

= 𝑕

{
1
𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛴1

𝛶̌1
(𝑏 | 𝑅)𝑕(𝑀 ⫅̸ 𝑏, 𝑆 = 0 | 𝑅) d(A•1 ↗ Ǎ•1)

𝑒•1
(𝑏 | 0, 𝑅)

}
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= 𝑕

{
1
𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛴1

𝛶̌1
(𝑏 | 𝑅) 1

𝑒•1 (𝑏 | 0, 𝑅)
𝛶1 (𝑏 | 𝑅)𝑒•1 (𝑏↗ | 0, 𝑅)d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑅)

}

= 𝑕

{
1
𝑉̌

ˆ
𝑇

0
𝑖̌(𝑅) 𝛶1𝛴1

𝛶̌1
(𝑏 | 𝑅) 𝑒•1

𝑒•1
(𝑏 | 0, 𝑅)d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑅)

}
.

Also, we have

𝑕𝑟12 (0) = 𝑕

{
𝑄 (1 ↗ 𝑆)

𝑉̌

ˆ
𝑇

0

𝛴2
𝛶̌2

(𝑏 | 𝑅) d𝑤̌12
𝑒12

(𝑏 | 0, 𝑅)
}

= 𝑕

[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

𝛶2𝛴2
𝛶̌2

(𝑏 | 𝑅) 𝑒12 (𝑏↗ | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑅)
]
.

Let A1 (𝑏 | 0, 𝑐) = (A•1+A12) (𝑏 | 0, 𝑐) and Ǎ1 (𝑏 | 0, 𝑐) = (Ǎ•1+Ǎ12) (𝑏 | 0, 𝑐), the all-cause hazard.
By the Duhamel equation in Lemma S2,

(𝑎̌11 ↗ 𝑎11) (𝑃 | 0, 𝑐)

=
ˆ

𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)dǍ•1 (𝑏 | 0, 𝑐) ↗

ˆ
𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)dA•1 (𝑏 | 0, 𝑐)

=
ˆ

𝑇

0
(𝑒1 ↗ 𝑒1) (𝑏↗ | 0, 𝑐)dǍ•1 (𝑏 | 0, 𝑐) +

ˆ
𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)d(Ǎ•1 ↗ A•1) (𝑏 | 0, 𝑐)

=
ˆ

𝑇

0

ˆ
𝑅↔ (0,𝑄 )

𝑒1 (𝑏↗ | 0, 𝑐) 𝑒1 (𝑙↗ | 0, 𝑐)
𝑒1 (𝑙 | 0, 𝑐)

d(A1 ↗ Ǎ1) (𝑙 | 0, 𝑐)dǍ•1 (𝑏 | 0, 𝑐)

+
ˆ

𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)d(Ǎ•1 ↗ A•1) (𝑏 | 0, 𝑐)

=
ˆ
𝑅↔ (0,𝑇 )

ˆ
𝑇

𝑅

𝑒1 (𝑏↗ | 0, 𝑐)dǍ•1 (𝑏 | 0, 𝑐)
𝑒1 (𝑙↗ | 0, 𝑐)
𝑒1 (𝑙 | 0, 𝑐)

d(A1 ↗ Ǎ1) (𝑙 | 0, 𝑐)

+
ˆ

𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)d(Ǎ•1 ↗ A•1) (𝑏 | 0, 𝑐)

=
ˆ
𝑅↔ (0,𝑇 )

𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑙 | 0, 𝑐)
1 ↗ ⇒Ǎ1 (𝑙 | 0, 𝑐)

𝑒1
𝑒1

(𝑙↗ | 0, 𝑐)d(A1 ↗ Ǎ1) (𝑙 | 0, 𝑐)

+
ˆ

𝑇

0
𝑒1 (𝑏↗ | 0, 𝑐)d(Ǎ•1 ↗ A•1) (𝑏 | 0, 𝑐)

= ↗
ˆ

𝑇

0

{
𝑒1 (𝑏↗ | 0, 𝑐) ↗ 𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑏 | 0, 𝑐)

1 ↗ ⇒Ǎ•1 (𝑏 | 0, 𝑐)
𝑒1
𝑒1

(𝑏↗ | 0, 𝑐)
}
d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑐)

+
ˆ

𝑇

0

𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑏 | 0, 𝑐)
1 ↗ ⇒Ǎ12 (𝑏 | 0, 𝑐)

𝑒1
𝑒1

(𝑏↗ | 0, 𝑐)d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑐)

= ↗
ˆ

𝑇

0

{
𝑒12 (𝑏↗ | 0, 𝑐) ↗ 𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑏 | 0, 𝑐)

𝑒•1 (𝑏 | 0, 𝑐)
𝑒12
𝑒12

(𝑏↗ | 0, 𝑐)
}

𝑒•1 (𝑏↗ | 0, 𝑐)d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑐)

+
ˆ

𝑇

0

𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑏 | 0, 𝑐)
𝑒12 (𝑏 | 0, 𝑐)

𝑒•1𝑒12
𝑒•1

(𝑏↗ | 0, 𝑐)d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑐)

= ↗
ˆ

𝑇

0

𝑒12
𝑒12

(𝑏↗ | 0, 𝑐)
{
𝑒•1 (𝑏 | 0, 𝑐)𝑒12 (𝑏↗ | 0, 𝑐) ↗ 𝑎̌11 (𝑃 | 0, 𝑐) + 𝑎̌11 (𝑏 | 0, 𝑐)

}
𝑒•1 (𝑏↗ | 0, 𝑐)
𝑒•1 (𝑏 | 0, 𝑐)

d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑐)

+
ˆ

𝑇

0

𝑒•1
𝑒•1

(𝑏↗ | 0, 𝑐)
{
𝑎̌11 (𝑃 | 0, 𝑐) ↗ 𝑎̌11 (𝑏 | 0, 𝑐)

} 𝑒12 (𝑏↗ | 0, 𝑐)
𝑒12 (𝑏 | 0, 𝑐)

d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑐).
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By Assumption S1,

𝑒12 (𝑏↗ | 0, 𝑐)d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑐) = 𝑒12 (𝑏 | 0, 𝑐)d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑐).

Therefore,

𝑕

{
𝑟13 (0) ↗

𝑉

𝑉̌

𝑟1 (0)
}

= 𝑕𝑟13 (0) ↗
𝑉

𝑉̌

𝑌1 (0)

= 𝑕

[
𝑄

𝑉̌

(𝑎̌11 ↗ 𝑎11) (𝑃 | 0, 𝑅)
]

= ↗𝑕
[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

𝑒12
𝑒12

(𝑏↗ | 0, 𝑅)𝛴1 (𝑏 | 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑅)
]

↗ 𝑕

[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

𝑒•1
𝑒•1

(𝑏↗ | 0, 𝑅)𝛴2 (𝑏 | 𝑅)
𝑒12 (𝑏↗ | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑅)
]
.

Summing up the three terms in the previous displays gives

𝑕

{
𝑟1 (0) ↗

𝑉

𝑉̌

𝑟1 (0)
}

= 𝑕

[
1
𝑉̌

ˆ
𝑇

0

{
𝑖̌(𝑅) 𝛶1

𝛶̌1
(𝑏 | 𝑅) ↗ 𝑖(𝑅) 𝑒12

𝑒12
(𝑏↗ | 0, 𝑅)

}

𝛴1 (𝑏 | 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d(A•1 ↗ Ǎ•1) (𝑏 | 0, 𝑅)
]

+ 𝑕

[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

{
𝛶2
𝛶̌2

(𝑏 | 𝑅) ↗ 𝑒•1
𝑒•1

(𝑏↗ | 0, 𝑅)
}

𝛴2 (𝑏 | 𝑅)
𝑒12 (𝑏↗ | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d(A12 ↗ Ǎ12) (𝑏 | 0, 𝑅)
]

= 𝑕

[
1
𝑉̌

ˆ
𝑇

0

{
𝑖̌(𝑅) 𝛶1

𝛶̌1
(𝑏 | 𝑅) ↗ 𝑖(𝑅) 𝑒12

𝑒12
(𝑏↗ | 0, 𝑅)

}
𝛴1 (𝑏 | 𝑅)d


1 ↗ 𝑒•1

𝑒•1


(𝑏 | 0, 𝑅)

]

+ 𝑕

[
𝑖(𝑅)
𝑉̌

ˆ
𝑇

0

{
𝛶2
𝛶̌2

(𝑏 | 𝑅) ↗ 𝑒•1
𝑒•1

(𝑏↗ | 0, 𝑅)
}
𝛴2 (𝑏 | 𝑅)d


1 ↗ 𝑒12

𝑒12


(𝑏 | 0, 𝑅)

]
,

where the last step is again by the Duhamel equation in Lemma S2. ⫆̸

Let 𝑟1 (0) be obtained by substituting the probability limits of the nuisance parameters into the
function 𝑟1 (0).

Lemma S4. Suppose Assumptions 6 and S1 hold. Then 𝑕{𝑟1 (0) ↗ 𝑟1 (0)}2 p↑ 0.

Proof. We use the notation 𝑆𝑉 ⫋ 𝛷𝑉 to denote 𝑆𝑉 ⊋ 𝑁𝛷𝑉 for some universal constant 𝑁 ⫅̸ 1.
Let

𝛶̂1 (𝑏 | 𝑅) = 𝑖̂(𝑅)𝑗1 (0 | 𝑅) (𝑒12𝑒
𝑁

1 ) (𝑏↗ | 0, 𝑅) + {1 ↗ 𝑖̂(𝑅)}(𝑒02𝑒
𝑁

0 ) (𝑏↗ | 𝑅),
𝛶̄1 (𝑏 | 𝑅) = 𝑖̄(𝑅)𝑗1 (0 | 𝑅) (𝑒12𝑒

𝑁

1 ) (𝑏↗ | 0, 𝑅) + {1 ↗ 𝑖̄(𝑅)}(𝑒02𝑒
𝑁

0 ) (𝑏↗ | 𝑅),
𝛶̂2 (𝑏 | 𝑅) = 𝑗1 (0 | 𝑅) (𝑒•1𝑒𝑁1 ) (𝑏↗ | 0, 𝑅),
𝛶̄2 (𝑏 | 𝑅) = 𝑗1 (0 | 𝑅) (𝑒•1𝑒𝑁1 ) (𝑏↗ | 0, 𝑅),

𝛹1 (𝑏 | 𝑅) =
1

𝑒•1 (𝑃 | 0, 𝑅)
{𝑒1 (𝑏 | 0, 𝑅) ↗ 𝑎̂11 (𝑃 | 0, 𝑅) + 𝑎̂11 (𝑏 | 0, 𝑅)},
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𝛹1 (𝑏 | 𝑅) =
1

𝑒•1 (𝑃 | 0, 𝑅)
{𝑒1 (𝑏 | 0, 𝑅) ↗ 𝑎̄11 (𝑃 | 0, 𝑅) + 𝑎̄11 (𝑏 | 0, 𝑅)},

𝛹2 (𝑏 | 𝑅) = ↗ 1
𝑒12 (𝑃 | 0, 𝑅)

{𝑎̂11 (𝑃 | 0, 𝑅) ↗ 𝑎̂11 (𝑏 | 0, 𝑅)},

𝛹2 (𝑏 | 𝑅) = ↗ 1
𝑒12 (𝑃 | 0, 𝑅)

{𝑎̄11 (𝑃 | 0, 𝑅) ↗ 𝑎̄11 (𝑏 | 0, 𝑅)}.

Then

𝑟1 (0) (𝑊) = 1 ↗ 𝑆

𝑉̂

ˆ
𝑇

0
𝑖̂(𝑅) 𝛹1

𝛶̂1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅)

+ 𝑄 (1 ↗ 𝑆)
𝑉̂

ˆ
𝑇

0

𝛹2
𝛶̂2

(𝑏 | 𝑅) 𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d𝑤̂12 (𝑏 | 0, 𝑅) +
𝑄

𝑉̂

𝑎̂11 (𝑃 | 0, 𝑅),

𝑟1 (0) (𝑊) = 1 ↗ 𝑆

𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1

𝛶̄1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̄•1 (𝑏 | 0, 𝑅)

+ 𝑄 (1 ↗ 𝑆)
𝑉̄

ˆ
𝑇

0

𝛹2
𝛶̄2

(𝑏 | 𝑅) 𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d𝑤̄12 (𝑏 | 0, 𝑅) +
𝑄

𝑉̄

𝑎̄11 (𝑃 | 0, 𝑅).

By Assumption S1, uniformly for 𝑏 ↔ (0, 𝑃] and 𝑐 ↔ X1, 𝛶̂1, 𝛶̄1, 𝛶̂2, and 𝛶̄2 are bounded away
from 0 and from above, 𝛹1 and 𝛹1 are positive and bounded from above, while 𝛹2 and 𝛹2 negative
and bounded from below.

Decompose the difference as

𝑟1 (0) ↗ 𝑟1 (0) =
10∑

𝑑=1
𝛺𝑑,

where

𝛺1 =
𝑄

𝑉̂

𝑎̂11 (𝑃 | 0, 𝑅) ↗
𝑄

𝑉̄

𝑎̄11 (𝑃 | 0, 𝑅),

𝛺2 =
1 ↗ 𝑆

𝑉̂

ˆ
𝑇

0
(𝑖̂ ↗ 𝑖̄) (𝑅) 𝛹1

𝛶̂1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅),

𝛺3 =
1 ↗ 𝑆

𝑉̂

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1 ↗ 𝛹1

𝛶̂1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅),

𝛺4 = ↗1 ↗ 𝑆

𝑉̂𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1 (𝑉̂𝛶̂1 ↗ 𝑉̄𝛶̄1)

𝛶̂1 𝛶̄1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅),

𝛺5 =
1 ↗ 𝑆

𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1

𝛶̄1
(𝑏 | 𝑅)

{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

}
d𝑘1 (𝑏),

𝛺6 = ↗1 ↗ 𝑆

𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1

𝛶̄1
(𝑏 | 𝑅)𝛻 (𝑏)

{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

dÂ•1 (𝑏 | 0, 𝑅) ↗
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

dĀ•1 (𝑏 | 0, 𝑅)
}
,

𝛺7 =
𝑄

𝑉̂

(1 ↗ 𝑆)
ˆ

𝑇

0

𝛹2 ↗ 𝛹2
𝛶̂2

(𝑏 | 𝑅) 𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d𝑤̂12 (𝑏 | 0, 𝑅),

𝛺8 = ↗ 𝑄

𝑉̂𝑉̄

(1 ↗ 𝑆)
ˆ

𝑇

0

𝛹2 (𝑉̂𝛶̂2 ↗ 𝑉̄𝛶̄2)
(𝛶̂2 𝛶̄2)

(𝑏 | 𝑅) 𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

d𝑤̂12 (𝑏 | 0, 𝑅),

𝛺9 =
𝑄

𝑉̄

(1 ↗ 𝑆)
ˆ

𝑇

0

𝛹2
𝛶̄2

(𝑏 | 𝑅)
{
𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

↗ 𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

}
d𝑘2 (𝑏),

𝛺10 = ↗𝑄

𝑉̄

(1 ↗ 𝑆)
ˆ

𝑇

0

𝛹2
𝛶̄2

(𝑏 | 𝑅)𝛻 (𝑏)
{
𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

dÂ12 (𝑏 | 0, 𝑅) ↗
𝑒12 (𝑃 | 0, 𝑅)
𝑒12 (𝑏 | 0, 𝑅)

dĀ12 (𝑏 | 0, 𝑅)
}
,
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where in the second to last step, we used Lemma S1.
We first relate the difference of cumulative incidences for cause 1 to the survival functions as

follows: for 𝑏 ↔ (0, 𝑃],

|𝑎̂11 ↗ 𝑎̄11 | (𝑏 | 0, 𝑅)

=

ˆ

𝑄

0
(𝑒•1𝑒12) (𝑙↗ | 0, 𝑅)dÂ•1 (𝑙 | 0, 𝑅) ↗

ˆ
𝑇

0
(𝑒•1𝑒12) (𝑙↗ | 0, 𝑅)dĀ•1 (𝑙 | 0, 𝑅)


⊋

ˆ

𝑄

0
{(𝑒12 ↗ 𝑒12)𝑒•1}(𝑙↗ | 0, 𝑅)dÂ•1 (𝑙 | 0, 𝑅)


+

ˆ

𝑄

0
𝑒12 (𝑙↗ | 0, 𝑅)

{
𝑒•1 (𝑙↗ | 0, 𝑅)dÂ•1 (𝑙 | 0, 𝑅) ↗ 𝑒•1 (𝑙↗ | 0, 𝑅)dĀ•1 (𝑙 | 0, 𝑅)

}
⊋ sup

𝑅↔ (0,𝑇 ]
|𝑒12 ↗ 𝑒12 | (𝑙 | 0, 𝑅)𝑒•1 (𝑃 | 0, 𝑅)

+
{(𝑒•1 ↗ 𝑒•1)𝑒12}(𝑏 | 0, 𝑅) ↗

ˆ
𝑄

0
(𝑒•1 ↗ 𝑒•1) (𝑙 | 0, 𝑅)d𝑒12 (𝑙 | 0, 𝑅)


⊋ sup

𝑅↔ (0,𝑇 ]
|𝑒12 ↗ 𝑒12 | (𝑙 | 0, 𝑅) + sup

𝑅↔ (0,𝑇 ]
|𝑒•1 ↗ 𝑒•1 | (𝑙 | 0, 𝑅).

By the triangular inequality, ∝𝑟1 (0) ↗ 𝑟1 (0)∝𝑈 ⊋
∑10

𝑑=1{𝑕𝛺2
𝑑
}1/2. Below we bound each

term 𝑕𝛺
2
𝑑

. Let 𝑕1 denote the probability measure 𝑕(· | 𝑄 = 1).

Term 𝛺1.

𝑕𝛺
2
1 = 𝑕

{
𝑄

𝑉̂

𝑎̂11 (𝑃 | 0, 𝑅) ↗
𝑄

𝑉̄

𝑎̄11 (𝑃 | 0, 𝑅)
}2

⫋ 𝑕

[
𝑄

𝑉̂

{𝑎̂11 (𝑃 | 0, 𝑅) ↗ 𝑎̄11 (𝑃 | 0, 𝑅)}
]2

+ 𝑕

{
𝑄

𝑉̂ ↗ 𝑉̄

𝑉̄𝑉̂

𝑎̄11 (𝑃 | 0, 𝑅)
}2

⫋ 𝑕1 (𝑎̂11 ↗ 𝑎̄11)2 (𝑃 | 0, 𝑅) + |𝑉̂ ↗ 𝑉̄ |2

⊋ |𝑉̂ ↗ 𝑉̄ |2 + 𝑕1

{
sup

𝑄↔ (0,𝑇 ]
|𝑒12 ↗ 𝑒12 | (𝑏 | 0, 𝑅)

}2
+ 𝑕1

{
sup

𝑄↔ (0,𝑇 ]
|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)

}2
.

Term 𝛺2.

𝑕𝛺
2
2 = 𝑕

[
1 ↗ 𝑆

𝑉̂

ˆ
𝑇

0
(𝑖̂ ↗ 𝑖̄) (𝑅) 𝛹1

𝛶̂1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅)

]2

⫋ 𝑕

[
(𝑖̂ ↗ 𝑖̄) (𝑅)

ˆ
𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d𝑤̂•1 (𝑏 | 0, 𝑅)
]2

⊋ 𝑕

[
|𝑖̂ ↗ 𝑖̄ | (𝑅)

ˆ
𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]2

⫋ 𝑕 |𝑖̂ ↗ 𝑖̄ |2 (𝑅),

where in the last step we used
ˆ

𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d𝑘1 (𝑏) = 𝑂 (𝑀 ⊋ 𝑃, 𝐿 = 1) 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑀 | 0, 𝑅)

⊋ 1,

and, by the backward equation in Lemma S2,
ˆ

𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

𝛻 (𝑏)dÂ•1 (𝑏) =
𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑀 → 𝑃 | 0, 𝑅)
↗ 𝑒•1 (𝑃 | 0, 𝑅) ⊋ 2.
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Term 𝛺3.

𝑕𝛺
2
3 = 𝑕

[
1 ↗ 𝑆

𝑉̂

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1 ↗ 𝛹1

𝛶̂1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅)

]2

⫋ 𝑕

[ ˆ
𝑇

0
(𝛹1 ↗ 𝛹1) (𝑏 | 𝑅)

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d𝑤̂•1 (𝑏 | 0, 𝑅)
]2

= 𝑕

{ ˆ
𝑇

0


𝑒•1 ↗ 𝑒•1

𝑒•1
(𝑃 | 0, 𝑅)𝛹1 (𝑏 | 𝑅) +

1
𝑒•1 (𝑃 | 0, 𝑅)

[
{(𝑒•1 ↗ 𝑒•1)}𝑒12 (𝑏 | 0, 𝑅)

+ {𝑒•1 (𝑒12 ↗ 𝑒12)}(𝑏 | 0, 𝑅) ↗ (𝑎̂11 ↗ 𝑎̄11) (𝑃 | 0, 𝑅) + (𝑎̂11 ↗ 𝑎̄11) (𝑏 | 0, 𝑅)
] 

⫋ 𝑕

[ ˆ
𝑇

0

{
|𝑒•1 ↗ 𝑒•1 | (𝑃 | 0, 𝑅) + |𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)

+ |𝑒12 ↗ 𝑒12 | (𝑏 | 0, 𝑅) | + |𝑎̂11 ↗ 𝑎̄11 | (𝑃 | 0, 𝑅) + |𝑎̂11 ↗ 𝑎̄11 | (𝑏 | 0, 𝑅)
}

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]2

⫋ 𝑕1

[{
sup

𝑄↔ (0,𝑇 ]
|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅) + sup

𝑄↔ (0,𝑇 ]
|𝑒12 ↗ 𝑒12 | (𝑏 | 0, 𝑅)

+ sup
𝑄↔ (0,𝑇 ]

|𝑎̂11 ↗ 𝑎̄11 | (𝑏 | 0, 𝑅)
} ˆ

𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]

⫋ 𝑕1

{
sup

𝑄↔ (0,𝑇 ]
|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)

}2
+ 𝑕1

{
sup

𝑄↔ (0,𝑇 ]
|𝑒12 ↗ 𝑒12 | (𝑏 | 0, 𝑅)

}2
.

Term 𝛺4.

𝑕𝛺
2
4 = 𝑕

{
1 ↗ 𝑆

𝑉̂𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1 (𝑉̂𝛶̂1 ↗ 𝑉̄𝛶̄1)

𝛶̂1 𝛶̄1
(𝑏 | 𝑅) 𝑒•1 (𝑃 | 0, 𝑅)

𝑒•1 (𝑏 | 0, 𝑅)
d𝑤̂•1 (𝑏 | 0, 𝑅)

}2

⫋ 𝑕1

{ ˆ
𝑇

0
(𝑉̂𝛶̂1 ↗ 𝑉̄𝛶̄1) (𝑏 | 𝑅)

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d𝑤̂•1 (𝑏 | 0, 𝑅)
}2

= 𝑕1

{ ˆ
𝑇

0

[
(𝑉̂ ↗ 𝑉̄)𝛶̂1 (𝑏 | 𝑅) + 𝑉̄(𝑖̂ ↗ 𝑖̄) (𝑅)𝑗1 (0 | 𝑅) (𝑒12𝑒

𝑁

1 ) (𝑏↗ | 0, 𝑅)

+ 𝑉̄𝑖̄(𝑅) (𝑗1 ↗ 𝑗1) (0 | 𝑅) (𝑒12𝑒
𝑁

1 ) (𝑏↗ | 0, 𝑅)
+ 𝑉̄𝑖̄(𝑅)𝑗1 (0 | 𝑅){(𝑒12 ↗ 𝑒12)𝑒𝑁1 + 𝑒12 (𝑒𝑁1 ↗ 𝑒

𝑁

1 )}(𝑏↗ | 0, 𝑅)
+ 𝑉̄(𝑖̄ ↗ 𝑖̂) (𝑅) (𝑒02𝑒

𝑁

0 ) (𝑏↗ | 𝑅)
+ 𝑉̄{1 ↗ 𝑖̄(𝑅)}{(𝑒02 ↗ 𝑒02)𝑒𝑁0 + 𝑒02 (𝑒𝑁0 ↗ 𝑒

𝑁

0 )}(𝑏↗ | 𝑅)
]

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

d𝑤̂•1 (𝑏)
}2

⫋ 𝑕

[{
|𝑉̂ ↗ 𝑉̄ | + |𝑖̂ ↗ 𝑖̄ | (𝑅)

} ˆ 𝑇

0

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]2

+ 𝑕𝑂{𝑖(𝑅) > 0}
[ ˆ

𝑇

0

{
|𝑗1 ↗ 𝑗1 | (0 | 𝑅) + |𝑒12 ↗ 𝑒12 | (𝑏↗ | 0, 𝑅) + |𝑒𝑁1 ↗ 𝑒

𝑁

1 | (𝑏↗ | 0, 𝑅)
}

𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]2

+ 𝑕𝑂 [𝑖(𝑅){1 ↗ 𝑖(𝑅)} > 0]
[ ˆ

𝑇

0

{
|𝑒02 ↗ 𝑒02 | (𝑏↗ | 0, 𝑅) + |𝑒𝑁0 ↗ 𝑒

𝑁

0 | (𝑏↗ | 0, 𝑅)
}
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𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

{d𝑘1 (𝑏) + 𝛻 (𝑏)dÂ•1 (𝑏 | 0, 𝑅)}
]2

⫋ |𝑉̂ ↗ 𝑉̄ |2 + 𝑕 |𝑖̂ ↗ 𝑖̄ |2 (𝑅) + 𝑕𝑂{𝑖(𝑅) > 0}|𝑗1 ↗ 𝑗1 |2 (0 | 𝑅)

+ 𝑕𝑂{𝑖(𝑅) > 0}
{

sup
𝑄↔ (0,𝑇 ]

|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)
}2

+ 𝑕𝑂{𝑖(𝑅) > 0}
{

sup
𝑄↔ (0,𝑇 ]

|𝑒12 ↗ 𝑒12 | (𝑏 | 0, 𝑅)
}2

+ 𝑕𝑂 [𝑖(𝑅){1 ↗ 𝑖(𝑅)} > 0]
{

sup
𝑄↔ (0,𝑇 ]

|𝑒02 ↗ 𝑒02 | (𝑏 | 𝑅)
}2

+ 𝑕𝑂 [𝑖(𝑅){1 ↗ 𝑖(𝑅)} > 0]
{

sup
𝑄↔ (0,𝑇 ]

|𝑒𝑁1 ↗ 𝑒
𝑁

1 | (𝑏 | 0, 𝑅)
}2

+ 𝑕𝑂 [𝑖(𝑅){1 ↗ 𝑖(𝑅)} > 0]
{

sup
𝑄↔ (0,𝑇 ]

|𝑒𝑁0 ↗ 𝑒
𝑁

0 | (𝑏 | 𝑅)
}2
.

Term 𝛺5.

𝑕𝛺
2
5 = 𝑕

{
1 ↗ 𝑆

𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1

𝛶̄1
(𝑏 | 𝑅)

{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

}
d𝑘1 (𝑏)

}2

⫋ 𝑕𝑂{𝑖(𝑅) > 0}𝑂{𝑀 ⊋ 𝑃, 𝐿 = 1}
 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑀 | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑀 | 0, 𝑅)


2

⫋ 𝑕𝑂{𝑖(𝑅) > 0}
{

sup
𝑄↔ (0,𝑇 ]

|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)
}2
.

Term 𝛺6.

𝑕𝛺
2
6 = 𝑕

[
1 ↗ 𝑆

𝑉̄

ˆ
𝑇

0
𝑖̄(𝑅) 𝛹1

𝛶̄1
(𝑏 | 𝑅)𝛻 (𝑏)

{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

dÂ•1 (𝑏 | 0, 𝑅) ↗
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

dĀ•1 (𝑏 | 0, 𝑅)
}]2

⫋ 𝑕𝑂{𝑖(𝑅) > 0}
[ ˆ

𝑇

0

𝛹1
𝛶̄1

(𝑏 | 𝑅)𝛻 (𝑏)d
{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

}]2
.

By Assumption S1, {Â•1, Ā•1} do not share any discontinuity with {Ā12, Ā02, Ā𝑁

1 , Ā
𝑁

0 }, then we
may replace 𝛶̄(𝑏 | 𝑅) in the display before with the right-continuous version 𝛶̄(𝑏 + | 𝑅), which
equals

𝑖̄(𝑅)𝑗1 (0 | 𝑅) (𝑒12𝑒
𝑁

1 ) (𝑏 | 0, 𝑅) + {1 ↗ 𝑖̄(𝑅)}(𝑒02𝑒
𝑁

0 ) (𝑏 | 𝑅).
Therefore, we can apply integration by parts from Lemma S1. This leads to

𝑕𝛺
2
6 = 𝑕𝑂{𝑖(𝑅) > 0}

[
𝛹1
𝛶̄1

(𝑏 | 𝑅)
{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏 | 0, 𝑅)

}
𝑇→𝑒̃

0

↗
ˆ

𝑇→𝑒̃

0

{
𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)

}
d

𝛹1
𝛶̄1


(𝑏 | 𝑅)

]2

⫋ 𝑕𝑂{𝑖(𝑅) > 0}
{

sup
𝑄↔ (0,𝑇 ]

|𝑒•1 ↗ 𝑒•1 | (𝑏 | 0, 𝑅)
}2
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+ 𝑕𝑂{𝑖(𝑅) > 0}
[{

sup
𝑄↔ (0,𝑇→𝑒̃ ]

 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)


}{↗𝑒1 (𝑏 | 0, 𝑅)

𝛶̄1 (𝑏 | 𝑅)

}
𝑇→𝑒̃

0

]2

+ 𝑕𝑂{𝑖(𝑅) > 0}
[{

sup
𝑄↔ (0,𝑇→𝑒̃ ]

 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)

↗ 𝑒•1 (𝑃 | 0, 𝑅)
𝑒•1 (𝑏↗ | 0, 𝑅)


}

{
𝑎̄11 (𝑏 | 0, 𝑅) ↗ 𝑎̄11 (𝑃 | 0, 𝑅)

𝛶̄1 (𝑏 | 𝑅)

}
𝑇→𝑒̃

0

]2

⫋ 𝑕𝑂{𝑖(𝑅) > 0}
{

sup
𝑄↔ (0,𝑇 ]

|𝑒•1 ↗ 𝑒•1 |2 (𝑏 | 0, 𝑅)
}2
.

The remaining terms 𝑕𝛺2
7, 𝑕𝛺2

8, 𝑕𝛺2
9, and 𝑕𝛺

2
10 can be analogously bounded as 𝑕𝛺2

3, 𝑕𝛺2
4, 𝑕𝛺2

5,
and 𝑕𝛺

2
6, respectively. Now, for any A1,A2 ↔ A with product integrals 𝑒1 and 𝑒2,

sup
𝑄↔ (0,𝑇 ]

|𝑒1 ↗ 𝑒2 | (𝑏) = sup
𝑄↔ (0,𝑇 ]


ˆ

𝑄

0

𝑒2 (𝑏)
𝑒2 (𝑙)

𝑒1 (𝑙↗)d(𝑆2 ↗ 𝑆1) (𝑙)


⊋ sup
𝑄↔ (0,𝑇 ]

ˆ
𝑄

0
d|𝑆2 ↗ 𝑆1 | (𝑙)

⊋ sup
𝑄↔ (0,𝑇 ]

|𝑆2 ↗ 𝑆1 | (𝑏).

Therefore, by Assumption 6, the terms 𝑕𝛺2
𝑑

are all 𝑓𝑈 (1), and the lemma follows. ⫆̸

Proof of Theorem 1. We first show consistency of the estimator 𝑌1 (0). Decompose the bias as

𝑌1 (0) ↗ 𝑌1 (0) = (P𝑉 ↗ 𝑕)𝑟1 (0) + 𝑕{𝑟1 (0) ↗ 𝑟1 (0)} + 𝑕

{
𝑟1 (0) ↗

𝑉

𝑉̄

𝑟1 (0)
}
↗ 𝑉̂ ↗ 𝑉

𝑉̂

𝑌1 (0).

The first term is 𝑓𝑈 (1) by the uniform law of large numbers because 𝑟1 (0) belongs to a 𝑕-
Glivenko-Cantelli class. The second term is bounded by Jensen’s inequality as 𝑕{𝑟1 (0)↗𝑟1 (0)} ⊋
[𝑕{𝑟1 (0) ↗ 𝑟1 (0)}2]1/2, which converges in probability to zero by Lemma S4. The third term is
exactly 0 by 𝑉̄ = 𝑉, the assumption on the correct specifications of the nuisance estimators, and
Lemma S3. The fourth term is trivially 𝑓𝑈 (1) from 𝑉̂

p↑ 𝑉 and Slutsky’s theorem. Therefore,
𝑌1 (0)

p↑ 𝑌1 (0).
Then we show asymptotic linearity of 𝑌1 (0). We decompose the bias again as

𝑌1 (0)↗𝑌1 (0) = (P𝑉↗𝑕)𝑞1 (0) + (P𝑉↗𝑕){𝑟1 (0)↗𝑟1 (0)}+𝑕
{
𝑟1 (0)↗

𝑉

𝑉̂

𝑟1 (0)
}
+ (𝑉̂ ↗ 𝑉)2

𝑉̂𝑉

𝑌1 (0).

The second term is 𝑓𝑈 (𝑈↗1/2) by Lemma 19.24 in van der Vaart (1998) because 𝑕{𝑟1 (0) ↗
𝑟1 (0)}2 p↑ 0 by Lemma S4. The third term is 𝑓𝑈 (𝑈↗1/2) by assumption and Lemma S3. The

fourth term is trivially 𝑊𝑈 (𝑈↗1) = 𝑓𝑈 (𝑈↗1/2) from 𝑈
1/2 (𝑉̂↗𝑉) d↑ Normal{0, 𝑉(1↗𝑉)}, 𝑉̂ p↑ 𝑉,

and Slutsky’s theorem. Therefore, 𝑌1 (0) ↗ 𝑌1 (0) = P𝑉𝑞1 (0) + 𝑓𝑈 (𝑈↗1/2), since 𝑑𝑈𝑞1 (0) = 0.
⫆̸

S3. Details on the simulation study

Define

𝑝̂
𝑆 𝑀
(𝑏, 𝑙 | 𝑋, 𝑐) = 𝑂 ( 𝑍 = 𝑛)𝑒𝑁1 (𝑙↗ | 𝑋, 𝑐) ↗

𝑎̂1 𝑀 (𝑏 | 𝑋, 𝑐) ↗ 𝑎̂1 𝑀 (𝑙 | 𝑋, 𝑐)
1 ↗ ⇒Â1𝑆 (𝑙 | 𝑋, 𝑐)

, (𝑛 ω 1, 𝑋 ω 0)
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Table S1. Simulation results for cumulative incidences 𝑌1 (1, 𝑏).

𝑉 𝑄 Mean Bias RMSE SE Coverage
750 0.25 0.12 2.70 2.54 2.52 93.2

1 0.22 12.19 3.41 3.43 95.2
2 0.28 16.69 3.77 3.83 95.4

1500 0.25 0.12 ↗1.26 1.82 1.78 93.0
1 0.22 ↗3.30 2.56 2.43 93.4
2 0.27 ↗10.69 2.81 2.71 93.0

Mean: average of estimates; Bias: Monte-Carlo bias, 10↗4; RMSE: root mean squared error, 10↗2; SE:
average of standard error estimates, 10↗2; Coverage: 95% confidence interval coverage, %.

𝑝̂• 𝑀 (𝑏, 𝑙 | 0, 𝑐) = 𝑂 ( 𝑍 = 1)𝑒𝑁1 (𝑙↗ | 0, 𝑐) ↗
𝑎̂1 𝑀 (𝑏 | 0, 𝑐) ↗ 𝑎̂1 𝑀 (𝑙 | 0, 𝑐)

1 ↗ ⇒Â•1 (𝑙 | 0, 𝑐)
.

Consider the following functions with plug-in nuisance estimators:

𝑟𝑀 (0, 𝑏) (𝑊) = 1 ↗ 𝑆

𝑉̂

𝑖̂(𝑅)
ˆ

𝑄

0

𝑝̂• 𝑀 (𝑏, 𝑙 | 0, 𝑅)
𝑜̂• (𝑙↗ | 𝑅)

d𝑤̂•1 (𝑙 | 0, 𝑅)

+ 𝑄 (1 ↗ 𝑆)
𝑉̂

ˆ
𝑄

0

𝑝̂2 𝑀 (𝑏, 𝑙 | 0, 𝑅)
𝑜̂1 (𝑙↗ | 0, 𝑅)

d𝑤̂12 (𝑙 | 0, 𝑅) +
𝑄

𝑉̂

𝑎̂1 𝑀 (𝑏 | 0, 𝑅),

𝑟𝑀 (1, 𝑏) (𝑊) =
∑

𝑆↔{1,2}

𝑄𝑆

𝑉̂

ˆ
𝑄

0

𝑝̂
𝑆 𝑀
(𝑏, 𝑙 | 1, 𝑅)

𝑜̂1 (𝑙↗ | 1, 𝑅)
d𝑤̂1𝑆 (𝑙 | 1, 𝑅) +

𝑄

𝑉̂

𝑎̂1 𝑀 (𝑏 | 1, 𝑅),

𝑟
†
𝑀
(0, 𝑏) (𝑊) =

∑

𝑆↔{1,2}

𝑄 (1 ↗ 𝑆)
𝑉̂

ˆ
𝑄

0

𝑝̂
𝑆 𝑀
(𝑏, 𝑙 | 0, 𝑅)

𝑜̂1 (𝑙↗ | 0, 𝑅)
d𝑤̂1𝑆 (𝑙 | 0, 𝑅) +

𝑄

𝑉̂

𝑎̂1 𝑀 (𝑏 | 0, 𝑅).

Let P𝑉 𝛼 = 𝑈
↗1 ∑𝑉

𝐿=1 𝛼 (𝑊𝐿). Then we have the corresponding estimators

𝑌𝑀 (𝑋, 𝑏) = P𝑉𝑟𝑀 (𝑋, 𝑏) (𝑊), 𝑌
†
𝑀
(0, 𝑏) = P𝑉𝑟†

𝑀
(0, 𝑏) (𝑊),

𝑠̂𝑀 (𝑋, 𝑏) = P𝑉
ˆ

𝑄

0
𝑟𝑀 (𝑋, 𝑙) (𝑊)d𝑙, 𝑠̂

†
𝑀
(𝑋, 𝑏) = P𝑉

ˆ
𝑄

0
𝑟
†
𝑀
(𝑋, 𝑙) (𝑊)d𝑙,

where 𝑌
†
𝑀
(0, 𝑏) and 𝑠̂

†
𝑀
(0, 𝑏) are the RCT-only estimators for the parameters 𝑌𝑀 (0, 𝑏) and 𝑠𝑀 (0, 𝑏).

Tables S1–S4 display the summary statistics for the estimand 𝑌1 (1, 𝑏), the set of estimands
for cause 2 {𝑌2 (1, 𝑏), 𝑌2 (0, 𝑏), 𝑌2{𝑏}}, the estimand 𝑠1 (1, 𝑏), and the set of estimands for cause 2
{𝑠2 (1, 𝑏), 𝑠2 (0, 𝑏), 𝑠2{𝑏}}, respectively.

S4. Details on the real data example

In both RCTs used in the data example, the rate of severe adverse events was relatively low, and
the vast majority of participants were censored by the end of the study. Considering the three-
point major adverse cardiovascular event (MACE, a composite event of cardiovascular death,
non-fatal myocardial infarction, and non-fatal stroke) as the primary event, only 12 out of 1649
subjects randomized to placebo in SUSTAIN-6 experienced the competing non-cardiovascular
death event. The crude hazard estimate of MACE is 0.37 events per 100 person-years, where 1
year counts as 365.25 days. The number of non-cardiovascular deaths was 133 out of 4672 for
the placebo group in LEADER, with a corresponding hazard of 0.79 events per 100 person-year.
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Table S2. Simulation results for cumulative incidences 𝑌2 (1, 𝑏), 𝑌2 (0, 𝑏), and 𝑌2 (𝑏).

𝑉 Estimand 𝑄 Type Mean Bias RMSE SE Coverage Reduction
750 𝑊2 (0, 𝑄 ) 0.25 + 0.23 13.18 3.37 3.27 93.8 0.94

↗ 0.23 11.83 3.41 3.28 93.4 ·
1 + 0.44 ↗2.74 3.87 3.94 95.1 5.21

↗ 0.43 ↗6.66 3.97 4.05 95.3 ·
2 + 0.55 3.00 4.10 4.01 93.9 10.84

↗ 0.54 1.31 4.33 4.25 94.3 ·
𝑊2 (1, 𝑄 ) 0.25 ↗ 0.23 ↗3.32 3.28 3.28 94.7 ·

1 ↗ 0.42 ↗14.16 4.06 4.02 94.1 ·
2 ↗ 0.51 ↗10.60 4.36 4.23 93.9 ·

𝑊2 (𝑄 ) 0.25 + 0.00 ↗16.49 4.55 4.54 95.1 0.50
↗ 0.00 ↗15.15 4.58 4.55 95.1 ·

1 + ↗0.02 ↗11.42 5.45 5.48 95.0 2.78
↗ ↗0.01 ↗7.50 5.55 5.56 94.9 ·

2 + ↗0.03 ↗13.60 5.71 5.69 94.8 5.72
↗ ↗0.03 ↗11.91 5.94 5.86 94.5 ·

1500 𝑊2 (0, 𝑄 ) 0.25 + 0.23 ↗1.05 2.26 2.31 95.4 0.91
↗ 0.23 ↗1.61 2.27 2.32 95.0 ·

1 + 0.44 6.17 2.81 2.80 94.1 5.13
↗ 0.44 5.88 2.86 2.87 94.5 ·

2 + 0.55 1.46 2.86 2.86 94.0 10.70
↗ 0.55 2.04 3.02 3.03 94.5 ·

𝑊2 (1, 𝑄 ) 0.25 ↗ 0.23 ↗7.69 2.30 2.32 94.7 ·
1 ↗ 0.42 ↗12.76 2.84 2.84 94.4 ·
2 ↗ 0.51 ↗12.98 2.97 3.01 95.1 ·

𝑊2 (𝑄 ) 0.25 + 0.00 ↗6.64 3.17 3.21 95.4 0.48
↗ 0.00 ↗6.08 3.17 3.21 95.6 ·

1 + ↗0.02 ↗18.93 3.84 3.88 95.5 2.74
↗ ↗0.02 ↗18.64 3.87 3.93 96.1 ·

2 + ↗0.03 ↗14.44 3.92 4.05 95.7 5.65
↗ ↗0.03 ↗15.02 4.04 4.17 96.0 ·

Type: fusion estimator (+) or RCT-only estimator (↗); Mean: average of estimates; Bias: Monte-Carlo bias,
10↗4; RMSE: root mean squared error, 10↗2; SE: average of standard error estimates, 10↗2; Coverage: 95%
confidence interval coverage, %; Reduction: average of percentage reduction in squared standard error
estimates, %.

Table S3. Simulation results for restricted mean times lost 𝑠1 (1, 𝑏).

𝑉 𝑄 Mean Bias RMSE SE Coverage
750 0.25 0.02 ↗0.55 0.44 0.43 94.3

1 0.15 ↗4.06 2.45 2.48 94.3
2 0.40 ↗15.55 5.65 5.75 94.5

1500 0.25 0.02 ↗0.70 0.31 0.31 93.5
1 0.15 ↗7.23 1.84 1.76 94.1
2 0.40 ↗27.24 4.32 4.08 92.4

Mean: average of estimates; Bias: Monte-Carlo bias, 10↗4; RMSE: root mean squared error, 10↗2; SE:
average of standard error estimates, 10↗2; Coverage: 95% confidence interval coverage, %.
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Table S4. Simulation results for restricted mean times lost 𝑠2 (1, 𝑏), 𝑠2 (0, 𝑏), and 𝑠2 (𝑏).

𝑉 Estimand 𝑄 Type Mean Bias RMSE SE Coverage Reduction
750 𝑋2 (0, 𝑄 ) 0.25 + 0.04 ↗1.11 0.58 0.57 94.6 0.50

↗ 0.04 ↗1.32 0.59 0.57 94.2 ·
1 + 0.30 ↗21.05 2.98 2.96 94.9 2.85

↗ 0.30 ↗23.22 3.04 3.00 94.7 ·
2 + 0.79 ↗75.58 6.32 6.32 94.7 6.21

↗ 0.79 ↗80.45 6.54 6.53 94.2 ·
𝑋2 (1, 𝑄 ) 0.25 ↗ 0.04 ↗2.76 0.59 0.57 93.5 ·

1 ↗ 0.29 ↗33.89 3.13 3.01 93.8 ·
2 ↗ 0.76 ↗94.02 6.93 6.58 92.9 ·

𝑋2 (𝑄 ) 0.25 + 0.00 ↗1.65 0.81 0.80 94.1 0.26
↗ 0.00 ↗1.44 0.81 0.80 94.3 ·

1 + ↗0.01 ↗12.84 4.16 4.09 93.7 1.53
↗ ↗0.00 ↗10.66 4.21 4.12 94.0 ·

2 + ↗0.03 ↗18.44 8.87 8.82 94.7 3.31
↗ ↗0.03 ↗13.57 9.09 8.97 94.4 ·

1500 𝑋2 (0, 𝑄 ) 0.25 + 0.04 ↗0.98 0.40 0.40 94.1 0.48
↗ 0.04 ↗1.06 0.41 0.41 94.2 ·

1 + 0.30 ↗12.13 2.09 2.10 94.8 2.80
↗ 0.30 ↗12.59 2.12 2.13 94.3 ·

2 + 0.79 ↗36.12 4.53 4.50 94.0 6.18
↗ 0.79 ↗36.57 4.65 4.65 94.3 ·

𝑋2 (1, 𝑄 ) 0.25 ↗ 0.04 ↗1.95 0.41 0.41 93.7 ·
1 ↗ 0.29 ↗19.07 2.14 2.14 94.7 ·
2 ↗ 0.76 ↗52.09 4.72 4.68 94.5 ·

𝑋2 (𝑄 ) 0.25 + 0.00 ↗0.96 0.56 0.56 94.7 0.25
↗ 0.00 ↗0.89 0.56 0.57 94.7 ·

1 + ↗0.00 ↗6.94 2.88 2.91 95.9 1.49
↗ ↗0.00 ↗6.47 2.89 2.93 95.9 ·

2 + ↗0.03 ↗15.97 6.17 6.28 95.8 3.28
↗ ↗0.03 ↗15.51 6.25 6.38 96.0 ·

Type: fusion estimator (+) or RCT-only estimator (↗); Mean: average of estimates; Bias: Monte-Carlo bias,
10↗4; RMSE: root mean squared error, 10↗2; SE: average of standard error estimates, 10↗2; Coverage: 95%
confidence interval coverage, %; Reduction: average of percentage reduction in squared standard error
estimates, %.
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Table S5. Subjects with missing baseline covariates in SUSTAIN-6 and LEADER.

SUSTAIN-6 LEADER
Semaglutide 1.0 mg Placebo Placebo

𝑓 822 1649 4672
Missing (𝑓 ) 9 24 96
Missing (%) 1.09 1.46 2.05

While MACE was the primary outcome in the original analyses of both studies, we turned to the
composite event of non-fatal myocardial infarction and non-fatal stroke as the event of interest.
The main reason is precisely that a greater number of competing events would allow us to better
illustrate our method.

The SUSTAIN-6 trial followed participants for a maximum of 104 weeks since randomization
with an end-of-trial visit at week 109. The LEADER trial, on the other hand, planned a much
longer follow-up period of up to 54 months. Therefore, without assuming transportability of the
conditional cause-specific hazards of both non-fatal cardiovascular outcome and all-cause death,
none of the parameters considered would be identifiable beyond week 104. In the data example,
we chose to estimate parameters at 4 evenly spaced time points up to week 104.

For transportability of the cause-specific hazard of the composite event under placebo, we
needed to control for the baseline covariates that are shifted prognostic variables between the
RCT population and the external control population. In the data example, we employed the list of
baseline characteristics in Table 1 of Marso et al. (2016a). All cause-specific hazards were fitted
by the Cox proportional hazards model with a linear combination of the baseline covariates as
the logarithm of the multiplicative risk. The concentration of low-density lipoprotein cholesterol
was measured in mmol · l↗1 and subsequently log-transformed to reduce skewness. History of
hemorrhagic stroke was removed from the list, as its presence caused extreme numeric instability
during the fitting of the Cox model. Patients with missing baseline covariates were removed from
the data. Exact numbers of missing subjects per treatment groups are displayed in Table S5.

The data included 11 tied event times between times to non-fatal cardiovascular event in the
joint placebo arm and times to all-cause death in the placebo arm of SUSTAIN-6. Since our
estimator is presented under Assumption 5, we broke the ties by jittering the observed event
times. Specifically, a random sample of noise was drawn from the uniform distribution between
0 and 10↗5 and then added to the observed event times. The event times used in the analysis were
recorded in days as integers. Therefore, such small perturbations should not have meaningful
consequences for the results.

To stabilize the estimators, we set a threshold for inverse weights inside the integrals 𝑟𝑀 (𝑋) (𝑊).
For sample size 𝑈, the inverse weights above the value 𝑈

1/2 log(𝑈)/5 were set to that value.

S5. Implications of weaker transportability assumptions

In the main text, we have showcased how the transportability of a conditional cause-specific
hazard improves the precision of estimators for cumulative incidence functions and restricted
mean times lost.

One consideration is whether this assumption can be reasonably weakened according to the pa-
rameter of interest. To ground ideas, consider the target parameter 𝑌1 (0) = 𝑑{𝑎11 (𝑃 | 0, 𝑅) | 𝑄 =
1}. If we view the parameter as the mean of a binary outcome 𝑑{𝑂{𝑀 (0) ⊋ 𝑃, 𝐿 (0) = 1} | 𝑄 = 1},
a straightforward transportability assumption would be

pr{𝑀 (0) ⊋ 𝑃, 𝐿 (0) = 1 | 𝑅 = 𝑐,𝑄 = 1} = pr{𝑀 (0) ⊋ 𝑃, 𝐿 (0) = 1 | 𝑅 = 𝑐,𝑄 = 0},
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Table S6. Treatment-specific cumulative incidences in the real data example.

Estimand 𝑄 (weeks) Type Estimate (%) 95%-CI (%) Reduction
𝑊1 (0, 𝑄 ) 26 + 1.84 (1.31, 2.36) 23.17

↗ 1.97 (1.29, 2.65) .
52 + 3.10 (2.43, 3.77) 23.20

↗ 3.21 (2.34, 4.09) .
78 + 4.87 (4.04, 5.70) 21.30

↗ 4.66 (3.60, 5.72) .
104 + 6.42 (5.46, 7.38) 21.78

↗ 6.25 (5.02, 7.48) .
𝑊2 (0, 𝑄 ) 26 + 0.74 (0.32, 1.17) ↗0.00

↗ 0.74 (0.32, 1.17) .
52 + 1.23 (0.69, 1.78) ↗0.00

↗ 1.23 (0.69, 1.78) .
78 + 1.85 (1.19, 2.52) ↗0.00

↗ 1.85 (1.19, 2.52) .
104 + 2.92 (2.08, 3.76) ↗0.00

↗ 2.92 (2.08, 3.76) .
𝑊1 (1, 𝑄 ) 26 . 1.58 (0.72, 2.44) .

52 . 2.49 (1.42, 3.55) .
78 . 2.88 (1.73, 4.03) .

104 . 3.69 (2.40, 4.98) .
𝑊2 (1, 𝑄 ) 26 . 0.25 (↗0.12, 0.62) .

52 . 0.85 (0.17, 1.54) .
78 . 1.90 (0.88, 2.93) .

104 . 2.71 (1.49, 3.93) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.
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Table S7. Treatment-specific restricted mean times lost in the real data example.

Estimand 𝑄 (weeks) Type Estimate (weeks) 95%-CI (weeks) Reduction
𝑋1 (0, 𝑄 ) 26 + 0.27 (0.18, 0.35) 20.83

↗ 0.27 (0.17, 0.38) .
52 + 0.94 (0.71, 1.17) 22.17

↗ 0.98 (0.68, 1.27) .
78 + 2.03 (1.63, 2.43) 22.43

↗ 2.05 (1.54, 2.57) .
104 + 3.50 (2.90, 4.11) 22.35

↗ 3.49 (2.71, 4.27) .
𝑋2 (0, 𝑄 ) 26 + 0.08 (0.03, 0.14) ↗0.00

↗ 0.08 (0.03, 0.14) .
52 + 0.33 (0.16, 0.49) ↗0.00

↗ 0.33 (0.16, 0.49) .
78 + 0.73 (0.42, 1.03) ↗0.00

↗ 0.73 (0.42, 1.03) .
104 + 1.36 (0.90, 1.83) ↗0.00

↗ 1.36 (0.90, 1.83) .
𝑋1 (1, 𝑄 ) 26 . 0.16 (0.06, 0.26) .

52 . 0.72 (0.39, 1.05) .
78 . 1.44 (0.83, 2.04) .

104 . 2.35 (1.45, 3.25) .
𝑋2 (1, 𝑄 ) 26 . 0.03 (↗0.03, 0.10) .

52 . 0.21 (0.02, 0.39) .
78 . 0.52 (0.15, 0.89) .

104 . 1.12 (0.51, 1.73) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.

Table S8. Cumulative incidence differences after removing history of cardiovascular diseases
from the baseline variables.

Estimand 𝑄 (weeks) Type Estimate (%) 95%-CI (%) Reduction
𝑊1 (𝑄 ) 26 + ↗0.00 (↗0.88, 0.87) 18.11

↗ ↗0.56 (↗1.63, 0.51) .
52 + ↗0.66 (↗1.79, 0.47) 16.79

↗ ↗0.96 (↗2.32, 0.39) .
78 + ↗1.85 (↗3.10, ↗0.60) 18.39

↗ ↗2.03 (↗3.56, ↗0.49) .
104 + ↗2.44 (↗3.86, ↗1.03) 19.02

↗ ↗2.88 (↗4.62, ↗1.14) .
𝑊2 (𝑄 ) 26 + ↗0.53 (↗1.06, 0.00) 0.00

↗ ↗0.52 (↗1.06, 0.01) .
52 + ↗0.40 (↗1.25, 0.45) ↗0.00

↗ ↗0.40 (↗1.25, 0.45) .
78 + 0.07 (↗1.13, 1.26) ↗0.00

↗ 0.07 (↗1.13, 1.27) .
104 + ↗0.18 (↗1.64, 1.28) ↗0.00

↗ ↗0.17 (↗1.63, 1.29) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.
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Table S9. Restricted mean time lost differences after removing history of cardiovascular diseases
from the baseline variables.

Estimand 𝑄 (weeks) Type Estimate (weeks) 95%-CI (weeks) Reduction
𝑋1 (𝑄 ) 26 + ↗0.05 (↗0.16, 0.06) 24.42

↗ ↗0.12 (↗0.27, 0.02) .
52 + ↗0.13 (↗0.48, 0.22) 19.66

↗ ↗0.33 (↗0.76, 0.10) .
78 + ↗0.48 (↗1.11, 0.16) 18.37

↗ ↗0.75 (↗1.53, 0.03) .
104 + ↗0.97 (↗1.93, ↗0.02) 18.10

↗ ↗1.36 (↗2.53, ↗0.19) .
𝑋2 (𝑄 ) 26 + ↗0.05 (↗0.13, 0.02) 0.00

↗ ↗0.05 (↗0.13, 0.02) .
52 + ↗0.13 (↗0.37, 0.11) ↗0.00

↗ ↗0.13 (↗0.37, 0.11) .
78 + ↗0.22 (↗0.67, 0.24) ↗0.00

↗ ↗0.21 (↗0.67, 0.25) .
104 + ↗0.24 (↗0.99, 0.51) ↗0.00

↗ ↗0.24 (↗0.99, 0.51) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.

Table S10. Cumulative incidence differences after removing controls from SUSTAIN-6.

Estimand 𝑄 (weeks) Type Estimate (%) 95%-CI (%) Reduction
𝑊1 (𝑄 ) 26 + ↗0.21 (↗1.16, 0.73) 48.70

↗ ↗1.22 (↗3.07, 0.62) .
52 + ↗0.97 (↗2.20, 0.25) 45.48

↗ ↗1.74 (↗3.99, 0.50) .
78 + ↗2.35 (↗3.73, ↗0.96) 46.55

↗ ↗2.74 (↗5.32, ↗0.15) .
104 + ↗3.10 (↗4.67, ↗1.52) 48.35

↗ ↗4.16 (↗7.21, ↗1.12) .
𝑊2 (𝑄 ) 26 + ↗1.03 (↗2.22, 0.15) 0.01

↗ ↗1.03 (↗2.21, 0.16) .
52 + ↗1.17 (↗2.75, 0.41) 0.01

↗ ↗1.16 (↗2.74, 0.42) .
78 + ↗1.41 (↗3.52, 0.70) 0.01

↗ ↗1.39 (↗3.50, 0.72) .
104 + ↗1.54 (↗3.99, 0.92) 0.01

↗ ↗1.51 (↗3.97, 0.95) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.
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Table S11. Restricted mean time lost differences after removing controls from SUSTAIN-6.

Estimand 𝑄 (weeks) Type Estimate (weeks) 95%-CI (weeks) Reduction
𝑋1 (𝑄 ) 26 + ↗0.10 (↗0.23, 0.03) 59.69

↗ ↗0.29 (↗0.60, 0.03) .
52 + ↗0.27 (↗0.65, 0.12) 51.75

↗ ↗0.64 (↗1.44, 0.15) .
78 + ↗0.71 (↗1.41, ↗0.01) 49.08

↗ ↗1.28 (↗2.65, 0.09) .
104 + ↗1.36 (↗2.41, ↗0.31) 47.99

↗ ↗2.10 (↗4.11, ↗0.08) .
𝑋2 (𝑄 ) 26 + ↗0.16 (↗0.34, 0.02) 0.01

↗ ↗0.16 (↗0.34, 0.02) .
52 + ↗0.41 (↗0.93, 0.10) 0.01

↗ ↗0.41 (↗0.92, 0.10) .
78 + ↗0.78 (↗1.70, 0.14) 0.01

↗ ↗0.77 (↗1.69, 0.15) .
104 + ↗1.24 (↗2.68, 0.19) 0.01

↗ ↗1.23 (↗2.66, 0.20) .

Type: fusion estimator (+) or RCT-only estimator (↗); CI: confidence interval; Reduction: percentage
reduction CI length, %.

which is ˆ
𝑇

0
𝑒1 (0) (𝑏↗ | 𝑐)dA11 (0) (𝑏 | 𝑐)d𝑏 =

ˆ
𝑇

0
𝑒0 (0) (𝑏↗ | 𝑐)dA01 (0) (𝑏 | 𝑐)d𝑏

for 𝑐 ↔ X1 ≃ X0, where 𝑒
𝑂
(0) (𝑏 | 𝑐) = [ε{A

𝑂1 (0) + A
𝑂2 (0)}] (𝑏 | 𝑐).

There are two peculiarities to point out. The first is whether it makes sense at all to only re-
strict the value of conditional cumulative incidence function of cause 1 at the time point 𝑃. It is
very unnatural to only assume transportability for a single time point. If this assumption holds,
we should also expect the cumulative incidence functions in the time interval around that time
point to be quite comparable across populations, especially when the event time distribution is
continuous. Moreover, we would not generally expect a substantial decrease in the semiparamet-
ric efficiency bound of the parameter, if the compatibility of the two population exists for a mere
single time point on a specific scale defined by the parameter.

The second is a result of the cumulative incidence function of cause 1 being a functional of
the cause-specific hazards of both event types. Therefore, by making this assumption, we are
also putting restrictions on the cause 2 hazards between the two populations. However, reasoning
for comparability of the cumulative incidence functions is arguably more difficult than doing
so separately for the two event rates. Note that this observation also applies to transportability
assumptions on subdistribution hazards (Fine and Gray, 1999), for example, for 𝑏 ↔ (0, 𝑃],

pr{𝑀 (0) ⊋ 𝑏, 𝐿 (0) = 1 | 𝑅 = 𝑐,𝑄 = 1} = pr{𝑀 (0) ⊋ 𝑏, 𝐿 (0) = 1 | 𝑅 = 𝑐,𝑄 = 0}.

Apart from the transportability of the cumulative incidence function, we may also consider
the transportability of the all-cause survival function that 𝑒1 (0) (𝑏 | 𝑐) = 𝑒0 (0) (𝑏 | 𝑐). However,
that the sum of two cause-specific hazards is equal across the populations can result from many
combinations of event rates whose interpretations are drastically different. For instance, this as-
sumption holds if the cause 1 hazard under placebo in the RCT population equals the cause 2
hazard in the external control population, while their competing risks are completely eliminated.
Since the estimands used in competing risks analysis often seek to separate the treatment ef-
fects on different causes, a transportability assumption that does not acknowledge the nature of
competing risks may be hard to justify.
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