
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  H E A L T H  A N D  M E D I C A L  S C I E N C E S

PhD thesis

Causal inference in time-to-event analysis
Simon Christoffer Ziersen

Advisors:
Esben Budtz-Jørgensen
Thomas Alexander Gerds
Brice Maxime Ozenne
Lars Vedel Kessing

This thesis has been submitted to the Graduate School of the Faculty of Health and Medical Sciences, University
of Copenhagen on July 27, 2024





Causal inference in time-to-event analysis
PhD thesis

Simon Christoffer Ziersen

Section of Biostatistics
Department of Public Health
University of Copenhagen

July 27, 2024

Academic advisors:
Esben Budtz-Jørgensen, University of Copenhagen
Thomas Alexander Gerds, University of Copenhagen
Brice Maxime Ozenne, University of Copenhagen
Lars Vedel Kessing, University of Copenhagen





Preface

The work in this thesis was carried out at the Section of Biostatistics, University of
Copenhagen from 2021 to 2024. Four months was spend visiting Torsten Hothorn
and the Deparment of Biostatistics, University of Zürich in the spring/summer 2023.
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Zürich, for making my stay an excellent experience.

I would also like to thank my supervisors. My collaboration with Lars Vedel
Kessing started before my time as a PhD student, and through our work I was in-
troduced to time-to-event analysis, which (as the title of the thesis would suggest)
has become a big part of my research. I owe a great thanks to Lars for our col-
laborations and for motivating the methodological work of the thesis. I would like
to thank Brice Maxime Hugues Ozenne for his always open door and feedback on
much of my work. I thank Thomas Alexander Gerds and Esben Budtz-Jørgensen
for their support through out the entirety of my PhD and for sticking it out with
me in the end when time was precious.

Finally, I would like to extend my sincerest gratitude to Torben Martinussen for
our collaborations, which eventually made up the two thirds of the thesis.

iii





Summary

The aim of this thesis is to provide statistical methods for assessing treatment effects
with registry data, where the outcome of interest is time to an event. It is often
the case that only a censored version of the underlying event time is available, as
patients may leave the risk set due to emigration or end of follow-up. Furthermore,
some competing event, such as death, may prevent observation of the event of in-
terest and methods from survival analysis allowing for competing risks has to be
combined with causal inference methodology for inferring the treatment effect.

The thesis is comprised of a synopsis consisting of seven chapters and three manuscripts.
Chapter 2 gives an introduction to semiparametric efficiency theory and the use
of data-adaptive methods for functional estimation, which form the basis of the
methodological work undertaken in the manuscripts. Chapter 3-4 introduce the
causal inference methodology considered in the manuscripts, and Chapter 5 dis-
cusses the application to a study based on data from the Danish national registers.
Chapter 6 gives a summary of the manuscripts and Chapter 7 reflects on the limita-
tions of the work and some potential avenues for future research. The contributions
in this thesis can be grouped in two categories.

Average treatment effect estimation with censoring and competing risks
Manuscript I considers estimation of the average treatment effect based on the τ -year
absolute risk with a high-dimensional set of potential confounders. We derive an
estimator for the target parameter, that allows for penalized regressions for nuisance
parameter estimation. The method is applied to a study comparing the response to
different antidepressants using data from the Danish national registers.

Manuscript III derives a measure of treatment effect based on the number of life
years lost due to a specific event. This definition of treatment effect returns the in-
terpretation to the timescale of the study, which is easier to communicate compared
to risks. We derive an estimator that allows for data-adaptive estimation of the nui-
sance parameters and give high-level assumptions for valid inference of the estimator.

Assessment of heterogeneous treatment effects
Manuscript II extends a treatment effect variable importance measure to censored
data. The measure is used to assess the amount of treatment effect heterogeneity
explained by a given set of covariates. Additionally, a new measure is derived as
a best partially linear projection of the conditional average treatment effect. The
projection measures the heterogeneity explained by a single covariate and it has
interpretation as a regression coefficient. Manuscript III extends the projection
measure from Manuscript II to the treatment effect based on the number of life
years lost due to a specific event. The method is applied to the register study on
response to different antidepressants.
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Resumé

Målet for denne afhandling er at bidrage med statistiske metoder til vurdering af be-
handlingseffekter ved hjælp af registerdata, hvor responsen er tid til en begivenhed.
Ofte observerer man kun en censureret udgave af den underlæggende begivenhed-
stids, da patienter kan udg̊a fra risikomængden som følge af emigration eller studiets
afslutning. Ydermere, kan nogle konkurrerende begivenheder, s̊asom død, forhindre
observation af responsbegivenheden, og metoder fra overlevelsesanalyse, der tillader
konkurrerende begivenheder, m̊a kombineres med metoder fra kausal inferens for at
udlede behandlingseffekten.

Denne afhandling indeholder en synopsis p̊a syv kapitler og tre manuskripter. Kapi-
tel 2 giver en introduktion til semiparametrisk efficiensteori og brugen af data-
adaptive metoder til funktionalestimation, der danner basis for det metodiske ar-
bejde i manuskripterne. Kapitel 3 og 4 introducerer den kausal inferens-metodik,
der er undersøgt i manuskripterne, og kapitel 5 diskuterer anvendelsen i et studie
baseret p̊a data fra de danske registre. Kapitel 6 giver et resumé af manuskripterne,
og kapitel 7 reflekterer over begrænsningerne af resultaterne og potentielle emner til
fremtidig forskning. Bidragene i denne afhandling kan grupperes i to kategorier.

Estimation af den gennemsnitlig behandlingseffekt med censurering og
konkurrerende risici
Manuskript I omhandler estimation af den gennemsnitlige behandlingseffekt baseret
p̊a den τ -̊ar absolutte risiko med høj-dimensionale konfoundere. Vi konstruerer en
estimator, der tillader estimation af nuisance-parametrene vha. penaliserede regres-
sioner. Metoden anvendes p̊a et studie, der sammenligner responsen til forskellige
antidepressiva med data fra de danske registre.

Manuskript III udleder et m̊al for behandlingseffekt baseret p̊a antallet af mistet
leve̊ar som følge af en specifik begivenhed. Denne definition af behandlingseffekt
bringer fortolkningen tilbage til tidsenheden i studiet, som er nemmere at kommu-
nikerer end risiko. Vi konstruerer en estimator, der tillader data-adaptiv estimation
af nuisance-parametrene, og giver overordnede betingelser for valid inferens.

Vurdering af heterogene behandlingseffekter
Manuskript II udvider et m̊al for variable importance p̊a behandlingseffekter til cen-
sureret data. Målet bruges til at vurdere størrelsen af behandlingseffekt-heterogenitet,
der kan tilskrives et givent sæt af kovariater. Ydermere, udvikles et nyt m̊al som
den bedste partielle lineære projektion af den betingede behandlingseffekt. Projek-
tionen m̊aler heterogenitet forklaret af en enkelt kovariat og har fortolkning som en
regressionskoefficient. Manuskript III udvider projektionsm̊alet til behandlingseffek-
ter baseret p̊a antallet af mistet leve̊ar som følge af en specifik begivenhed. Metoden
anvendes p̊a registerstudiet vedrørende respons til antideppresiva.

vii



Contents

Preface iii

Summary v

Resumé vii
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Chapter 1

Introduction

The work carried out in this thesis was undertaken as part of work package one of
a larger research project called BrainDrugs.1 The overall aim of BrainDrugs is to
identify patient features that determine drug response in patients with major de-
pressive disorders (MDD) and epilepsy, respectively. The project was divided into
seven work packages, each with a different focus and researchers from different sci-
entific areas. The aim of work package one was to study response to antidepressants
in patients with MDD using data from the Danish national registers. The overall
aim of this thesis is to provide statistically sound methods for estimating drug re-
sponse using registry data and to provide methods for identification of treatment
effect modifiers.

In registers, patients are followed over time and the response to a given antide-
pressant is defined in terms of the time to a specific event of interest. Statistical
methods for time-to-event analysis are complicated by the fact that the data are not
fully observed, as some patients may leave the study before an observation with the
event of interest, due to censoring. Examples of a censoring mechanism in register
data are emigration or end-of-follow-up, after which the only information on the
time to the event of interest is that it did not happen in a certain period. Further-
more, some patients may die before the event of interest. This prevents observation
of the event of interest, and we say that death constitutes a competing risk.

The question of determining drug response from observational data is causal in
nature. When contrasting the response to antidepressant A and B, only one of the
two is observed for a given patient and the underlying question becomes ”how would
the patient have responded if he or she was given the other antidepressant”. On a
population level, the average difference in drug response (or the average treatment
effect in the causal language) is then interpreted as ”what is the expected differ-
ence in drug response if everyone was treated with antidepressant A compared to
if everyone was treated with B”. As a patient is only treated with either A or B,
methods from the causal inference literature has to be employed for answering such
questions using observational data.

The study carried out in Kessing et al. (2024) laid the motivation for the method-
ological explorations in this thesis. The study uses methods from the causal inference
literature to emulate a targeted randomized trial (Hernán and Robins, 2016) when
data are subject to censoring and competing risk.

1https://braindrugs.nru.dk/
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2 Introduction

Objectives
The objectives of the thesis can group in two categories

(i) Reliable estimation of the ATE in the presence of censoring and competing
risks.

(ii) Identification of treatment effect modifiers in the presence of censoring and
competing risks.

Objective (i) addresses some challenges involved with estimation of causal effects
using high-dimensional data. One assumption needed for identification of the ATE
in observational data, is that of ”no unmeasured confounding”, which with high-
dimensional data amounts to including a large covariate set in certain regressions.
Machine-learning methods designed for the purpose of statistical learning using high-
dimensional data are attractive in such setting, but a naive implementation of such
methods breaks the asymptotic inference of the obtained ATE estimate. Methods
from semiparametric efficiency theory are then needed for producing reliable esti-
mators for the ATE in the presence of censored data with competing risks, using
data-adaptive nuisance estimators.

Objective (ii) refers directly to the overall aim of BrainDrugs: identifying patient
features that determine drug response. Many different machine-learning methods
exist for estimating the treatment effect on a patient level with censoring and com-
peting risks, but they are often given as black-box machines and provide little inside
into the driving features determining the treatment effect. Thus, objective (ii) deals
with the development of methods for detecting treatment effect modifiers, while still
having the flexibility of nonparametric machine-learning methods.

Overview
The thesis is comprised of a synopsis and three manuscripts and is organised as fol-
lows. Chapter 2 introduces semiparametric efficiency theory and its use in functional
estimation with nonparametric models. Chapter 3 presents two different definitions
of the ATE in the presence of censoring and competing risks, each with a differ-
ent interpretation, and constructs estimators with parametric-like behaviour in the
presence of data-adaptive nuisance estimators, using the methods from Chapter 2.
Chapter 4 defines two different treatment effect variable importance measures for de-
tecting treatment effect modifiers in the presence of censoring and competing risks.
Estimators of the measures are constructed using results from Chapter 2. Chapter
5 details the work related to BrainDrugs and drug response to antidepressants us-
ing registers data. Chapter 6 gives a summary of the manuscripts and Chapter 7
concludes the synopsis with a some perspectives and ideas for future research.

Notation
The following notation will be used throughout the thesis. We write Pf =

∫
f dP ,

and when f̂ is estimated from data, P f̂ considers f̂ fixed, i.e., not averaging over
the randomness in f̂ . For observations X1, . . . , Xn we denote Pnf =

∑n
i=1 f(Xi) the

empirical measure of f . The expression EP is used to denote the expectation with

respect to the measure P . We let ∥·∥ be the L2(P )-norm such that ∥f∥ =
√∫

f2 dP ,

where the dependence on P is implicitly understood, unless otherwise specified. We
let O denote the sample space and On the observed data. Finally, for some process

Xn, we take Xn = op(n
−ϵ) to mean nϵXn

P→ 0, and Xn = op(1) to mean Xn
P→ 0.



Chapter 2

Functional estimation

Many statistical problems can be formulated as estimation of a functional ψ defined
on a family of probability measures M. When the model is indexed by some eu-
clidean parameter, it can be written as Mθ = {Pθ : θ ∈ Rk} and the statistical
estimation problem is often defined as estimation of ψ(Pθ) = θ. When the model
is indexed by a combination of a finite and infinite dimensional parameter it is re-
ferred to as a semiparametric model and we write Mθ,ν = {Pθ,ν : θ ∈ Rk, ν ∈ F} for
some suitable function class F . Here, ν is a nuisance parameter and the estimation
problem is again defined as estimation of ψ(Pθ,ν) = θ. There exist a vast literature
on semiparametric efficiency theory, which deals with estimation of functional pa-
rameters in semiparametric models (Bickel et al., 1993, van der Vaart, 2000, Tsiatis,
2006). When the model is parametrized by only an infinite dimensional nuisance
parameter ν, the model is said to be nonparametric, which can be analysed as a
special case using semiparametric efficiency theory. Going forward, we denote M
the nonparametric model.

In recent years, functional estimation in nonparametric models using data-adaptive
nuisance parameter estimators has received a lot of attention (van der Laan and
Rose, 2011, Kennedy, 2016, Chernozhukov et al., 2018) and nice reviews of the
theory can be found e.g., in Kennedy (2022) and Hines, Dukes, et al. (2022). The
nonparametric model allows one to define the target parameter of estimation as a
map ψ : M → R (for the sake of illustration, we only consider one-dimensional
target parameters) without relying on restrictive parametric model assumptions.
This makes the nonparametric model attractive for estimation using observational
data, where little in known on the data generating mechanism. As such, many of
the recent advances have been related to or motivated by problems from the causal
inference literature, with the aim of estimating a causally related target parameter,
also known as an estimand (Petersen and van der Laan, 2014). As an example of a
commonly targeted estimand, consider the average treatment effect (ATE)

ψ(P ) = EP {EP (Y | A = 1, X)− EP (Y | A = 0, X)}, (2.1)

where Y ∈ R is an outcome of interest, A ∈ {0, 1} is a binary treatment indicator,
X is a covariate vector and EP is the expectation under P . A natural approach
for estimating ψ(P ) with flexible nuisance parameter estimation is with the plug-in
estimator ψ(P̂ ), where P̂ is some estimate of P (or the relevant parts of it) using
appropriate machine-learning tools. For the ATE, the plug-in estimator based on n

3



4 Functional estimation

i.i.d. observations of (Y,A,X) is given by

ψ(P̂ ) =
1

n

n∑

i=1

µ̂1(Xi)− µ̂0(Xi),

where µ̂a is an estimate of the regression function E(Y | A = a,X = x) and the
distribution of X is estimated by the empirical measure. In Chapter 3, we give a
detailed discussion of the causal interpretation of the ATE in an incomplete data
setting.

Plug-in estimation of the target parameter does not generally provide valid in-
ference, as the estimation of P̂ is targeted towards P rather than ψ(P ), which leaves
a bias term that converges on a rate slower than n−1/2, thus preventing parametric-
like inference of the target parameter estimate (Kennedy, 2022). The bias term is
related to the so-called efficient influence function (EIF) corresponding to the map
ψ, which plays a crucial role in the semiparametric inference literature. In this chap-
ter we give a brief introduction to EIF-based estimation of functionals defined on
nonparametric models, enabling parametric-like inference while using data-adaptive
nuisance estimators.

2.1 Efficient influence function

We consider the problem of estimating a map ψ : M → R at a given P0 ∈ M.
Here, we think of an experiment based on n observations, say X1, . . . , Xn where
Xi ∼ P0, and the aim is to estimate the target parameter ψ0 = ψ(P0). Consider
an estimator ψn of ψ0. The estimator is called asymptotically linear if it admits the
representation

ψn − ψ0 = PnIFP0 + op(n
−1/2) (2.2)

where IFP : O → R is defined as a map on the sample space O for a given P with
P IFP = 0 and P IF2 <∞. The function IF is called the influence function of ψn and
it characterizes the asymptotic distribution of the estimator, since an application of
Slutsky’s theorem together with the central limit theorem gives that

√
n(ψn − ψ0) −→ N (0, P0IF

2
P0
).

The question is then, how to construct estimators that are asymptotically linear and
how to identify their influence functions using data-adaptive nuisance estimators?
It turns out, that, when the map ψ is smooth, it is possible to calculate the so-
called efficient influence function (EIF), which characterizes the information bound
among all regular estimators. Intuitively, if one considers all estimators on the form
(2.2), the EIF is the influence function which minimizes P IF2

P . Once the EIF is
known, several methods exist for constructing an estimator that is asymptotically
linear with the EIF as its influence function. The EIF is related to the map ψ and
the model M and it is defined without reference to any specific estimator.

The definition of the EIF is quite involved, and we will sketch the definition here
but refer to van der Vaart (2000) ch. 25.3 for a rigorous definition. Let O be a
sample space and let H = {g : O → R | P0g = 0, P0g

2 < ∞} be the Hilbert space
of measurable functions with mean zero and finite variance equipped with the inner
product ⟨g1, g2⟩ = P0g1g2 and norm ∥g∥ =

√
Pg2. Define a one-dimensional smooth



2.1 Efficient influence function 5

parametric submodel Mϵ ⊂ M by Mϵ = {Pϵ ∈ M : ϵ ∈ R} which is differentiable
at ϵ = 0, and note that it passes through P0 at ϵ = 0. Since the submodel is differ-
entiable at ϵ = 0, we can define its score function by sϵ(o) =

d
dϵ |ϵ=0 log dPϵ(o) ∈ H.

Define T (P0) by the collection of all score functions defined according to a given
parametric submodel and denote the tangent space by T (P0), the closure of the lin-
ear span of T (P0). The map ψ is said to be pathwise differentiable at P0 if, for all
parametric submodel scores sϵ ∈ T (P0), it holds that

d

dϵ

∣∣∣∣
ϵ=0

ψ(Pϵ) = ⟨sϵ, ψ̃P0⟩, (2.3)

for a unique function ψ̃P0 ∈ T (P0) called the efficient influence function. In the
proper semiparametric case, multiple functions fulfil (2.3) and ψ̃P is not uniquely
defined by the equation, but it can be obtained by projecting any functions satis-
fying (2.3) onto the tangent space. Here, we only consider the nonparametric case,
where the tangent space equals the entire Hilbert space H (Tsiatis, 2006, Theorem
4.4). Hence, any function satisfying (2.3) is automatically in the tangent space and,
thus, is the EIF.

Earlier, we hinted at the EIF as the influence function with the lowest variance.
With the definition in place, this can now be formalised. For any parametric sub-
model Mϵ, estimation of ψ(P0) should be ”easier” for P0 ∈ Mϵ as opposed to
P0 ∈ M. The Cramér-Rao bound gives that the optimal asymptotic variance for
estimation of ψ(Pϵ) at ϵ = 0 with score sϵ is given by

(
d
dϵ

∣∣
ϵ=0

ψ(Pϵ)
)2

P0s2ϵ
=

(P0ψ̃P0sϵ)
2

P0s2ϵ
≤ P0ψ̃

2
P0

where P0s
2
ϵ is the Fisher information. The equality follows from the definition of the

EIF and the inequality follows from Cauchy-Schwarz. Taking the supremum over
all scores sϵ ∈ T (P0) shows that the variance of the EIF provides the smallest upper
bound on the optimal asymptotic variance for estimating ψ(P0) over all parametric
submodels, since the EIF is itself an element of the tangent space. Hence, the EIF
defines the lower bound on the attainable asymptotic variance for estimating ψ(P0)
in the nonparametric model M.

The above derivations are summarized in van der Vaart (2000) Theorem 25.19
and we refer to the surrounding chapter (25.3) for a detailed discussion. In partic-
ular, any regular estimator (see van der Vaart, 1991 for a definition) of a pathwise
differentiable target parameter is asymptotically efficient if and only if it is asymp-
totically linear with the EIF as its influence function (van der Vaart, 2000 Theorem
25.23).

Even though equation (2.3) provides a direct approach for finding the EIF of a
given target parameter, it is often complicated, as it involves solving an integral
equation. An alternative approach using Gateaux derivatives is discussed in Hines,
Dukes, et al. (2022), Kennedy (2022) and Ichimura and Newey (2022). The Gateaux
derivative at P0 in the direction of Q ∈ M is defined as the ordinary derivative

ψ(ϵQ+ (1− ϵ)P0))− ψ(P0)

ϵ
, ϵ→ 0.

Assume the data to be discrete and letQ be the Dirac measure at a single observation
O. Define the parametric submodel Pϵ = ϵQ+ (1− ϵ)P0 and note that is has score



6 Functional estimation

function sϵ(o) =
dQ−dP
dP . If the map ψ is pathwise differentiable at P0, equation (2.3)

gives that
d

dϵ

∣∣∣∣
ϵ=0

ψ(Pϵ) =

∫
ψ̃P0(o) d(Q− P )(o) = ψ̃P0(O).

Thus, when the target parameter is pathwise differentiable, the Gateaux derivative
provides a direct approach for calculating the corresponding EIF. The above ap-
proach can be made rigorous for continuous data by approximating Q by a kernel
(Ichimura and Newey, 2022), but the result remain the same. In manuscript II and
III, we take this approach for deriving the EIF.

With the EIF at hand, several approaches exist for constructing estimators that
are asymptotically linear with the EIF as their influence function (van der Vaart,
2000, van der Laan and Rose, 2011, Kennedy, 2022). In the following, we describe
the one-step estimator, which adds the bias obtained from data-adaptive nuisance
estimation in the plug-in estimator to the plug-in estimate itself.

2.2 One-step estimator

For a pathwise differentiable target parameter ψ(P0) and plug-in estimator ψ(P̂ ),
the one-step estimator is defined as

ψ̂OS = ψ(P̂ ) + Pnψ̃P̂ ,

where ψ̃P̂ is the EIF with the estimated P̂ in place of P0 (Kennedy, 2022). We will
restrict our attention to the setting where the EIF is linear in the target parameter,
i.e. ψ̃P0 = φP0 − ψ(P0), for some measurable function φP0 defined on the sample
space with finite variance, which we denote the uncentered EIF. This restriction
plays no role in the analysis of the one-step estimator, but since the EIF’s corre-
sponding to the target parameters considered in manuscript I, II and III are all on
this form, we adopt this setting, as to not confuse notation. The one-step estimator
becomes ψ̂OS = PnφP̂ , which we note is also equal to the estimating equation based

estimator defined as the solution to Pnψ̃P̂ = 0 when the EIF is linear in the target
parameter. To analyse the asymptotic properties of the one-step estimator, consider
the expansion

ψ̂OS − ψ(P0) = PnφP̂ − ψ(P0)

= PnφP̂ − ψ(P0) + Pnψ̃P0 − Pnψ̃P0

= Pnψ̃P0 + Pn(φP̂ − φP0)

= Pnψ̃P0 + Pn(φP̂ − φP0) + P0(φP̂ − φP0)− P0(φP̂ − φP0)

= Pnψ̃P0 + (Pn − P0)(φP̂ − φP0)︸ ︷︷ ︸
empirical process term

+P0φP̂ − ψ(P0)︸ ︷︷ ︸
remainder term

where the last equality follows by P0φP0 = ψ(P0). If the empirical process term and
the remainder term in the above display are both op(n

−1/2), the one-step estimator
is seen to be asymptotically linear with ψ̃P0 as its influence function and hence
√
n(ψ̂OS − ψ(P0))

d→ N (0, P ψ̃2
P0
). Accordingly, we define an estimator for the

variance P0ψ̃
2
P0

by

σ̂2 = Pn(φP̂ − ψ̂OS)2.



2.3 Cross-fitting 7

The standard error of ψ̂OS is given as
√
σ̂2/n, which can be used for inference.

The remainder term can in many cases be shown to admit a double robust
structure, whereby P̂ (or parts of it) is only required to be estimated at n−1/4-rate
in order to obtain n−1/2-convergences of the remainder term. In the ATE-example
from equation (2.1), the nuisance parameters are π(a | x) = P0(A = a | X = x) and
µa(x), and defining their corresponding estimates by π̂ and µ̂a, the corresponding
remainder term is bounded by

∑
a=0,1 ∥π̂ − π0∥ ∥µ̂a − µa∥ (Kennedy, 2016). Hence,

n−1/2-convergence of the remainder term in the ATE example is obtained if the
product of the convergence rates of the nuisance parameter estimators is n−1/2. This
requirement is fulfilled for many machine-learning estimators and as an example with
neural networks for nuisance parameter estimation, see Farrell et al. (2021).

By lemma 19.24 in van der Vaart (2000), the empirical process is op(n
−1/2) if

the estimator P̂ is assumed to belong to a Donsker class (see van der Vaart, 2000 ch.
19 for definition), which amounts to nuisance estimators that are not too complex.
Furthermore, the estimates of the uncentered EIF is required to be consistent as∥∥φP̂ − φP0

∥∥ = op(1). The Donsker class requirement has been shown to be too
restrictive for some data-adaptive estimators (Chernozhukov et al., 2018), and a
type of sample splitting (termed cross-fitting) is used to alleviate the Donsker class
condition.

2.3 Cross-fitting

We give a construction of the sample splitting used to the define the cross-fitted one-
step estimator as it is given in Manuscript I, II and II, where the EIF is linear in the
target parameter. For a construction of a general one-step estimator see Kennedy
(2022) and Chernozhukov et al. (2018). Denote the observed data On, which consists
of n i.i.d. observations from the sample space. Split the data into K approximately
equally large folds. It is important thatK does not depend on the sample size (which
would be the case for leave-one-out cross-fitting). Formally, define the index vector
(i1, . . . , in) by n draws from a multinomial distribution with K events and event
probabilities pk = 1

K , k = 1, . . . ,K. Define the k’th index set Tk = {ij : j = k} and
let Vk = {oij ∈ On, j = 1, . . . , n : ij ∈ Tk} be the corresponding k’th fold. Define
V−k = ∪l ̸=kVl as the set of the observations not included in the k’th fold and let

P̂−k be the estimate of P0 obtained from V−k. Furthermore, let Pkn be the empirical
measure of the observations in Vk, and let nk be the number of observations in the
k’th fold. The cross-fitted one-step estimator is then defined as

ψ̂CF =
K∑

k=1

nk
n
PknφP̂−k

.

Consider the decomposition

PknφP̂ ,−k

=(Pkn − P0)φP̂ ,−k + P0φP̂ ,−k

=(Pkn − P0)(φP̂ ,−k − φP0) + (Pkn − P0)φP0 + P0φP̂−k

=Pknψ̃P0 + (Pkn − P0)(φP̂−k
− φP0) + P0φP̂−k

,
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from which we have the following decomposition of the difference ψ̂CF − ψ(P0),
analogous to the one-step estimator.

ψ̂CF − ψ(P0)

=Pnψ̃P0 +
K∑

k=1

nk
n

(Pkn − P0)(φP̂−k
− φP0)︸ ︷︷ ︸

k’th empirical process term

+
K∑

k=1

nk
n

(P0φP̂−k
− ψ(P0))

︸ ︷︷ ︸
k′’th remainder term

.

By Lemma 2 in Kennedy et al. (2020), the k’th empirical process term is op(n
−1/2)

if
∥∥∥φP̂−k

− φP0

∥∥∥ = op(1). Since nk
n

P→ 1/K, it follows by the continuous mapping

theorem, that ψ̂CF is asymptotically linear with the EIF as its influence function
if φP̂−k

is consistent in L2(P0)-norm for each k and if the k′th remainder term is

op(n
−1/2) for each k.
We define the cross-fitted variance estimator as

σ̂2,CF =

K∑

k=1

nk
n
Pkn(φP̂−k

− ψ̂CF )2.

Lemma 1 in Manuscript II shows that the cross-fitted variance estimator is consistent
under the same assumptions as required for asymptotic linearity of the cross-fitted
one-step estimator. The standard error

√
σ̂2,CF /n of ψ̂CF can thus be used for the

construction of confidence intervals and statistical tests.

Figure 2.1 shows the estimated bias of one-step estimators with and without
cross-fitting resulting from a simulation study in Manuscript III (corresponding to
the upper left panel in Figure 1 in the manuscript). The simulation study is based on
1000 simulations for sample sizes n = 250, 500, 750, 1000, respectively, and it relates
to the estimation of a best linear projection, to be discussed in Chapter 4. Two
different nuisance parameter estimators were considered, where cor corresponds to
correctly specified parametric models and RF corresponds to random forest. The
suffix CF indicates that the cross-fitted was used in combination with the given
nuisance parameter estimator. From the figure it is clear that cross-fitting is needed
when considering complex data-adaptive estimators, such as random forest.
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Figure 2.1: Absolute bias from the simulation study in Ziersen and Martinussen
(2024a). The cor and corCF correspond to one-step estimators with correctly spec-
ified (semi)parametric nuisance parameter estimators and with and without cross-
fitting, respectively. RF and RFCF correspond to one-step estimators with nuisance
parameters estimated by random forest and with and without cross-fitting, respec-
tively.





Chapter 3

Average treatment effect with
censoring and competing risk

In chapter 2, the average treatment effect (ATE) was defined as

ψ(P0) = EP0{EP0(Y | A = 1, X)− EP0(Y | A = 0, X)},

where (Y,A,X) denotes the outcome, treatment and covariate, respectively. The
target parameter ψ(P0) is defined on the observed data, and from the definition
above, it is not obvious how ψ(P0) defines a causal parameter, or which assumptions
(if any) are needed in order to give it a causal interpretation.

This chapter defines the ATE as a causal parameter in a specific data setting,
where the outcome is not fully observed due to censoring. For clarity, the ATE is
first introduced in the simple data structure from the example above.

We introduce the counterfactual framework (sometimes also referred to as poten-
tial outcomes) (Neyman, 1923, Rubin, 1974, Robins, 1986 and Hernán and Robins,
2010). For an outcome Y ∈ R and a treatment variable A ∈ {0, 1}, let Y a denote
the outcome Y under treatment a. In a given study (whether randomized or obser-
vational), only the pair (Y,A) is observed for each patient (we will tend to switch
between the terminology patient and observation), and Y a can be read as ”the
outcome one would have observed, had the patient, possibly contrary to the fact,
received treatment a”, thus giving rise to the name counterfactual outcome. Let X
be a covariate vector and assume that the full data is given by independent repli-
cations of (Y 0, Y 1, A,X) ∼ P̃ , where P̃ is assumed to belong to some appropriate
model. The ATE is defined as

EP̃ {Y 1} − EP̃ {Y 0}.

Assume that the observed dataOn are given by independent replications of (Y,A,X) ∼
P0. We make the following assumptions for identifying the ATE based on the ob-
served data.

Assumption A (Identification).

A1 (Consistency) Y = AY 1 + (1−A)Y 0 conditional on A.

A2 (Exchangeability) Y a ⊥⊥ A | X, A = 0, 1.

A3 (Positivity) P0(A = a | X = x) > η > 0, ∀x, a = 0, 1.

11
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X

A Y

Figure 3.1: Example of a confounder.

The consistency assumptions states that the observed outcome for a given patient
is indeed the counterfactual outcome under the observed treatment assignment for
that patient.

The exchangeability assumption states that the counterfactual outcome is in-
dependent of the treatment assignment given the covariate X. The assumption
is sometimes also referred to as the assumptions of no unmeasured confounders,
meaning that we have observed all common causes of the treatment assignment and
the outcome. Here, common cause refers to the graphical representation of causal
effects as directed acyclic graphs (Pearl, 2009), see Figure 3.1. The graphical rep-
resentation does not rely on counterfactuals and it is included here as an intuitive
tool for explaining the exchangeability assumption, only. The correct formulation
in the counterfactual framework is indeed assumption A2, but some authors have
connected the counterfactuals with the graphical framework through single world
intervention graphs (Richardson and Robins, 2013).

Finally, the positivity assumptions states that all patients must be susceptible
to either treatment.

Under assumption A, the ATE is identified from the observed data by the g-
formula (Robins, 1986) as

ψ(P0) = EP0{EP0(Y | A = 1, X)− EP0(Y | A = 0, X)} = EP̃ {Y 1} − EP̃ {Y 0}.

Given the identification formula, estimation and inference of the ATE can be carried
out in the observed data, using the methods from chapter 2 to estimate ψ(P0). The
identification problem can be seen as a type of incomplete data problem, where the
outcome of interest (the counterfactuals Y a) is not fully observed. Another type of
incomplete data is known from survival analysis, where the time to death is not fully
observed due to some censoring mechanism. One common example of censoring in
time-to-event studies is the end of follow-up. When the study terminates, the only
information available for patients still alive is that their survival time is at least
greater than the length of study (or some other time-scale). The following sections
defines the average treatment in a time-to-event setting with censored data. The
setting is further complicated by competing risks, which may prevent observation of
the event of interest, even when data are uncensored.

3.1 Absolute risk with censored data

Let T ∈ R+ be the time to event and let ∆ ∈ {1, 2} denote the event indicator.
Throughout, ∆ = 1 denotes the event of interest and ∆ = 2 denotes the competing
event. Let C ∈ R+ be the time to censoring, A ∈ {0, 1} a baseline treatment, and
X ∈ X a d-dimensional covariate vector in some sample space X . The observed
event time is T̃ = T ∧ C and the observed event indicator is ∆̃ = 1(T ≤ C)∆. Let
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Yj(t) = 1(T ≤ t,∆ = j), j = 1, 2, denote the outcome defined in the uncensored
observed event time and event indicator for event j. That is, whether or not event
j has occurred in the time-horizon [0, t]. Let T a and ∆a denote the counterfactual
event time and event indicator, respectively, and define the counterfactual outcomes
Y a
j (t) as Yj(t) under treament a. The full data are represented by independent draws

of (T 0, T 1,∆0,∆1, C,A,X) ∼ P̃ and the observed data is given by replications of
(T̃ , ∆̃, A,X) ∼ P0. The ATE is now defined for the event of interest in a specific
time-horizon [0, t] as

EP̃ {Y 1
1 (t)} − EP̃ {Y 0

1 (t)} = P̃ (T 1 ≤ t,∆1 = 1)− P̃ (T 0 ≤ t,∆0 = 1), (3.1)

i.e., the difference in the absolute risk of event ∆ = 1 in the time-horizon [0, t].
Note that the ATE is only defined in terms of the effect of a baseline treatment
assignment. In time-to-event studies, patients may switch treatment before an ob-
servation of the event time T or they might terminate treatment all together due
to non-compliance or side-effects. The ATE defined above only measures the effect
of treatment assignment at baseline and it can be interpreted as an intention to
treat-effect (Hernán and Robins, 2010).

With censored data, methods from survival analysis that allow for competing risks
(Andersen et al., 1993, Martinussen and Scheike, 2006) are combined with the g-
formula to identify the ATE from the observed data (Gill et al., 1997, van der Laan
and Robins, 2003, Ozenne et al., 2020, Rytgaard et al., 2023). We take a step
back from the causal framework and give a short introduction to some results from
survival analysis. For a rigorous treatment we refer to Andersen et al. (1993) and
Martinussen and Scheike (2006). It turns out that a counting process framework
is convenient for describing time-to-event data and connecting the censored event
times with the unobserved data. Let Nj(t) = 1(T ≤ t,∆ = j) be the counting
process for the j’th event and let λj(t | a, x) denote the conditional cause-specific
hazard for event j defined by

λj(t | a, x) = lim
h→0

P (T ∈ [t, t+ h),∆ = j | A = a,X = x)

h
.

Let Λj(t | a, x) =
∫ t
0 λj(s | a, x) ds be the conditional cumulative hazard for event j.

By the Doob-Meyer decomposition there exist a martingale Mj(t | a, x) such that

Mj(t | a, x) = Nj(t)− 1(T ≥ t)Λj(t | a, x)
and we say thatNj(t) has compensator 1(T ≥ t)Λj(t | a, x) (the martingale is defined
w.r.t. the history generated by N1, N2 but it is left out for notational convenience).
Letting S(t | a, x) = P (T > t | A = a,X = x) = exp(−Λ1(t | a, x) − Λ2(t | a, x))
denote the conditional survival function, it follows that the conditional cumulative
incidence function for the j’th event is given by

Fj(t | a, x) ≡ P (T ≤ t,∆ = j | A = a,X = x) =

∫ t

0
S(s | a, x)Λj(ds | a, x).

To see how this connects to the censoring, let Ñj(t) = 1(T̃ ≤ t, ∆̃ = j) be the
j’th counting process in the censored data and let Λ̃j(t | a, x) be the associated
conditional cumulative hazard function in the censored data. Assuming conditional
independent censoring, there exist a martingale M̃(t | a, x) such that

M̃(t | a, x) = Ñj(t)− 1(T̃ ≥ t)Λ(t, | a, x).
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Hence, the compensator of the observed counting process Ñj(t) only differs from
the compensator of Nj(t) by the at-risk process 1(T̃ ≥ t) and it follows that the
absolute risk of event j in time-horizon [0, t] in the uncensored data is identified
from the observed data by

P (T̃ ≤ t, ∆̃ = j | a, x) =
∫ t

0
S(t | a, x)Λj(ds | a, x) = Fj(t | a, x).

Returning to the causal framework, we can now update the identifiability assump-
tions for the censored data setting.

Assumption B (Identification).

A1 (Consistency) Y1(t) = AY 1
1 (t) + (1−A)Y 0

1 (t) conditional on A.

A2 (Exchangeability) Y a
1 (t) ⊥⊥ A | X, A = 0, 1.

A3 (Positivity) P0(A = a | X = x)P (C > s | a, x) > η > 0, ∀x, s ∈ X × [0, t] a =
0, 1.

A4 (Independent censoring) T ⊥⊥ C | A,X.

Under assumption B, the ATE in (3.1) is identified in the observed data as

ψ(P0) = EP0{F1(t | 1, X)− F1(t | 0, X)} = EP̃ {Y 1
1 (t)} − EP̃ {Y 0

1 (t)}, (3.2)

where the cumulative hazards in F1 are defined w.r.t. P0 (see supplementary material
of Rytgaard et al., 2023).

3.2 Number of life-years lost due to a specific event

In the survival setting, i.e. without competing risks, an analogous ATE can be
defined as

EP̃ {1(T 1 > t)} − EP̃ {1(T 0 > t)} = P̃ (T 1 > t)− P̃ (T 0 > t)

= EP0{S(t | A = 1, X)− S(t | A = 0, X)},

which is the difference in survival probabilities at time t, where the identification in
the observed data is given by assumption B without competing risk (Westling et al.,
2023). Another popular estimand is the difference in restricted mean survival time
(RMST) in the time horizon [0,t] defined as

EP̃ {T 1 ∧ t} − EP̃ {T 0 ∧ t} = EP0

{∫ t

0
S(s | A = 1, X) ds−

∫ t

0
S(s | A = 0, X) ds

}
.

See e.g. Cui et al. (2023) for an example of a generalized random forest approach for
causal inference based on RMST. The RMST has an interpretation of the treatment
effect in terms of time-scale on which the data is observed. For example, if the study
measures the time in days from inclusion until death or censoring, the ATE based
on the RMST has the interpretation ”in the time-span [0,t], patients receiving treat-
ment A = 1 lived x days longer compared to patients receiving treatment A = 0”.
The interpretation makes the RMST based ATE attractive, and in Manuscript III,
we derive an analogous target parameter in the competing risk setting based on
Andersen (2013). We give a summary of derivation from Manuscript III.
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Returning to the competing risk setting, Andersen (2013) shows that

t−
∫ t

0
S(s) ds.

can be interpreted as the expected number of life years lost before time t. Hence

L(0, t | a, x) = t−
∫ t

0
S(s | a, x) ds.

has interpretation as the expected number of life years lost before time t in strata
(a, x). The function can be decomposed into

L(0, t | a, x) = L1(0, t | a, x) + L2(0, t | a, x)

where

Lj(0, t | a, x) =
∫ t

0
Fj(s | a, x) ds

has the interpretation as the number of life years lost before time t due to event j
(Andersen, 2013). To define the ATE with the same interpretation, we introduce
Tj as the time to the j’th event. As noted in Andersen (2013), Tj is improper as
P (Tj = ∞) > 0, but Tj ∧ t is proper with conditional expectation

E(Tj ∧ t | A = a,X = x) = t−
∫ t

0
Fj(s | a, x) ds.

Define Yj(t) = t − Tj ∧ t and let the counterfactual outcome be given by Y a
j (t) =

t−T aj ∧ t for a = 0, 1. As is shown in Manuscript III, the ATE defined by Y a
j (t) can

be identified from the observed data under assumption B by

ψ(P0) = EP0{L1(0, t | 1, X)− L1(0, t | 0, X)}. (3.3)

The ATE has the interpretation as the difference in the expected number of life
years lost due to event 1 before time t. As with the ATE defined by the RMST
in the survival setting, the ATE defined above returns the interpretation to the
time-scale of the study, which may be easier to communicate than probabilities.
As the ATE defined here is stated in terms of differences of the area under the
cumulative incidence functions, it is also not as sensitive to the choice of time-
horizon for detecting potentially early effects of treatment. As a crude example,
imagine that the difference in absolute risk is large for some period in [0, t] but 0 at
time t. The ATE defined on absolute risk is 0, but the ATE defined on the number
of life years lost before time t due to event j will detect the early differences in
absolute risk.

3.3 Estimation

To distinguish the ATE’s defined in (3.2) and (3.3), let ψAR(P0) be the target
parameter given in (3.2) and let ψLY L(P0) be given by (3.3). The cross-fitted one-
step estimator from chapter 2 is defined by the EIF corresponding to the target
parameter in question. The EIF’s corresponding to the two target parameters are
similar, and for the sake of illustration, we will only include the EIF corresponding
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to ψLY L(P0) (the EIF corresponding to ψAR(P0) in a discrete time setting is given
in e.g. Moore and van der Laan, 2009, van der Laan and Rose, 2011, and in a
continuous time setting in Rytgaard et al., 2023). Specifically, they can both be
parametrized be the same nuisance parameter, and the general construction of the
cross-fitted estimator is analogous.

The EIF corresponding to ψLY L(P0) is derived in Manuscript III and it is
parametrized by the nuisance parameter ν = (Λ1,Λ2,Λc, π), where Λc is the condi-
tional cumulative hazard function for the censoring time and π(a | X = x) = P (A =
a | X = x). Define τ1(x) = L1(0, t | 1, x) − L1(0, t | 0, x) for a given time-horizon
[0, t]. The EIF is given by

ψ̃P0 = φν − ψLY L(P0),

where φν is a real-valued function defined on the sample space O of (T̃ , ∆̃, A,X) at
a given value of ν with

φν(O)

=τ1(X) +

(
1(A = 1)

π(1 | X)
− 1(A = 0)

π(0 | X)

){∑

i=1,2

∫ t∗

0

Hi1(s, t
∗ | A,X)

SC(s | A,X)
dMi(s | A,X)

}

where

Hij(s, t | a, x) =
∫ t

s
1(i = j) +

Fj(s | a, x)− Fj(u | a, x)
S(s | a, x) du.

Now, the cross-fitted one-step estimator is defined through φν̂ for some chosen nui-
sance parameter estimator ν̂. In Manuscript I, we consider estimation of ψAR(P0)
in a high-dimensional covariate setting, and ν̂ is based on penalized regression mod-
els in order to alleviate the high-dimensional setting. For the cumulative hazard
functions, Cox regressions with elastic net penalization (Zou and Hastie, 2005, Wu,
2012) were used, which combines lasso and ridge regression. In related studies with
high-dimensional confounders and censored data, lasso penalization were shown to
work well for nuisance parameter estimation, as long as the underlying regression
functions are moderately sparse (Hou et al., 2021). This was confirmed through a
simulation study in Manuscript III, but similar theoretical results are still unknown
for estimation of ψAR(P0).



Chapter 4

Heterogeneity

The ATE defines the effect of a treatment on population level, but some patient
may react differently to the treatment. To define the treatment effect for a given
patient, we introduce the conditional average treatment effect (CATE). In chapter
3, we saw different definitions of the ATE according to different data structures and
different desired interpretations of the treatment effect. In the simple data setting,
(Y,A,X), the ATE was given by E{E(Y | A = 1, X) − E(Y | A = 0, X)} and the
corresponding CATE is defined as

τ(x) = E(Y | A = 1, X = x)− E(Y | A = 0, X = x).

In time-to-event data with competing risks, the CATE corresponding to the absolute
risk ATE, ψAR(P0), is

τ(x) = F1(t | 1, X = x)− F1(t | 0, X = x)

and for ψLY L(P0), the CATE is

τ(x) = L1(0, t | 1, X = x)− L1(0, t | 0, X = x).

For each definition of τ(x), the corresponding ATE is given by E{τ(X)}, and for
the rest of this chapter we work with a general τ(x), where its definition is taken
implicitly from the context unless otherwise specified.

Estimation of the CATE using data-adaptive methods have received much atten-
tion in recent years. Wager and Athey (2018) develops an estimator for the CATE
function using random forests in the simple setting without censoring, and their ap-
proach is extended to survival data in Cui et al. (2023). Hu et al. (2021) compares
different machine-learning methods for CATE estimation with survival data. van
der Laan (2006) and Semenova and Chernozhukov (2021) use a certain type of linear
projection of a pseudo-outcome, related to the EIF, to obtain inference on a target
a target function, where τ(x) is a special case. Kennedy (2023) develops certain
meta-learners akin to van der Laan (2006), and the optimality of CATE estima-
tion in terms of minimax convergence rates for certain function classes are derived
in Kennedy et al. (2024), and Xu et al. (2023) compares different meta-learnes for
CATE estimation with survival data.

An estimate τ̂ can be used to predict the expected treatment effect for a single
individual, which can be used to guide treatment decisions for a given patient. But,
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when the estimation procedure used to obtain τ̂ involves complex meta-learners
and machine-learning methods, the estimate itself gives little inside into the driving
features of the potential treatment effect heterogeneity. By understanding which
subgroups of patients respond differently to the treatment, one gains inside that
can be used in treatment plans or to inform the underlying pharmacology of the
treatment and its interaction with certain patient features.

This chapter introduces two different approaches for identifying patient features
that drives the underlying treatment effect heterogeneity. The two approaches are
developed in Manuscript II in the survival setting and the second approach is ex-
tended to the CATE defined by the number of life years lost due to a specific event
in Manuscript III.

4.1 Treatment effect variable importance measure

Treatment effect variable importance is defined in a number of different ways in the
causal inference literature. van der Laan (2006) and Semenova and Chernozhukov
(2021) defines variable importance through a target function g(v) = E(τ(X) | V =
v), where V is a subset of the covariate vector X. As such, their approach can be
viewed as a certain type of subgroup analysis, where the ATE is estimated for a
certain patient group with V = v. Levy et al. (2021) defines a measure of treatment
effect heterogeneity by var{τ(X)}, where the intuition is that var{τ(X)} should
be small for low levels of heterogeneity and big for high levels. As an example, if
τ(x) is constant then var(τ(X)) = 0. Hines, Dukes, et al. (2022) builds on the this
idea and defines a treatment effect variable importance measure by a nonparametric
ANOVA/R2 analog of the CATE, and in Manuscript II, we extend the work of
Hines, Dukes, et al. (2022) to a survival setting, considering the CATE defined by
the survival function and RMST, repsectively. We give a short introduction to the
variable importance measure in the general definition, and in Section 4.3 we discuss
the extension to survival data in terms of estimation.

We consider a d-dimensional covariate X, and for a given subset l ∈ {1, . . . , d}
define τl(x−l) = E(τ(x) | X−l = x−l), where X−l are the covariates with an index
not in l. A measure of variable importance for Xl can be defined as

Θl(P0) = var(τ(X))− var(τl(X−l)) ≥ 0.

The parameter Θl(P0) can be interpreted as the amount of heterogeneity not already
explained by X−l, and it is large when a large amount of the total heterogeneity,
var(τ(X)) is explained by Xl. The target parameter considered in Hines, Dukes,
et al. (2022) and Manuscript II is a scaled version of Θl given by

Ψl(P0) =
Θl

var(τ(X))
= 1− var(τl(X−l))

var(τ(X))
∈ [0, 1).

The parameter Ψl(P0) is interpreted as the proportion of the total heterogeneity
explained by Xl. Considering different groups of covariates, their importance in
terms of explaining the potential treatment effect heterogeneity can be ranked by
estimates of Ψl(P0) for l varying across the corresponding covariate groups, where
the highest importance is given to groups with the largest estimate of Ψl(P0).
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4.2 Best partially linear projection

Another example of variable importance measures (or treatment effect modifiers)
are given by the best linear projection of the CATE. The resulting coefficients are
then given a regression type interpretation as an association between the CATE
and a given covariate. As already mentioned, van der Laan (2006) and Semenova
and Chernozhukov (2021) use best linear projections of the CATE function to ap-
proximate a target function, whereas the Boileau et al. (2023) and Cui et al. (2023)
use best linear projections of the CATE functions in order to give regression-like
interpretation of the CATE function - even when it is estimated using data-adaptive
methods. Manuscript II contributes to the latter approach by defining the best par-
tially linear projection of the CATE function in the spirit of the assumption-lean
inference approach by Vansteelandt and Dukes (2022), developed for survival data.
The approach is extended in Manuscript III to cover the competing risk setting
defined by the number of life years lost due to a specific event.

We outline the concept from Manuscript II for a general τ(x) and discuss its
extension to censored data in Section 4.3. For a single covariate Xj , define

Ωj(P0) =
E{cov(Xj , τ(X) | X−j)}

E{var(Xj | X−j)}
,

where X−j are the covariates different from Xj . The parameter Ωj(P0) can be
interpreted as a weighted average of the conditional association of τ(X) andXj given
X−j . As the parameter is scale sensitive, ranking of variable importance of different
covariates are based on the p-value associated with the test of the hypothesis H :
Ωj(P0) = 0. To further motivate the parameter, define (without loss of generality)
the CATE function as

τ(x) = βxj + w(xj) +Rβ,w1 (xj , x−j),

where β is a real valued coefficient and w and Rβ,w1 are a measurable functions with
finite variance. Define the best partially linear projection by

(β∗, w∗) = argmin
β,w

E{Rβ,w1 (Xj , X−j)2} = argmin
β,w

E{(τ(X)− βXj − w(X−j))2}.

Then β∗ = Ωj(P0) (see Appendix A in Manuscript II). Hence, the parameter Ωj(P0)
can be interpreted as a measure of association between τ(X) and Xj that mini-
mizes the heterogeneity otherwise explained by interactions of Xj and X−j . If the
partially linear model holds for the CATE function, the parameter Ωj(P0) has an
exact interpretation as a regression coefficient. When the model does not hold, it is
seen from the definition, that Ωj(P0) still has interpretation as measure of treatment
effect variable importance.

A comparison of the best partially linear projection and the best linear projection
can be given in terms of their respective remainder terms. Define the CATE function
as

τ(x) = γ + αTx+Rγ,α2 (x)

for (γ, α) ∈ R× Rd, and define the beast linear projection by

(γ∗, α∗) = argmin
γ,α

E{Rγ,α2 (X)2} = argmin
γ,α

E{(τ(X)− γ − αTX)2}.
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Since the linear model is a subspace of the partially linear model, standard Hilbert

space geometry gives that
∥∥∥Rβ

∗,w∗
1

∥∥∥ ≤
∥∥∥Rγ

∗,α∗
2

∥∥∥ (Tsiatis, 2006, ch. 2, and Manuscript

II, Appendix A). Heuristically,
∥∥∥Rβ,w1

∥∥∥ and ∥Rγ,α2 ∥ define the distance from τ to

functions in the partially linear and linear model, respectively. By definition of pro-
jections, the function x 7→ xjβ

∗ + w∗(x−j) minimises the distance from τ to the
partially linear model, and since all linear functions are special cases of partially lin-

ear functions, the distance
∥∥∥Rβ

∗,w∗
1

∥∥∥ is smaller than the distance
∥∥∥Rγ

∗,α∗
2

∥∥∥. Hence,

the best partially linear projection gives a smaller error in terms of measuring the
treatment effect variable importance of Xj compared to the best linear projection.

4.3 Estimation

Estimation of the target parameters Ψl(P0) and Ωj(P0) follow the cross-fitted one-
step estimator approach. The difference from earlier is that the parameters are
defined as ratios, and the corresponding EIF’s are no longer linear in the target
parameter. But, if the estimators of two target parameters are asymptotically lin-
ear with their corresponding EIF’s as their influence functions, then the ratio of
the estimators is also asymptotically linear with its influence function given by the
EIF corresponding to the ratio of the target parameters (van der Vaart, 2000, ch.
25.7). Hence, estimation of Ψl(P0) and Ωj(P0) will follow by the ratio of cross-fitted
one-step estimators of the involved parameters.

We make a shift in notation and denote the EIF corresponding to a parameter
ψ(P0) by ψ̃ψ, where the dependence of P0 is implicitly understood. We proceed
with the construction of an estimator for Ψl(P0). Let φP0 denote the uncentered
EIF of EP0{τ(X)}. The EIF of Θl(P0) is given by

ψ̃Θl
= (φP0 − τl)

2 − (φP0 − τ)2 −Θl(P0).

With a slight abuse of notation, denote Θd(P0) = var(τ(X)) and τd(P0) = E{τ(X)}.
The EIF of Θd(P0) is given by

ψ̃Θd
= (φP0 − τd(P0))

2 − (φP0 − τ)2 −Θd(P0).

The EIF’s above are defined for a general τ(x), and they are stated in terms of
the uncentered EIF for the ATE associated with τ(x). Hence, once the EIF for
the ATE is known for a given τ(x), the EIF’s of Θl and Θd are immediately given.
Since both EIF’s are linear in the corresponding target parameter, the cross-fitted
one-step approach as defined in chapter 2 can be employed. The nuisance param-
eters are now comprised of the nuisance parameters associated with φ and τl. In
the survival setting, the nuisance parameters are given by ν = (Λ,Λc, π, τl). It is
difficult to use an off-the-shelf machine-learning method for estimating τl, and in
Manuscript II, we obtain an estimate by regressing an predictions from an estimate
of the CATE function τ̂(X) onto X−l, using some data-adaptive method, in line
with the recommendations in Hines, Dukes, et al. (2022). Finally, an estimate of
Ψl(P0) is obtained by a ratio of the cross-fitted one-step estimators of Θl(P0) and
Θd(P0). The standard error is calculated by the cross-fitted variance estimator from
chapter 2.
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Estimation of Ωj(P0) follows the exact same steps and we leave out the details
and refer to Manuscript II for a detailed derivation. The only difference is that the
nuisance parameters are comprised of the nuisance parameters associated with φ,
τj and E(Xj | X−j = x−j). For estimation of the latter, many machine-learning
methods exist, as it is just an ordinary regression function. An interesting thing
to note regarding estimation of Ωj(P0), is the performance of the test statistic for
the test H : Ωj(P0) = 0, defined by the cross-fitted one-step estimator and the as-
sociated cross-fitted estimator of the standard error. By corollary 4 in Manuscript
II, the test statistic is asymptotically standard normal under the same assumptions
required for estimation of Ωj(P0), and in Figure 4.1 we see the results of a simulation
study regarding the power and type-1 error of the test statistic in the competing
risk setting from Manuscript III. When using data-adaptive nuisance estimators in
form of random forests, the test statistic associated with the cross-fitted estima-
tor is seen to perform in line with the test statistic defined by correctly specified
parametric nuisance estimators in terms of type-1 error. But the power of the test
statistic associated with data-adaptive nuisance estimators is smaller compared to
the parametric counterparts. We expect this to be a general phenomenon for test
statistics estimated with data-adaptive nuisance estimators, since the standard error
is estimated by a cross-fitted plug-in estimator, and thus inherits the possibly slow
convergence rates coming from data-adaptive nuisance estimating. An interesting
avenue for future research would be to derive cross-fitted one-step estimators for
standard error estimation, with the aim of regaining some of the lost power.
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Figure 4.1: Type-1 error (panel a) and power (panel b) of estimators of Ωlj from
the simulation study in Ziersen and Martinussen (2024a) based on 1000 simula-
tions. The cor and corCF correspond to one-step estimators with correctly specified
(semi)parametric nuisance parameter estimators and with and without cross-fitting,
respectively. RF and RFCF correspond to one-step estimators with nuisance param-
eters estimated by random forest and with and without cross-fitting, respectively.



Chapter 5

BrainDrugs - application to
Danish registers

The inspiration for the methodological work carried out in the Manuscripts and de-
scribed in the preceding chapters was heavily laid by research conducted in Brain-
Drugs and in particular the study presented in Kessing et al. (2024). In this chap-
ter, we outline this study and discuss the application of the methods derived in
Manuscripts I-III and outlined in the previous chapters.

The aim of the study in Kessing et al. (2024) is to compare the response to
treatment with different antidepressants in patients with MDD, using data from the
Danish national registers. The registers hold information on patients medical histo-
ries in the form of hospital admissions with a given diagnosis as well as prescription
based drug purchases at Danish pharmacies. Additionally, the registers hold infor-
mation on age and sex. The study includes patients between 1995 and 2018 with
their first diagnosis with MDD at a Danish psychiatric hospital. After discharge,
the first purchase with an antidepressant defines the patients baseline treatment and
the index date is defined at the date of purchase.

As the aim of the study is to compare the response to treatment with different
antidepressants, an outcome is needed to reflect the response. Unfortunately, the
registers do not hold direct information on response to antidepressants in terms
of, e.g., HAM-D scores. Instead an event of non-response was defined as a switch
to or add on of another antidepressant, antipsychotic medication or lithium, or
readmission at a Danish psychiatric ward. The outcome of interest is then given
as the time from the index date to non-response. Competing risks were defined
as a diagnosis with bipolar disorder, schizophrenia or organic mental disorder, or
death. Censoring was defined at emigration or end of follow-up 2017-12-31. Patients
were followed from inclusion until an event of non-response, competing event, or
censoring.

The target parameter for comparing non-response between two antidepressants
was chosen as the ATE based on absolute risk of non-response (Chapter 3.1) at two
years after index date. Hence, when comparing two drugs, the one with the lowest
risk of non-response is the advantageous one. In order to control for confounding by
indication, antidepressants were grouped into five classes based on their shared phar-
macology and only antidepressants in the same group were compared. Additionally,
patients with prior purchases within a given time-horizon prior to inclusion were
excluded from the study in a sensitivity analysis to further account for confounding
by indication.
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To estimate the ATE, Kessing et al. (2024) used the g-formula based on plug-in
estimation with cause-specific hazards for non-response and competing risks esti-
mated by Cox regressions. To account for confounding, the following covariates
were included in the Cox regressions: age, sex, psychiatric comorbidity (defined as
secondary psychiatric diagnoses at inclusion) and somatic disease histories. The dis-
ease histories were defined by a diagnosis within one of nine disease chapters defined
by the ICD-10 classifications.

5.1 High-dimensional confounding

The somatic disease histories were included as confounders, but the grouping of
specific disease into nine groups was more practical than medically informed. When
using an ungrouped definition of the disease histories based on the ICD-10 classifi-
cation, we observed ∼ 1000 different somatic diseases in the study group. For some
of the treatment groups in the aforementioned sensitivity analysis, the number of
different somatic histories exceeds the number of observations, and a naive inclusion
of the ∼ 1000 covariates in the Cox regressions is infeasible.

The high-dimensional confounding setting motivated the work in Manuscript
I. Here, we examined the finite sample performance of the cross-fitted one-step
estimator (Chapter 2.3) when using penalized regressions to handle potentially high-
dimensional covariates. The estimator was implemented to recreate the sensitivity
analysis from Kessing et al. (2024), taking into account the high-dimensionality of
the covariates, including all ungrouped somatic histories. The results were largely
unchanged, but the confidence intervals corresponding to the estimated ATE’s were
generally wider. This is a price to pay, when inference is based on the EIF from a
nonparametric model as compared to a smaller parametric model, that assumes the
structure of the underlying nuisance parameters.

The work in Manuscript III developed an ATE based on the number of life years
lost due to a specific event as an alternative to the absolute risk. As an illustration,
the new ATE was used to compare the non-response to Escitalopram and Setraline,
respectively. Here, the interpretation of the new estimand was ”the difference in
the number of healthy days lost due to non-response”, where ”healthy days” was
defined as days without non-response. Accordingly, the estimated ATE based on
absolute risk in Kessing et al. (2024) was 0.10 (95% CI: 0.09; 0.12) in favor of
Setraline, i.e., the the risk non-response was 10% larger in Escitalopram compared
to Setraline. The corresponding estimate based on the number of healthy days lost
due to non-response was 49 (95% CI: 40; 58), with the interpretation that patients
on Escitalopram lost 49 healthy days more due to non-response before two years
compared to patients on Setraline.

5.2 Treatment effect modifiers

One of the key aims of BrainDrugs was to identify patient features determining
drug response to antidepressants. This task motivated the work carried out in
Manuscript II and III, where Manuscript II developed methods for assessing variable
importance in treatment effects with censored data, and Manuscript III extended
one of the methods to competing risk data with treatment effect defined based on
the number of life years lost due to a specific event. The method was applied to
the comparison of Escitalopram and Setraline above, and indicated that age and sex
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could be treatment modifiers. The parameter estimate for sex was 18.7 (95% CI:
1.3; 36.1), and since the derived variable importance measure has interpretation as
a regression coefficient, this translates to the treatment effect being larger among
women compared to men. Specifically, the difference in the number of healthy days
lost due to non-response between Escitalopram and Setraline was 19 days larger
among women compared to men. The interpretation of the estimate as a regression
coefficient relies on a partially linear model to hold for the CATE, but as discussed in
Chapter 4.2, the estimate continues to provide a measure of the association between
sex and treatment effect when the model does not hold.





Chapter 6

Summary of manuscripts

In this chapter, we give a summary of each of Manuscript I, II and III.

Manuscript I On estimation of the average treatment effect with register data:
competing risk and high-dimensional covariates - a case study

In this Manuscript, the outset is the study in Kessing et al. (2024) and the chal-
lenges involved with estimating the ATE based on register data. In register studies,
the outcome of interest is often defined as a time-to-event in the presence of com-
peting risks. One only observes a censored version of the outcome and competing
risks processes, and the aim of the Manuscript is to provide a methodology appli-
cable to ATE estimation in register studies. We consider the problem of including
a potentially high-dimensional covariate to control for confounding in the ATE es-
timation. Specifically, we use a semiparametric approach and develop an estimator
based on the EIF corresponding to the ATE based on the absolute risk at a specific
point in time (Chapter 3.1). The EIF is parametrised in the nuisance parame-
ters corresponding to cause-specific hazard functions and a logistic regression, and
we proposed penalized methods for nuisance parameter estimation to handle the
high-dimensional setting. As advocated in Chernozhukov et al. (2018), nuisance
estimators for high-dimensional data, such as lasso, may not belong to a Donsker
class and cross-fitting is necessary to provide valid inference. Accordingly, we derive
a cross-fitted one-step estimator for the ATE, which takes in penalized regressions
for nuisance parameter estimation.

The finite sample performance of the derived estimator is analysed in a simulation
study under various settings. The performance of the estimator with and without
cross-fitting is contrasted for varying covariate dimensions and in varying covariate
sparsity settings. Additionally, varying penalization parameters are chosen for the
nuisance estimators according to lasso, ridge and elastic net. The simulations show
that cross-fitting enhances the performance of the one-step estimator, in terms of
providing valid inference, when lasso or elastic net penalization is used to combat
the high-dimensionality of the covariates.

Lastly, the cross-fitted one-step estimator with lasso penalization is used to anal-
yse the data in Kessing et al. (2024), including a high-dimensional covariate to con-
trol for confounding.

Manuscript II Variable importance measures for heterogeneous treatment effects
with survival outcome
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This manuscript considers the problem of detecting modifiers of the treatment ef-
fect. Hines, Dukes, et al. (2022) develop a variable importance measure for ranking
the association of different covariate groups and the treatment effect. The measure
and the subsequent estimation procedure are developed for a continuous outcome in
fully observed data, and we extend their methods to survival outcomes with censored
data. We derive an estimator based on the EIF of the corresponding variable impor-
tance measure and we provide high-level assumptions needed for valid asymptotic
inference.

Additionally, we derive a new measure of variable importance based on the
assumption-lean inference approach (Vansteelandt and Dukes, 2022) in the survival
setting, and we remark on its extension to other data settings based on a general
structure of the EIF. The new measure is given in terms of a best partially linear
projection of the CATE function. We derive an estimator based on the EIF and
give high-level assumptions required for valid asymptotic inference.

The assumptions required for inference for both of the derived estimators are
seen to be fairly mild, and the estimators allow for the use of machine-learning
approaches to estimate the involved nuisance parameters.

The finite sample performance of the estimators of the two variable importance
measures was investigated in a simulation study. Estimation of the measure de-
rived in Hines, Dukes, et al. (2022) requires a large number of observations for valid
inference, even in the case of correctly specified parametric nuisance parameter es-
timators. A similar result was also found in Levy et al. (2021), who considered a
parameter closely related to the one in Hines, Dukes, et al. (2022). In contrast,
estimation of the best partially linear projection parameter required much fewer
observations for valid inference, also when considering flexible nuisance estimation
via random forests.

Manuscript III Causal effect on the number of life years lost due to a specific event

This manuscript derives a measure of treatment effect based on the number of life
years lost due to a specific event (Andersen, 2013). The measure of treatment effect
serves as an alternative to the absolute risk definition (Chapter 3.1) in time-to-event
settings with competing risks and censored data. The definition can be seen as a
competing risks analogue for the restricted mean survival time (RMST) in a survival
setting. As in the survival setting, the new measure defines treatment effect directly
on the time scale of the study and it provides results that are easier to communicate
than absolute risks. To the best of our knowledge, this is the first extension of an
RMST analogue for competing risk to causal effects.

We derive an estimator for the ATE based on the number of life years lost
due to a specific event, and give high-level assumptions on the nuisance parameter
estimators required for valid inference. Furthermore, we extended the best partially
linear projection parameter from Manuscript II. We derived an estimator an gave
high-level assumptions required for inference. In both settings, the estimators were
derived as cross-fitted one-step estimators based on the EIF corresponding to each
target parameter, respectively.

The finite sample performance of the derived estimators was investigated in
a simulation study. There was not much difference between the cross-fitted and
un-cross-fitted one-step estimators when parametric nuisance parameter estimators
were used, but when random forests were used for nuisance parameter estimation,
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the one-step estimators was not able to provide valid inference, whereas the cross-
fitted one-step estimator performed in line with the parametric nuisance estimators.

Lastly, the derived estimators were applied to a part of the study in Kessing
et al. (2024).





Chapter 7

Perspectives and future research

In this chapter, we reflect on the work carried out in the Manuscripts and discuss its
limitations. The limitations themselves open the door for future research projects,
and we highlight some potentially interesting avenues for future work.

Inference with high-dimensional covariates and censored data. The sim-
ulation study in Manuscript I suggests that penalized regressions can be used for
handling high-dimensional covariates in ATE estimation based on censored data.
The sparsity settings analysed in the simulations were chosen based on results from
Hou et al. (2021). They analysed a different, but related, target parameter and gave
theoretical results for the target parameter estimator under a specific choice of pe-
nalisation parameter, and gave assumptions on the underlying sparsity of nuisance
parameters required for valid inference. In contrast, we only rely on simulation
studies for justifying the validity of our proposed estimator, which may not give a
full picture of the performance across different setting. A limitation of our approach
is that a parametric structure is assumed for essentially all nuisance parameters.
We addressed this issue in a simulation study, where one of the nuisance param-
eter estimators was misspecified. The results related to bias and coverage were
promising, but the underlying nuisance functions were in all cases assumed to be
ultra sparse. Further investigation is needed to see how the estimator performs in
different settings combining misspecification and moderate sparsity.

An interesting topic for future research is to derive theoretical properties of our
derived estimator akin to Hou et al. (2021). The difficulty lies in structure of the
remainder term associated with the one-step estimator for the ATE with censored
data (both with and without competing risks), where the challenge is to bound a
certain integral difference (see e.g. assumption B3 in Manuscript III). In ATE es-
timation without censoring, the Cauchy-Schwarz inequality is used to bound the
remainder term, and with censored data, the same technique can be used when the
hazard estimators are assumed to have density w.r.t. the Lebesgue measure (Ryt-
gaard et al., 2023). Essentially, if we assume absolute continuous hazard estimators,
the remainder term for the ATE given in Manuscript III Assumption B is bounded
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,

for some K > 0, where the expectation considers the estimated nuisance functions
fixed. Here, µ is distribution of X and m denotes the Lebesgue measure. The
inequality follows the Cauchy-Schwarz inequality together with some positivity as-
sumptions on Ĥ, S, ŜC and π̂. Hence, n−1/2-convergence of the remainder term
boils down to n−1/4-convergence of each of the nuisance functions.

This approach fails when the cumulative hazard estimators are defined as jump
processes (as is the case in our setting, where Breslow estimators based on penalised
Cox regression are used). We note that this is a general challenge for EIF-based
estimation of the ATE (and other functionals) with censored data, and it may be
insurmountable for general cumulative hazard estimators. But, since the Breslow
estimator based on Cox regression provides some structure of the cumulative haz-
ards, it may be possible to leverage this structure in bounding the remainder term.

Power optimal tests in nonparametric models. Analysis of treatment effect
variable importance based on the best partially linear projection parameter defined
in Manuscript II and extended in Manuscript III relies on a p-value associated with
the test H : Ωj(P0) = 0 (i.e., the test of no importance for variable j). The estima-
tor for the target parameter itself was shown to provide valid inference when using
flexible machine-learning for nuisance parameter estimation, and the associated test
was seen (in our simulation study) to achieve a Type I error rate in finite samples
of approximately 5%. But, when using machine-learning for nuisance estimation,
simulations also showed that the test statistic was underpowered compared to its
counterpart using correctly specified parametric models. A limitation of our test
statistic is that the standard error is estimated with a cross-fitted plug-in estima-
tor, and when using machine-learning for nuisance estimation, the standard error
inherits the possible slow convergence rates of the nuisance estimator.

The variance of the EIF can be defined as yet another target parameter ψ(P0) =
P0ψ̃

2
P0
, and one can calculate the associated EIF (if it exists) to produce an EIF-

based estimator for the standard error of the Ω̂CFj . The estimator for the standard

error would then follow the parametric rate of Ω̂CFj , which would possibly regain
some of the lost power coming from flexible nuisance estimation. An interesting
avenue for future research would be to develop power-optimal tests in nonparametric
models based on EIF-estimation of the standard errors.
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Another limitation of our variable importance measure Ωj is that it is defined as
the projection onto the space of functions x 7→ βxj +w(x−j), regardless of whether
xj is binary or continuous. A more reasonable space could be the space of functions
x 7→ m(β;xj)+w(x−j) for some working model m indexed by a euclidean parameter
β ∈ Rk for some k. The target parameter is still defined as β∗ corresponding to the
best partially linear projection of τ , but now allowing for e.g. splines in order to
capture non-linearities in xj . This approach is taken in Semenova and Chernozhukov
(2021) for the best linear projection, and an interesting topic for future research is
to extend this idea to the best partially linear projection.

Treatment effect modifiers of non-response to antidepressants. Manuscript
III concluded with an application of the best partially linear projection parameter to
a part of the data from Kessing et al. (2024). We only considered analysis of treat-
ment effect modifiers for a single comparison of two antidepressants, but preferably,
the analysis should be extended to other comparisons as well. A challenge arises
from the variable importance being based on an associated test, and multiple test-
ing becomes a concern with many comparisons resulting in many tests. One can
employ standard methods for multiple testing, but a naive approach may result in
overconservative correction for the p-value. With an estimate of the EIF for the
target parameter associated with each covariate, the covariance matrix of the multi-
dimensional target parameter estimator can be calculated. The dependence of the
individual parameter estimates can then be used in a multiple testing correction,
that is not overconservative (Hothorn et al., 2008).

A practical challenge for future research is to extend the software implementation
from Manuscript II and III to a multi-dimensional target parameter, with the aim
of providing multiple test corrections of the p-values.
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Abstract

We consider estimation of the average treatment effect, defined as the mean difference
in the τ -year risk of an event of interest, using registry data. In observational studies, all
potential confounders must be included for identifying the average treatment effect, and
for some register studies, this amounts to including a high-dimensional covariate in certain
outcome regressions. We construct an estimator for the average treatment effect that al-
lows for penalized regression of certain nuisance functions, alleviating the high-dimensional
covariate problem, while still providing valid inference. The estimator is based on semi-
parametric efficiency theory and its statistical properties are investigated in simulation
studies. The estimator is used to compare the response to different antidepressants in a
study based on data from the Danish national registers.

1 Introduction

The average treatment effect (ATE) plays an important role in the causal inference literature,
and it is the primary target of estimation in many applications, including both randomized
trials and observational studies. When data are observational, the ATE can be identified ac-
cording to the G-formula (Robins, 1986) under some structural assumptions on the treatment
mechanism and the outcome, one of which is the assumption of no unmeasured confounding.
The assumption asserts that the observed treatment assignment is independent of the out-
come, conditional on a set of covariates (termed confounders), which in applications amounts
to including the set of potential confounders in an outcome regression from which predictions
are used to produce an estimate of the ATE. In recent years, many methodological advances
have been made in double robust estimation of the ATE for different data structures (e.g., van
der Laan and Robins, 2003, van der Laan and Rose, 2011, Chernozhukov et al., 2018, Ozenne
et al., 2020, Rytgaard et al., 2023), where predictions from the outcome regression along with
predictions from a model of the treatment propensity are combined in an estimate of the
ATE. The double robust estimators are consistent when either the model for the treatment
propensity or the model for the outcome regression is correctly specified. This is convenient
in observational studies, where the underlying data generating mechanism is rarely known.
Furthermore, the estimators facilitate the use of data-adaptive estimation of the nuisance
parameters (outcome regression and treatment propensity) and when the set of potential
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confounders is large relative to the number of observations, this calls for machine-learning
methods that are designed for high-dimensional data. An example of such a method is the
lasso (Tibshirani, 1996) which is consistent under some assumptions on the sparsity of the
outcome regression model and the treatment propensity model, respectively (Chernozhukov
et al., 2018).

We review some of the challenges involved in estimating the ATE based on registry data.
Here, patients are followed over time and the outcome of interest is the time to a given event,
such as a hospital admission which defines the onset of a disease. Typically, one only observes
a censored version of the underlying event time, as patients can leave the risk set without
an event due to emigration or the end of follow-up. Furthermore, when the event of interest
is not all-cause death, one has to account for competing risks in the estimation procedure.
Ozenne et al. (2020) develops a double robust estimator for the ATE, defined as the mean
risk difference of the event of interest in a given time horizon, in the presence of censoring and
competing risks. Their estimator relies on working Cox regression models for the estimation of
the cause-specific hazard functions and a working logistic regression model for the treatment
propensity. Rytgaard et al. (2023) develops an estimator for the ATE defined as in Ozenne
et al. (2020) but with nonparametric estimation of the nuisance parameters. Specifically, they
show that when using a highly adaptive lasso (Munch et al., 2024) for estimation of the cause-
specific hazard functions and treatment propensity function, the obtained ATE estimator is
asymptotically locally efficient. Westling et al. (2023) considers estimation of the ATE in
the survival setting (i.e., without competing risk) for general machine-learning methods used
for nuisance parameter estimation, and they give high-level assumptions on the estimators
needed for asymptotic efficiency of the ATE estimator. Hou et al. (2021) consider estimation
of the treatment effect in a high-dimensional setting (without competing risk), where the
number of covariates is assumed to be large relative to the number of observations. They
define the treatment effect as a parameter in the additive hazard model (Martinussen and
Scheike, 2006) and they give sparsity assumptions analogous to Chernozhukov et al. (2018)
for asymptotically efficient estimation of this parameter.

We consider data from the Danish national registers based on the study described in Kess-
ing et al. (2023). The aim is to compare the response to different antidepressants treatments
available on the Danish market in the period 1995-2018. Patients are enrolled in the study
after their first diagnosis with depression at a psychiatric hospital, and a baseline treatment
is defined by the first purchase of an antidepressant after discharge from the hospital. The
outcome of interest is time to non-response, defined by a switch of treatment or readmission
to a psychiatric hospital. The competing risk is comprised of a diagnosis with bipolar disor-
der, organic mental disorder, schizophrenia or death. In Kessing et al. (2023), the authors
define and estimate the ATE in accordance with Ozenne et al. (2020) using working models
for the cause-specific hazard functions and the propensity of treatment. In order to control
for confounding, disease histories in form of hospital admissions with a given ICD-10 code
were included in the Cox regression models. The ICD-10 codes were grouped into nine disease
categories corresponding to disease chapters defined for the ICD-10 classification. The group-
ing of the diseases into 9 groups is coarse, because the ungrouped version contains ∼ 1000
different disease-codes which all could be included in the estimation as potential confounders.
For the sole purpose of illustrating our methods, we include the ∼ 1000 disease codes as
covariates into the learning of nuisance parameter models and hence employ methods that
allow for high-dimensional covariates.
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In this article, we implement a cross-fitted one-step estimator for the ATE (Chernozhukov
et al., 2018, Kennedy, 2022), defined as in Ozenne et al. (2020), based on the efficient in-
fluence function corresponding to the ATE given in Rytgaard et al. (2023). In order to
handle the high-dimensional covariate setting, we employ penalized Cox regression for the
nuisance parameters related to non-response, competing risks, and censoring, respectively.
The double robustness properties of the estimator are tested in a simulation study, where
they are related to the sparsity of each of the nuisance parameters. The estimator is used
to re-analyze the comparisons of antidepressants in Kessing et al. (2023), taking the inherent
high-dimensionality of the covariate into account.

2 Register study comparing the response to different antide-
pressants

The methods considered in this paper were inspired by the study presented in Kessing et al.
(2023). It is based on data from the Danish national registers, where patient information on
diagnoses given at a Danish hospital is available together with information on drug purchases
at the Danish pharmacies. Furthermore, the data includes information on age and sex. The
aim of the study is to compare the response to treatment with different antidepressants in
patients with a first diagnosis of major depressive disorder. The study includes all patients
with a first diagnosis of major depressive disorder at a psychiatric hospital between 1995-
2018, and their baseline treatment is defined as the first purchase with an antidepressant after
discharge of the hospital, which also defines the index date of the study for a given patient.
An event of interest, termed non-response, is defined as a switch in treatment (determined
from a purchase with a different antidepressant, antipsychotic or lithium) or readmission to a
psychiatric hospital. A competing event is defined as admission to a psychiatric hospital with a
diagnosis of bipolar disorder, schizophrenia or organic mental disorder, or death. Patients are
followed until an event of non-response, competing event or censoring, defined at emigration
or end of follow-up in 2018. The antidepressants considered in the comparison are grouped
according to their pharmacological profile, and within each group, a reference is chosen as the
most widely prescribed antidepressant, and comparisons are made between each of the other
antidepressants within the group and the reference drug.

The outcome of interest is defined as time to non-response and the target parameter for
comparison of two drugs is defined as the mean absolute risk difference of non-response at
two years after index date. To estimate the target parameter, Kessing et al. (2023) fits cause-
specific Cox regressions for the time to non-response and competing event, respectively, which
are combined into an estimator for the conditional cumulative function. Predictions from the
cumulative incidence function are then used to obtain an estimate of the target parameter
based on the G-formula, as described in Ozenne et al. (2020), equation (3). To control for
confounding, the Cox regressions are adjusted for age, sex, psychiatric and somatic disease
history. The somatic disease history is defined as a diagnosis within one of nine disease
groups based on the ICD-8 and ICD-10 classification. The collapsing of somatic diseases into
nine groups is essentially made in order to achieve parsimonious models, as the number of
individual somatic diseases observed in the data is 1170, which is of the order of the number
of observations for some of the treatment groups. As such, the cause-specific Cox regression
are unfit for including disease histories on individual disease level.
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In the next sections we will detail the construction of an estimator of the target param-
eter, which allows for penalized regression estimation of the nuisance parameters, enabling
the inclusion of the somatic histories on individual disease level, while still providing valid
inference. The results regarding non-response to treatment obtained by re-analyzing the data
of Kessing et al., 2023 with the here derived estimator are presented in Section 6.

3 Setup and notation

Let T and C be the time to event and censoring respectively, and let ∆ ∈ {1, 2} be the
event indicator. The observed time to event is T̃ = T ∧C and the observed event indicator is
∆̃ = 1{T ≥ C}∆. LetA ∈ {0, 1} denote the baseline treatment and letW = (W1, ...,Wd) ∈ Rd

denote baseline covariates. The observed data are O = (T̃i, ∆̃i, Ai,Wi)i=1,..,n where O1, ..., On
are assumed to be i.i.d. with distribution P0 which belongs to a suitable nonparametric family
of probability distributions M.
Let Nj(t) = 1{T̃ ≤ t, ∆̃ = j} be the observed counting process for the j’th event and let
λj(t|a,w), λc(t|a,w) denote the conditional hazard functions for the j’th event and censoring
distribution, respectively, and Λj(t|a,w), Λc(t|a,w) are their associated cumulative hazard
functions. Furthermore, we denote with S(t|a,w) = exp(−Λ1(t|a,w) − Λ2(t|a,w)) the con-
ditional event-free survival function, with F1(t | a,w) =

∫ t
0 S(u | a,w)Λ1(du | a,w) the

cumulative incidence function of the event of interest, with Sc(t|a,w) = exp(−Λc(t|a,w)) the
survival function of the censoring distribution, with π(a|w) = P (A = a|W = w) the propen-
sity score, and with µ the marginal distribution of W .
To define our causal parameter, we introduce the variable Yj(τ) = 1{T ≤ τ,∆ = j} and define
Y a
j (τ) as the potential outcome, that is, the outcome of a person if they, possibly contrary to

the fact, had received treatment a.

The target parameter, defined as the average treatment effect, is given by

ψτ = EY 1
1 (τ)− EY 0

1 (τ)

for a given time-horizon [0, τ ]. To identify the target parameter from the observed data, we
make the following assumptions

(i) (consistency) Y1(t) = AY 1
1 (t) + (1−A)Y 0

1 (t) conditional on A.

(ii) (no unmeasured confounding) Y a
1 (t) ⊥⊥ A |W, a = 0, 1.

(iii) (positivity) π(a | w)Sc(s | a,w)S(s | a,w) > η > 0, ∀(s, a, w).

(iv) (independent censoring) T ⊥⊥ C | A,W.

Under assumptions (i)-(iv), the target parameter is identifiable from the observed data (Ryt-
gaard et al., 2023) and the target parameter can be expressed as a mapping from M to the
reals as

ψτ (P ) = E(F1(τ |A = 1,W ))− E(F1(τ |A = 0,W )).
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4 Estimation of the target parameter

There exist several articles concerning estimation of the target parameter; Ozenne et al.,
2020 considers a double robust estimator with working Cox models and logistic regression
for nuisance estimation, and Rytgaard et al., 2023 considers a targeted-minimum-likelihood
(TMLE) approach with nuisance parameters estimator based on the highly adaptive lasso.
We will adopt an influence function based approach similar to the TMLE, but with more
restrictive estimators of the nuisance parameters based on penalized Cox regression and lo-
gistic regression, mimicking the approach of Ozenne et al., 2020, but with a flexible covariate
selection. Both our estimating equation approach and the TMLE rely on semiparametric effi-
ciency theory (Bickel et al., 1993, Van der Vaart, 2000 ch. 25, van der Laan and Rose, 2011)
which revolves around the so-called efficient influence function (EIF) of the target parameter.
We will give a brief introduction to the general idea, and refer to Kennedy (2022) and Hines
et al. (2022) for nice reviews of EIF-based estimation of functional parameters.

For a general parameter ψ, an estimator ψ̂ is said to asymptotically linear if admits
the expansion ψ̂ − ψ = PnIF + op(n

−1/2), where Pn denotes the empirical measure over
O with Pnf = 1

n

∑n
i=1 f(Oi). The function IF is the influence function corresponding

to the estimator ψ̂ and it characterises the asymptotic distribution of the estimator since√
n(ψ̂ − ψ)

D→ N (0,E(IF(O)2)). If the target parameter is smooth as a map on M (see Van
Der Vaart, 1991 for a rigorous definition), there exist a unique function ψ̃ called the efficient
influence function, which determines the lower variance bound of any regular estimator of ψ.
The EIF can be calculated without reference to any specific estimator, and once it is known,
different techniques exist for constructing an estimator of ψ that is asymptotically linear with
the EIF as its influence function. Here, we focus on the so-called one-step estimator.

Define ψaτ (P ) = E(F1(τ |A = a,W )) for a = 0, 1, such that ψτ (P ) = ψ1
τ (P ) − ψ0

τ (P ). The
EIF for our target parameter ψτ (P ) is known from the literature, see e.g. Rytgaard and
van der Laan, 2022, and is given by

ψ̃τ = ψ̃1
τ − ψ̃0

τ

where
ψ̃aτ (P )(O) = φaτ (ν)(O)− ψaτ (P )

with

φaτ (ν)(O) =
1{A = a}
π(a|w)

(∫ τ

0

S(t− |a,w)− F1(τ |a,w) + F1(t|a,w)
S(t− |a,w)G(t− |a,w) dM1(t|a,w)

−
∫ τ

0

F1(τ |a,w)− F1(t|a,w)
S(t− |a,w)G(t− |a,w)dM2(t|a,w)

)
+ F1(τ |a,w)

(1)

where ν = (Λ1,Λ2,Λc, π) is the nuisance parameter. We denote φτ = φ1
τ − φ0

τ . Here, M1

and M2 correspond to the martingales associated with the counting processes for the event
of interest and the competing event, respectively, and are given by Mj(t|a,w) = Nj(t) −
Λj(t|a,w)1{T̃ ≥ t}, j = 1, 2. In the following we will use the EIF to construct an estimator
for the target parameter. The estimation will be carried out for ψaτ for a = 0, 1 separately to
obtain ψ̂τ = ψ̂1

τ − ψ̂0
τ .
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4.1 One step estimator

The one-step estimator for ψaτ (P ) is found by adding the first order bias from a Von-Mises
expansion to a plugin estimator, where the bias is given by the empirical measure of the EIF
(Van der Vaart, 2000). When the EIF is linear in the target parameter this corresponds to
the estimating equation based estimator found by solving Pnψ̃aτ (O) = 0 in ψaτ . Our estimator
is thus given by

ψ̂aτ =
1

n

n∑

i=1

1{Ai = a}
π̂(a|wi)

(∫ τ

0

Ŝ(t− |a,wi)− F̂1(τ |a,wi) + F̂1(t|a,wi)
Ŝ(t− |a,wi)Ĝ(t− |a,wi)

dM̂1(t|a,wi)

−
∫ τ

0

F̂1(τ |a,wi)− F̂1(t|a,wi)
Ŝ(t− |a,wi)Ĝ(t− |a,wi)

dM̂2(t|a,wi)
)

+ F̂1(τ |a,wi)

= Pnφ
a
τ (ν̂) (2)

where ν̂ is the estimated nuisance parameter. The estimator of the ATE is then obtained
from ψ̂τ = ψ̂1

τ − ψ̂0
τ .

In order to show that the one-step estimator is asymptotically linear with the EIF as its
influence function, one typically relies on an expansion of the estimator as follows (Kennedy,
2022)

ψ̂τ − ψτ = Pnψ̃τ + (Pn − P )[φτ (ν̂)− φτ (ν)]︸ ︷︷ ︸
empirical process term

+Pφτ (ν̂)− ψτ (P )︸ ︷︷ ︸
remainder term

where Pf =
∫
f dP . Here, the empirical process term and the remainder term are required

to be op(n
−1/2).

For the remainder term, op(n
−1/2)-convergence depends on the convergence rates of the

nuisance parameter estimators. In a related study on estimation of the treatment effect defined
as a regression parameter in an additive hazards model with high-dimensional covariates,
Hou et al. (2021) shows that the condition on the convergence rates of the nuisance estimator
obtained from penalized additive hazards model and logistic regression amounts to a condition
on the sparsity of the underlying nuisance functions, i.e., how many non-zero coefficients
appear in the true regression models. Similar results have not been shown for the estimator
considered here, and in Section 5, we investigate the finite-sample distribution of the target
parameter estimator in relation to the underlying sparsity of the nuisance parameters.

The op(n
−1/2)-convergence of the empirical process term is achieved if the nuisance es-

timators belong to a Donsker class (Rytgaard et al., 2023), which restricts us to nuisance
parameter estimators that are not too flexible. As advocated by several authors, the Donsker
class condition may fail to hold for high-dimensional models and instead suggest to use a
special kind of sample splitting, termed cross-fitting, to ensure op(n

−1/2)-convergence of the
empirical process term (see e.g. Chernozhukov et al., 2018). In the next section, we will
describe a cross-fitted version of the proposed estimator.

Along with the estimator ψ̂τ , we define an estimator for the variance E ψ̃τ (O)2 by

σ̂2 =
1

n

n∑

i=1

(φτ (ν̂)(Oi)− ψ̂τ )
2.

Based on this estimator we can estimate the standard error of ψ̂τ by
√
σ̂2/n.
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4.2 Cross-fitting

To alleviate the Donsker conditions needed for op(n
−1/2)−convergence of the empirical process

term, we consider a general form of sample splitting in estimating our target parameter. The
cross-fitting procedure works by estimating ν̂ and Pn on independent subsamples of the data
from which one obtains

√
n-convergence under much milder conditions compared to Donsker

type assumptions. To combat the loss in efficiency coming from the data splitting, the roles
of the subsamples are reversed to obtain another estimate of the target parameter and the
two estimates are then averaged in a final target parameter estimate. The procedure can then
be extended to finer partitions of the data, and it is commonly referred to as K-fold cross-
fitting, when done over K subsamples. It is important that the number of subsamples, K, is
assumed fixed and not depending on the number of observations. For details and discussions
of cross-fitting see e.g. Chernozhukov et al. (2018), Kennedy (2022).

In cross-fitting we split the data into K disjoint folds Vk, k = 1, . . . ,K, and let Nk be the
number of observations in fold k. Let Pkn be the empirical measure on the k’th split and ν̂−k
be the nuisance parameter estimates based on observations not in the k’th split. For each
split, k, define the estimator ψ̂aτ,k = Pknφ

a
τ (ν̂−k). The cross-fitted estimator is then given by

ψ̂aτ,CF =

K∑

k=1

Nk

n
ψ̂aτ,k =

K∑

k=1

Nk

n
Pknφ

a
τ (ν̂−k) =

1

n

K∑

k=1

∑

i∈Vk

φaτ (ν̂−k)(Oi). (3)

Similar to the one-step estimator, we define the cross-fitted variance estimator by

σ̂2CF =
K∑

k=1

Nk

n
Pkn[φτ (ν̂−k)− ψ̂τ,CF ]

2

which gives the standard error of the estimator ψ̂τ,CF , when it is asymptotically linear with
the EIF as its influence function.

4.3 Penalized nuisance parameters

The one-step estimators defined in equations (2) and (3) both rely on an initial estimate of the
nuisance parameters ν = (Λ1,Λ2,Λc, π). To handle potentially high-dimensional covariates,
we adopt the elastic net procedure (Zou and Hastie, 2005), where ridge and lasso regression
are special cases. The procedure is developed for both generalized linear models and Cox
regression and implemented collectively in the R-package glmnet which we will employ (see
e.g. Simon et al., 2011 and Friedman et al., 2010 for software implementation and overview).
In the case of (Λ1,Λ2,Λc) we can use the obtained hazard ratios together with a Breslow
estimator. For clarity, we describe the procedure in the two settings; hazard functions and
logistic regression, starting with hazard function estimation.

We need an estimate for each of the cumulative hazard functions (Λ1,Λ2,Λc). This amounts to
estimating a cause-specific penalized Cox-regression model for each hazard function, including
the penalized partial likelihood estimators of the log-hazard ratios and the corresponding Bres-
low estimators for the baseline hazard functions, in order to obtain an estimate of (Λ1,Λ2,Λc).
For ease of notation we describe the procedure for a generic hazard function. The method is
presented in Van Houwelingen et al. (2006) an we will give a brief description.
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Consider the task of estimating the log-hazard ratio β in a generic hazard model

λ(t|Ai,Wi) = λ0(t) exp(Z
T
i β),

where Zi = (Ai,Wi)
T . Let pl(β) be the log partial likelihood and consider the penalized log

partial likelihood
lαpen(λ, β) = pl(β) + λPα(|β|)

where

λPα(|β|) = λ

(
α

p∑

i=1

|βi|+ (1− α)
1

2

p∑

i=1

β2i

)

is known as the elastic net penalty, which is a mixture of ℓ1 and ℓ2 penalties. Here, we consider
α to be a hyperparameter to be chosen a priori and it is considered fixed for the remainder of
this section. Note that α = 0 corresponds to ridge regression and α = 1 corresponds to lasso.
For a given λ, the β-estimate is obtained by maximizing lαpen:

β̂λ = argmaxβ l
α
pen(λ, β).

In order to select the optimal λ, we will use K-fold cross validation. That is, divide the data
into K parts of roughly equal size. Let β̂λ−k be the estimate obtained by maximizing the
penalized log-likelihood when leaving out the k’th part of the data for a given value of λ and
define the cross-validated partial log-likelihood by

cvpl(λ) =

K∑

k=1

pl(β̂λ−k)− pl(−k)(β̂
λ
−k),

where pl(−k) is the partial likelihood computed on the data when leaving out the k’th part.
The optimal penalty parameter is then found by maximizing the cross-validated partial log-
likelihood in λ

λCV = argmaxλcvpl(λ)

from which we obtain and estimate for β as β̂λ
CV

= argmaxβ l
α
pen(λ

CV , β).

The cvlp(λ) was proposed in Verweij and Van Houwelingen, 1993 to accommodate survival
data in cross-validation. This method of validation is the one used by the R-package glmnet.
The β-estimates are then plugged into a Breslow estimator to obtain an estimate of the
cumulative hazard function

Λ̂(t | z) = Λ̂0(t) exp(z
T β̂λ

CV
)

where

Λ̂0(t) =
n∑

i=1

∫ t

0

dNi(u)∑n
j=1 1(T̃j > u) exp(zTj β̂

λCV )
.

We estimate the propensity score by employing the elastic net penalization to a logistic
regression for the treatment variable. The procedure is defined analogously to the hazard
setting, where we consider the logistic model for the propensity

π(1 | z) = P (A = 1 | Z) = expit(Ztβπ)

8
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together with the penalized log-likelihood

lαpen,π(λ, βπ) =

[
n∑

i=1

Aiz
t
iβπ − log(1 + ez

t
iβπ)

]
+ λPα(|βπ|).

5 Simulation study

We consider simulation studies of estimators of the target parameter

ψτ (P ) = E(F1(τ | A = 1,W ))− E(F1(τ | A = 0,W ))

for a specific τ (in the following, we set τ = 1). This requires simulation of our observed data
which is comprised of Oi = (T̃i, ∆̃i, Ai,Wi), for subject i = 1, ..., n, where Wi = (Wi1, ...,Wid).
The distribution of (T̃i, ∆̃i) is determined by λ1, λ2 and λc, and the distribution of Ai by π. In
the following we let d = dim(Wi) be the dimension of the covariates and sk, k = λ1, λ2, λc, π,
be the sparsity level for a given nuisance parameter. That is, if, for example, π(a|W ) =
expit(γTW ) then sπ =

∑d
i=1 1{γi ̸= 0}. In all simulation studies we consider estimators ψ̂τ

and ψ̂τ,CF with nuisance parameter estimators defined according to the penalized estimators
in Section 4.3, including all covariates for estimation. The penalty functions were chosen
corresponding to unpenalized, lasso, ridge and elastic net, where elastic net is chosen as
α = 0.5. For the three latter penalty functions, the penalty term is chosen by 10-fold cross
validation and the estimator ψ̂τ,CF is based on 10-fold cross-fitting. For comparison, we
also include an oracle estimator based on correctly specified Cox regressions for the hazard
functions and logistic regression for the treatment. Finally, we generate covariates from a
normal distribution Z ∼ N (0,Σ), where Σij = 0.5|i−j| with half of them being dichotomized,
such that Wij = Zij if j is odd and Wij = 1(Zij > 0.3) if j is even. For each simulation
study, the different penalization schemes are compared based on the sampling distribution of
the target parameter estimator and coverage of the corresponding confidence intervals.

5.1 Increasing dimension

We consider a case with a sample size of n = 500 observations and varying covariate dimen-
sion d = 10, 30, 50, . . . , 400 and relative sparse nuisance parameters with distributions given
below. The aim here is to see how regularization of the nuisance estimators compares to their
unregularized counterparts in low dimensional settings and how it stabilizes the estimation
of the target parameter when the dimension is increased. For each value of d, we simulated
N = 1000 data sets from the following models:

• P (A = 1|W ) = expit(W1 + 0.3W2 − 0.4W3 − 0.5W4)

• λc(t|A,W ) = λ0,c(t) exp(0.5W1 + 0.3W2)

• λ1(t|A,W ) = λ0,1(t) exp(0.4W1 + 0.5W2 + 0.1W3 − 0.1W4 + 0.5A)

• λ2(t|A,W ) = λ0,2(t) exp(0.2W1 + 0.8W2 + 0.2W3 + 0.5A)

where λ0,k (k ∈ {c, 1, 2}) follows a Weibull distribution. The true value of the target param-

eter is ψ1 = 0.1287. The biases of the estimators are estimated by 1
N

∑N
i=1 ψ̂1 − ψ1, where

9
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N = 1000 is the number of simulations (here, ψ̂1 is meant as a generic estimator), and they
are reported in Figure 1. For the lower dimension settings, the estimators based on lasso
and elastic net provide similar results in terms of bias compared to the oracle, whereas the
estimator based on ridge penalization is only similar in the lowest dimension settings. The
lasso and elastic net estimators are seen to be stable across increasing dimensions, with their
cross-fitted versions being closest to the oracle and with the cross-fitted lasso providing the
best results.

The coverage of the different estimators is displayed in figure 2. The cross-fitted estima-
tors are seen to provide better coverage than the un-cross-fitted versions, where elastic net
and lasso seem to provide stable coverage across increasing dimension.

Figure 1 and 2 together suggest that the estimator based on lasso penalization and cross-
fitting performs in line with the oracle across varying covariate dimensions, when the under-
lying true regression functions are sparse.

no cross−fit cross−fit

0 100 200 300 400 0 100 200 300 400
−0.01

0.00

0.01

0.02

0.03

d

bi
as

penalty

elnet

lasso

oracle

ridge

Figure 1: Bias of the estimators under varying covariate dimension d based on 1000 simula-
tions.

5.2 Sparsity double robustness

We consider a high dimensional case with n = 400 and d = 600 and different combinations of
sparsity levels for the nuisance parameters. The aim is to investigate if the double robustness
related to the sparsity of nuisance parameters as suggested in Hou et al. (2021) relates to
the double robustness of our target parameter estimators as described in Rytgaard et al.,
2023. In our setting, the double robustness is given in terms of convergence rates for the pairs
π and λc, and, λ1 and λ2, and we thus consider the following scenarios:

(i) ultra-sparse nuisance parameters: sπ = sλc = sλ1 = sλ2 = 3.

(ii) ultra-sparse intervention parameters: sπ = sλc = 3 and sλ1 = sλ2 = 30

(iii) ultra-sparse event parameters: sπ = sλc = 30 and sλ1 = sλ2 = 3

(iv) no ultra-sparseness:sπ = sλc = sλ1 = sλ2 = 30.
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Figure 2: Coverage probability of confidence intervals of different estimators under varying
covariate dimension d based on 1000 simulations.

Given the product structure of the remainder term (Rytgaard et al., 2023) and the sparsity
conditions in Hou et al. (2021), we would expect that the desired convergence rate is obtained
if either π and λc or λ1 and λ2 are sparse and the converse is of moderate sparsity. Thus,
we expect good performance for scenario (i)-(iii) but not for (iv). The true values of the
target parameter under the four scenarios are approximated as 0.180, 0.168, 0.180, 0.177,
respectively, in the order they appear above. To ensure confounding in each of the scenarios,
we let the propensity score along with the event hazards depend on the same three covariates,
and additionally let the event hazards depend on the treatment. The sample distribution of the
different estimators are presented in figure 3. In general, elastic net and lasso penalization
provide similar results, with their cross-fitted versions performing better in terms of bias
compared to their un-cross-fitted versions, except when none of the nuisance parameters
are ultra sparse. As in the increasing dimension setting, ridge penalization provides biased
estimates of the target parameter with the cross-fitted version being more biased than the un-
cross-fitted. From figure 4 we see an overall large improvement in coverage in the cross-fitted
versions of the elastic net and lasso compared to their un-cross-fitted versions. The results
indicate that elastic net and lasso estimators with cross-fitting achieve asymptotic linearity
when either the intervention or event nuisance parameters are sparse.

5.3 Misspecification

We consider a high dimensional setting with n = 450 and d = 600 and three different sce-
narios for the nuisance parameters. Each scenario corresponds to misspecification in one of
the nuisance parameters, i.e, one of the hazard functions not following a Cox model or the
propensity not following a logistic regression. As in the varying sparsity case, the aim is to
investigate the double robustness of the target parameter estimator, but now considering that,
on top of dealing with a high-dimensional covariate, one might misspecify the functional form
of the nuisance parameters. Indeed, the considered nuisance parameter models only account
for sparsity in the linear case (on log-hazard and log-odds scale, respectively) and do not
account for non-linearities or interactions. The three scenarios are given by alterations to the
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setup from the varying dimension case, and they are stated below in terms of the alterations
only:

(i) misspecified hazard for event of interest :

λ1(t|A,W ) = λ0,1(t) exp(0.4W
2
1 + 0.5W2W3 + 0.05W3A− 0.05W4 + 0.5A)

(ii) misspecified hazard for competing event :

λ2(t|A,W ) = λ0,2(t) exp(0.2W
2
1 + 0.8W2W3 + 0.05W3A− 0.05W4 + 0.5A)

(iii) misspecified propensity : P (A = 1 |W ) = Φ(1.2W1 − 0.8W2 + 0.05W3 + 0.05W4)

where Φ is the distribution function of a standard normal distribution. Figure 5 displays the
sampling distribution of the different estimators under the three scenarios. Again, the cross-
fitted versions of the estimators decrease the bias, with ridge penalization generally producing
biased estimates, and figure 6 shows that cross-fitting provides better coverage for each of the
misspecification scenarios.

6 Results on non-response using penalized nuisance estima-
tors

The original analysis was done in three settings, one primary and two sensitivity analyses,
where the difference between settings corresponded to different exclusion criteria. We will
concern our selves with the first of the sensitivity analyses (table 2aS in Kessing et al., 2023),
where patients with a purchase of antidepressants within one year prior to their initial di-
agnosis with major depressive disorder are excluded. Additionally, we constrain the study
period to 2005-2018, and somatic disease histories are defined within a period 10 years prior
to index date in terms of ICD-10 codes giving a total of 1170 different observed somatic
diseases (the ICD-10 is fully implemented in the Danish national health registers from 1995,
and by restricting the study period to 2005-2018, we avoid a mixture of ICD-8 and ICD-10
codes). Based on the simulation studies, we chose to redo the sensitivity analysis with the
cross-fitted estimator ψ̂τ,CF with K = 10 sample splits, and nuisance estimators given by
10-fold cross-validated lasso estimators, described in Section 4.3. Compared to the original
study, the somatic disease histories were included based on individual disease levels in order
to safeguard against confounding. The results are presented in Table 1 and the results from
Kessing et al. (2023) are included in Table 2 for reference. For the SSRI group, the average
treatment effect estimates are not much different compared to the results from the original
study. Interestingly, though, is that the estimated absolute risk of non-response are generally
lower when compared to the estimates in the original study, but as the ATE is comprised of
the difference of the absolute risk estimate for the drug of interest and reference drug, the
ATE estimate is largely unchanged. For the groups NARI, there were too few observations in
the Reboxetine treatment group (n = 37) for our cross-fitted estimator to provide meaningful
results. For the rest of the treatment groups, the picture is similar to the SSRI group. One
thing to note is that the confidence intervals based on the cross-fitted estimator is generally
wider compared to the original study. This should come as no surprise though, as the EIF
provides lower information bounds in the nonparametric model, whereas the estimator in the
original study assumes low-dimensional (semi)parametric nuisance models.
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Absolute risk: drug
of interest

Absolute risk:
reference drug

Absolute risk
difference

SSRI (reference: Setraline)

Citalopram 0.378 (0.363, 0.393) 0.363 (0.350, 0.375) 0.015 (-0.004, 0.035)

Fluoxetine 0.380 (0.354, 0.405) 0.353 (0.341, 0.366) 0.026 (-0.002, 0.055)

Paroxetine 0.454 (0.377, 0.531) 0.359 (0.347, 0.372) 0.095 (0.017, 0.172)

Escitalopram 0.453 (0.431, 0.475) 0.361 (0.349, 0.374) 0.092 (0.066, 0.117)

NARI (reference: Sertraline)

Reboxetine NA NA NA

SNRI (reference: Venlafaxine)

Duloxetine 0.466 (0.431, 0.502) 0.452 (0.428, 0.475) 0.015 (-0.03, 0.057)

NaSSA (reference: Mirtazapine)

Mianserin 0.552 (0.473, 0.630) 0.470 (0.450, 0.489) 0.082 (0.001, 0.162)

TCA (reference: Amitriptyline)

Nortriptyline 0.558 (0.452, 0.664) 0.338 (0.290, 0.386) 0.220 (0.104, 0.336)

Imipramine 0.424 (0.248, 0.599) 0.329 (0.282, 0.375) 0.095 (-0.087, 0.277)

Clomipramine 0.631 (0.495, 0.766) 0.336 (0.290, 0.381) 0.295 (0.152, 0.438)

Dosulepin 0.652 (0.263, 1.000) 0.341 (0.294, 0.387) 0.311 (-0.080, 0.703)

Others (reference: Sertraline)

Vortioxitine 0.342 (0.220, 0.464) 0.375 (0.355, 0.388) -0.029 (-0.153, 0.094)

Agomelatine 0.498 (0.424, 0.572) 0.365 (0.351, 0.378) 0.133 (0.058, 0.209)

Table 1: Estimates of absolute risk and absolute risk differences of non-response at time t = 2
years with 95% confidence intervals. The cross-fitted estimator in Section 4.2 with K = 10
folds are used in the estimation with nuisance parameters estimated by the cross-validated
lasso as described in Section 4.3.
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Absolute risk: drug
of interest

Absolute risk:
reference drug

Absolute risk
difference

SSRI (reference: Setraline)

Citalopram 0.42 (0.41, 0.43) 0.41 (0.40, 0.42) 0.01 (-0.01, 0.02)

Fluoxetine 0.47 (0.45, 0.49) 0.40 (0.39, 0.41) 0.07 (0.04, 0.10)

Paroxetine 0.44 (0.40, 0.49) 0.41 (0.39, 0.42) 0.03 (-0.01, 0.08)

Escitalopram 0.48 (0.46, 0.50) 0.41 (0.40, 0.42) 0.07 (0.05, 0.10)

NARI (reference: Sertraline)

Reboxetine 0.60 (0.43, 0.76) 0.40 (0.39, 0.42) 0.19 (0.03, 0.35)

SNRI (reference: Venlafaxine)

Duloxetine 0.52 (0.48, 0.56) 0.52 (0.50, 0.55) 0.00 (-0.05, 0.04)

NaSSA (reference: Mirtazapine)

Mianserin 0.62 (0.56, 0.53) 0.53 (0.52, 0.55) 0.09 (0.02, 0.15)

TCA (reference: Amitriptyline)

Nortriptyline 0.60 (0.56, 0.63) 0.40 (0.35, 0.44) 0.20 (0.14, 0.26)

Imipramine 0.46 (0.31, 0.61) 0.39 (0.34, 0.43) 0.07 (-0.08, 0.23)

Clomipramine 0.67 (0.59, 0.75) 0.40 (0.35, 0.44) 0.27 (0.18, 0.37)

Dosulepin 0.57 (0.46, 0.68) 0.40 (0.36, 0.45) 0.17 (0.05, 0.28)

Others (reference: Sertraline)

Vortioxitine 0.37 (0.24, 0.49) 0.41 (0.39, 0.43) -0.05 (-0.17, 0.08)

Agomelatine 0.49 (0.42, 0.57) 0.41 (0.39, 0.42) 0.08 (0.01, 0.16)

Table 2: Estimates of absolute risk and absolute risk differences of non-response at time
t = 2 years with 95% confidence intervals from the original study in Kessing et al. (2023).
The G-formula is used for estimation of the target parameter with the cause-specific hazards
estimated by Cox regression.
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7 Discussion

The study in Kessing et al. (2023) showcases some of the challenges in estimating the ATE
based on registry data. In order to adhere to the assumption of no unmeasured confounding
a potentially large set of covariates has to be included in the estimation of the ATE. This
prevents the use of ordinary parametric models, and methods aimed at high-dimensional data
has to be incorporated. When the outcome of interest is defined as time to an event, high-
dimensional covariates can be incorporated using penalized Cox regression (Wu, 2012). In
order to obtain valid inference on the resulting ATE estimate, methods from the semipara-
metric efficiency literature has to be employed.

In this article, we have constructed two estimators based on the EIF corresponding to the
ATE defined as the mean difference in cumulative incidence functions. The estimators allow
for the inclusion of penalized regression for estimation of the nuisance parameters given by
the hazard functions for the event of interest, competing event and censoring, respectively,
and treatment propensity. The first estimator is constructed as a one-step estimator based on
the EIF (Kennedy, 2022) and the second is given by its cross-fitted version. The simulation
studies in Section 5 indicate that the cross-fitted estimator is asymptotically linear with the
EIF as its influence functions, under similar sparsity constraints as considered in Hou et al.
(2021). Specifically, when either the treatment and censoring models or the models for the
cause-specific hazards are sparse, with the other being of moderate sparsity compared to the
sample size, the desired properties are achieved.

The proposed cross-fitted estimator was applied to the data from Kessing et al. (2023)
with lasso estimation of the nuisance parameters, treating the somatic disease histories as a
high-dimensional covariate. The ATE estimates were largely similar to the original study, but
estimates of the risk of non-response under a given treatment were generally lower. Further-
more, the confidence intervals corresponding to the cross-fitted ATE estimator were generally
wider compared to the original study. This is a price to pay, since the variance of the esti-
mator is given by the EIF corresponding to ψτ defined on a nonparamteric model, where the
EIF characterizes the lower information bound (Van der Vaart, 2000). Hence, by assuming a
larger model, the variance of the cross-fitted estimator is naturally larger compared to the G-
formula estimator used in Kessing et al. (2023), which assumes correctly specified Cox models
for the event hazards.

The performance of the estimators derived in this paper are based on simulation studies
which suggest that the double robustness of the remainder term shown in Rytgaard et al.
(2023) can be related to the sparsity of the nuisance parameters, analogous to the results
in Hou et al. (2021). Further theoretical analysis is needed to confirm that this relationship
holds for the cross-fitted estimator considered here, but we leave this for future work.
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Figure 3: Sample distribution of estimators under varying nuisance sparsity according to the
sparsity schemes described in Section 5.2. The plots shows boxplots corresponding to the
(0.25,0.50,0.75)-quantile without extreme outliers for the different estimators based on 1000
simulations. The abbreviations in the title of the plots are read as A-B, where A corresponds
to the sparsity of the intervention parameters and B corresponds to the event parameters.
Thus, the upper left hand panel corresponds to (i), the upper right to (ii), the lower left to
(iii) and the lower right to (iv).
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Figure 4: Coverage of estimators under varying nuisance sparsity based on 1000 simulations.
Dots and triangles are the estimated coverage probabilities and the dashed bars denotes the
Monte-Carlo uncertainty. The abbreviations in the title of the plots are read as A-B, where
A corresponds to the sparsity of the intervention parameters and B corresponds to the event
parameters. Thus, the upper left hand panel corresponds to (i), the upper right to (ii), the
lower left to (iii) and the lower right to (iv).
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Figure 5: Sample distribution of the estimators under different types of misspecification of
models for the nuisance parameters described in Section 5.3. The plots show boxplots corre-
sponding to the (0.25,0.50,0.75)-quantile without extreme outliers for the different estimators
based on 1000 simulations. The panel on the left corresponds to the misspecification given in
(i), the middel panel corresponds to the setting given in (ii) and the right panel corresponds
to setting given in (iii).
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Figure 6: Coverage probability of confidence intervals of estimators under different types of
misspecification of models for the nuisance parameters described in Section 5.3 based on 1000
simulations. Dots and triangles are the estimated coverage probabilities and the dashed bars
denotes the Monte-Carlo uncertainty. The panel on the left corresponds to the misspecification
given in (i), the middel panel corresponds to the setting given in (ii) and the right panel
corresponds to setting given in (iii).
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Abstract

Treatment effect heterogeneity plays an important role in many areas of causal in-
ference and within recent years, estimation of the conditional average treatment effect
(CATE) has received much attention in the statistical community. While accurate esti-
mation of the CATE-function through flexible machine learning procedures provides a tool
for prediction of the individual treatment effect, it does not provide further insight into the
driving features of potential treatment effect heterogeneity. Recent papers have addressed
this problem by providing variable importance measures for treatment effect heterogeneity.
Most of the suggestions have been developed for continuous or binary outcome, while little
attention has been given to censored time-to-event outcome, although this is prominent
in many biostatistical applications. In this paper we extend the treatment effect variable
importance measure (TE-VIM) proposed in Hines, Diaz-Ordaz, and Vansteelandt (2022)
to a survival setting with censored outcome. We consider two measures of treatment ef-
fect and derive estimators in the new setting. The estimators share some structure to the
one proposed in Hines, Diaz-Ordaz, and Vansteelandt (2022), thereby suggesting future
extensions to other treatment effect measures. Along with TE-VIM, we derive a new
measure of treatment effect heterogeneity based on the best partially linear projection of
the CATE and we provide an estimator for that projection. All estimators are based on
semiparametric efficiency theory, and we give conditions under which they are asymptot-
ically linear. The finite sample performance of the derived estimators are investigated
in a simulation study. Finally, the estimators are applied and contrasted in a real data
example.

1 Introduction

Treatment effect heterogeneity plays an important role in medical research, as an under-
standing of such can be used in personalizing individual treatment plans as well as in-
forming further research. The former point has received much attention in the causal in-
ference community within the past decade, see for example Kennedy (2022b) and Wager
and Athey (2018). Much work has focused on the Conditional Average Treatment Effect
(CATE) given by the difference τ(x) = E(Y 1 − Y 0 | X = x), where Y 1 and Y 0 are the
counterfactual outcomes under treatment and no treatment, respectively. Under standard
assumptions from the causal inference literature, including the assumption of no unmea-
sured confounding, the CATE can be identified from the observed data O = (Yi, Ai, Xi)

n
i=1,

where Yi, Ai, Xi correspond to the outcome, treatment and covariates of individual i, as
τ(x) = E(Y | A = 1, X = x)− E(Y | A = 0, X = x).
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Survival analysis is often complicated by the fact that one does not observe the full data,
but only a censored version. Considering counterfactual survival times T 1 and T 0, and letting
Y a(t) = 1(T a ≥ t), a = 0, 1, the CATE can be defined as τ(x; t) = E(Y 1(t)− Y 0(t) | X = x),
which, under the same causal assumptions, is identified by the observed data as τ(x; t) =
E(1(T ≥ t) | A = 1, X = x)−E(1(T ≥ t) | A = 0, X = x) for a specific time horizon t. As the
data is censored, the observed data is given by O = (T̃i,∆i, Ai, Xi)

n
i=1 where T̃i = Ti∧Ci for a

given censoring time Ci and ∆i = 1(Ti ≤ Ci). Under the additional assumption of conditional
(on A and X) independent censoring, the CATE is still identified from the observed data as
the difference in conditional survival functions: τ(x; t) = S(t | A = 1, X = x) − S(t | A =
0, X = x). Estimation of the CATE in the survival context has received some attention in
the recent years: Cui et al. (2023) extend the work of Wager and Athey (2018) to a survival
setting, Hu et al. (2021) compares different machine learning methods for estimating the
CATE in a survival setting and Xu et al. (2023) discuss the use of different meta-learners in
combination with arbitrary machine learning methods.

CATE estimation provides a tool for prediction of the individual treatment effect, but as
the methods of obtaining such estimates are often based on machine learning, it provides little
information as to which features are driving the observed heterogeneity (if any at all). As such,
Levy et al. (2021) derives a measure of overall treatment effect heterogeneity as the variance
of the treatment effect (VTE), given by var(τ(X)), Wei et al. (2023) derives an estimator
for sub-group treatment effects, and Boileau et al. (2023) constructs a general framework for
identification of treatment effect modifiers, as a weighted covariance of individual covariates
and the CATE, which they also extend to a survival setting. Their approach can be viewed
in terms of the best linear projection of the CATE-function, an approach also discussed in
Van der Laan (2006) and Semenova and Chernozhukov (2021), but where the projection is
used to approximate a target function (such as the CATE-function) rather than summary
statistics of the CATE itself. Finally, Hines, Diaz-Ordaz, and Vansteelandt (2022) develop a
treatment effect variable importance measure (TE-VIM), which measures the amount of the
VTE explained by a given subset of covariates. Their derived estimand has the interpretation
of a non-parametric ANOVA and can employ arbitrary machine learning methods for nuisance
parameter estimation.

In this paper, we extend the TE-VIM of Hines, Diaz-Ordaz, and Vansteelandt (2022) for
two different CATE functions for survival data. The derived estimator is based on semi-
parametric efficiency theory, and the efficient influence function (EIF) corresponding to the
TE-VIM with censored data is seen to share some structure to the one proposed by Hines,
Diaz-Ordaz, and Vansteelandt (2022). This connection is found to hold for essentially all
τ(x), when the EIF corresponding to the ATE, E{τ(X)}, is linear in the ATE. Furthermore,
we derive a new measure of treatment effect heterogeneity inspired by the assumption lean
inference approach (Vansteelandt and Dukes, 2022a) and derive an estimator based on its
corresponding efficient influence function. The new measure is derived as the best partially
linear projection of the CATE and it can be interpreted as a regression coefficient, expressing
the association between the CATE and a single covariate of interest. Other authors have sug-
gested a similar approach (Boileau et al., 2023, Cui et al., 2023) for treatment effect variable
importance, using the best linear projection of the CATE as a measure of heterogeneity, but,
as we discuss in the Appendix, the error made by the projecting the CATE onto the linear
model is larger compared to the projection onto the partially linear model, thus showing
that our approach captures more of the heterogeneity through a single covariate compared
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the best linear projection. Furthermore, the derived parameter is seen to provide a natural
interpretation of the association between the CATE and a given covariate when the partially
linear model does not hold for the CATE function, as it is given as weighted average of the
conditional covariance of the CATE and the covariate in question.

We give assumptions under which the proposed estimators are asymptotically normal and
locally efficient, and investigate their finite sample performance in a simulation study, using
random survival forests (Ishwaran et al., 2008) for nuisance estimation. Finally, we illustrate
and contrast the two approaches in a data example also studied in Cui et al. (2023) and Hines,
Diaz-Ordaz, and Vansteelandt (2022).

2 Notation and Setup

We consider a survival setup where T and C denote the survival and censoring time, respec-
tively. Due to censoring, we do not observe T , but rather, we observe the censored time
T̃ = T ∧ C together with the event indicator ∆ = 1{T ≤ C}. Furthermore let A ∈ {0, 1}
denote a binary treatment variable at baseline and let X = (X1, ..., Xd) ∈ Rd denote baseline
covariates. The observed data is O = (T̃i,∆i, Ai,Wi)i=1,..,n where O1, ..., On are assumed to
be i.i.d. with distribution P0 ∈ M, where M is the set of all probability measures corre-
sponding to a non-parametric model.
Let N(t) = 1{T̃ ≤ t, ∆̃ = 1} be the observed counting process for the event of interest and let
λ(t|a, x), λc(t|a, x) denote the conditional hazard for the survival and censoring distribution,
respectively, and let Λ(t|a, x) =

∫ t
0 λ(s | a, x) ds, Λc(t|a, x) =

∫ t
0 λc(s | a, x) ds denote the cor-

responding cumulative hazard functions. Furthermore we denote S(t|a, x) = exp(−Λ(t|a, x))
the survival function, Sc(t|a, x) = exp(−Λc(t|a, x)) the survival function of the censoring
distribution, π(a|x) = P (A = a|X = x) is the propensity score and µ is the distribu-
tion of X. Throughout, we denote M(t | A,X) as the martingale related to N(t), where
dM(t | A,X) = dN(t)− 1(T̃ ≥ t)dΛ(t|A,X) is the martingale increment given A and X.
To define causal parameters, we introduce the variable Y (t) = 1{T ≥ t} and define Y a(t) as
the counterfactual outcome, that is, the outcome of a person if he or she, possibly contrary
to the fact, had received treatment a. Let

τ(x; t) = E(Y 1(t)− Y 0(t)|X = x)

be the CATE function, i.e. the average treatment effect conditional on the event X = x
for some fixed time-horizon t, which is left out from the notation through out the paper, so
we write τ(x) = τ(x; t). Under suitable causal assumptions we can identify τ through the
observed data as

τ(x) = S(t|A = 1, X = x)− S(t|A = 0, X = x). (1)

Another, and maybe more interesting τ(x), is

τ(x) = E
(
T 1 ∧ t− T 0 ∧ t | X = x

)
=

∫ t

0
S(u | 1, x) du−

∫ t

0
S(u | 0, x) du. (2)

We will consider both in what follows, where we will refer to the first as the survival function
setting and to the second as the restricted mean survival time setting (RMST). Note that
E{τ(X)} is simply the average treatment effect. Furthermore we define

τl(x) = E(τ(X)|X−l = x−l)
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as the conditional expectation of the CATE-function, where we fix all variables except Xl,
l ⊆ {1, ..., d}, as we define X−l to be the covariates with an index not contained in l. We will
use the notation τd = E(τ(X)) to denote the average treatment effect.

Furthermore, we introduce the nuisance parameter ν = (Λ,Λc, τl, µ).

3 Target parameter

3.1 Treatment effect variable importance measure

As in Hines, Diaz-Ordaz, and Vansteelandt, 2022 we define

Θl ≡ E(var(τ(X) | X−l = x−l)) = var(τ(X))− var(τl(X)) ≥ 0.

With a slight abuse of notation we denote the VTE: Θd = var(τ(X)). We note that Θl can
be interpreted as the amount of heterogeneity not already explained by X−l, as Θl is large
when a large amount of the VTE is explained by Xl. The proposed treatment effect variable
importance measure (TE-VIM) is defined by re-scaling Θl by the VTE:

Ψl ≡
Θl

var(τ(X))
= 1− var(τl(X))

var(τ(X))

with values in [0, 1). We can interpret Ψl as a nonparametric analog of an ANOVA statistic,
which is close to one when a large amount of the VTE is explained by Xl and close to zero
when a small amount of the VTE is explained by Xl.

3.2 Best partially linear projection

Along with the TE-VIM, we also consider an alternative target parameter inspired by Vanstee-
landt and Dukes (2022b), which is given by

Ωj =
Γj
χj

=
E(cov(Xj , τ(X) | X−j))

E(var(Xj | X−j))

for a single covariate Xj , corresponding to the singleton set {j} ∈ {1, . . . , d}. It is seen that
the parameter depends on the scale of the covariate of interest, Xj , and as such, the variable
importance of Xj will be based on the p-value for the test of the hypothesis H : Ωj = 0.

In contrast to Ψl, the parameter Ωj measures the heterogeneity explained by a single co-
variate Xj , j ∈ {1, · · · , d}, whereas Ψl determines the heterogeneity explained by, possibly
non-singular, sets of covariates. This makes Ψl suited for incorporating subject matter knowl-
edge, where naturally correlated covariates can be grouped together, where Ωj serves as a
variable importance measure to be used for single covariates.

The estimand Ωj can be expressed by the linear term in the projection of τ onto the space
of partially linear functions. To elaborate, let β ∈ R and let w be some measurable function
of X−j with finite variance. Without loss of generality, define

τ(x) = βxj + w(x−j) +R(xj , x−j)
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for some function R and let

(β∗, w∗) = argmin
β,w

E{R(Xj , X−j)2} = argmin
β,w

E{[τ(X)− βXj − w(X−j)]2}

be the least squares projection of τ onto the partially linear model. Then Ωj = β∗.
If R = 0, then for a given level of x−j , the parameter β denotes the treatment effect

modification given by xj . When R ̸= 0, Ωj is the treatment effect modification parameter
that minimizes the error made by summarizing the effect of xj in a single value. We note
that other authors have looked at the best linear projection as a treatment effect variable
importance measure (Semenova and Chernozhukov, 2021, Boileau et al., 2023, Cui et al.,
2023, Van der Laan, 2006). In our setting, this corresponds to the least squares projection of
τ onto the space of linear models. In the Appendix, we give a discussion of partially linear
versus linear projections of τ in terms of the size of the error given by the remainder term R.

4 Estimation

The estimation of Ψl goes through estimation of Θl and Θd, separately. Likewise, an estimator
of Ωj is obtained from estimators of Γj and χj . The estimation of individual parameters is
based on semi(non)-parametric efficiency theory. For an introduction to this methodology
see for instance (Kennedy, 2022a, Hines, Dukes, et al., 2022, van der Laan and Robins,
2003, van der Vaart, 2000 ch. 25). The theory revolves around the so-called efficient influence
function (EIF), which characterizes the lower bound on the asymptotic variance of any regular
estimator of a pathwise differentiable parameter in a non-parametric setting. The EIF is
related to the target parameter and the model M, and it can be calculated without reference
to any estimator. Once it is known, it can be leverage to construct an estimator that is
asymptotically linear with the EIF as its influence function. Several techniques exist for
constructing such estimators, and they all share the convenient property that it is possible to
use data-adaptive nuisance parameter estimators (under some conditions), while still obtaining
parametric-like inference on the target parameter.

Hence, estimation of Ψl and Ωj will follow the same pattern, where the EIF is calculated at
first, to then be used in the construction of an estimator for the target parameter in question.

4.1 Estimation of Ψl

4.1.1 Efficient influence function

The two target parameters Θl and Ψl are functions of var(τ(X)) and var(τl(X)) so their
efficient influence functions can be derived from the EIFs of var(τ(X)) and var(τl(X)) using
the chain rule (cf. van der Vaart, 2000 ch. 25.7.). Define

H(u, t | a, x) =
∫ t

u
S(u | a, x) du

and

g(A,X) =

(
1(A = 1)

π(1 | X)
− 1(A = 0)

π(0 | X)

)
,

where π(a | X) = P (A = a | X). We have the following result.
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Theorem 1. Let τ(x) be given by (1). The efficient influence functions of var(τ(X)) and
var(τl(X)) are given by ψ̃var(τ(X)) and ψ̃var(τl(X)), respectively, where

ψ̃var{τ(X)} =[τ(X)− E{τ(X)}]2 − var{τ(X)} − 2[τ(X)− E{τ(X)}]

× g(A,X)

∫ t

0

S(t | A,X)

S(u | A, x)Sc(u | A,X)
dM(u | A,X)

ψ̃var{τl(X)} =[τl(X)− E{τl(X)}]2 − var{τ(X)} − 2[τl(X)− E{τl(X)}]

×
(
τl(X)− τ(X) + g(A,X)

∫ t

0

S(t | A,X)

S(u | A,X)Sc(u | A,X)
dM(u | A,X)

)
.

For τ(x) given by (2) we have

ψ̃var{τ(X)} =[τ(X)− E{τ(X)}]2 − var{τ(X)} − 2[τ(X)− E{τ(X)}]

× g(A,X)

∫ t

0

H(u, t, A,X)

S(u | A,X)Sc(u | A,X)
dM(u | A,X)

ψ̃var{τl(X)} =[τl(X)− E{τl(X)}]2 − var{τ(X)} − 2[τl(X)− E{τl(X)}]

×
(
τl(X)− τ(X) + g(A,X)

∫ t

0

H(u, t, A,X)

S(u | A,X)Sc(u | A,X)
dM(u | A,X)

)
.

In both the survival function and RMST setting the EIF’s corresponding to Θl and Ψl are
given by ψ̃Θl

and ψ̃Ψl
, respectively, where

ψ̃Θl
= ψ̃var(τ(X)) − ψ̃var(τl(X)),

ψ̃Ψl
=

1

var(τ(X))

(
ψ̃Θl

(O)−Ψlψ̃var(τ(X))(O)
)
.

Proof. See Appendix B.

Before moving to estimation of Θl (and Θd) we state some results from ATE-estimation.
Recall the average treatment effect as the mean of the CATE;

τd = E{τ(X)}.

The parameter τd has an EIF known from the literature in the survival function setting (e.g.
Rytgaard et al., 2023 and Westling et al., 2023), and we write it in terms of the uncentered
EIF, φ, defined as:

φ(O)− τd = φ1(O)− φ0(O)− τd (3)

with

φa(O) = S(t | A = a,X)− 1(A = a)

π(a | X)

∫ t

0

S(t | A,X)

S(u− | A,X)SC(u− | A,X)
dM(u | A,X). (4)

Lemma B.1 in Appendix B, gives the Gateaux derivative of τ(x) in the RMST setting as

1(X = x)

f(x)

1(A = a)

π(a | X)

∫ t

0

−H(u, t | A,X))

S(u− | A,X)SC(u− | A,X)
dM(u | A,X)
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from which it follows that τd has efficient influence function given by

φ(O)− τd = φ1(O)− φ0(O)− τd

with

φa(O) =

∫ t

0
S(u | a,X) du− 1(A = a)

π(a | X)

∫ t

0

H(u, t | A,X))

S(u− | A,X)SC(u− | A,X)
dM(u | A,X), (5)

analogous to the survival function setting. The uncentered EIF, φ, can be parameterized by
parts of the nuisance parameter, (π,Λ,Λc), and we write φ(π,Λ,Λc) when we want to be
explicit about the nuisance parameters considered, which will be the case when we consider
estimators for φ, where φ̂ = φ(π̂, Λ̂, Λ̂c) is an obvious candidate.

We can now restate the EIF’s given in Theorem 1 so that the structure is similar to that
given in Hines, Diaz-Ordaz, and Vansteelandt (2022), but with the φ, τ and τl having different
expressions. We adopt their notation of the VTE as Θd = var{τ(X)}

Corollary 1. The EIF of Θl and Θd is given by ψ̃Θl
and ψ̃Θd

, respectively, where

ψ̃Θl
= (φ(O)− τl(X))2 − (φ(O)− τ(X))2 −Θl (6)

ψ̃Θd
= (φ(O)− τd)

2 − (φ(O)− τ(X))2 −Θd (7)

ψ̃Ψl
=

1

Θd

(
ψ̃Θl

−Ψlψ̃Θd

)
(8)

Proof. Note that in both the survival and RMST setting, the EIFs of var{τ(X)} and var{τl(X)}
can be written as

ψ̃var{τ(X)} = [τ(X)− E{τ(X)}]2 + 2[τ(X)− E{τ(X)}][φ(O)− τ(X)]− var{τ(X)}

and

ψ̃var{τl(X)} = [τ(X)− E{τ(X)}]2 + 2[τ(X)− E{τ(X)}][φ(O)− τl(X)]− var{τl(X)}.

A simple rewriting of the above EIFs gives

ψ̃var{τ(X)} =[τ(X)− E{τ(X)}]2 − 2τ(X)2 + 2τ(X) E{τ(X)}
+ 2[τ(X)− E{τ(X)}]φ(O)− var{τ(X)}

=E{τ(X)}2 − τ(X)2 + 2[τ(X)− E{τ(X)}]φ(O)− var{τ(X)}
=[φ(O)− τd]

2 − [φ(O)− τ(X)]2 − var{τ(X)}

and analogously for var{τl(X)}:

ψ̃var{τ(X)} = [φ(O)− τd]
2 − [φ(O)− τl(X)]2 − var{τl(X)}.

Subtracting the two gives the EIF for Θl and the chain rule gives the EIF for Ψl.

Note that the above EIFs has the same structure whether we are in the survival function
setting or the RMST setting, but with φ having a different expression. For the rest of the
paper we will use the form of the EIFs given in Corollary 1.
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Remark 1. The fact that the structure of the EIFs is identical to the one in Hines, Diaz-
Ordaz, and Vansteelandt (2022), stems from the definition of EIFs as derivatives for which
the chain-rule apply. From the derivations of the EIFs in the Appendix, it is seen that for
any function τ(x) with Gateaux derivative given by 1(X=x)

f(x) g(z), for some function g and

some variable z, the EIFs will have the same structure as in (6) and (7) with φ being the
uncentered EIF of E{τ(X)} where φ = τ + g. Thus, the framework of Hines, Diaz-Ordaz,
and Vansteelandt (2022) can readily be extended to any data setting by calculating EIF of
the ATE in that setting and denoting the uncentered version φ. The properties of estimators
derived by this approach will have to be studied case by case, though, as will be apparent in
the following.

4.1.2 Cross-fitted one-step estimators

The EIFs of Θl and Θd are used to construct estimators that are asymptotically linear with
influence function given by the EIFs above, from which they are seen to be locally asymptot-
ically efficient and asymptotically normal distributed. Given two such estimators, Θ̂l and Θ̂d,

an application of the delta method gives that Ψ̂l =
Θ̂l

Θ̂d
is asymptotically linear with influence

function given by (8) (see van der Vaart, 2000 ch. 25.7). For readability and ease of notation
we only consider construction of an estimator for Θl in the following, but since the EIFs of
Θl and Θd have a similar structure, the derived estimators will be the same with l replaced
by d.

There are different ways of constructing such estimators; one-step estimators, estimating
equation based, and targeted minimum loss-based estimators (TMLE). All of them require
that the nuisance parameters are estimated fast enough such that the resulting remainder
term and empirical process term (see Section C in the Appendix) converge at rate n−1/2.
We will focus on the estimating equation based estimator, which is given as the solution to
Pnψ̃n,Θl

= 0 in Θl, where ψ̃n,Θl
denotes the EIF with estimated nuisance parameters. Because

the EIF is linear in Θl, this will correspond to the one-step estimator, where Pnψ̃n,Θl
is added

to a plug-in estimate of Θl:
Θ̂l = Pn(φ̂− τ̂l)

2 − (φ̂− τ̂)2,

and analogously
Θ̂d = Pn(φ̂− τ̂d)

2 − (φ̂− τ̂)2,

where φ̂ = φ(π̂, Λ̂, Λ̂c). Note that the estimation of τl can be obtained as a regression of
τ̂(X) onto X−l, whereas the estimation of τd = E(τ(X)) can be obtained by the mean of
τ̂(X), i.e., the marginal distribution, µ is estimated with the empirical measure Pn. Or, as τd
is itself a differentiable parameter, more sophisticated methods can be used in constructing
estimators τ̂d (see section 4.3). The n−1/2-convergence of the empirical process term related to
the one-step estimator depends on the flexibility of the nuisance estimators, in the sense that,
e.g., working parametric models ensure n−1/2-convergence, which is not the case for some
data-adaptive estimators. More specifically, if the nuisance estimators falls in a Donsker class
which also contains the true nuisance parameter, then n−1/2-convergence of the empirical
process term is obtained. To alleviate the Donsker class condition, we employ a type of
sample splitting (coined cross-fitting, Chernozhukov et al., 2018) which ensures the desired
convergence as long as the nuisance estimators are L2(P )-consistent. We will now detail
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the sample splitting, but we note that this is a general construction of cross-fitted one-step
estimators (Kennedy, 2022a).

Split the index set {1, . . . , n} (uniformly at random) into K disjoint sets T1, T2, . . . , TK ,

such that {1, . . . , n} = ∪̇kk=1Tk. Let Vk denote the subset of the observed data corresponding

to the k’th index set, Tk, i.e., Vk = {Oi : i ∈ Tk}, such that O = ∪̇Kk=1Vk. Let Pkn be the
empirical measure in the sample Vk and let ϕΘl

= (φ− τl)
2 − (φ− τ)2 denote the uncentered

EIF of Θl with ϕ̂Θl
being an estimate obtained by plugging in estimated nuisance parameters

in the expression for ϕ. Let ϕ̂Θl,−k be the estimate of ϕΘl
based on data in V−k = ∪i ̸=kVi.

The cross-fitted one-step estimator is then given by

Θ̂CF
l =

K∑

i=k

nk
n
Pknϕ̂Θl,−k =

1

n

K∑

k=1

∑

i∈Tk

{
(φ̂−k(Oi)− τ̂s,−k(Xi))

2 − (φ̂−k(Oi)− τ̂−k(Xi))
2
}

where nk is the number of observations in Vk and φ̂−k = φ(Λ̂−k, Λ̂C,−k, π̂−k) with (Λ̂−k, Λ̂C,−k, π̂−k)
being the nuisance estimators obtained from the sample V−k . We let Θ̂CF

d be defined in the
same way with d instead of s in the above formula and note that τ̂d,−k corresponds to the
ATE estimate based on the data in V−k (see 4.3).

Next we state a set of conditions from which the asymptotic distribution of Θ̂CF
l is ob-

tained.

Assumption A (Nuisance parameters). Let g(s | a, x) = π(a | x)Sc(s | a, x). For nuisance
estimates π̂, Λ̂, Λ̂C define

• τ̂(x) = e−Λ̂(t|A=1,x) − e−Λ̂(t|A=0,x)

• ĝ(s | a, x) = π̂(a | x)e−Λ̂c(s|a,x)

• τ̂l(x) = Ên(τ̂(X) | X−l = x−l)

where Ên is some regression of τ̂(X) onto X−l. Define L̂(s, t | a, x) = S(s|a,X)

Ŝ(s|a,X)
Ŝ(t | a,X)

in the survival function setting and L̂(s, t | a, x) = Ĥ(s,t|a,X)S(s|a,X)

Ŝ(s|a,X)
in the RMST setting.

Assume that the nuisance parameters are chosen such that

A1 ∃η > 0, s.t. η < ĝ(s | a, x) and η < e−Λ̂(s|a,x) ∀(s, a, x) ∈ [0, t]× {0, 1} × X .

A2 ∥τ̂(x)− τ(x)∥L2(P ) = op(n
− 1

4 ).

A3 ∥τ̂l(x)− τl(x)∥L2(P ) = op(n
− 1

4 ).

A4 E
{∫ t

0

(
1− g(s|a,X)

ĝ(s|a,X)

)
L̂(s, t | a, x) d

[
Λ(s | a,X)− Λ̂(s | a,X)

]}
= op(n

− 1
2 ).

A5 ∥ sups<t |ĝ(s | a, x)− g(s | a, x)| ∥L2(P ) = op(1).∥∥∥ sups<t

∣∣∣Λ̂(s | a, x)− Λ(s | a, x)
∣∣∣
∥∥∥
L2(P )

= op(1).

A6 |τ̂l(x)− τ̂(x)| ≤ δ <∞ for almost all x.

9
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Theorem 2. Assume that assumption A hold for the nuisance estimators in each data split
V−k and assume Θl > 0. Then Θ̂CF

l is asymptotically linear with influence function given by
ψ̃Θl

, (6), and √
n(Θ̂CF

l −Θl)
D−→ N (0, P ψ̃2

Θl
)

Proof. See Section C.

Before proceeding to estimation of Θd, some comments about assumption A are in order.
A1 is a common positivity assumption, which states that all individuals have a positive
probability of receiving treatment and being under observation for the entire time horizon.
Assumption A2 and A3 refer to convergence rates of the CATE function estimate as well as

the conditional CATE function estimate. For CATE estimates given by τ̂(x) = e−̂Λ(t|A=1,x)−
e−Λ̂(t|A=0,x), the assumption boils down to an assumption on the convergence rate of the
survival function estimate, but this is seen to be a mild assumption for which many ML-
methods concur (see e.g. the discussion in Section 4.3 in Kennedy, 2022a). We note though,
that assumption A2 and A3 imply that the estimator is not double robust in the sense that
one only needs the outcome or the censoring and propensity to be correctly specified in order
to obtain a consistent estimator, which is in contrast to other related estimands (e.g. the
ATE, see Westling et al., 2023, theorem 2). From the structure of the remainder term in the
Appendix, it is seen that the estimator is consistent if Λ, τ and τl are consistent, but that it
is not the case if only the censoring and propensity are consistent. Thus, it is important to
employ flexible methods for obtaining nuisance estimators Λ̂, τ̂ , and τ̂l. Furthermore, since
τl(x) = E(e−Λ(t|1,X) − e−Λ(t|0,X) | X = x) it will generally be a complicated function, even for
a correctly specified Λ̂ (e.g. as a Cox regression with a Breslow baseline hazard), emphasizing
the need for a flexible estimator Ên.

The assumption A4 corresponds to a bound on the aforementioned remainder term (see
proof of Theorem 2 in the appendix). In studies on related target parameters (e.g. the ATE)
with uncensored outcome, the related bound on the remainder term is seen to have a product
structure, in the sense that the product of the L2(P )-norms of the outcome regression and
the propensity estimator needs to be op(n

−1/2) (see Kennedy, 2022a). This is then achieved
if both estimators converge on n−1/4 rate or, e.g., if one estimator is bounded in probability
and the other converges on parametric rate. In our case Λ̂ will often be a step function
(see next subsection) and one has to study A4 in greater detail in order to obtain a product
structure result analogous to the uncensored case. This is beyond the scope of this paper, but
we will expect it to be the case in many settings. A5 corresponds to uniform consistency of
the time-to-event nuisance parameters. Assumption A6 is a technical assumption, which we
would expect to hold for most reasonable choices of Ên.

Finally, we state a distribution result for an estimate of Ψl based on the cross-fitted
estimators Θ̂CF

l and Θ̂CF
d

Corollary 2. Let Ψ̂CF
l =

Θ̂CF
l

Θ̂CF
d

. Under assumption A and ∥τ̂d − τd∥L2(P ) = op(n
− 1

4 ), Ψ̂CF
l is

asymptotically efficient with influence function given by (8) and

√
n(Ψ̂CF

l −Θ)
D−→ N (0, P ψ̃2

Ψl
).

To estimate the variance of Ψ̂CF
l , we define the cross-fitted plug-in estimator of σ2Ψl

=

Pψ̃2
Ψl
. Let

ˆ̃
ψΨl,−k denote the estimate of the EIF ψ̃Ψl

based on data from V−k. Define the
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variance estimator

σ̂2,CFΨl
=

K∑

i=k

nk
n
Pkn

ˆ̃
ψ2
Ψl,−k =

1

n

K∑

k=1

∑

i∈Tk

[
1

Θ̂CF
d

(
ϕ̂Θl,−k(Oi)− Θ̂CF

l − Ψ̂l(ϕ̂Θd
(Oi)− Θ̂CF

d )
)]2

.

Lemma 1 in the next section gives that the variance estimator above is consistent, and a

confidence interval of Ψ̂CF
l is then constructed as Ψ̂CF

l ± 1.96
√
σ̂2,CFΨl

/n

4.1.3 On estimation of logit transformation of Ψl

The target parameter Ψl is restricted to [0, 1), but the estimator Ψ̂CF
l is unrestricted, which

in practice can result in parameter estimates that are outside the range [0, 1), or confidence
intervals that contain either 0 or 1. To combat this issue, we construct a cross-fitted one-
step estimator of the transformed parameter logit(Ψl). We note that given initial estimators,
Θ̂CF
l , Θ̂CF

d , Θ̂0
l , Θ̂

0
d, where Θ̂

0
l and Θ̂0

d are plug-in estimators, the construction is directly given
in Hines, Diaz-Ordaz, and Vansteelandt (2022) and in Theorem 4 in their Appendix, they
give additional conditions on the plug-in estimators under which the estimator of logit(Ψl)
is asymptotically linear. Hence, we will only sketch the construction, and refer to Hines,
Diaz-Ordaz, and Vansteelandt (2022) for a derivation of the asymptotic results.

Define the transformed target parameter ζl(P ) ≡ logit(Ψl(P )). The efficient influence function
of ζ(P ) is given by

ψ̃ζl =
ψ̃Ψl

Ψl(1−Ψl)

by the chain rule. Given the plug-in estimators, define Ψ̂0
l =

Θ̂0
l

Θ̂0
d

. The cross-fitted one-step

estimator is then given by

ζ̂CFl =

K∑

k=1

nk
n
ζ̂l,k

where

ζ̂l,k = logit(Ψ̂0
l,−k) + Pkn

ˆ̃
ψζl,−k = logit(Ψ̂0

l,−k) + Pkn

ˆ̃
ψΨl,−k

Ψ̂0
l,−k(1− Ψ̂0

l,−k)

with Ψ̂0
l,−k being the plug-in estimator obtained from the sample V−k and

ˆ̃
ψΨl,−k being the

estimator of the EIF ψ̃Ψl
derived from nuisance estimators obtained from V−k. As noted in

Hines, Diaz-Ordaz, and Vansteelandt (2022), the estimator, ζ̂CFl , can be written in terms of
the already established estimators with

ζ̂l,k = logit(Ψ̂0
l,−k) +

Θ̂d,−k
Θ̂0
d,−k

(Ψ̂l,−k − Ψ̂0
l,−k)

Ψ̂0
l,−k(1− Ψ̂0

l,−k)
,

where Θ̂d,−k and Ψ̂l,−k are the one-step estimators obtained from V−k.
Under the same assumptions as in Corollary 2, Theorem 4 in Hines, Diaz-Ordaz, and

Vansteelandt (2022) gives that ζ̂CFl is asymptotically linear with ψ̃ζl as its influence function.
In practice, this can be leverage to obtain an estimate of Ψl, where the estimate and the
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confidence interval are restricted to the interval [0, 1), by an expit-transformation of ζ̂CFl and
the corresponding confidence interval. By the delta method, the back-transformed estimator
then shares the same asymptotic properties as given in Corollary 2.

4.2 Estimation of Ωj

4.2.1 Efficient influence function

We derive the EIF’s of Γj and χj separately from which the EIF of Ωj is obtained. This is
summarized in the following theorem.

Theorem 3. Let φ be given as in (4) for the survival function setting, and as in (5) for the
RMST setting. Then the EIF’s of Γj and χj are given by ψ̃Γj and ψ̃χj , respectively, where

ψ̃Γj = [φ(O)− τj(X)][Xj − E(Xj | X−j)]− Γj (9)

and

ψ̃χj = [Xj − E(Xj | X−j)]2 − χj . (10)

The EIF of Ωj is given by

ψ̃Ωj =
1

χj

(
ψ̃Γj − Ωjψ̃χj

)
. (11)

Remark 2. The EIF of Γj is stated in terms the φ, which is the uncentered EIF of the ATE.
Thus, the above EIF’s can readily be extended to other data settings with different CATE
functions, τ . From the calculations in the Appendix, it is seen that the EIF’s in Theorem
3 hold as long as the Gateaux derivative of τ(x) can be expressed as 1(X=x)

f(x) g(o), for some
function g = φ− τ .

4.2.2 Cross-fitted one-step estimator

As with Ψl, we construct cross-fitted one-step estimators for Γj and χj based on the EIF’s
in Theorem 3 where we let ϕΓj = [φ(O)− τj(X)][Xj − E(Xj | X−j)] and ϕχj = [Xj − E(Xj |
X−j)]2 denote the uncentered EIF’s. Then using the same sample splitting notation as in the

construction of Θ̂CF
l we denote Êjn,−k the regression of Xj onto X−j in the sample V−k and

define the estimators

Γ̂CFj =

K∑

i=k

nk
n
Pknϕ̂Γj ,−k =

1

n

K∑

k=1

∑

i∈Tk

{
[φ̂−k(Oi)− τ̂j,−k(X)][Xi,j − Êjn,−k(Xi,−j)]

}

and

χ̂CFj =
K∑

i=k

nk
n
Pknϕ̂χj ,−k =

1

n

K∑

k=1

∑

i∈Tk
[Xi,j − Êjn,−k(Xi,−j)]2.

The two estimators are combined to create an estimator for Ωj :

Ω̂CFj =
Γ̂CFj

χ̂CFj
.

To state results on the asymptotic distribution of the above estimators, we need a slight
modification of assumption A as follows:
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Assumption B.

B1
∥∥∥Êjn − E(· | X−j)

∥∥∥
L2(P )

= op(n
− 1

4 ).

B2 (Xj − Êjn(X−j))2 ≤ δ <∞, δ > 0, a.s.

B3 var(Xj | X−j) <∞ for all j ∈ {1, . . . d}.

Assumption B1 relates to the convergence rate of Êjn, and it is similar to assumption A2
and A3. Assumption B2 is a technical assumption, which we would expect to hold for most
reasonable estimators Êjn, and assumption B3 assumes all the conditional distributions of Xj

given X−j to have second moment.

Theorem 4. Under assumption A with A2 replaced by assumption B, Γ̂CFj is asymptotically
linear with influence function given by the EIF (9), and hence locally asymptotically efficient.
Thus

√
n(Γ̂CFj − Γj)

D−→ N (0, P ψ̃2
Γj
).

Furthermore, under assumption B, χ̂CFj is asymptotically linear with influence function given
by the EIF (10), and hence locally asymptotically efficient. Furthermore:

√
n(χ̂CFj − χj)

D−→ N (0, P ψ̃2
χj
).

Proof. See Section C in the Appendix.

And finally, a simple application of the delta method gives the main result for our estimator
Ω̂CFj .

Corollary 3. Under assumption A with A2 replaced by assumption B, Ω̂CFj is asymptotically
linear with influence function given by the EIF (11), and hence locally asymptotically efficient.
Furthermore:

√
n(Ω̂CFj − Ω)

D−→ N (0, P ψ̃2
Ωj
). (12)

To estimate the variance Pψ̃2
Ωj
, let

ˆ̃
ψΩj ,−k be the estimate of ψ̃Ωj in the sample V−k. We

define the cross-fitted plug-in variance estimator as

σ̂2,CFΩj
=

K∑

i=k

nk
n
Pkn

ˆ̃
ψ2
Ωj ,−k =

1

n

K∑

k=1

∑

i∈Tk

[
1

χ̂CFj

(
ϕ̂Γj ,−k(Oi)− Γ̂CFj − Ω̂j(ϕ̂χj ,−k(Oi)− χ̂CFj )

)]2
.

The variance estimator can be used to calculate the standard error of Ω̂CFj , and the following
lemma gives the consistency of the cross-fitted variance estimators considered in this article.

Lemma 1. Let ψ1 and ψ2 be two pathwise differentiable maps from M to the reals with EIF’s
given by ψ̃1 and ψ̃2, respectively, where ψ̃i(ψi, νi) = φi(νi) − ψi, i = 1, 2, for some nuisance
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parameters νi. Let ψ̂CFi denote the cross-fitted one-step estimator for ψi and assume that
∥φ(ν̂i,−k)− φ(νi)∥ = op(1) for each k and i. Furthermore, we assume that

ψ̂CFi − ψi = Pnψ̃i + op(n
−1/2), i = 1, 2.

Let Ψ = ψ1

ψ2
and denote the cross-fitted estimator Ψ̂CF =

ψ̂CF
1

ψ̂CF
2

. Define

ψ̃(ψ1, ψ2, ν1, ν2) =
1

ψ2

(
φ1(ν1)− ψ1 −

ψ1

ψ2
(φ2(ν2)− ψ2)

)
.

Then

Ψ̂CF −Ψ = Pnψ̃(ψ1, ψ2, ν1, ν2) + op(n
−1/2) (13)

and we have the following consistency results for the cross-fitted variance estimators:

σ̂2,CFψi
=

K∑

k=1

nk
n
Pknψ̃i(ψ̂

CF
i , ν̂i,−k)

2 P−→ Pψ̃i(ψi, νi)
2 (14)

σ̂2,CFΨ =
K∑

k=1

nk
n
Pknψ̃(ψ̂

CF
1 , ψ̂CF2 , ν̂1,−k, ν̂2,−k)

2 P−→ Pψ̃(ψ1, ψ2, ν1, ν2)
2. (15)

Proof. See Appendix C.3.

As mentioned in Section 3, the target parameter Ωj is scale sensitive, and rather than
comparing the magnitude of Ωj across different j’s, the variable importance is based on a test
for the hypothesis H : Ωj = 0. Using lemma 1, we have the following result:

Corollary 4. Under the same setup as in Corollary 3, we have under the null-hypothesis,
H0 : Ωj = 0, that

Ω̂CFj√
σ̂2,CFΩj

/n

D−→ N (0, 1).

Proof. Under the H0, Corollary 3 gives that

√
nΩ̂l,CFj

D−→ N (0, P ψ̃2
Ωj
)

and since √
σ̂2,CF
Ωl

j

P−→
√
Pψ̃2

Ωl
j

by lemma 1 and the continuous mapping theorem, an application of Slutsky’s theorem followed
by the delta method gives the result.
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4.3 Choice of nuisance parameter estimators

In construction of Ψ̂CF
l and Ω̂CFj we need estimators of the nuisance parameters Λ,Λc, π, τl.

For estimation of Ψ̂CF
l we further need an estimator of τd, and for estimation of Ω̂CFj we

further need an estimator Êjn . Estimators of Λ̂, Λ̂c, π̂, Ê
j
n can be chosen by any machine

learning methods of choice, where we will use Λ̂ to construct τ̂(x) = e−Λ̂(t|,1,x) − e−Λ̂(t|,0,x).
The estimator τ̂ uses Λ̂, estimated from the entire data, to predict S(t | a, x) for a = 0, 1
and it is termed the S-learner in the literature. Other methods of estimating τ̂ from initial
estimates of Λ of π are possible and an overview of such meta-learners are given in Xu et al.
(2023).

For estimation of τl, we consider a plug-in estimator utilizing the definition of the param-
eter:

τ̂l(x) = Ên(τ̂(X) | X−l = x−l)

where Ên is a regression of the predicted τ̂(X)’s onto X−l. Another possibility is to use the
meta-learner given by τ̂l(x) = Ên(φ̂(X) | X−l = x−l), since τl(x) = E(φ(X) | X−l = x−l).
This meta-learner is a version of the DR-learner (Kennedy, 2022b), if Ên and φ̂ are estimated
on different samples. Extending the analysis in Kennedy (2022b) to a survival setting might
provide theoretical guaranties of τ̂l based on the DR-learner, as opposed to the plug-in esti-
mator, but in testing we found that the plug-in estimator performed better. This is in line
with the recommendations given in Hines, Diaz-Ordaz, and Vansteelandt, 2022.

Estimation of τd = E(τ(X)) is a well-studied problem in the survival setting, and it is thus
possible to construct an estimator τ̂d with further theoretical guaranties compared to τ̂l. For
a thorough analysis of τd-estimation see Rytgaard et al. (2023) and Westling et al. (2023).
In these articles they construct estimators based on the EIF (3) and derive properties under
which such estimators are asymptotically linear with influence function given by the EIF. We
will not go into much detail here, but we briefly summarize the construction given in Westling
et al. (2023):

For estimators Λ̂, Λ̂c, π̂ following assumption A, we construct the following cross-fitted
estimator

τ̂CFd =

K∑

i=k

nk
n
Pknφ̂−k =

1

n

K∑

k=1

∑

i∈Tk
φ̂−k(Oi).

Theorem 3 in Westling et al., 2023 gives that τ̂CFd is asymptotically linear with influence
function given by ψ̃τd = φ − τd. Now, let Xn =

√
n(τ̂CFd − τd). Then Xn ⇝ X with X ∼

N (0, P ψ̃2
τd
) and Prohorov’s theorem (van der Vaart, 2000 theorem 2.4) gives ∥Xn∥ = Op(1).

Hence,
∥∥τ̂CFd − τd

∥∥ = n−1/2 ∥Xn∥ = op(n
−1/2), and corollary 2 applies.

Notice, however, that the estimation of Θ̂CF
d requires estimation of τ̂d,−k for each split k.

Thus, in order to use the convergence rate results above, we need to perform a nested type of
cross-fitting, such that τ̂d,−k is the cross-fitted estimator above but estimated using data in
V−k instead of the entire data. For estimation of Θd we have the following procedure:

1. Split the data uniformly at random into K1 subsamples Vk, k = 1, . . . ,K1, such that
O = ∪̇K1

k=1Vk.
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2. for each k estimate Λ̂, Λ̂c, π̂ using data in V−k and obtain τ̂−k and φ̂−k. For τd,−k-
estimation:

(a) Split V−k into K2 subsamples Vki , i = 1, . . . ,K2, such that V−k = ∪̇K2
i=1Vki .

(b) For each i = 1, . . . ,K2 estimate Λ̂, Λ̂c, π̂ using data in Vk−i and obtain φ̂k−i.

(c) Obtain the k′th estimate τ̂CFd,−k = 1
n−k

∑K2
i=1

∑
Oj∈Vk

i
φ̂k−i(Oj), where n−k is the

number of observations in V−k.

3. Obtain the estimate

Θ̂CF
d =

1

n

K∑

k=1

∑

i∈Tk

{
(φ̂−k(Oi)− τ̂CFd,−k)

2 − (φ̂−k(Oi)− τ̂−k(Xi))
2
}

Using this estimating scheme, the convergence rate assumption on τ̂CFd is automatically ful-
filled by assumption A and corollary 2 applies without further restrictions on τ̂d.

5 Simulation Study

5.1 Setup

We performed a simulation study to investigate the finite sample properties of the estimators
of Ψl and Ωj with and without cross-fitting in the survival setting. We generated data from
the following models:

Λ(t | A,X) = 2t0.0025 exp(−x1 −X2 − 0.3X3 + 0.1X4 −A(2− 0.5X1 − 0.3X2))

Λc(t | A,X) = 2t0.00025 exp(−0.3X1)

π(1 | X) =
1

1 + exp(−0.3X1 − 0.3X2)
,

where Xj , j = 1, . . . , 4, are i.i.d standard normally distributed. Note that Λ and Λc follow
Cox-models with baseline hazards given by Weibull hazards. The time-horizon is chosen as
t = 10 with the true values Ψ1 and Ω1 approximately 0.6907 and -0.1518, respectively, in the
survival setting.

The nuisance parameter estimators are chosen in different combinations listed below and
the performance of the target parameter estimators is compared between the different choices
of nuisance parameter estimators. In the following, we use a naming convention of the nuisance
choices in the formA-B whereA corresponds to the choice of Λ̂, Λ̂c and π̂, and B corresponds
to Ên (and Ê1

n in for Ω1-estimation). When generalized additive models (GAMs) are used,
it will be through the implementation given in the R-package mgcv with smoothing function
given by the default setting, thin plate regression splines. When random forests are used it
will be through the implementation given in the R-package rfsrc with hyperparameters given
by the default settings (which change based on the outcome type, see Ishwaran et al., 2023).

correct-GAM Λ̂ and Λ̂c are given by Breslow estimates based on correctly specified Cox
models, the propensity score is estimated by a correctly specified GLM and Ên (and
Ê1
n) is given by a GAM including all interactions.
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correct-RF Λ̂ and Λ̂c are given by Breslow estimates based on correctly specified Cox models,
the propensity score is estimated by a correctly specified GLM and Ên (and Ê1

n) is
estimated by a random forest.

RF-RF Λ̂, Λ̂c, π̂ and Ên (and Ê1
n) are all estimated by random (survival) forests.

RF-GAM Λ̂, Λ̂c and π̂ are estimated by random (survival) forest and Ên (and Ê1
n) is

estimated by a GAM.

Each nuisance setting is used to estimate Ψ̂1, Ψ̂
CF
1 , Ω̂1 and Ω̂CF1 , respectively. We usedK = 10

folds for the cross-fitted estimators. To separate the cross-fitted and non-cross-fitted estima-
tors we extend the nuisance parameter naming with a suffix C such that, e.g., RF-RF-CF
corresponds to the estimate Ψ̂CF

l or Ω̂CF1 using the nuisance estimators RF-RF . For estima-

tion of Ψ̂1, we consider four different sample sizes, n = 1000, 2000, 3000, 4000, and for each
setting we run N = 1000 simulations and calculate the corresponding estimators for each sim-
ulation. For estimation of Ω̂1 we consider four different sample sizes, n = 250, 500, 750, 1000.
The results are presented in the next subsections.

5.2 Results for Ψ1

5.2.1 Correctly specified λ, Λc and π

In Figure 1a, we see the sampling distributing of the estimators of Ψ1 under the different
choices for the nuisance estimator Ên and with and without cross-fitting. All other nuisances
estimators are correctly specified according to correct-GAM and correct-RF in the previ-
ous subsection. From Corollary 2 we know that the estimators based on cross-fitting should be
unbiased and asymptotically normal, even when using flexible nuisance estimators, which can
not be guaranteed for the corresponding estimators without cross-fitting. Indeed we see that
estimators based on GAM seem to follow a normal distribution around the true value, whereas
the estimator based on RF is severely biased without cross-fitting but much less so with. The
results of the simulations are presented in Table 1a. When GAM is used to estimate Ên,
the estimator seems to perform satisfactory according to Corollary 2 both with and without
cross-fitting. When RF is used for Ên, we get a huge bias without sampling splitting, as we
saw in Figure 1a, but when cross-fitting is used, there still seem to be some non-vanishing bias
inherent from the RF-estimation. From the standard error of the simulations corresponding
to correct-RF-CF , it looks as if the estimator is converging on

√
n-rate, which, with the

non-vanishing bias, results coverage decreasing with sample size. Since only τ̂l is based on
random forest, with all other nuisance estimators being based on correctly specified paramet-
ric models, this result suggests that assumption A2 is not fulfilled for τ̂l, which again can
possibly be attributed to the choice of hyperparameters used in the random forest.

5.2.2 λ, Λc and π estimated by Random Forest

In figure 1b we see the sampling distribution of the estimators for Ψl, where the nuisance
parameters λ, Λc and π are all estimated flexibly via RF. The estimators without cross-
fitting are seen to be severely biased as was the case with correctly specified λ, Λc and π.
Table 1b summarizes the results for the estimators using RF. Using RF to estimate Ên is
seen to introduce some non-vanishing bias, as in 1a, resulting in decreasing coverage. In the
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case of GAM-estimation for Ên, cross-fitting is able correctly de-bias the estimator giving
approximately nominal coverage.

5.3 Results for Ω1

5.3.1 Correctly specified λ, Λc and π

Figure 2a presents the sample distribution of the estimators of Ω1 with correctly specified
Λ, Λc and π for different choices for estimation of Ên and Ê1

n, with and without cross-
fitting. Compared to Ψ1-estimation, there is no severe shift in sample distribution between
the estimators. The estimator with RF and no cross-fitting is seen to have a slightly wider
distribution than the others, for which there is no noticeable difference. Table 2a gives the
results of the simulations, where the RF without cross-fitting is seen to generally have a
slightly larger bias and MSE than the others. Remarkably, compared to the Ψ1-estimation,
far fewer observations are needed for reliable estimation of Ω1. One thing to note is that
Corollary 3 is only guarantied to hold for the cross-fitted estimator, but since the estimator
is given as the ratio of two other estimators, it can happen that the bias introduced by
employing RF without cross-fitting roughly cancels in the ratio, which would explain why
the RF without cross-fitting is seen to perform reliably with approximately nominal coverage.
Indeed this is the case for the simulation study conducted here, as seen in Figure 3a and 4a
in the Appendix, where the sample distribution of the estimators of Γ1 and χ1 are shown.
Hence, we can not recommend RF without cross-fitting, as the cancellation of biases in the
ratio of Γ1 and χ1 are unlikely to occur generally.

5.3.2 λ, Λc and π estimated by Random Forest

Figure 2b shows the sample distribution of the estimators of Ω1 when RF is used for estimation
of λ, Λc and π. Here, the difference between the cross-fitted and non-cross-fitted estimators
are more noticeable. Interestingly, using cross-fitting seem to produce similar distributions,
regardless of whether RF og GAM was used for estimation of Ên and Ê1

n. Table 2b presents
the results of the simulation study. Generally, the bias seem to vanish with the sample size
(again, in the case of RF-RF, this might be a coincidence), but the coverage for the non-
cross-fitted estimators are far off, whereas cross-fitting seem to provide approximately nominal
coverage, even in relatively small samples.

6 Application to HIV data set

We apply the methods described in the previous sections to the AIDS Clinical Trial Group
Study 175 (Hammer et al., 1996). The data can be found in the R-package ACTG175 and
consists 2139 HIV patients who were randomized to one of four treatments: (1) zidovu-
dine (ZDV)(n=532), (2) zidovudine + didanosine (ZDV+ddI)(n=522), (3) zidovudine + zal-
citabine (ZDV+ZAL)(n=524), and (4) didanosine(n=561). Patient were followed from treat-
ment initiation until an event consisting of a decline in CD4 cell count greater than 50%,
disease progression to AIDS, or death, or end-of-follow-up. In line with Cui et al. (2023), we
define the treatment effect (comparing two treatments) to be given by the RMST at 1000 days
after treatment initiation, and we consider 12 baseline covariates for which we will analyse
the possible treatment effect heterogeneity explained by each of them. The covariates consist
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n method bias Ψ1 coverage SD mean SE MSE

1000 correct-GAM -0.0161 0.9620 0.0963 0.0958 0.0095
2000 -0.0120 0.9620 0.0640 0.0659 0.0042
3000 -0.0068 0.9340 0.0576 0.0535 0.0034
4000 -0.0048 0.9320 0.0478 0.0464 0.0023

1000 correct-GAM-CF 0.0230 0.9530 0.1030 0.1031 0.0111
2000 0.0107 0.9620 0.0657 0.0681 0.0044
3000 0.0094 0.9260 0.0588 0.0548 0.0035
4000 0.0082 0.9360 0.0484 0.0472 0.0024

1000 correct-RF -0.3349 0.0030 0.0759 0.0805 0.1179
2000 -0.3382 0.0000 0.0526 0.0548 0.1172
3000 -0.3364 0.0000 0.0422 0.0439 0.1149
4000 -0.3366 0.0000 0.0369 0.0380 0.1146

1000 correct-RF-CF 0.0483 0.9200 0.1068 0.1066 0.0137
2000 0.0381 0.9240 0.0698 0.0716 0.0063
3000 0.0381 0.8840 0.0613 0.0577 0.0052
4000 0.0371 0.8700 0.0518 0.0498 0.0041

(a) Correctly specified Λ, Λc and π

n method bias Ψ1 coverage SD mean SE MSE

1000 RF-RF -0.2438 0.0000 0.0384 0.0332 0.0609
2000 -0.2429 0.0000 0.0256 0.0235 0.0597
3000 -0.2404 0.0000 0.0220 0.0191 0.0583
4000 -0.2377 0.0000 0.0189 0.0165 0.0568

1000 RF-RF-CF 0.0469 0.9140 0.1575 0.1492 0.0270
2000 0.0353 0.9340 0.0967 0.0976 0.0106
3000 0.0304 0.9230 0.0780 0.0765 0.0070
4000 0.0318 0.9050 0.0661 0.0649 0.0054

1000 RF-GAM 0.0503 0.6360 0.0698 0.0453 0.0074
2000 0.0719 0.4260 0.0453 0.0324 0.0072
3000 0.0826 0.2310 0.0391 0.0263 0.0083
4000 0.0901 0.0980 0.0328 0.0227 0.0092

1000 RF-GAM-CF 0.0087 0.9460 0.1601 0.1521 0.0257
2000 -0.0051 0.9500 0.0883 0.0945 0.0078
3000 -0.0088 0.9440 0.0726 0.0739 0.0053
4000 -0.0097 0.9560 0.0601 0.0623 0.0037

(b) Flexible estimation of Λ, Λc and π

Table 1: Results of 1000 simulations of Ψ̂1 in the survival function setting with
varying nuisance estimators, with and without cross-fitting, across sample sizes n =
1000, 2000, 3000, 4000. The abbreviation of the methods should be read as follows: A-B-C,
where A corresponds to the nuisance estimators Λ, Λc and π, B corresponds to the nuisance
estimator Ên, and C corresponds to whether or not cross-fitting was used. Here, correct cor-
responds to correctly specified Cox and logistic regression, RF corresponds to Random Forest,
and GAM corresponds to a generalized additive model. The tables shows the bias, coverage,
empirical standard deviation (SD), mean estimated standard error (mean SE), and the mean
squared error (MSE).
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n method bias Ω1 coverage SD mean SE MSE

250 correct-GAM - 0.0011 0.934 0.0422 0.0408 0.0018
500 0.0011 0.945 0.0291 0.0283 0.0009
750 0.0009 0.952 0.0230 0.0231 0.0005

1000 0.0021 0.947 0.0203 0.0201 0.0004

250 correct-GAM-CF -0.0004 0.932 0.0438 0.0419 0.0019
500 0.0006 0.948 0.0291 0.0287 0.0008
750 0.0001 0.950 0.0231 0.0233 0.0005

1000 0.0012 0.948 0.0204 0.0202 0.0004

250 correct-RF -0.0041 0.946 0.0532 0.0544 0.0028
500 -0.0015 0.953 0.0378 0.0387 0.0014
750 -0.0020 0.955 0.0299 0.0317 0.0009

1000 0.0003 0.956 0.0265 0.0277 0.0007

250 correct-RF-CF -0.0012 0.936 0.0428 0.0414 0.0018
500 0.0006 0.945 0.0291 0.0283 0.0008
750 -0.0001 0.946 0.0229 0.0229 0.0005

1000 0.0015 0.947 0.0202 0.0199 0.0004

(a) Correctly specified Λ, Λc and π

n method bias Ω1 coverage SD mean SE MSE

250 RF-RF 0.0090 0.915 0.0363 0.0324 0.0014
500 0.0031 0.904 0.0265 0.0224 0.0007
750 0.0014 0.891 0.0217 0.0183 0.0005
1000 0.0013 0.897 0.0190 0.0158 0.0004

250 RF-RF-CF -0.0127 0.935 0.0548 0.0539 0.0032
500 -0.0047 0.946 0.0353 0.0355 0.0013
750 -0.0027 0.948 0.0287 0.0285 0.0008
1000 -0.0001 0.952 0.0242 0.0246 0.0006

250 RF-GAM 0.0244 0.740 0.0331 0.0245 0.0017
500 0.0135 0.747 0.0249 0.0168 0.0008
750 0.0092 0.775 0.0205 0.0137 0.0005
1000 0.0074 0.759 0.0181 0.0118 0.0004

250 RF-GAM-CF -0.0129 0.941 0.0558 0.0545 0.0033
500 -0.0060 0.949 0.0358 0.0365 0.0013
750 -0.0032 0.952 0.0285 0.0293 0.0008
1000 -0.0011 0.961 0.0241 0.0253 0.0006

(b) Flexible estimation of Λ, Λc and π

Table 2: Results of 1000 simulations of Ω̂1 in the survival function setting with varying nui-
sance estimators, with and without cross-fitting, across sample sizes n = 250, 500, 750, 1000.
The abbreveations of the methods are read as follows: A-B-C, where A corresponds to the
nuisance estimators Λ, Λc and π, B corresponds to the nuisance estimators Ên and Êjn, and
C corresponds to whether or not cross-fitting was used. Here, correct corresponds to cor-
rectly specified Cox and logistic regression, RF corresponds to Random Forest, and GAM
corresponds to a generalized additive model. The tables shows the bias, coverage, empirical
standard deviation (SD), mean estimated standard error (mean SE), and the mean squared
error (MSE).
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of 5 continuous variables, age, CD4 cell count, CD8 cell count, weight (kg), Karnofsky score,
and 7 binary variables, gender, race, hemophilia, homosexual activity, antivetroviral history,
symptomatic status, intravenous drug use history.

As the aim of the study was to compare monotherapy (ZDV or ddI) with combination
therapy (ZDV+ddI or ZDV + ZAL), we consider two comparisons: ddI vs ZDV+ddI and ZDV
vs ZDV+ZAL. We applied the cross-fitted TE-VIM and the best partially linear projection
estimators, with K = 10, described in Section 4, with all nuisance parameters estimated by
Random Forests as implemented in the R-package RandomForestSRC. For the TE-VIM, we
used the logit-transformed ζ̂CFl with an expit-back-transformation to obtain Ψl-estimates and
confidence intervals that respect the boundary Ψl ∈ [0, 1).

In Table 3 we see the results of estimators applied to the comparison of ddI vs ZDV+ddI.
For the TE-VIM (3a) we see that almost all of the covariates are given a TV-VIM measure of
exactly or close to 1, but with confidence interval from 0 to 1. In contrast, the results for the
best partially linear projection estimates give p-values ranging from 0.068 to 0.98. In both
cases we conclude that we can not identify any treatment effect heterogeneity.

In table 4 we see the results based on the comparison of ZDV vs ZDV+ZAl. Here the TE-
VIM estimates are ranging from 0.02 to 0.992 with cd8 having the largest estimate, but again,
all with a confidence interval ranging from 0 to 1. The results based on the best partially
linear projection give p-values in the range 0.007 to 0.953 with 3 significant p-values for cd8,
karnof, and cd4, respectively. Both measures ranks CD8 cell count as the most ”important”
in terms of explaining treatment heterogeneity, but with the TE-VIM having a confidence
interval of [0,1]. The results suggest that CD8 cell count, Karnofsky score and CD4 cell count
are important in explaining the treatment effect heterogeneity of ZDV vs ZDV+ZAl on RMST
at t = 1000 days after treatment initiation.

In comparing the results related to Ψl and Ωl, respectively, we see the difference in sample
sizes needed for providing meaningful estimates between the two measures, as indicated by
the simulation study in Section 5. With confidence intervals of [0,1], the estimates of Ψl do
not give any inside into the potential heterogeneity in the effect of the treatments considered
here, whereas the estimates of Ωj were able to find significant treatment effect modification
for some of the covariates.

7 Discussion

In this paper, we have extended the treatment effect variable importance measures introduced
by Hines, Diaz-Ordaz, and Vansteelandt, 2022 to a time-to-event setting allowing for censored
data. We have constructed estimators for the TE-VIMs Θl and Ψl using two different CATE
functions and given assumptions under which they are seen to be asymptotically normal and
locally efficient. The assumptions require that the nuisance estimators τ̂ and τ̂l are both
consistent at n−1/4-rate, allowing for the use of machine-learning to estimate the nuisance
parameters. In the simulation study we saw that the estimators without cross-fitting were
heavily biased when using data adaptive nuisance estimators, such as random forest, but that
the cross-fitting was mostly able to correct for the bias introduced by the flexible nuisance esti-
mation. Importantly, it seems that the main challenge lies in choosing Ên appropriately, since
using random forest (with default hyperparameters) was seen to introduce a non-vanishing
bias, whereas using GAM for Ên-estimation gave correct coverage even when other nuisance
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covariate Ψj lower upper

age 1.000 0.000 1.000
race 1.000 0.000 1.000
cd4 1.000 0.000 1.000
wtkg 1.000 0.000 1.000
hemo 1.000 0.000 1.000
gender 1.000 0.000 1.000
homo 1.000 0.000 1.000
symptom 0.997 0.000 1.000
drugs 0.994 0.000 1.000
karnof 0.993 0.000 1.000
cd8 0.814 0.007 1.000
str2 0.028 0.000 1.000

(a) Heterogeneity explained by Ψj

covariate Ωj SE p-value

wtkg -2.383 1.308 0.068
cd8 0.045 0.028 0.109
homo -67.846 42.469 0.110
drugs 55.792 36.719 0.129
gender 85.035 56.927 0.135
hemo -75.294 58.462 0.198
age 2.157 1.754 0.219
cd4 -0.114 0.113 0.312
karnof 1.472 2.332 0.528
race 8.354 28.432 0.769
symptom -2.486 40.178 0.951
str2 -0.652 26.378 0.980

(b) Heterogeneity explained by Ωj

Table 3: Estimation of variable importance on the treatment effect of zidovudine + didanosine
(ZDV+ddI) vs didanosine (ddI) on RMST. The data is from the study Hammer et al. (1996)
and the outcome is time to an event consisting of a decline in CD4 cell count greater than
50%, disease progression to AIDS, or death. The treatment effect is defined as the differ-
ence in RMST at 1000 days after treatment initiation between ZDV+ddI and ZDZ. In table
(a), the variable importance is estimated by the expit-transformation of ζ̂CFl , for l ranging
over the single covariates, with corresponding confidence intervals. In table (b), the variable
importance is estimated by Ω̂CFj , for j ranging over the single covariates.

parameters were estimated with random forest. One possible avenue to leverage the choice
of RF-hyperparameters could be to replace the current cross-fitted one-step estimators with
targeted-maximum-likelihood (TMLE). Li et al. (2023) constructed a TMLE for the TE-VIMs
of Hines, Diaz-Ordaz, and Vansteelandt (2022), and though the remainder term still calls for
initial τ̂l estimators that are consistent at n−1/4 rate, the estimators are seen to have bet-
ter finite sample performance compared to the one-step estimator. Thus, one may pursue a
TMLE based on the EIF’s derived in this paper with the same asymptotic properties as Θ̂CF

l

under assumption A, to possibly achieve better finite sample performance. We leave this for
future work.

Furthermore, we have derived a new variable importance measure based on the ideas from
Vansteelandt and Dukes (2022a) as a best partially linear projection of the CATE-function.
The estimand has the interpretation of the real parameter in a partially linear model of the
CATE function, but it continues to serve as a measure of heteoregeneity when the model fails
to hold. One consequence, though, is that it could happen that Ωj = 0 even when Xj explains
some of the treatment effect, as seen by plugging β = 0 into

τ(x) = βxj + w(x−j) +R(xj , x−j).

In contrast to the estimators for Ψl, the estimators of Ωj was seen to perform well in relatively
small sample sizes compared to the sample sizes needed for reliable estimation of Ψl, even
when using Random Forest for all nuisance parameter estimation. This was also evident in
the practical example, where the estimates of Ψl all had confidence intervals form 0 to 1,
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covariate Ψj lower upper

cd8 0.992 0.000 1.000
karnof 0.368 0.000 1.000
symptom 0.348 0.000 1.000
gender 0.197 0.001 0.982
str2 0.117 0.000 1.000
age 0.088 0.000 1.000
race 0.052 0.000 1.000
homo 0.037 0.000 1.000
hemo 0.029 0.000 1.000
wtkg 0.026 0.000 1.000
cd4 0.023 0.000 1.000
drugs 0.020 0.000 1.000

(a) Heterogeneity explained by Ψj

covariate Ωj SE p-value

cd80 0.093 0.035 0.007
karnof 6.446 3.024 0.033
cd40 -0.288 0.136 0.034

symptom -55.853 47.467 0.239
drugs 48.365 50.376 0.337
wtkg 0.971 1.092 0.374
age -0.985 1.702 0.563
race -18.520 37.165 0.618

gender 24.795 54.105 0.647
homo -19.473 52.341 0.710
hemo 5.463 77.456 0.944
str2 -1.719 29.241 0.953

(b) Heterogeneity explained by Ωj

Table 4: Heterogeneity in the effect of zidovudine + zalcitabine (ZDV+zal) vs zidovudine
(ZDV) on RMST. Estimation of variable importance on the treatment effect of ZDV+zal vs
ZDV on RMST. The data is from the study Hammer et al. (1996) and the outcome is time
to an event consisting of a decline in CD4 cell count greater than 50%, disease progression
to AIDS, or death. The treatment effect is defined as the difference in RMST at 1000 days
after treatment initiation between ZDV+zal and ZDV. In table (a), the variable importance
is estimated by the expit-transformation of ζ̂CFl , for l ranging over the single covariates, with

corresponding confidence intervals. In table (b), the variable importance is estimated by Ω̂CFj ,
for j ranging over the single covariates.

essentially rendering them useless as measures of variable importance, but where the p-values
associated with the hypothesis H : Γj = 0 provided significant findings.
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(b) Flexible estimation of Λ, Λc and π

Figure 1: Sampling distribution of estimators of Ψ1 in the survival function setting
with varying nuisance estimators, with and without cross-fitting, across sample sizes n =
1000, 2000, 3000, 4000. The abbreviation of the methods should be read as follows: A-B-C,
where A corresponds to the nuisance estimators Λ, Λc and π, B corresponds to the nuisance
estimator Ên, and C corresponds to whether or not cross-fitting was used. Here, correct cor-
responds to correctly specified Cox and logistic regression, RF corresponds to Random Forest,
and GAM corresponds to a generalized additive model
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(a) Correctly specified Λ, Λc and π
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(b) Flexible estimation of Λ, Λc and π

Figure 2: Sampling distribution of estimators of Ω1 in the survival function setting with
varying nuisance estimators, with and without cross-fitting, across sample sizes n =
250, 500, 750, 1000. The abbreveations of the methods are read as follows: A-B-C, where
A corresponds to the nuisance estimators Λ, Λc and π, B corresponds to the nuisance estima-
tors Ên and Êjn, and C corresponds to whether or not cross-fitting was used. Here, correct
corresponds to correctly specified Cox and logistic regression, RF corresponds to Random
Forest, and GAM corresponds to a generalized additive model.
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A On projection parameters

In related research, other authors have studied a variable importance measure that is closely
related to our projection parameter, namely the so-called ”best linear predictor/projection”
(Semenova and Chernozhukov, 2021, Van der Laan, 2006, Cui et al., 2023, Boileau et al.,
2023). In the case of continuous outcome, Semenova and Chernozhukov (2021) provide the-
oretical results via debiased machine-learning (see e.g. Chernozhukov et al. (2018)) and Van
der Laan (2006) provide theoretical results based on semiparametric efficiency theory. In both
cases they consider a target function/parameter, which is then approximated by a projection
of the target function onto a working model indexed by a euclidean parameter. This ap-
proach is different from ours in that we seek interpretable summary statistics of our target
function (CATE) through a projection, rather than estimating an interpretable target param-
eter through a projection. The approaches given by Cui et al. (2023) and Boileau et al. (2023)
are more akin to ours. In the former, they provide a procedure for estimation of the best linear
projection of τ in a survival context but without theoretical results, where the latter considers
the best linear projection of τ onto a linear model, in the case where EXi = 0, i = 1, . . . , d,
and derives an explicit parameter that is similar to ours, for which they provide an estimation
procedure based on semiparametric efficiency theory. All of them consider a projection of τ
onto a working model index by a euclidean parameter. In contrast, our projection parameter
is defined through a projection of τ onto a subspace indexed by (β,w), where β is a real-valued
parameter and w is a measurable function of d − 1 variables. Since the space indexed by a
euclidean parameter is a subspace of the space we consider, the error made from projecting τ
onto a subspace is smaller in our setting compared to the best linear projection.

The above discussion will be clarified below. First, we state a result showing that our
projection parameter is in fact the desired projection.

Let H be the Hilbert space of measurable functions with finite variance endowed with the
covariance inner product. We have the following result:

Lemma A.1. The projection of τ ∈ H onto the subspace U = {u ∈ H : u(x) = βxj +
w(x−j), β ∈ R, Pw2 <∞} is given by

Π(τ | U) = β∗Xj + w∗(X−j),

where
β∗ = Ωj and w∗(X−j) = E(τ(X) | X−j)− ΩjE(Xj | X−j).

Proof. We want to find β∗ and w∗ such that

(β∗, w∗) = argmin
β,w

E{τ(X)− βXj − w(X−j)}2.

Observe that for any two measurable functions a : X → R and b : X−j → R with finite
variance, we have

E([a(X)− b(X−j)]2 | X−j) = [E(a(X) | X−j)− b(X−j)]
2 + var(a(X) | X−j).

Hence

E{τ(X)− βXj − w(x−j)}2 =E
{
[E(τ(X)− βXj | X−j)− w(X−j)]2

}

+ E{var(τ(X)− βXj | X−j)}.
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The second term on the right hand side of the latter display does not depend on w, and since
the integrand in the first term is positive, the expression is minimized in w when the first
term is equal to zero. This implies

w∗(x−j) = E(τ(X)− βXj | X−j = x−j).

For β, observe that

d

dβ
E{τ(X)− βXj − w(X−j)}2 = −2E{Xj [τ(X)− βXj − w(x−j)]} = 0,

together with w∗ implies

E{Xj [τ(X)− βXj − E(τ(X)− βXj | X−j)]} = 0,

and therefore

β∗ =
E{cov(τ(X), Xj | X−j)}

E{var(Xj | X−j)}
= Ωj

and
w∗(X−j) = E(τ(X) | X−j)− ΩjE(Xj | X−j).

Next, we consider the best linear projection of τ and contrast it with the best partially
linear projection. To that end, we write the CATE function as

τ(x) = α+ γTx+Rα,γ(x)

for α ∈ R and γ ∈ Rd and let

(α∗, γ∗) = argmin
α,γ

E{Rα,γ(X)2} = argmin
α,γ

E{[τ(X)− α− γTX]2}.

We define the remainder corresponding to the best partially linear projection as Rβ,w(x) such
that

(β∗, w∗) = argmin
β,w

E{Rβ,w(Xj , X−j)2} = argmin
β,w

E{[τ(X)− βXj − w(X−j)]2}.

Since the space of linear functions is a subspace of the space of partially linear functions, U ,
we have that α∗ + γ∗Tx ∈ U . By the projection theorem for Hilbert spaces (see e.g. Tsiatis,
2006, Theorem 2.1), the distance between τ and the projection onto U is smaller than the
distance between τ and any other function in U . Hence, by Lemma A.1,

∥Rβ∗,w∗∥ ≤ ∥Rα∗,γ∗∥ .

The result shows that the error made from model misspecification is smaller in the best
partially linear projection compared to the best linear projection. As the dimension of X
grows, the difference in the errors become larger (since the linear restriction of X−j becomes
increasingly strict compared to w(X−j)), and the best partially linear projection is thus better
suited as a measure of importance of a single covariate.
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B Deriviation of efficient influence functions

Here we derive the efficient influence functions from theorem 1 and 3. We will first derive the
Gateaux derivatives of τ , τs and Ej(x), respectively, which are then used in the derivations
of the EIF’s through the chain rule. In the following we use subscripts P to underline the
dependence on P . Let the parametric submodel be given by Pϵ = Qϵ+ (1− ϵ)P ∈ M, where
Q is the Dirac measure, and define the operator ∂ϵ =

d
dϵ

∣∣
ϵ=0

such that ∂ϵψ(Pϵ) =
d
dϵψ(Pϵ)

∣∣
ϵ=0

for some mapping ψ : M → R. In the following let

g(A,X) =

(
1(A = 1)

π(1 | X)
− 1(A = 0)

π(0 | X)

)

and

H(u, t, a, x) =

∫ t

u
S(u | a, x) du,

and we write τ = τP to denote τ under distribution P .

Lemma B.1. The Gateaux derivative of τ(x) is given by

∂ϵSPϵ(t | 1, x)− SPϵ(t | 0, x) =
1(X = x)

f(x)
g(A, x)

∫ t

0

−S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)

in the survival functions setting and

∂ϵ

∫ t∗

0
SPϵ(t | 1, x)−

∫ t

0
SPϵ(t | 0, x) dt

=
1(X = x)

f(x)
g(A, x)

∫ t

0

−H(u, t, a, x)

S(u | a, x)Sc(u | a, x) dM(u | a, x),

in the RMST setting.

Proof. We start by calculating the Gateaux derivative of the conditional cumulative haz-
ard function Λ(t | a, x), which is also given in, e.g, the supplementary material of Mar-
tinussen and Stensrud (2023), but included here for completeness. Let P (T̃ ≥ s, a, x) =∑

δ=0,1

∫∞
s P (ds, δ, a, x) and note that P (T̃ ≥ s | a, x) = S(s | a, x)Sc(s | a, x) because of

independent censoring. Then

∂ϵΛϵ(t | a, x)

=

∫ t

0
∂ϵ
Pϵ(ds,∆ = 1, a, x)

Pϵ(T̃ ≥ s, a, x)

=

∫ t

0

Q(ds,∆ = 1, a, x)− P (ds,∆ = 1, a, x)

P (T̃ ≥ s, a, x)

−
∫ t

0


∑

δ=0,1

1(T̃ ≥ s, δ, a, x)− P (T̃ ≥ s, δ, a, x)


 P (ds,∆ = 1, a, x)

P (T̃ ≥ s, a, x)2

=
1(A = a)1(X = x)

π(a | x)f(x)

{∫ t

0

1

P (T̃ ≥ s | a, x)
dN(s)−

∫ t

0

1(T̃ ≥ s)

P (T̃ ≥ s | a, x)
dΛ(s | a, x)

}

=
1(A = a)1(X = x)

π(a | x)f(x)

∫ t

0

1

S(s | a, x)Sc(s | a, x)
dM(s | a, x).
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Consider the survival function setting τ(x) = e−Λ(t|,1,x) − e−Λ(t|,0,x). A simple application
of the chain rule gives

∂ϵτPϵ(x) =
1(X = x)

f(x)
g(A, x)

∫ t

0

−S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x),

which gives the first claim. Now, consider the RMST setting,

τ(x) =

∫ t

0
S(u | 1, x) du−

∫ t

0
S(u | 0, x) du.

Again, the chain rule gives

∂ϵ

∫ t

0
SPϵ(s | 1, x) ds−

∫ t

0
SPϵ(t | 0, x) ds

=
1(X = x)

f(x)
g(A, x)

∫ t

0

−H(u, t, a, x)

S(u | a, x)Sc(u | a, x) dM(u | a, x)

where

H(u, t, a, x) =

∫ t

u
S(s | a, x) ds,

which gives the second claim.

The next result is from Hines, Diaz-Ordaz, and Vansteelandt (2022). The result is stated
in equation (4) in their Appendix.

Lemma B.2 (Hines, Diaz-Ordaz, and Vansteelandt, 2022). Let gP (X) denote some func-
tional of P . Then

∂ϵ EPϵ(gPϵ(X) | X−l = x−l)

=
1(X−l = x−l)

f(x−l)
[gP (x)− E(gP (X) | X−l = x−l)] + EP (∂ϵgPϵ(X) | X−l = x−l).

Lemma B.3. The Gateaux derivative of τl(x) is given by

∂ϵ EPϵ(τPϵ(X) | X−l = x−l)

=
1(X−l = x−l)
fx−l

(x−l)

(
τ(x)− τl(x) + g(A,X)

∫ t

0

−S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)
)

in the survival setting and

∂ϵ EPϵ(τPϵ(X) | X−l = x−l)

=
1(X−l = x−l)
fx−l

(x−l)

(
τ(x)− τl(x) + g(A,X)

∫ t

0

−H(u, t, a, x)

S(s | A, x)Sc(s | A, x)
dM(s | A, x)

)

in the RMST setting.

Proof. We note that for any functional gP (X) with Gateaux derivative 1(X=x)
f(x) v(O) for some

function v : O → R we have

EP (∂ϵgPϵ(X) | X−s = x−s) =
1(X−s = x−s)

f(x−s)
v(O).

Let gP (x) = τ(x). An application lemma B.2 followed by an application of lemma B.1 gives
the result.
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B.1 Proof of Theorem 1

EIF in survival setting

Consider the survival function setting, τ(x) = exp(−Λ(t | A = 1, x))− exp(−Λ(t | A = 0, x)).
Lemma B.1 gives the Gateaux derivative of τ from which we can calculate the EIF’s of
var(τ(X)) and var(τl(X)) by simple applications of the chain rule.

∂ϵ varPϵ(τPϵ(X))

=

∫
∂ϵ(τPϵ(X)− E τPϵ(X))2 dPϵ

=(τP (X)− E τP (X))2 −
∫
(τP (X)− E τP (X))2 dP +

∫
∂ϵ(τPϵ(X)− E τPϵ(X))2 dP

=(τP (X)− E τP (X))2 − var(τ(X)) +

∫
2(τP (X)− E τP (X))∂ϵ(τPϵ(X)− E τPϵ(X)) dP

=(τP (X)− E τP (X))2 − var(τ(X)) +

∫
2(τP (X)− E τP (X))∂ϵτPϵ(X) dP

=(τP (X)− E τP (X))2 − var(τP (X))

+ 2(τP (X)− E τP (X))g(A,X)

∫ t

0

−S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)

= ψ̃var(τ(X))

Analogously we find the EIF of var(τl(X)) by use of the Gateaux derivative of τl from lemma
B.3:

∂ϵ varPϵ(τs,Pϵ(X))

=

∫
∂ϵ(τs,Pϵ(X)− E τs,Pϵ(X))2 dPϵ

=(τl(X)− E(τ(X)))2 − var(τ(X))

+ 2(τl(X)− E(τ(X)))

(
τ(x)− τl(x) + g(A,X)

∫ t

0

−S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)
)

=ψ̃var(τl(X))

noting that E τl(X) = E τ(X). From the two EIF’s we have that the EIF of Θl is given by
their difference:

ψ̃Θl
= ψ̃var(τ(X)) − ψ̃var(τl(X)) (16)

and the EIF of Ψl is given by

Φl(O) =
1

var(τ(X))

(
ψ̃Θl

(O)−Ψlψ̃var(τ(X))(O)
)
. (17)

EIF in restricted mean setting

Let τ(x) =
∫ t∗
0 S(t | 1, x) dt−

∫ t∗
0 S(t | 0, x) dt. Since the structure of the Gateaux derivatives
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of τ and τl, from lemma B.1 and B.3, is identical to the survival case with H(u, t, a, x) re-
placing S(t | a, x), the calculations from the survival function setting apply and we have the
EIF’s of Θl and Ψl are given by (16) and (17), respectively with

ψ̃var(τ(X)) =(τP (X)− E τP (X))2 − var(τP (X))

+ 2(τP (X)− E τP (X))g(A,X)

∫ t

0

−H(u, t∗, A, x)
S(u | A, x)Sc(u | A, x) dM(u | A, x)

and

ψ̃var(τl(X))

=(τl(X)− E(τl(X)))2 − var(τ(X))

+ 2(τl(X)− E(τl(X)))

(
τ(x)− τl(x) + g(A,X)

∫ t

0

−H(u, t∗, A, x)
S(u | A, x)Sc(u | A, x) dM(u | A, x)

)

B.2 Proof of Theorem 3

Let gP (X) = Xj . Lemma B.2 then gives

∂ϵ EPϵ(Xj | X−j) =
1(X−j = x−j)

f(x−j)
(Xj − E(Xj | X−j)).

It follows immediately that the EIF of χj is given by

∂ϵχj(Pϵ)

=∂ϵ EPϵ{Xj − EPϵ(Xj | X−j)}2

=(Xj − E(Xj | X−j))2 − χj(P )

− 2

∫
[xj − E(Xj | X−j = x−j)]

1(X−j = x−j)
f(x−j)

[Xj − E(Xj | X−j = x−j)]PXj ,X−j (d(xj , x−j))

=(Xj − E(Xj | X−j))2 − χj(P )

− 2[Xj − E(Xj | X−j)]
∫
[xj − E(Xj | X−j)]PXj |X−j=x−j

(dxj)

=(Xj − E(Xj | X−j))2 − χj(P )

=ψ̃χj .

For the derivation of the EIF of Γj we let φ denote the uncentered EIF of the ATE regardless
of whether we consider the survival function setting or the RMST setting. Hence, by lemma
B.1, we write the Gateaux derivative of the CATE function as

∂ϵτPϵ(x) =
1(X = x)

f(x)
(φ(O)− τ(x)),

and, by lemma B.3, the Gateaux derivative of τ{j} as

∂ϵτ{j},Pϵ
(x) =

1(X−j = x−j)
f(x−j)

(φ(O)− E(τ(X) | X−j)).
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Observe that

Γj =E{cov(τ(X), Xj | X−j)}

=E{E([τ(X)− E(τ(X) | X−j)][Xj − E(Xj | X−j)] | X−j)}

=E{E(τ(X)[Xj − E(Xj | X−j)] | X−j)− E(τ(X) | X−j) E(Xj − E(Xj | X−j) | X−j)}

=E{τ(X)Xj} − E{E(τ(X) | X−j) E(Xj | X−j)},

and that the EIF of Γj is given by

∂ϵΓj(Pϵ) =∂ϵ
{
EPϵ{τPϵ(X)Xj} − EPϵ{EPϵ(τPϵ(X) | X−j) EPϵ(Xj | X−j)}

}

=τ(X)Xj − E{τ(X)Xj}+Xj [φ(O)− τ(X)]

− E(τ(X) | X−j) E(Xj | X−j) + E{E(τ(X) | X−j) E(Xj | X−j)}

− ∂ϵ E{EPϵ(τPϵ(X) | X−j) E(Xj | X−j)} − ∂ϵ E{E(τ(X) | X−j) EPϵ(Xj | X−j)}

=τ(X)Xj − E{τ(X)Xj}+Xj [φ(O)− τ(X)]

− E(τ(X) | X−j) E(Xj | X−j) + E{E(τ(X) | X−j) E(Xj | X−j)}

− [φ(O)− E(τ(X) | X−j)] E(Xj | X−j)− E(τ(X) | X−j)[Xj − (Xj | X−j)]

=φ(O)[Xj − E(Xj | X−j ]− E(τ(X) | X−j)[Xj − E(Xj | X−j)]− Γj

=[φ(O)− E(τ(X) | X−j)][Xj − E(Xj | X−j ]− Γj

=ψ̃Γj

The EIF of Ωj follows by an application of the chain rule.

C Proofs of asymptotic results

The proofs of Theorem 2 and 4 follow the same recipe. The strategy is based on an expansion
of the target parameter estimator in question as described in Kennedy (2022a), and we will
give a short recap of the general idea. In the following, let ψ(P ) denote a generic target
parameter with EIF given by ψ̃P = φP − ψ(P ), i.e., the EIF is linear in ψ(P ). Define the
corresponding cross-fitted one-step estimator

ψ̂CF =
K∑

k=1

nk
n
PknφP̂k

,

where P̂−k is an estimate of P obtained from V−k. Consider the following expansion of PknφP̂−k
.

PknφP̂−k
= Pknψ̃ + (Pkn − P )(φP̂−k

− φP ) + PφP̂−k
− ψ(P ).
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Given the above expansion, we obtain the decomposition

ψ̂CF − ψ(P ) = Pnψ̃ +
K∑

k=1

nk
n
Pkn(P

k
n − P )(φP̂−k

− φP )

︸ ︷︷ ︸
empirical process term

+
K∑

k=1

nk
n
P (φP̂−k

− ψ(P ))

︸ ︷︷ ︸
remainder term

.

By Lemma 2 in the supplementary material in Kennedy et al. (2020), the empirical pro-

cess term is op(n
−1/2) if

∥∥∥φP̂−k
− φP

∥∥∥ = op(1) for each k. The remainder term is op(n
−1/2) if

PφP̂−k
−ψ(P ) = op(n

−1/2) for each k by the continuous mapping theorem, since nk
n

P→ 1
K . This

is essentially Proposition 2 in Kennedy (2022a). Hence, the statements in Theorem 2 and The-

orem 4 follow, if we can show that
∥∥∥φP̂−k

− φP

∥∥∥ = op(1) and that P (φP̂−k
)−ψ(P ) = op(n

−1/2)

for the corresponding estimators. In the following, we drop the dependence on k to ease no-
tation.

We start by stating two results related to the empirical process term and remainder term
for the ATE, which will come in handy in the proofs of Theorem 2 and Theorem 4. The
results are essentially found in Westling et al. (2023) for the survival function setting (albeit,
stated slightly differently), but we repeat them here for completeness and extend them to the
RMST setting.

Lemma C.1. Let φ be given as in 4 for the survival function setting and as in 5 in the RMST
setting. Under assumption A1 and A4, P{φ(ν̂)− τ} = op(n

−1/2).

Proof. The result for the survival function setting is proved in Westling et al. (2023) and
Rytgaard et al. (2023). We include the computations for completeness and extend it to the
RMST case.

Survival Case

Let τa(x) = S(t | A = a,X = x) such that

φ(ν̂)− τ = φ1(ν̂)− τ1 − (φ0(ν̂)− τ0),

where φa(ν̂) is given in (4). Thus, to bound P{φ(ν̂)− τ}, we only need to derive a bound for
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P{φa(ν̂)− τa}. In the following we consider the nuisance estimates fixed.

E{φa(ν̂)(O)− τa(X)}
=E{E(φa(ν̂)(O)− τa(X) | A = a,X)}

=E

{
Ŝ(t |, A = a,X)− S(t |, A = a,X)− 1(A = a)Ŝ(t | A,X)

π̂(a | X)

×
(∫ t

0

E(dN(s) | A = a,X)

Ŝ(s | A,X)Ŝc(s | A,X)
−
∫ t

0

E(1(T̃ ≥ t) | A = a,X) dΛ̂(s | A,X)

Ŝ(s | A,X)Ŝc(s | A,X)

)}

=E
{
Ŝ(t |, A = a,X)− S(t |, A = a,X)

− 1(A = a)Ŝ(t | A,X)

π̂(a | X)

∫ t

0

S(s | A,X)Sc(s | A,X)

Ŝ(s | A,X)Ŝc(s | A,X)
d
[
Λ(s | A,X)− Λ̂(s | A,X)

]}
. (18)

Now, consider the survival function difference above. Using Duhamel’s equation (Gill and
Johansen, 1990) we have

Ŝ(t | a, x)− S(t | a, x) =
∫ t

0

S(s | a, x)
Ŝ(s | a, x)

d
[
Λ(s | a, x)− Λ̂(s | a, x)

]
Ŝ(t | a, x).

Plugging this into (18) yields

E{φ̂a(O)− τa(X)}

=E

{∫ t

0

(
1− π(a | X)Sc(s | a,X)

π̂(a | X)Ŝc(s | a,X)

)
S(s | a,X)

Ŝ(s | a,X)
Ŝ(t | a,X) d

[
Λ(s | a,X)− Λ̂(s | a,X)

]}

=op(n
−1/2)

by assumption A4.

RMST case

Now consider the case where τ(x) =
∫ t∗
0 S(t | 1, x) dt −

∫ t∗
0 S(t | 0, x) dt. As in the survival

setting we define

τa(x) =

∫ t∗

0
S(t | a, x) dt

and

φa(O) = τa(X)− 1(A = a)

π(a | x)

∫ t∗

0

H(u, t, A,X)

S(s− | A,X)SC(s− | A,X)
dM(s | A,X).
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By derivations analogous to (18) we have

E{φ̂a(O)− τ(X)}
= E{E(φ̂a(O)− τ(X) | A = a,X)}

= E

{∫ t

0
Ŝ(s | a,X)− S(s | a,X) ds

− π(a | X)

π̂(a | X)

∫ t

0

Ĥ(s, t a, x)S(s | a,X)Sc(s | a,X)

Ŝ(s | a,X)Ŝc(s | a,X)
d
[
Λ(s | a,X)− Λ̂(s | a,X)

]}

= E

{∫ t

0

∫ s

0

S(u | a,X)

Ŝ(u | a,X)
d
[
Λ(u | a,X)− Λ̂(u | a,X)

]
Ŝ(s | a,X) ds

− π(a | X)

π̂(a | X)

∫ t

0

Ĥ(s, t a, x)S(s | a,X)Sc(s | a,X)

Ŝ(s | a,X)Ŝc(s | a,X)
d
[
Λ(s | a,X)− Λ̂(s | a,X)

]}

= E

{∫ t

0

Ĥ(u, t | a,X)S(u | a,X)

Ŝ(u | a,X)
d
[
Λ(u | a,X)− Λ̂(u | a,X)

]

− π(a | X)

π̂(a | X)

∫ t

0

Ĥ(s, t a, x)S(s | a,X)Sc(s | a,X)

Ŝ(s | a,X)Ŝc(s | a,X)
d
[
Λ(s | a,X)− Λ̂(s | a,X)

]}

= E

{∫ t

0

Ĥ(s, t | a,X)S(s | a,X)

Ŝ(s | a,X)

(
1− Sc(s | a,X)π(a | X)

Ŝc(s | a,X)π̂(a | X)

)
d
[
Λ(u | a,X)− Λ̂(u | a,X)

]}

= op(n
−1/2)

by assumption A4. The third equality follows from Duhamel’s equation.

Next we have a lemma, which is essentially given in Westling et al. (2023) (lemma 3 in
their supplementary material) in the survival function setting, though our assumptions are
stated slightly different. We include the proof for completeness and extend the result to the
RMST setting.

Lemma C.2. Let φ be given as in (4) for the survival function setting and as in (5) for the
RMST setting. Under assumption A1, A2 and A5 it holds that ∥φ(ν̂)− φ(ν)∥ = op(1).

Proof. Observe that
∥φ̂− φ∥ ≤ ∥φ̂1 − φ1∥+ ∥φ̂0 − φ0∥

so that we only need to focus on ∥φ̂a − φa∥. We start deriving a bound in the survival setting
and then proceed to the RMST setting.

Survival function setting
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Consider the decomposition

φ̂a(O)− φa(O)

=(τ̂(X)− τ(X))−
(
1(A = a)

π̂(a | X)

∫ t

0

Ŝ(t | A,X)

Ŝ(s | A,X)Ŝc(s | A,X)
dM̂(s | A,X)

− 1(A = a)

π(a | X)

∫ t

0

S(t | A,X)

S(s | A,X)Sc(s | A,X)
dM(s | A,X)

)

=(τ̂(X)− τ(X))

− 1(A = a)

(∫ t

0

Ŝ(t | a,X)

Ŝ(s | a,X)ĝ(s | a,X)
− S(t | a,X)

S(s | a,X)g(s | a,X)
dN(s)

)

− 1(A = a)

(∫ t

0

Ŝ(t | a,X)1(T̃ ≥ s)

Ŝ(s | a,X)ĝ(s | a,X)
Λ̂(ds | a,X)−

∫ t

0

S(t | a,X)1(T̃ ≥ s)

S(s | a,X)g(s | a,X)
Λ(ds | a,X)

)
.

(19)

We need to bound each term in the above expression (separated by parentheses) individually.
For the first term, A2 gives that ∥τ̂ − τ∥ = op(1). For the second term we have for almost all x

1(A = a)

(∫ t

0

Ŝ(t | a, x)
Ŝ(s | a, x)

(
1

ĝ(s | a, x) −
1

g(s | a, x)

)

− 1

g(s | a, x)

(
Ŝ(t | a, x)
Ŝ(s | a, x)

− S(t | a, x)
S(s | a, x)

)
dN(s)

)2

≤ 2

(∫ t

0

1

ĝ(s | a, x) −
1

g(s | a, x) dN(s)

)2

+ 2η−2

(∫ t

0

Ŝ(t | a, x)
Ŝ(s | a, x)

− S(t | a, x)
S(s | a, x) dN(s)

)2

≤ 2η−4

{
sup
s≤t

|ĝ(s | a, x)− g(s | a, x)|
}2

+ 4η−2

(∫ t

0

1

Ŝ(s | a, x)

(
Ŝ(t | a, x)− S(t | a, x)

)
dN(s)

)2

+ 4η−2

(∫ t

0
S(t | a, x)

(
1

Ŝ(s | a, x)
− 1

S(s | a, x)

)
dN(s)

)2

≤ 2η−4

{
sup
s≤t

|ĝ(s | a, x)− g(s | a, x)|
}2

+ 4η−4
(
Ŝ(t | a, x)− S(t | a, x)

)2

+ 4η−4

{
sup
s≤t

∣∣∣Ŝ(s | a, x)− S(s | a, x)
∣∣∣
}2

≤ 2η−4

{
sup
s≤t

|ĝ(s | a, x)− g(s | a, x)|
}2

+ 8η−4

{
sup
s≤t

∣∣∣Ŝ(s | a, x)− S(s | a, x)
∣∣∣
}2

.

which, together with A5, shows that the L2(P ) norm of the second term converges in proba-
bility to zero. For the third term in (19), we use the same technique as described in the proof
of lemma 3 in Westling et al. (2023). It is included here for completeness, and extended to

the RMST setting in the following part of the proof. let K1(s, t | a, x) = S(t|a,x)
S(s|a,x) and let K̂1 be

defined accordingly with Ŝ in place of S. The backwards equation (Gill and Johansen, 1990,
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Theorem 5) gives that for almost all x

K1(s, t | a, x) = 1−
∫ t

s

S(t | a, x)
S(w | a, x)Λ(dw).

Hence, K1(ds, t | a, x) = S(t|a,x)
S(s|a,x)Λ(ds) and similarly, K̂1(ds, t | a, x) = Ŝ(t|a,x)

Ŝ(s|a,x) Λ̂(ds). This

result allows us to write the third term in (19) for almost all x as (dropping the indicator
1(A = a) since it disappears in the bound anyway)

(∫ t

0

Ŝ(t | a,X)1(T̃ ≥ s)

Ŝ(s | a,X)ĝ(s | a,X)
Λ̂(ds | a,X)−

∫ t

0

S(t | a,X)1(T̃ ≥ s)

S(s | a,X)g(s | a,X)
Λ(ds | a,X)

)2

=

(∫ t∧T̃

0

1

ĝ(s | a,X)
K̂1(ds | a,X)−

∫ t∧T̃

0

1

g(s | a,X)
K1(ds | a,X)

)2

=

(∫ t∧T̃

0

(
1

ĝ(s | a,X)
− 1

g(s | a,X)

)
K̂1(ds | a,X)

+

∫ t∧T̃

0

1

g(s | a,X)

[
K̂1(ds | a,X)−K1(ds | a,X)

])2

. (20)

Thus, if we can show that the two integrals in the above display are consistent in L2(P )-norm,
it follows that (19) is is op(1), which completes the proof. For the first integral in (20), we
have for almost all x

∫ t∧T̃

0

(
1

ĝ(s | a,X)
− 1

g(s | a,X)

)
K̂1(ds | a,X)

=

∫ t∧T̃

0

(
1

ĝ(s | a,X)
− 1

g(s | a,X)

)
Ŝ(t | a,X)

Ŝ(s | a,X)
Λ̂(ds | a,X)

≤ sup
s≤t

∣∣∣∣∣
Ŝ(t | a, x)
Ŝ(s | a, x)

∣∣∣∣∣ sups≤t

∣∣∣∣
1

ĝ(s | a,X)
− 1

g(s | a,X)

∣∣∣∣ Λ̂(t)

≤ |log η| η−2 sup
s≤t

|ĝ(s | a, x)− g(s | a, x)| ,

where we have used Ŝ(t|a,x)
Ŝ(s|a,x) ≤ 1 together with assumption A1. Assumption A5 then shows

that the first integral in (20) is op(1) in L2(P )-norm. Using integration by parts, we can
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bound the second integral in (20). For almost all x we have

∫ t∧T̃

0

1

g(s | a, x)
[
K̂1(ds | a, x)−K1(ds | a, x)

]

=
1

g(t | a, x)
[
K̂1(t ∧ T̃ , t | a, x)−K1(t ∧ T̃ , t | a, x)

]
− 1

g(0 | a, x)
[
K̂1(0 | a, x)−K1(0, t | a, x)

]

−
∫ t∧T̃

0

[
K̂1(s | a, x)−K1(s, t | a, x)

](1

g

)
(ds | a, x)

≤3η−1 sup
s≤t

∣∣∣K̂1(s | a, x)−K1(s | a, x)
∣∣∣

≤C sup
s≤t

∣∣∣Λ̂(s | a, x)− Λ(s | a, x)
∣∣∣

for some C > 0, where the last inequality follows from the mean value theorem. By A5,
the above expression is op(1) in L2(P )-norm and it follows that (20) is op(1) in L2(P )-norm,
which completes the proof for the survival function setting.

RMST setting

Consider the decomposition

φ̂a(O)− φa(O)

=(τ̂(X)− τ(X))

−
(
1(A = a)

π̂(a | X)

∫ t

0

Ĥ(s, t | A,X)

Ŝ(s | A,X)Ŝc(s | A,X)
dM̂(s | A,X)

− 1(A = a)

π(a | X)

∫ t

0

H(s, t | A, x)
S(s | A,X)Sc(s | A,X)

dM(s | A,X)

)

=

(∫ t

0
Ŝ(s | a,X)− S(s | a,X) du

)

− 1(A = a)

(∫ t

0

Ĥ(s, t | a,X)

Ŝ(s | a,X)ĝ(s | a,X)
− H(s, t | a,X)

S(s | a,X)g(s | a,X)
dN(s)

)

− 1(A = a)

(∫ t

0

Ĥ(s, t | a,X)1(T̃ ≥ s)

Ŝ(s | a,X)ĝ(s | a,X)
Λ̂(ds | a,X)−

∫ t

0

H(s, t | a,X)1(T̃ ≥ s)

S(s | a,X)g(s | a,X)
Λ(ds | a,X)

)
.

(21)

Since the structure is similar to the survival function setting, the arguments will be similar
too. We will again consider each term in turn. For first term we have

∫ t

0
Ŝ(s | a,X)− S(s | a,X) du ≤ t sup

s<t

∣∣∣Ŝ(s | a,X)− S(s | a,X)
∣∣∣ ,

which is op(1) in L2(P ) by assumption A5. For the second term, note that H(s, t | a,X) ≤ t,
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and
∣∣∣Ĥ(s, t | a,X)−H(s, t | a,X)

∣∣∣ =
∫ t

s
Ŝ(s | a,X)− S(s | a,X) du

≤t sup
s<t

∣∣∣Ŝ(s | a,X)− S(s | a,X)
∣∣∣ ,

and

H(s, t | a,X)

S(s | a,X)
=

∫ t

s

S(u | a,X)

S(s | a,X)
du ≤

∫ t

s
du ≤ t.

Hence, replacing S(t | a,X) and Ŝ(t | a,X) in the derivations from the survival function
setting with H(s, t | a,X) and Ĥ(s, t | a,X), gives that the second term in (21) is op(1) in
L2(P ) by assumption A1 and A5 by similar arguments as in the survival function setting.
For the third term in (21), we use the same strategy as in the survival function setting as
described in Westling et al. (2023), but now extended to the RMST setting. Define

K2(s, t | a, x) =
H(s, t |, a, x)
S(s | a, x) −

∫ t

s
du,

and let K̂2 be defined accordingly, with Ŝ in place of S and Ĥ =
∫
Ŝ ds. Then, by the

backward equation (Gill and Johansen, 1990, Theorem 5)

K2(s, t | a, x) =
∫ t

s

S(u | a, x)
S(s | a, x) du−

∫ t

s
du

=

∫ t

s

(
1−

∫ u

s

S(u | a, x)
S(w | a, x)Λ(dw | a, x)

)
−
∫ t

s
du

=−
∫ t

s

∫ u

s

S(u | a, x)
S(w | a, x)Λ(dw | a, x) du

=−
∫ t

s

∫ t

w

S(u | a, x)
S(w | a, x) duΛ(dw | a, x)

=−
∫ t

s

H(w, t | a, x)
S(w | a, x) Λ(dw | a, x).

Hence K2(ds, t | a, x) = H(s,t|a,x)
S(s|a,x) Λ(ds | a, x), and similarly for K̂2. Now, we can write the

third term in (21) as (again, dropping 1(A = a))
(∫ t

0

Ĥ(s, t | a,X)1(T̃ ≥ s)

Ŝ(s | a,X)ĝ(s | a,X)
Λ̂(ds | a,X)−

∫ t

0

H(s, t | a,X)1(T̃ ≥ s)

S(s | a,X)g(s | a,X)
Λ(ds | a,X)

)2

=

(∫ t∧T̃

0

1

ĝ(s | a,X)
K̂2(ds | a,X)−

∫ t∧T̃

0

1

g(s | a,X)
K2(ds | a,X)

)2

.

=

(∫ t∧T̃

0

(
1

ĝ(s | a,X)
− 1

g(s | a,X)

)
K̂2(ds | a,X)

+

∫ t∧T̃

0

1

g(s | a,X)

[
K̂2(ds | a,X)−K2(ds | a,X)

])2

.
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Hence, by the same arguments used for in the survival function setting, it follows the third
term in (21) is op(1) in L2(P )-norm, which concludes the proof.

C.1 Proof of Theorem 2

C.1.1 Remainder term

We will use a decomposition of the remainder term PϕΘl
(ν̂) − Θl from Hines, Diaz-Ordaz,

and Vansteelandt (2022). Observe that Θl = P{τ − τl}2. Then

Pϕ(ν̂)−Θl = P{(τ̂l − φ(ν̂))2 − (τ̂ − φ(ν̂))2 − (τ − τl)
2}

= P{(τ̂l − φ(ν̂))2 − (τ̂ − φ(ν̂))2 − τ2 − τ2l + 2τ2l }
= P{(τ̂l − τl)

2 − (τ̂ − τ)2 + 2τ̂lτl − 2τ̂ τ + 2(τ̂ − τ̂l)φ̂}
= ∥τ̂l − τl∥2 − ∥τ̂ − τ∥2 + P{2τ̂lτl − 2τ̂lτ + 2(τ̂ − τ̂l)(φ̂− τ)}
= ∥τ̂l − τl∥2 − ∥τ̂ − τ∥2 + 2P{(τ̂ − τ̂l)(φ̂− τ)}
≤ op(n

−1/2) + 2KP (φ(ν̂)− τ)

≤ op(n
−1/2)

for some K ≥ 0, where the second and fifth equality is due to iterated expectation, the first
inequality follows from assumption A2 and A3 the fact that τ̂(X)− τ̂l(X) is bounded almost
surely and the second inequality follows from lemma C.1.

C.1.2 Empirical process term

We need to show that ∥ϕΘl
(ν̂)− ϕΘl

(ν)∥ = op(1). Consider the decomposition given in Hines,
Diaz-Ordaz, and Vansteelandt (2022)

ϕΘl
(ν̂)− ϕΘl

(ν) = (τ̂l − τl)
2 − (τ̂ − τ)2 + 2(φ− τl)(τl − τ̂l)− 2(φ− τ)(τ − τ̂) + 2(φ̂− φ)(τ̂ − τ̂l)

=
5∑

i=1

ai

so that ∥ϕ(ν̂)− ϕ(ν)∥ ≤∑5
i=1 ∥ai∥. We will treat each term separately.

(a1): From A2 we have that
∥∥(τ̂l − τl)

2
∥∥ = op(1) since x 7→ x2 is continuous.

(a2): Same argument as in (a1).
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(a3): Consider the survival case. Then the following bound holds almost surely:

(φ(O)− τl(x))
2

=

(
τ(x)− τl(x)−

(
1(A = 1)

π(1 | x) − 1(A = 0)

π(0 | x)

)∫ t

0

S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)
)2

≤2(τ(x)− τl(x))
2 + 2

(
η−1

∫ t

0

S(t | A, x)
S(s | A, x) dN(s)− η−1

∫ t

0

S(t | A, x)
S(s | A, x)1(T̃ ≥ s) dΛ(s | A, x)

)2

≤2K2 + 4(η−1)2 + 4

(
η−1

∫ t

0

S(t | A, x)
S(s | A, x) dΛ(s | A, x)

)2

=2K2 + 4(η−1)2 + 4(η−1)2 (1− S(t | a, x))2

≤2K2 + 8η−2

where the first inequality comes A1, the second inequality from τ(x) − τl(x) being bounded

almost surely and that S(t|a,x)
S(s|a,x) ≤ 1, s ≤ t. The second equality is due the backward equation

(theorem 5, Gill and Johansen, 1990), realising that S(t|a,x)
S(s|a,x) = P]s,t] (1− dΛ(u | a, x)).

Now consider the RMST setting. Start by observing that

H(s, t | a, x)
S(s | a, x) =

∫ t

s

S(u | a, x)
S(s | a, x) du ≤ t− s ≤ t

and
∫ t

0

H(s, t | a, x)
S(s | a, x) dΛ(s |, a, x) =

∫ t

0

∫ u

0

S(u | a, x)
S(s | a, x) dΛ(s |, a, x) du =

∫ t

0
S(u | a, x)− 1 du

by the backward equation. Then by calculations similar to the once from the survival setting
we have

(φ(O)− τl(x))
2

≤2(τ(x)− τl(x))
2 + 2

(
η−1

∫ t

0

H(s, t | A, x)
S(s | A, x) dN(s)− η−1

∫ t

0

H(s, t | A, x)
S(s | A, x) 1(T̃ ≥ s) dΛ(s | A, x)

)2

≤2K2 + 4(η−1t)2 + 4

(
η−1

∫ t

0
S(u | a, x)− 1 du

)2

=2K2 + 4η−2t2 + 4η−2(t2 + t2)

=2K2 + 12η−2t2.

Letting C(η, t) = max{2K2 + 8η−2, 2K2 + 12η−2t2}, A2 gives that

∥a3∥ ≤
√
C(η, t) ∥τl − τ̂l∥ = op(1).

(a4) : Noticing that

(φ(O)− τ(x))2 =

(
−
(
1(A = 1)

π(1 | x) − 1(A = 0)

π(0 | x)

)∫ t

0

S(t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)
)2
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in the survival setting and

(φ(O)− τ(x))2 =

(
−
(
1(A = 1)

π(1 | x) − 1(A = 0)

π(0 | x)

)∫ t

0

H(s, t | A, x)
S(s | A, x)Sc(s | A, x)

dM(s | A, x)
)2

in the RMST setting, the calculations from (a3) gives that

∥a4∥ ≤
√
C(η, t) ∥τ − τ̂∥ = op(1)

with C(η, t) = max{4η−2, 8η−2t2}.

(a5) : By lemma C.2 and assumption A6, ∥a5∥ = op(1).

C.2 Proof of Theorem 4

C.2.1 Remainder term related to Γ̂CFj

Consider the decomposition

P{ϕΓj (ν̂)− ϕΓj (ν)}
=E

{
[φ(ν̂)(O)− τ̂j(X)][Xj − Êjn(X−j)]− [φ(ν)(O)− τj(X)][Xj − E(Xj | X−j)]

}

=E {[φ(ν̂)(O)− φ(ν)(O)]Xj + [τj(X)− τ̂j(X)]Xj

− φ(ν̂)(O)Êjn(X−j) + τ̂j(X)Êjn(X−j) + φ(ν)(O)E(Xj | X−j)− τj(X)E(Xj | X−j)
}

=E
{
[φ̂(ν)(O)− φ(ν)(O)][Xj − Êjn(X−j)]

− [τ̂j(X)− τj(X)][Xj − Êjn(X−j)]

− [Êjn(X−j)− E(Xj | X−j)][φ(ν)(O)− τj(X)]
}
.

We note that

E{φ(ν)(O)− τj(X)} = E{E(τ(X) | X−j) + E(M | A,X)− τj(X)} = 0

by iterated expectation, where M is the martingale integral in the expression of φ, which is
itself a martingale conditional on A and X. Thus, by iterated expectation and assumption
B, the remainder term is given by

E
{
[φ̂(ν)(O)− φ(ν)(O)][Xj − Êjn(X−j)]− [τ̂j(X)− τj(X)][Xj − Êjn(X−j)]

}

≤
√
δP{φ(ν̂)− τ} − ∥τ̂j − τj∥

∥∥∥Êjn − E(· | X−j)
∥∥∥

= op(n
−1/2)

Here, the inequality is given by Cauchy-Schwarz together with assumption B2 and the equality
is given by assumption A3, B1 and lemma C.1.
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C.2.2 Empirical process term related to Γ̂CFj

Consider again the decomposition from the remainder term:

ϕΓj (ν̂)− ϕΓj (ν) =[φ̂(ν)(O)− φ(ν)(O)][Xj − Êjn(X−j)]

− [τ̂j(X)− τj(X)][Xj − Êjn(X−j)]

− [Êjn(X−j)− E(Xj | X−j)][φ(ν)(O)− τj(X)].

Thus, we need to bound each term in L2(P ). For the first term we have

E
{
[φ̂(ν)(O)− φ(ν)(O)]2[Xj − Êjn(X−j)]2

}
≤ δ2 ∥φ(ν̂)− φ(ν)∥2 = op(1)

by lemma C.2 and assumption B2. Consistency of the second term follows from the consistency
of τ̂ together with assumption B2, and consistency of the third term follows from consistency
of Êjn together with the bound of P{φ−τj}2 calculated in (a3) in the empirical process section
of the proof of Theorem 2.

C.2.3 Remainder term related to χ̂CFj

We note that

E
{
[Xj − E(Xj | X−j)]

2
}

= E
{
X2
j + E(Xj | X−j)2

}
− 2E {XjE(Xj | X−j)}

= E
{
X2
j + E(Xj | X−j)2

}
− 2E

{
E(Xj | X−j)2

}

= E
{
X2
j − E(Xj | X−j)2

}

by iterated expectation. Hence

P
{
ϕχj (ν̂)− ϕχj (ν)

}

=E
{
ϕχj (ν̂)−X2

j + E(Xj | X−j)2
}

=E
{
X2
j + Êj2n (X−j)− 2XjÊ

j2
n (X−j)−X2

j + E(Xj | X−j)2
}

=E

{[
Êjn(X−j)− E(Xj | X−j)

]2
+ 2Êjn(X−j)E(Xj | X−j)− 2XjÊ

j2
n (X−j)

}

=
∥∥∥Êjn − E(· | X−j)

∥∥∥
2

=op(n
−1/2),

where the fourth equality is due to iterated expectation and the last equality is given by
assumption B1.

C.2.4 Empirical process term related to χ̂CFj

Consider

ϕχj (ν̂)− ϕχj (ν)

=
[
Êjn(X−j)− E(Xj | X−j)

]2
+ 2 [E(Xj | X−j)−Xj ]

[
Êjn(X−j)− E(Xj | X−j)

]
,
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where the consistency of Êjn gives consistency in L2(P ) of the first term. For the second term,
note that

E([E(Xj | X−j)−Xj ]
2 | X−j) = var(Xj | X−j)

and hence

E

{
4 [E(Xj | X−j)−Xj ]

2
[
Êjn(X−j)− E(Xj | X−j)

]2}

=4E

{
var(Xj | X−j)

[
Êjn(X−j)− E(Xj | X−j)

]2}

≤4K var(Xj | X−j)
∥∥∥Êjn − E(· | X−j)

∥∥∥
2

=op(1)

for some K > 0, by assumption B1 and boundedness var(Xj | X−j), which gives the result.

C.3 Consistency of cross-fitted variance estimators

Proof of Lemma 1. The first claim, (13), is given by the functional delta method (van der

Vaart, 2000, ch. 25.7) and hence
√
n(Ψ̂CF − Ψ)

D→ N (0, P ψ̃2). By Prohorov’s theorem (van

der Vaart, 2000 theorem 2.4)
√
n
∥∥∥Ψ̂CF −Ψ

∥∥∥ = Op(1) and hence
∥∥∥Ψ̂CF −Ψ

∥∥∥ = op(n
−1/2).

By the same argument we have
∥∥∥ψ̂CFi − ψi

∥∥∥ = op(n
−1/2), i = 1, 2. For the claim (14) we note

that it is suffices to show that

Pknψ̃(ψ̂
CF
i , ν̂i,−k)

2 P−→ Pψ̃(ψi, νi)
2

for each k, since K is assumed finite and not depending on n. We note that

Pknψ̃(ψ̂
CF
i , ν̂i,−k)

2 = ψ̂2,CF
i + Pknφi(ν̂i,−k)

2 − 2ψ̂CFi Pknφi(ν̂i,−k) (22)

and that ψ̂2,CF
i

P→ ψ2
i by the continuous mapping theorem. Hence, by the continuous mapping

theorem, the result follows if each of the Pkn-sums in the above display are consistent. Observe
that

Pknφi(ν̂i,−k)− Pφ(ν) = (Pkn − P )(φi(ν̂i,−k)− φ(ν)) + P (φi(ν̂i,−k − φ(ν)) + (Pkn − P )φi(ν).

The first term above is op(n
−1/2) by lemma 2 in the supplementary material of Kennedy et al.

(2020). The second term is op(1) since P (φi(ν̂i,−k) − φ(ν)) ≤ ∥φi(ν̂i,−k)− φ(ν)∥ = op(1) by
assumption and the third term is op(1) by the law of large numbers, since E{φi(νi)(Oi)} =
ψi < ∞. Thus Pknφi(ν̂i,−k) converges to Pφi(νi) in probability. For the sum Pknφi(ν̂i,−k)

2 in
(22), we note that since ∥φi(ν̂i,−k)− φi(νi)∥ = op(1), by assumption, the continuous map-
ping theorem (for metric spaces, see e.g. van der Vaart, 2000, Theorem 18.11) gives that∥∥φi(ν̂i,−k)2 − φi(νi)

2
∥∥ = op(1). Combined with the fact that E{φi(νi)(Oi)2} < ∞, we can

use the same arguments given for the consistency of Pknφi(ν̂i,−k), to show that Pknφi(ν̂i,−k)
2

converges in probability to Pφi(νi)
2. Collecting the results, the continuous mapping theorem

now gives the following convergence for (22):

ψ̂2,CF
i + Pknφi(ν̂i,−k)

2 − 2ψ̂CFi Pknφi(ν̂i,−k)
P−→ ψ2

i + Pknφi(νi)
2 − 2ψiP

k
nφi(νi) = Pψ̃i(ψi, νi)

2,
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and hence, the claim, (14), follows.
As for the second claim, the last claim, (15), follows if

Pknψ̃(ψ̂
CF
1 , ψ̂CF2 , ν̂1,−k, ν̂2,−k)

2 P−→ Pψ̃(ψ1, ψ2, ν1, ν2)
2

for each k, since K is assumed finite and not depending on n. Observe that

Pknψ̃(ψ̂
CF
1 , ψ̂CF2 , ν̂1,−k, ν̂2,−k)

2

=Pkn
1

(
ψ̂CF2

)2

(
φ1(ν̂1,−k)− ψ̂CF1 − ψ̂CF1

ψ̂CF2

(
φ2(ν̂2,−k)− ψ̂CF2

))2

=
1

(
ψ̂CF2

)2P
k
n

(
φ1(ν̂1,−k)− ψ̂CF1

)2
+
(
Ψ̂CF

)2
Pkn

(
φ2(ν̂2,−k)− ψ̂CF2

)2

− 2Ψ̂CFPkn

(
φ1(ν̂1,−k)− ψ̂CF1

)(
φ2(ν̂2,−k)− ψ̂CF2

)
.

We will consider each term in the above display separately. In the proof of (14), we showed
consistency of the Pkn-sums in the first two terms, and the continuous mapping theorem

gives that 1

(ψ̂CF
2 )

2

P→ 1
ψ2
2
and

(
Ψ̂CF

)2 P→ Ψ2. The continuous mapping theorem then gives

consistency of the first two terms. For the last term, we use the decomposition

2Ψ̂CFPkn

(
φ1(ν̂1,−k)− ψ̂CF1

)(
φ2(ν̂2,−k)− ψ̂CF2

)

=2Ψ̂CF
(
ψ̂CF1 ψ̂CF2 − ψ̂CF1 Pknφ2(ν̂2,−k)− ψ̂CF2 Pknφ1(ν̂1,−k) + Pknφ1(ν̂1,−k)φ2(ν̂2,−k)

)
.

Consistency of the three first terms inside the parenthesis are shown in the in the proof
of (14) and hence, we only need to show consistency of the last term. Here, it suffices to
show consistency of φ1(ν̂1,−k)φ2(ν̂2,−k) together with Pφ1(ν1)φ2(ν2) < ∞, from which the
result follows by the same arguments used to show consistency of Pknφi(ν̂i,−k). For the latter
Cauchy-Schwarz and the triangle inequality gives

Pφ1(ν1)φ2(ν2) ≤
∥∥∥ψ̃1 + ψ1

∥∥∥
∥∥∥ψ̃2 + ψ2

∥∥∥ ≤
(∥∥∥ψ̃1

∥∥∥+ ∥ψ1∥
)(∥∥∥ψ̃2

∥∥∥+ ∥ψ2∥
)
<∞.

By Theorem 18.10 in van der Vaart (2000) (φ1(ν̂1,−k), φ2(ν̂2,−k))
P→ (φ1(ν1), φ2(ν2)) since

φi(ν̂i,−k)
P→ φi(νi) by assumption. Then, the continuous mapping theorem (18.11 in van der

Vaart, 2000) gives that φ1(ν̂1,−k)φ2(ν̂2,−k)
P→ φ1(ν1)φ(ν2), and the result follows.

D Additional simulation results for Ω1
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(a) Correctly specified Λ, Λc and π
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(b) Flexible estimation of Λ, Λc and π

Figure 3: Sampling distribution of estimators of Γ1 in the survival function setting with
varying nuisance estimators, with and without cross-fitting, across sample sizes n =
250, 500, 750, 1000. The abbreveations of the methods are read as follows: A-B-C, where
A corresponds to the nuisance estimators Λ, Λc and π, B corresponds to the nuisance estima-
tors Ên and Êjn, and C corresponds to whether or not cross-fitting was used. Here, correct
corresponds to correctly specified Cox and logistic regression, RF corresponds to Random
Forest, and GAM corresponds to a generalized additive model.
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(a) Correctly specified Λ, Λc and π
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(b) Flexible estimation of Λ, Λc and π

Figure 4: Sampling distribution of estimators of χ1 in the survival function setting with
varying nuisance estimators, with and without cross-fitting, across sample sizes n =
250, 500, 750, 1000. The abbreveations of the methods are read as follows: A-B-C, where
A corresponds to the nuisance estimators Λ, Λc and π, B corresponds to the nuisance estima-
tors Ên and Êjn, and C corresponds to whether or not cross-fitting was used. Here, correct
corresponds to correctly specified Cox and logistic regression, RF corresponds to Random
Forest, and GAM corresponds to a generalized additive model.
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Abstract

Competing risk is a common phenomenon when dealing with time-to-event outcomes
in biostatistical applications. The event of interest may be a certain cause of death and
other causes then constitute competing risks, or the event of interest may a be an event
different from death, in which case any other absorbing event is a competing event. As the
overall survival function now depends on both the hazard of the event of interest and the
competing event, it is common to base ones analysis on the cumulative incidence function.
Accordingly, in the causal inference literature on time-to-event analysis with competing
risk, the difference of cumulative incidence functions is often chosen as a measure of
potential treatment effect on the event of interest. Another, estimand of interest when
dealing with competing risk is the ”number of life-years lost due to a specific cause of
death”, first described in Andersen (2013). It provides a direct interpretation on the
time-scale on which the data is observed. In this paper, we introduce the causal effect
of the number of life years lost due to a specific event, and we give assumptions under
which the average treatment effect (ATE) and the conditional average treatment effect
(CATE) are identified from the observed data. We provide an estimator of the ATE
together with an estimator of the best partially linear projection of the CATE as a variable
importance measure. The estimators are based on semiparametric efficiency theory and
they are agnostic to any model-specifications, thus enabling the use machine learning
for nuisance parameter estimation. We present assumptions under which the estimators
are asymptotically normal, and their performance are investigated in a simulation study.
Lastly, the methods are implemented in a study of the response to different antidepressants
using data from the Danish national registers.

1 Introduction

The ATE is a well studied parameter in the causal inference literature. It is typically defined as
E{Y 1−Y 0}, where Y a is the counterfactual outcome under treatment a, that is, the outcome
one would have observed had the patient, possibly contrary to the fact, received treatment
a. The ATE is often used to asses the effect of an intervention trial. With observational
data, the goal is to estimate the ATE under structural causal assumptions from which it can
be identified from the observed data as E{E(Y | A = 1, X) − E(Y | A = 0, X)}, where A
and X are the observed treatment and covariates, resepctively. The structural assumptions
relates to the fact that we do not get to observe the counterfactuals for each individual, but
rather a coarsened version through the observed outcome and treatment, (Y,A) (van der Laan
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and Robins, 2003). There is a rich literature on estimation of the ATE, allowing for data-
adaptive nuisance estimators, when Y is continuous or binary (see e.g. van der Laan and Rose,
2011, Kennedy, 2022, Chernozhukov et al., 2018) which builds on results from semiparametric
efficiency theory (Bickel et al., 1993, van der Vaart, 2000 ch. 25).

In many biostatistical applications, individuals are followed over time and one is interested
in the effect of treatment on the time to a given event, say T . It is often the case that
only a censored version of the underlying time T is available together with information of
whether T was observed. That is, for a censoring time C and an event indicator ∆, the
observed outcome is given by (T ∧ C,∆). The censoring acts as another form of coarsening
in addition to not observing the counterfactuals, and methods from survival analysis are
combined with the aforementioned causal inference methodology to define a target parameter
that is identifiable from the observed data. This is achieved by setting Y (t) = f(T ; t) for
some known function f for which identification results for the ATE based on Y (t) exist.
Some examples include f(T ; t) = 1(T > t), for which the ATE corresponds to the mean
difference in survival probability, and f(T ; t) = t ∧ T , for which the ATE corresponds to the
mean difference in the t−restricted mean lifetime. Estimation of the ATE in the presence
of censoring with data-adaptive nuisance estimators has been studied by several authors (see
e.g. Rytgaard et al., 2022, Rytgaard et al., 2023 and Westling et al., 2023).

In some applications, patients may experience a competing event that prevents observation
of the event of interest. This is the case when the event of interest is different from some
naturally absorbing event, such as death. In that case, patients may die before experiencing
the event of interest and death is then a competing event. Letting Tj be the time to the
j’th event, we note that the time to the event of interest may not be fully observed since
P (Tj = ∞) > 0, and direct applications of survival analysis methods are not sufficient.
Instead we denote T as the time to the first event and ∆ the event indicator, and with
censoring, the observed data is now comprised of observations on the form (T̃ , ∆̃, A,X) =
(T ∧ C, 1(T ≤ C)∆, A,X). Letting Y a

j (t) = 1(T a ≤ t,∆a = j) denote the counterfactual
outcome, the ATE is now identified in the observed data via the cumulative incidence function,
Fj(t | a, x) = P (T ≤ t,∆ = j | A = a,X = x). The ATE is then interpreted as the mean
difference in the absolute risk of the event of interest within a certain time period. Examples
of estimation of the ATE based on this identification can be found in e.g. Ozenne et al. (2020),
Rytgaard et al. (2023) and Rytgaard and van der Laan (2024). In the three papers, estimation
is based on semiparametric efficiency theory, where the first paper considers (semi)parametric
working models in a certain type of inverse probability weighted estimator, and the second
and third consider estimators based on the efficient influence function with nonparametric
nuisance estimators in form of highly adaptive lasso, thus relaxing assumptions on the data-
generating distribution.

Without the presence of competing risk, the restricted mean lifetime provides an alterna-
tive interpretation to survival probabilities. The ATE estimates are presented on the timescale
inherent in the data, which is attractive, as it provides results that are easier to communicate.
Another advantage is that the ATE can be written as the mean difference of the integrated
survival function over the time-horizon of interest. Thus, if the difference in survival proba-
bilities between the two treatment groups is large in some interval in the time-horizon [0, t]
but close to zero at time t, that difference will be reflected in the ATE based on the restricted
mean lifetime but not in the ATE based on survival probabilities. An analog of the restricted
mean lifetime, that can be used in a competing risk setting, is presented in Andersen (2013) in
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the form of the number of life years lost due to a specific cause of death. It is shown that the
number of life years lost due to the j’th event before time t can be written as the integrated
cumulative incidence function over the time-horizon [0, t].

In this paper we introduce the ATE based on the number of life years lost due to a
specific event. As in the survival setting, the estimand has an interpretation directly on
the timescale inherent in the data and it captures possible ”early” effects of treatment. We
provide an estimator of the ATE based on semiparametric efficiency theory, allowing for the
use of machine learning methods for nuisance parameter estimation without relying on model-
specifications. We provide assumptions on the nuisance estimators under which the ATE
estimator is asymptotically normal and nonparametric locally efficient. The development
of the estimator and the assumptions required for inference are akin to those presented in
Westling et al. (2023) in the survival setting. Furthermore, we extend the treatment effect
variable importance measure given in Ziersen and Martinussen (2024) as a best partially linear
projection of the conditional average treatment effect. The projection parameter provides
a measure of treatment effect heterogeneity through a given covariate and we provide an
estimator analogous to the one presented in Ziersen and Martinussen (2024) in the survival
setting. Under additional assumptions on the nuisance parameters, the estimator admits an
asymptotic normal distribution which defines a test of treatment effect heterogeneity of a
given covariate. The finite sample performance of the proposed estimators are investigated
in a simulation study and the estimators are applied to a study on treatment response to
difference antidepressants based on data from the Danish national registers (Kessing et al.,
2024).

2 Notation and setup

We consider a time-to-event setting with competing risks. Let T be the time to event and
∆ ∈ {1, 2} the event indicator for two competing events. Let X be a d-dimensional vector of
covariates, and let A denote the baseline treatment indicator. We enforce censoring through
a censoring time C, such that the observed event time is T̃ = T ∧ C and the observed
event indicator is ∆̃ = 1(C ≥ T )∆. Our observed data, O, is given by n i.i.d. copies of
O = (T̃ , ∆̃, A,X) ∼ P0, where P0 ∈ M, with M being a non-parametric model.

We introduce the conditional cause-specific hazard functions, λ0,j(t | a, x), for the j’th
cause, j = 1, 2, and let λ0,c(t | a, x) denote the censoring hazard function. We let Λ0,j(t |
a, x) =

∫ t
0 λ0,j(s | a, x) ds and Λ0,C(t | a, x) =

∫ t
0 λ0,C(s | a, x) ds denote the corresponding

cumulative hazard functions. We denote S(t | a, x) = exp{−Λ1(t | a, x) − Λ2(t | a, x)} the
survival function, and π0(a | x) = P0(A = a | X = x) the conditional distribution of A given
X. Furthermore, we introduce the cause-specific event times Tj , j = 1, 2, and let T aj , a = 0, 1,
denote the counterfactual time corresponding to the j’th cause.

We use the notation Pf =
∫
f dP and Pnf =

∑n
i=1 f(Oi), and E0{f(O)} =

∫
f dP0

is the expectation of f(O) under the true data generating distribution. Throughout, all
expectations, P f̂ , considers the function f̂ fixed, even when it is estimated from the data,

unless otherwise specified. Finally, ∥·∥ denotes the L2(P )-norm, such that ∥f∥ =
(∫
f2 dP

)1/2
.
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3 Causal estimand and nuisance parameters

Inspired by Andersen (2013), we introduce

L0(0, t
∗|a, x) = t∗ −

∫ t∗

0
S(u|a, x)du

for a given time-horizon [0, t∗], which can be interpreted as the expected number of years lost
before time t∗ in strata (a, x). As Andersen (2013) shows, this quantity can be decomposed
naturally into

L0(0, t
∗|a, x) = L1(0, t

∗|a, x) + L2(0, t
∗|a, x)

where

Lj(0, t
∗|a, x) =

∫ t∗

0
Fj(u|a, x)du, j = 1, 2,

can be interpreted as number of years lost ”due to cause j” (Andersen, 2013), with Fj being

the jth cumulative incidence function given A = a and X = x, i.e. Fj(t | a, x) =
∫ t
0 S(s |

a, x) dΛj(s | a, x). To introduce the counterfactual number of life years lost due to a specific
event, we first remark on an observation given in Andersen (2013). The random variable Tj is
improper because P (Tj = ∞) > 0, but the random variable Tj ∧ t∗ is proper with expectation
given by

E{Tj ∧ t∗} = t∗ −
∫ t∗

0
Fj(s) ds,

and hence

E(Tj ∧ t∗ | a, x) = t∗ −
∫ t∗

0
Fj(s | a, x) ds.

We now introduce the counterfactual Y a
j (t

∗) = t∗ − T aj ∧ t∗ for a = 0, 1, which is the number
of life-years lost due to event j before time t∗ under treatment a. We define the j’th-specific
ATE as

E0{Y 1
j (t

∗)− Y 0
j (t

∗)}
and the CATE is

E0(Y
1
j (t

∗)− Y 0
j (t

∗) | X = x).

In order to identify the ATE and CATE from the observed data we need the following as-
sumptions:

Assumption A (Identification).

A1 (Consistency) Yj(t
∗) = t∗ − Tj ∧ t∗ = AY 1

j (t
∗) + (1−A)Y 0

j (t
∗) conditional on A.

A2 (Exchangeability) Y a
j (t

∗) ⊥⊥ A | X, A = 0, 1.

A3 (Positivity) π(a | X = x)P (C > t | a, x)P (T > t | a, x) > η > 0, ∀(t, x) ∈ [0, t∗] ×
X , a = 0, 1.

A4 (Independent censoring) T ⊥⊥ C | A,X.
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Define
τj(x; t

∗) ≡ Lj(0, t
∗|1, x)− Lj(0, t

∗|0, x), j = 1, 2.

In Appendix A, we show that the CATE function is identified in the observed data because

τj(x; t
∗) = E0(Y

1
j (t

∗)− Y 0
j (t

∗) | X = x)

and the average treatment effect as

E0{τ(X; t∗)} = E0{Y 1
j (t

∗)− Y 0
j (t

∗)}

under assumption A. Going forward we drop the dependence of t∗ and write τ(x) = τ(x; t∗)
to ease notation. Based on the identification results, we define two target parameters as
mappings from the model M on the observed data to the reals. The first parameter is the
j-specific average treatment effect, defined as the mapping ψj : M → R, where

ψj(P ) = E{Lj(0, t∗|1, X)− Lj(0, t
∗|0, X)}.

The second parameter is defined as a variable importance measure of the l′th covariate on
τj(x) based on the best partially linear projection given in Ziersen and Martinussen (2024).
It is defined as the mapping Ωlj : M → R with

Ωlj(P ) =
E{cov(Xl, τj(X) | X−l)}

E{var(Xl | X−l)}
,

where X−l denotes the covariates indexed by {1, . . . , d} \ {l}. The parameter Ωlj can be
viewed as a weighted average of the conditional covariance of the CATE and the covariate
Xl given the rest of the covariates. The parameter is sensitive to the scale of the covariate
in question, and when assessing the importance of different covariates it is not the estimate
of the parameter that determines the ranking of variable importance, but rather the p-value
associated with test H : Ωlj = 0, since Ωlj is zero if there is no heterogeneity explained by Xl.
The parameter can be derived as the least-squares projection of the CATE onto the partially
linear model. For more details and discussion, see Ziersen and Martinussen (2024).

4 Estimation and inference

We base the estimation of the two target parameters, ψj(P ) and Ωlj(P ), on semiparametric
efficiency theory (Bickel et al., 1993, van der Vaart, 2000 ch. 25, van der Laan and Rose,
2011).

For a general target parameter ψ, an estimator ψ̂ is said to be asymptotically linear if it
can be written on the form ψ̂−ψ = PnIF+op(n−1/2) with P IF = 0. The function IF is called

the influence function of the estimator ψ̂, and it characterizes the asymptotic distribution of
the estimator. This can be seen by applying the central limit theory together with Slutsky’s

lemma, from which
√
n(ψ̂−ψ) D→ N (0, P IF2). If the target parameter is differentiable at P as

a map ψ : M → R, there exist a unique function, say ψ̃, associated to the pathwise derivative
of the parameter, which characterizes the information bound of any regular estimator. The
function ψ̃ is called the efficient influence function (EIF), and any estimator is regular and
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asymptotically efficient, if it is asymptotically linear with influence function given by the EIF
(van der Vaart, 2000 ch. 25.3).

Since the EIF is uniquely determined by the target parameter it can be calculated without
reference to any estimator. Once it is known, several techniques exist for constructing esti-
mators that are asymptotically linear with the EIF as their influence function (van der Laan
and Rose, 2011, Chernozhukov et al., 2018, Kennedy, 2022, Hines, Dukes, et al., 2022). We
focus on the so-called one-step estimator, which is defined as

ψ̂OS = ψ(P̂ ) + Pnψ̃(·; P̂ ),

where P̂ is obtained from some (possibly) data-adaptive estimators. In order to show that
the one-step estimator is asymptotically linear, one typically relies on a certain decomposition
involving an empirical process term and a remainder term, which are both required to be
op(n

−1/2). The former can be obtained if P̂ is assumed to belong to a Donsker class, but
this requirement has been shown to be too restrictive for some data-adaptive estimators,
and a certain type of sample splitting, termed cross-fitting, has to be applied to the one-
step estimator in order to obtain the required convergence rate (Chernozhukov et al., 2018,
Kennedy, 2022).

4.1 Average treatment effect

To derive an estimator for the ATE we first derive its EIF. We define the nuisance parameter
ν = (Λ1,Λ2,Λc, π). The EIF is then given in the following lemma.

Lemma 1. The efficient influence function of ψj(P ) is given by

ψ̃ψj
(O; ν) = φj(ν)(O)− ψj(P ),

where φj(ν) is a real-valued function defined on the sample space of O at a given value of ν
with

φj(ν)(O) = τj(X) +

(
1(A = 1)

π(1 | X)
− 1(A = 0)

π(0 | X)

){∑

i=1,2

∫ t∗

0

Hij(s, t
∗ | A,X)

SC(s | A,X)
dMi(s | A,X)

}

(1)

where

Hij(s, t | a, x) =
∫ t

s
1(i = j) +

Fj(s | a, x)− Fj(u | a, x)
S(s | a, x) du. (2)

Proof. See Appendix B.

The function φj(ν) is the uncentered EIF of the ATE and will also appear in the devel-
opment of an estimator for the best partially linear projection in Section 4.2. As the EIF of
the ATE is linear in the target parameter, the one-step estimator for ψj reduces to

ψ̂OSj = Pnφj(ν̂).

As noted earlier, the one-step estimator may fail to be asymptotically linear when using data-
adaptive estimators for ν̂ and we further have to use a cross-fitted version of the estimator in
order to obtain the desired asymptotic properties.
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To define the sample splitting involved in constructing the cross-fitted estimator, let i =
(i1, i2, . . . , in) be an index vector drawn from an n-dimensional multinomial distribution with
K events with probability pk = 1

K , k = 1, . . . ,K, for the k’th event. Define the index sets

Tk = {j : ij = k} for k = 1 . . .K such that {1, . . . , n} = ∪̇Kk=1Tk, where ∪̇ denotes the disjoint
union. Corresponding to the index sets, we define K disjoint data splits by Vk = {Oj : ij = k}
such that O = ∪̇Kk=1Vk, and we define K leave-out data splits by V−k = ∪̇j ̸=kVj .

To construct a cross-fitted one-step estimator of ψj based on the EIF, let ν̂ = (Λ̂1, Λ̂2, Λ̂c, π̂)
denote the estimated nuisance parameter, and let ν̂−k be the estimated nuisance parameter
based on data in the k’th leave out sample, V−k, and let Pkn be the empirical measure of
O ∈ Vk. We define the K-fold cross-fitted estimator of ψj as

ψ̂CFj =
K∑

k=1

nk
n
Pknφ(ν̂−k) =

1

n

K∑

k=1

∑

i∈Tk
φj(ν̂−k)(Oi), (3)

where nk is the number of observations in the k’th data split. The construction of the cross-
fitted estimator detailed here is quite general, see Kennedy (2022) for a nice discussion and
comparison to the one-step estimator without cross-fitting.

In order to derive asymptotic results for ψ̂CFj we need a set of assumptions on the nuisance
estimators. The assumptions below are stated for a general nuisance estimator ν̂, but in
applications to cross-fitted estimators, they are assumed to hold for each leave-out sample
V−k. We will be explicit about this when stating results on the obtained estimators, but it is
left out of assumption B for notational convenience.

Assumption B. The nuisance estimator ν̂ satisfy the following conditions

B1 There exist a real-valued parameter η > 0 such that Ŝ(t | a, x) > η, S(t | a, x) > η, ŜC(t |
a, x) > η, SC(t | a, x) > η, π̂(a | x) > η, π(a | x) > η for all (t, a, x) ∈ [0, t∗]×{0, 1}×X .

B2 For a = 0, 1, it holds that

E

[
sup
s≤t∗

∣∣∣Λ̂1(s | a,X)− Λ1,0(s | a,X)
∣∣∣
]2

= op(1)

E

[
sup
s≤t∗

∣∣∣Λ̂2(s | a,X)− Λ2,0(s | a,X)
∣∣∣
]2

= op(1)

E

[
sup
s≤t∗

∣∣∣Λ̂c(s | a,X)− Λc,0(s | a,X)
∣∣∣
]2

= op(1)

E [π̂(a | X)− π0(a | X)]2 = op(1)

B3 For a = 0, 1, it holds that

E




∑

i=1,2

∫ t∗

0
S(s | a,X)Ĥij(s, t

∗ | a,X)

×
(
1− π(a | X)SC(s | a,X)

π̂(a | X)ŜC(s | a,X)

)
d
[
Λ̂i(s | a,X)− Λi(s | a,X)

]


 = op(n

−1/2).
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Assumption B1 is the usual positivity assumption found through out the causal infer-
ence literature (for examples with censored data, see e.g. Westling et al., 2023, Rytgaard
et al., 2023, Rytgaard and van der Laan, 2024). Whereas assumption A3 relates to the
true data generating mechanism, assumption B1 extends to the estimators as well. We note
that employing cross-fitting in relatively small sample sizes can sometimes lead to practical
positivity-violations, when a ”rare” covariate lies in Vk but not in V−k. For B2 to hold, all nui-
sance estimators must be consistent, and for the hazard estimators this amounts to uniform
consistency. This requirement suggest the use of flexible learners for nuisance estimation.
Assumption B3 reflects the dobule robustness that is common for one-step estimators. In
lemma C.1 in the Appendix it is shown that the so-called remainder term, coming from the
aforementioned decomposition of the estimator, takes this form. It is sometimes referred to
as a second order remainder term, when it can be shown to hold if each of the nuisance esti-
mators converge on n−1/4-rate in L2(P )-norm. If one considers cumulative hazard estimators
that are absolute continuous, the result can be obtained from a simple application of the
Cauchy-Schwarz inequality (for examples involving Highly Adaptive Lasso, see Munch et al.,
2024, Rytgaard et al., 2023, Rytgaard et al., 2022), but this exclude many commonly used cu-
mulative hazard estimators such as any Breslow-type estimators. We expect nonetheless that
the double robustness is obtained for most reasonable estimators, and in the later simulation
studies, this will be exemplified by the use of random survival forests (Ishwaran et al., 2008).

Next follows our main result for the cross-fitted ATE estimator:

Theorem 1. Assume that the nuisance estimators ν̂−k, k = 1 . . .K follow assumption B for
each k. Then the cross-fitted estimator is asymptotically linear with influence function given
by ψ̃ψj

and hence
√
n
(
ψ̂CFj − ψj

)
d→ N (0, P ψ̃ψj

(·, ν0)2).

Proof. See Appendix C.

In practise, the variance of the influence function is estimated by the cross-fitted estimator:

σ̂2,CFψj
=

K∑

k=1

nk
n
Pkn

(
φ(ν̂−k)− ψ̂CFj

)2
,

and the standard error of ψ̂CFj is given by
√
σ̂2,CFψj

/n. We note that σ̂2,CFψj
is a type of plug-in

estimator, and contrary to the one-step estimator, it is not debiased via its influence function.
Hence, even though the estimator is consistent (by Lemma 1 in Ziersen and Martinussen,
2024), for consistent nuisance estimators, it is not generally asymptotically linear for data-
adaptive nuisance estimators, which may result in biased standard error estimates in finite
samples. In the simulation studies in Section 5, this will be explored by contrasting the use
of (semi)parametric and data-adaptive nuisance estimators, with the latter obtained from
random forests.

4.2 Best partially linear projection

Estimation of Ωlj(P ) follows the same overall strategy, i.e., construct an asymptotically linear
estimator using semiparametric theory. The difference now is that the target parameter is
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a ratio of two parameters which can both be written as a map from M to the reals. If we
construct asymptotically linear estimators for both parameters in the ratio, separately, then
the ratio of the estimators will also be asymptotically linear. Furthermore, if each estimator
in the ratio has their respective EIF as their influence function, the ratio of the estimators will
have its EIF as its influence, by the functional delta method (van der Vaart, 2000 ch. 25.7).
In the following we will extend the approach of Ziersen and Martinussen (2024) to the CATE
function defined by the number of life years lost, τj(x), for a given time-horizon [0, t∗], where
each of the parameters in the ratio of Ωlj is estimated separately. We start by calculating the
EIF for the relavant parameters:

Lemma 2. Define the mappings Γlj : M → R and χlj : M → R as

Γlj(P ) = E{cov(Xl, τj(X) | X−l)}
and

χl(P ) = E{var(Xl | X−l)}

such that Ωlj(P ) =
Γl
j(P )

χl(P )
. The efficient influence functions of Γlj(P ), χ

l(P ) and Ωlj(P ),

respectively, are given by

ψ̃Γl
j
(O;P ) = [φj(ν)(O)− E(τj(X) | X−l)][Xl − E(Xl | X−l)]− Γlj(P ), (4)

ψ̃χl(O;P ) = [Xl − E(Xl | X−l)]
2 − χl(P ), (5)

ψ̃Ωl
j
(O;P ) =

1

χl(P )

(
ψ̃Γl

j
(O;P )− Ωlj(P )ψ̃χl(O;P )

)
. (6)

Proof. See Appendix B

The EIF’s above depend explicitly on the conditional distribution of Xl given X−l through
E(Xl | X−l) and E(τj(X) | X−l), so to express them as mappings of the nuisance parameter,
we extend the notion of ν. Let τ lj(x−l) = E(τj(X) | X−l = x−l) and El(x−l) = E(Xl | X−l =
x−l), and define ν1l = El and ν2l = (Λ1,Λ2,Λc, π, τ

l
j , E

l). We define the uncentered EIF’s

corresponding to the EIF’s ψ̃Γl
j
and ψ̃χl

j
as

ϕΓl
j
(O; ν2l ) = [φj(ν)(O)− τ lj(X−l)][Xl − El(X−l)] (7)

ϕχl(O; ν1l ) = [Xl − El(X−l)]
2. (8)

The construction of the estimators for Γlj and χl now follow similar to the procedure in the

ATE setting. The estimation of χl is given in Ziersen and Martinussen (2024), but is included
here as well for completeness. Let ν̂1l and ν̂2l denote the estimated nuisance parameters. As in
the ATE-setting, we define ν̂1l,−k and ν̂2l,−k as the nuisance estimators based on data in V−k.
The cross-fitted estimators are defined as

Γ̂l,CFj =
1

n

K∑

k=1

∑

i∈Tk
ϕΓl

j
(Oi; ν̂

2
l,−k), χ̂l,CF =

1

n

K∑

k=1

∑

i∈Tk
ϕχl(Oi; ν̂

1
l,−k), Ω̂l,CFj =

Γ̂l,CFj

χ̂l,CF

Since the above estimators depend on the extended nuisance estimators, we have to make
additional assumption in order to derive the desired asymptotic linearity. Accordingly, we
have the following result:
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Theorem 2. Assume that for each fold k = 1, . . . ,K it holds that

(i)
(
Xl − Êl

)2
≤M, a.s for all n and some M > 0.

(ii)
∥∥∥τ̂ lj − τ lj

∥∥∥ = op(n
−1/4).

(iii)
∥∥∥Êl − El

∥∥∥ = op(n
−1/4).

Then, if assumption B holds for each k, it follows that Ω̂l,CFj is asymptotically linear with

influence function given by ψ̃Ωl
j
and hence

√
n(Ω̂l,CFj − Ωlj)

d→ N (0, P ψ̃2
Ωl

j
).

Proof. See Appendix C.

Assumption (i)− (iii) refer to the nuisance estimators related to the conditional distribu-
tion of Xl given X−l. Regarding assumption B3 for ATE estimation, we discussed the double
robustness properties of the cross-fitted estimator in relation to the convergence rates of the
nuisance estimators, and we can add to that discussion the rates given in (ii) and (iii). We see
that the estimator for our target parameter achieves parametric rates (asymptotic linearity)
if the nuisance estimators related to Xl|X−l are estimated at n−1/4-rate, adding to the notion
of ”double robustness”. The rate in assumption (iii) is known for many estimators, as it is
an assumption on a typical regression estimator. Whether it is fulfilled depends on the type
of the estimator used and possibly on the dimension d in relation to n, but we note that the
assumption is to be considered rather mild, allowing for many types of data-adaptive estima-
tors (see e.g. the discussion in Kennedy, 2022, Section 4.3). For estimation of τ̂ lj , we regress
the CATE estimates (τ̂j(Xi))

n
i=1 onto X−l = (Xi,−l)

n
i=1 in line with the approach suggested

in Hines, Diaz-Ordaz, and Vansteelandt (2022), and Ziersen and Martinussen (2024). This
approach constitutes a certain type of meta-learning and convergence rates related to (ii)
are generally less known compared to the regression in assumption (iii). We refer to Hines,
Diaz-Ordaz, and Vansteelandt (2022) for a discussion of a specific meta-learner termed the
DR-learner (Kennedy, 2023) for estimation of τ̂ lj (their analogy is termed τ̂s) and convergence
rates analogous to (ii).

As in the ATE setting, the variance, Pψ̃2
Ωl

j
, is estimated by the cross-fitted plugin estimator:

σ̂2,CF
Ωl

j

=
K∑

k=1

nk
n
Pknψ̃Ωl

j
(ν̂2l,−k)

2,

where (with some abuse of notation) we define

ψ̃Ωl
j
(ν̂2l,−k)(O) =

1

χ̂l,CF

(
ϕΓl

j
(O; ν̂2l,−k)− Γ̂l,CFj − Ω̂l,CFj

(
ϕχl(O; ν̂1l,−k)− χ̂l,CF

))
.
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Because of scale sensitivity, the estimate of Ωlj may be of less interest than testing the null-

hypothesis H0 : Ω
l
j = 0. A test statistic for H0 can be defined by

TSTl1 ≡
Ω̂l,CFj√
σ̂2,CF
Ωl

j

/n

that is asymptotically standard normal distributed. Lemma 1 in Ziersen and Martinussen
(2024) shows that the cross-fitted variance estimators considered in this paper, i.e., σ̂2,CF

Ωl
j

and σ̂2,CFψj
are consistent. The following corollary (analogous to Corollary 4 in Ziersen and

Martinussen, 2024) gives the desired asymptotic properties of our test-statistic:

Corollary 1. Under the same setup as in Theorem 2, we have under the null-hypothesis,
H0 : Ω

l
j = 0, that

TSTl1
D−→ N (0, 1).

Proof. Since the variance estimator σ̂2,CF
Ωl

j

is consistent, Theorem 2 together with Slutsky’s

theorem and an application of the delta method gives the result.

5 Simulation study

We conduct simulation studies to investigate the proposed asymptotic properties of the es-
timators ψ̂CFj and Ω̂l,CFj under two different nuisance estimator settings with and without
cross-fitting (i.e. setting K = 1). For all cross-fitted estimators, we set K = 10. In one
nuisance estimator setting we consider correctly specified (semi)parametric nuisance estima-
tors and in the other we use completely nonparametric estimators via random forest. The
parametric nuisance estimators adhere to assumption B and so we would expect the target
parameter estimators to perform according to theory both with and without cross-fitting. In
case of nonparametric estimators, survival random forest are shown to adhere to assumption
B2 in Cui et al. (2022), but it is unclear to what extend they admit rates corresponding to
B3. Furthermore, the nonparametric estimators do not in general belong to a Donsker class,
and we therefore expect the cross-fitted estimators to perform more in line with the theory
compared to the non-cross-fitted version (see Chernozhukov et al., 2018 and Kennedy, 2022
for a discussion on cross-fitted one-step estimators).

We consider data generated from the following models:

• Xl ∼ Unif[−1, 1], l = 1, . . . , 4

• π(1 | X) = expit(0.5X1 + 0.5X2)

• λ1(t | A,X) = 0.0025 · 2t2−1 exp(−X1 −X2 − 0.2X3 +A(0.5X1 − 0.3X2 − 2))

• λ2(t | A,X) = 0.00025 · 2t2−1 exp(−X1 −X2 − 0.2X3 +A)

• λc(t | A,X) = 0.00025 · 2t2−1 exp(−0.5X1).
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Note that the above hazard functions correspond to Cox models with baseline hazards given
by a Weibull hazard, bktk−1, where b and k are the scale and shape parameter, respectively.
We consider four sample size settings of n = 250, 500, 750, 1000, and for each setting we run
1000 simulations. For each simulation we generate data according to the models above and
estimate the target parameters according to specifications given below.

5.1 Average treatment effect

For estimation of ψ̂CF1 we choose the time-horsizon t∗ = 30. The true ATE is approximately
ψ1(P0) = −9.6135. We consider two nuisance setting for estimation of ν̂ (here dropping k from
the notation). In one setting ν̂ consists of correctly specified Cox models with corresponding
Breslow estimators for the cumulative hazards, and a correctly specified logistic regression
for the propensity score model. This setting will be abbreviated cor in tables and figures
going forward. In the second setting we estimate the cumulative hazards by random survival
forests (Ishwaran et al., 2008) as implemented in the R-package randomForestSRC with de-
fault tuning parameters (see Ishwaran et al., 2023 for documentation), and we estimate the
propensity score by random forest, again with the implementation and tuning parameters
given by randomForestSRC. This setting will be abreviated RF in tables and figures going
forward. Furthermore, each setting will be given the suffix CF if cross-fitting is used.

n method bias SD mean SE coverage

250 cor -0.1521 0.9424 0.9746 0.9550
corCF -0.0494 0.9701 1.0340 0.9620
RF -0.3501 0.9020 0.5644 0.7520
RFCF 0.0953 1.2012 1.3429 0.9710

500 cor -0.0980 0.6946 0.6893 0.9570
corCF -0.0538 0.7040 0.7084 0.9550
RF -0.3576 0.6750 0.3957 0.6800
RFCF -0.0383 0.7912 0.8799 0.9680

750 cor -0.0665 0.5650 0.5633 0.9480
corCF -0.0377 0.5684 0.5735 0.9500
RF -0.3269 0.5538 0.3237 0.6750
RFCF -0.0678 0.6394 0.6970 0.9670

1000 cor -0.0265 0.4724 0.4884 0.9540
corCF -0.0046 0.4754 0.4949 0.9570
RF -0.2800 0.4636 0.2808 0.6950
RFCF -0.0319 0.5383 0.5943 0.9710

Table 1: Results of 1000 simulations of estimators of Ψ1 with varying nuisance estimators,
and with and without cross-fitting for sample sizes n = 250, 500, 750, 1000. The abbreveations
of the methods are read as follows: cor corresponds to the nuisance parameters Λ1,Λ2,Λc, π
estimated by correctly specified Cox and logistic regressions, and RF corresponds to the
same parameters estimated by Random Forest. A suffix CF indicates that cross-fitting was
employed in estimation of Ψj . The tables gives the bias, empirical standard deviation (SD),
mean of the estimated standard error (mean SE), and coverage.

Table 1 gives the results for ATE-estimation. For correctly specified nuisance estimators
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the bias decreases with n and standard deviations decrease at an approximately n1/2-rate.
With a coverage around 0.95, even for relatively small n, it looks as if the estimator follows the
asymptotic distribution from Theorem 1. Surprisingly though, cross-fitting seems to decrease
the bias of the estimator with correctly specified nuisance parameters even further. Overall we
find that the estimator performs as expected for correctly specified (semi)parametric nuisance
estimators.

For the nuisance estimators using random forests, we see a non-vanishing bias for the
non-cross-fitted estimators. Furthermore, the standard errors are underestimated compared
to the empirical standard deviation of the estimators which, together with the bias result in
undercoverage. When using cross-fitting together with random forests, the bias disappears on
roughly the same order as the correctly specified parametric estimators (without cross-fitting),
and the standard deviation of the estimator seem to be on roughly

√
n-rate, as with the

correctly specified nuisance parameters. The standard errors seem to be slighty overestimated,
though, resulting in a slight overcoverage. This might be due to the hyperparameter choices
for the random forests.

5.2 Best partially linear projection

For estimation of Ω̂l,CF1 , we set t∗ = 30, as for ATE-estimation. The true value of the
target parameters are approximately (Ω1

1,Ω
2
1,Ω

3
1,Ω

4
1) = (4.949, 3.137, 0.737, 0). We also need

estimates of τ̂ l and Êl, for which we will consider two settings. In the first, both τ̂ l and Êl are
estimated with a generalised additive model (GAM) including spline smoothing of each term
but without interactions as implemented in the R-package mgcv, and in the second, each of the
nuisance parameters are estimated with random forest (again with default tuning parameters
from randomForestSRC). The GAM setting will be added to the correctly specified setting,
cor, from earlier in tables and figures going forward, and the random forest setting will be
added to the random forest setting, RF, from earlier.

In Figure 1, we see the absolute bias for estimation of Ω̂lj , l = 1, . . . , 4, for the different
nuisance settings. In general, we see that cor and corCF perform similarly across all sample
sizes and across all l, with a bias converging to zero. The RFCF-setting performs slightly
worse than cor and corCF for small n, but has approximately similar performance for large
n, whereas RF has a large bias for large enough values of Ωl1. Generally, the estimators seem
to perform as we would expect according to Theorem 2 in terms of bias. The coverage of
the estimators are presented in Figure 2. The settings cor, corCF and RFCF all exhibit
approximately nominal coverage across n and l, whereas RF has poor coverage. Again, this is
in line with our expectations. Figure 3 gives the estimated probability of rejecting H : Ω4

1 = 0,
i.e. the type-1 error (since Ω4

1 = 0 in our data generating mechanism), together with Monte
Carlo confidence intervals. The type-1 error is approximately 0.05 for all n, expect for RF
where the type 1-error increases with n.

Lastly, Figure 4 shows the probability of rejecting H : Ωl1 = 0, l = 1, 2, 3, which correspond
the power of the test. Interestingly, using data-adaptive estimation of the nuisance parameters
seem to decrease the power of the test TST l1.
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Figure 1: Results based on 1000 simulations of the estimators of Ωl1 with for l = 1, . . . , 4
with varying nuisance estimators and across sample sizes n = 250, 500, 750, 1000. The plot
shows the absolute bias of the estimators, where cor corresponds to the nuisance parameters
Λ1,Λ2,Λc, π estimated by correctly specified Cox and logistic regressions, andRF corresponds
to the same parameters estimated by Random Forest. A suffix CF indicates that cross-fitting
was employed. The true values are (Ω1

1,Ω
2
1,Ω

3
1,Ω

4
1) = (4.949, 3.137, 0.737, 0).

6 Application

To demonstrate the methods outlined in the previous sections, we consider the study by
Kessing et al. (2024). In this study, the non-response to 17 different antidepressants are
compared based on data from the Danish national registers. Patients enter the study at their
first diagnosis with major depressive disorder from a psychiatric hospital. Their treatment,
in terms of a specific antidepressant, is defined as the first purchase of an antidepressant
after discharge from the hospital, which also determines the index date. The main outcome
was time to non-response, defined as a switch to or add-on of another antidepressant or
antipsychotic medicine or readmission to psychiatric hospital with a major depressive disorder.
Competing risk for the time to non-response was admission to a psychiatric hospital with a
higher order psychiatric diagnosis (bipolar disorder, schizophrenia or organic mental disorder)
or death. The 17 antidepressants are categorised into six groups (SSRI, NARI, SNRI, NaSSA,
TCA, and others) and within each group a reference drug is chosen to which the other drugs
in that group are compared. The estimand for each comparison is the average treatment
effect on the risk of non-response within two years after index date, i.e., it is defined as
E{F1(t | A = 1, X) − F1(t | A = 0, X)}, where F1 is the conditional cumulative incidence
function for non-response and A = 0 denotes the reference drug and A = 1 is the comparitor.
The study includes patients from 1995-2018 and not all of the antidepressants considered were
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Figure 2: Results based on 1000 simulations of the estimators of Ωl1 with for l = 1, . . . , 4 with
varying nuisance estimators and across sample sizes n = 250, 500, 750, 1000. The plot shows
coverage of the estimators, where cor corresponds to the nuisance parameters Λ1,Λ2,Λc, π
estimated by correctly specified Cox and logistic regressions, and RF corresponds to the
same parameters estimated by Random Forest. A suffix CF indicates that cross-fitting was
employed. The black line indicates a coverage of 0.95.

available on the marked in the entire period. Accordingly, for each comparison, a minimum
date is set for which both drugs in comparison were available and all patients with index dates
prior to the minimum date are excluded.

For the sake of illustration we constrict ourselves to the comparison of Setraline (reference
drug, n = 14416) and Escitalopram (comparitor, n = 7508). Kessing et al. (2024) used
the G-formula with F1 estimated by cause-specific Cox regressions (Ozenne et al., 2020) to
estimate the average treatment effect. To control for confounding, the Cox-regressions were
adjusted for the covariates in Table 2 and the ATE was estimated to be 0.10 (0.09, 0.12), that
is, the probability of non-response was 0.1 higher amongst patients treated with Escitalopram
within two years after treatment initiation. For comparison, instead of defining the treatment
effect through the cumulative incidence function, F1, we consider estimation of the ATE and
the best partially linear projection based on the number of life-years-lost estimands defined
in Section 3. That is, we consider estimation of ψj and Ωlj with t∗ = 730.5 days (2 years).
We include the same confounders as in Kessing et al. (2024) with the exception that age is
included as a numeric variable instead of a categorised version. The target parameters are
estimated with the cross-fitted estimators described in Section 4 with all nuisance parameters
estimated by random forests (as described in the simulation study) and K = 10 folds.

The ATE is estimated to 48.96 (40.02, 57.90). The interpretation here is that patients on
Setraline on average lost 49 ”healthy” days less before two years after treatment initiation due
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Figure 3: Results based on 1000 simulations of the test statistic corresponding to the test
H0 : Ω

4
1 = 0 with varying nuisance estimators and across sample sizes n = 250, 500, 750, 1000.

The plot shows probability of rejecting H0, which equals the type-1 error as Ω4
1 = 0. cor

corresponds to the nuisance parameters Λ1,Λ2,Λc, π estimated by correctly specified Cox and
logistic regressions, andRF corresponds to the same parameters estimated by Random Forest.
A suffix CF indicates that cross-fitting was employed.
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Figure 4: Results based on 1000 simulations of the test statistic corresponding to the test
H0 : Ωl1 = 0, for l = 1, 2, 3, with varying nuisance estimators and across sample sizes n =
250, 500, 750, 1000. The plot shows probability of rejectingH0, which corresponds to the power
of the test as Ωl1 > 0 for l = 1, 2, 3. cor corresponds to the nuisance parameters Λ1,Λ2,Λc, π
estimated by correctly specified Cox and logistic regressions, and RF corresponds to the
same parameters estimated by Random Forest. A suffix CF indicates that cross-fitting was
employed.
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Annotation Explanation

age age-group: (< 30, 30–50, 50–70, > 70) at index-date

sex female, male

Secondary diagnosis from the psychiatric hospital at inclusion.
The annotations reflect the ICD-10 codes used in the definition:

F10-19 other psychiatric disorders

F40-48 neurotic, stress-related and somatoform disorders

F60-69 personalitiy disorders

Diagnosis with somatic disorder within 10 years prior to index
date. The annotation are given in form of the corresponding
ICD-10 chapter:

I infections

II neoplasms

III blood diseases

IV+IX+X
endocrine, nutritional, and metabolic diseases and dis-
eases of the circulatory or respiratory system

VI-VIII diseases of the nervous system, eye and ear

XI diseases of the digestive system

XII diseases of the skin and subcutaneous tissue

XIII diseases if the musculoskeletal system

XIX physical lesions and poisoning)

Table 2: Confounders in Kessing et al. (2024)

to non-response compared to patients who start on Escitalopram, where ”healthy” is meant
as time without a non-response event or a competing event. Table 3 shows the estimates
Ω̂l,CF1 , for l given by each confounder in Table 2 (with age included as numeric), together
with a p-value associated with the test statistic TSTl1.

age sex XIII XI F60-69 II VI-VIII IV+IX+X F40-48 III XIX XII I F10-19

Ω̂l,CF1 -0.85 18.7 -28.3 -16.7 15.1 17.4 8.88 4.38 5.21 -4.80 -2.85 -2.00 -0.41 0.23

p-value 0.03 0.04 0.17 0.27 0.30 0.36 0.40 0.73 0.76 0.82 0.83 0.88 0.98 0.98

Table 3: Estimates of Ω̂l,CF1 ranked according to the p-value associated with the test of
H : Ωl1 = 0, for l ranging over different covariates. Random Forest was used for all nui-
sance parameter estimators. The data comes from the study Kessing et al. (2024), and the
outcome is time to non-response, which is defined as a switch in psychiatric treatment or re-
hospitalization at psychiatric ward. The treatment effect was defined as the difference in the
number of healthy days lost (days without switch of treatment or re-hospitalization) due to
non-response before two years after treatment initiation between Escitalopram and Setraline.

The p-values indicate that potential treatment effect heterogeneity can be attributed to
sex and age, while the treatment effect does not seem to vary across any of the other variables.
Specifically, since Ωj is defined as the projection of the CATE function onto the partially linear
model, the estimates related to sex and age can be interpreted as regression coefficients. The
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CATE function is defined as the difference in number of healthy days lost due to non-response
between Escitalopram and Setraline, and the estimate Ω̂sex,CF1 = 18.69 then corresponds to
the treatment effect being larger among women compared to men, i.e., the difference in number
of healthy days lost due to non-response between Escitalopram and Setraline was larger among
women. This interpretation is of course relying on the partially linear model to hold for the
CATE function, but as the parameter still measures the association between τ and sex, when
the partially linear model does not hold, we would still conclude, that the treatment effect is
larger among women.

7 Discussion

In this paper, we have introduced the causal effect of a treatment on the number of life-years
lost due to a specific event. We have shown that the ATE and the CATE are identifiable
from the observed data under common assumptions found throughout the causal inference
and survival literature. Different measures of treatment effect in the presence of competing
risk are available in causal inference (Rytgaard and van der Laan, 2024, Rytgaard et al., 2023,
Ozenne et al., 2020, Martinussen and Stensrud, 2023) and the treatment effect studied in this
paper adds a new interpretability compared to existing variants. One advantage is that the
treatment effect is defined on the time scale of the study and it thus provides a quantity that is
easy to communicate to non-statisticians, whereas treatment effects based on the cumulative
incidence function are harder to communicate. Furthermore, as the treatment effect can be
written as a difference of integrated cumulative incidence functions, it is not as sensitive to
the choice of time horizon in terms of detecting an effect of treatment. As is common when
assessing the treatment effect in the presence of competing risk, the effect of a treatment on
the number of life years lost due to a specific event depends on the effect of the treatment
on both the hazard of the event of interest and on the competing event. As such, one can in
principle conclude that there is an effect of treatment, even when all of the effect is driven
by the effect on the competing event. Martinussen and Stensrud (2023) provide a measure
of separable treatment effects based on the cumulative incidence function, which allow one
to estimate the effect of treatment only driven by the intensity of the event of interest under
additional causal assumptions. An interesting avenue for future research is to extend their
method to the number of life years lost due to a specific event.

We have provided an estimator of the ATE based on semi-parametric efficiency theory, which
allows for data-adaptive estimation of the nuisance parameters. The estimator is efficient in
the non-parametric model with variance given by the efficient influence function. One of the
assumptions needed to ensure the asymptotic results relies on convergence of a remainder
term on n−1/2-rate (assumption B3), which is reminiscent of similar assumption in the causal
inference literature with censored data (Westling et al., 2023, Rytgaard et al., 2023). Without
assuming absolute continuity of the hazard estimators, it is difficult to obtain an equivalent
double rate-robustness property as is seen in the literature on uncensored data (e.g. Kennedy,
2022, Hines, Dukes, et al., 2022, Chernozhukov et al., 2018, van der Laan and Rose, 2011).
Accordingly, we conducted a simulation study, where the nuisance parameters were estimated
by variants of random forests, which confirmed that the estimator performed according to
asymptotic results when using data-adaptive nuisance estimators.
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Lastly, we extended a measure of treatment effect heterogeneity, termed the best partially
linear projection (Ziersen and Martinussen, 2024), to the CATE-function defined on the num-
ber of life-years lost due to a specific event. The measure asserts the importance of a given
covariate on the treatment effect, but with competing risk the interpretation is more delicate
compared to the survival setting. When the effect of treatment on the competing event is
large, one can imagine scenarios where the importance of one covariate on the CATE is driven
by the effect on the competing event, and a ranking of importance (shown in Section 6) based
on the event of interest might be misleading. In such scenarios, one can switch the event
of interest and competing event and make a separate ranking of the covariates to get a full
picture.
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A Identification of causal estimands

We present an argument for the identification results in the main text. The argument follows
usual steps in the causal inference literature on censored data, and it is based of a combination
of the G-formula (Robins, 1986) and identification results from the literature on survival
analysis (see e.g. Andersen et al., 1993 and Martinussen and Scheike, 2006).

As noted in Andersen (2013), Tj is improper due to P (Tj = ∞) > 0, but the random
variable Tj ∧ t∗ is proper with an expectation given by

E{Tj ∧ t∗} = t∗ −
∫ t∗

0
Fj(s) ds.

Hence

E(Tj ∧ t∗ | a, x) = t∗ −
∫ t∗

0
Fj(s | a, x) ds.

which is identified in the observed data under assumption A4 and A3 (Andersen et al., 1993).
For the ATE, this allows us to write

E0{Y 1
j (t

∗)− Y 0
j (t

∗)}
= E0{E(Y 1

j (t
∗)− Y 0

j (t
∗) | X)}

ass.A2
= E0{E(Y 1

j (t
∗) | A = 1, X)− E(Y 1

j (t
∗) | A = 0, X)}

ass.A1
= E0{E(Yj(t∗) | A = 1, X)− E(Yj(t

∗) | A = 0, X)}
ass.A4
= E0{Lj(0, t∗ | A = 1, X)− Lj(0, t

∗ | A = 0, X)}

where assumption A3 ensures that all conditional distributions are well defined. We note that
CATE is identified by the same arguments.

B Derivation of influence functions

In the following we consider the parametric submodel Pϵ = ϵQ+(1−ϵ)P , where Q is the Dirac
measure with pointmass in the observation O = (T̃ , ∆̃, A,X), and we define the operator ∂ϵ
with ∂ϵfϵ =

d
dϵ |ϵ=0fϵ.

Lemma B.1. The Gateaux derivative of Λj(ds | a, x) is given by

∂ϵΛj,ϵ(ds | a, x) =
1

P (T̃ ≥ s, a, x)

(
Q(ds,∆ = j, a, x)− 1(T̃ ≥ s, a, x)Λj(ds | a, x)

)
(9)

where

P (T̃ ≥ s, a, x) =
2∑

δ=0

∫ ∞

s
P (ds, δ, a, x).
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Proof. Observe

∂ϵΛj,ϵ(ds | a, x)

=∂ϵ
Pϵ(ds,∆ = j, a, x)

Pϵ(T̃ ≥ s, a, x)

=
Q(ds,∆ = j, a, x)− P (ds,∆ = j, a, x)

P (T̃ ≥ s, a, x)
− ∂ϵPϵ(T̃ ≥ s, a, x)

P (ds,∆ = j, a, x)

P (T̃ ≥ s, a, x)2

=
Q(ds,∆ = j, a, x)− P (ds,∆ = j, a, x)

P (T̃ ≥ s, a, x)

−
2∑

δ=0

(
1(T̃ ≥ s, δ, a, x)− P (T̃ ≥ s, δ, a, x)

) P (ds,∆ = j, a, x)

P (T̃ ≥ s, a, x)2

=
1

P (T̃ ≥ s, a, x)

(
Q(ds,∆ = j, a, x)− 1(T̃ ≥ s, a, x)Λj(ds | a, x)

)

Lemma B.2. The Gateaux derivative of S(s | a, x) is given by

∂ϵSϵ(s | a, x) = −S(s | a, x)1(A = a,X = x)

π(a | x), f(x)

∫ s

0

dM1(u | a, x) + dM2(u | a, x)
P (T̃ ≥ s, a, x)

(10)

Proof. First we note that

∂ϵΛj,ϵ(s | a, x) =
∫ s

0
∂ϵΛj,ϵ(ds | a, x)

=
1(A = a,X = x)

π(a | x)f(x)

∫ s

0

dMj(u | a, x)
P (T̃ ≥ s | a, x)

(11)

by lemma B.1. Then

∂ϵS(s | a, x) = ∂ϵ exp(− [Λ1,ϵ(s | a, x) + Λ2,ϵ(s | a, x)])
= −S(s | a, x)∂ϵ [Λ1,ϵ(s | a, x) + Λ2,ϵ(s | a, x)] .

Applying (11) gives the result.

Lemma B.3. The Gateaux derivative of Lj(0, t
∗ | a, x) is given by

∂ϵLj,ϵ(0, t
∗ | a, x) = 1(A = a,X = x)

π(a | x)f(x)
∑

i=1,2

∫ t∗

0

Hij(s, t
∗ | a, x)

SC(s | a, x)
dMi(s | a, x) (12)

where

Hij(s, t | a, x) =
∫ t

s
1(i = j) +

Fj(s | a, x)− Fj(u | a, x)
S(s | a, x) du.

Proof. First we note that

∂ϵFj,ϵ(t | a, x) =
∫ t

0
∂ϵSϵ(s | a, x)Λj(ds | a, x) +

∫ t

0
∂ϵS(s | a, x)Λj,ϵ(ds | a, x). (13)
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For the first term in (13), observe

∫ t

0
∂ϵSϵ(s | a, x)Λj(ds | a, x) (14)

=
1(A = a,X = x)

π(a | x)f(x)

[∫ t

0

∫ s

0

−S(s | a, x)
P (T̃ ≥ u | a, x)

dM1(u | a, x)Λj(s | a, x)

+

∫ t

0

∫ s

0

−S(s | a, x)
P (T̃ ≥ u | a, x)

dM2(u | a, x)Λj(s | a, x)
]

by lemma B.2, and for the second term

∫ t

0
∂ϵS(s | a, x)Λj,ϵ(ds | a, x) (15)

=

∫ t

0

S(s | a, x)
P (T̃ ≥ s, a, x)

(
Q(ds,∆ = j, a, x)− 1(T̃ ≥ s, a, x)Λj(ds | a, x)

)

=
1(A = a,X = x)

π(a | x)f(x)

∫ t

0

dNj(s)

SC(s | a, x)
− 1(T̃ ≥ s)Λj(ds | a, x)

SC(s | a, x)

=
1(A = a,X = x)

π(a | x)f(x)

∫ t

0

dMj(s | a, x)
SC(s | a, x)

by lemma B.1. Plugging into (13) gives

∂ϵFj,ϵ(t | a, x)

=
1(A = a,X = x)

π(a | x)f(x)

[∫ t

0

∫ t
u −S(s | a, x)Λj(ds | a, x)

P (T̃ ≥ u | a, x)
dM1(u | a, x)

+

∫ t

0

∫ t
u −S(s | a, x)Λj(ds | a, x)

P (T̃ ≥ u | a, x)
dM2(u | a, x) +

∫ t

0

dMj(s | a, x)
SC(s | a, x)

]

=
1(A = a,X = x)

π(a | x)f(x)

[∫ t

0

Fj(u | a, x)− Fj(t | a, x)
S(u | a, x)SC(u | a, x) dM1(u | a, x)

+

∫ t

0

Fj(u | a, x)− Fj(t | a, x)
S(u | a, x)SC(u | a, x) dM2(u | a, x) +

∫ t

0

dMj(u | a, x)
SC(u | a, x)

]

=
1(A = a,X = x)

π(a | x)f(x)
∑

i=1,2

∫ t

0

1

SC(u | a, x)

(
Fj(u | a, x)− Fj(t | a, x)

S(u | a, x) + 1(i = j)

)
dMi(u | a, x).

(16)
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Finally, by (16), we have

∂ϵLj,ϵ(0, t
∗ | a, x) (17)

=

∫ t∗

0
∂ϵFj,ϵ(t | a, x) dt

=

∫ t∗

0

∑

i=1,2

∫ t

0

1

SC(u | a, x)

(
Fj(u | a, x)− Fj(t | a, x)

S(u | a, x) + 1(i = j)

)
dMi(u | a, x) dt

× 1(A = a,X = x)

π(a | x)f(x)

=

∫ t∗

0

∑

i=1,2

∫ t∗

u

(
Fj(u | a, x)− Fj(t | a, x)

S(u | a, x) + 1(i = j)

)
dt

1

SC(u | a, x) dMi(u | a, x)

× 1(A = a,X = x)

π(a | x)f(x)

=
1(A = a,X = x)

π(a | x)f(x)
∑

i=1,2

∫ t∗

0

Hij(s, t
∗ | a, x)

SC(s | a, x)
dMi(s | a, x).

Proof of lemma 1. We have

∂ϵψj(Pϵ) = ∂ϵ EPϵ{τj,Pϵ(X)} = τj(X) + E{∂ϵτj,Pϵ(X)} − ψj(P ).

Applying lemma B.3 gives the result.

Proof of lemma 2. The EIF of χl(P ) is given by theorem 3 in Ziersen and Martinussen
(2024). By remark 2 in Ziersen and Martinussen (2024), the EIF of Γlj(P ) is given by ψ̃Γl

j
pro-

vided that the CATE function τj(x) has Gateaux derivative given by 1(X=x)
f(x) [φj(O)− τj(X)],

which is seen to hold by lemma B.3. The EIF of Ωlj then follows from the chain rule.

C Proof of asymptotic results

Lemma C.1. The remainder term P{φaj (ν̂)− τaj }, a = 0, 1, can be represented as

E




∑

i=1,2

∫ t∗

0
S(s | a,X)Ĥij(s, t

∗ | a,X)

×
(
1− π(a | X)SC(s | a,X)

π̂(a | X)ŜC(s | a,X)

)
d
[
Λ̂i(s | a,X)− Λi(s | a,X)

]}

where the expectation is taken with respect to an observation O, considering the nuisance
estimators, ν̂, fixed. Under assumption B3 it holds that P{φj(ν̂)− τj} = op(n

−1/2).
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Proof of lemma C.1. Throughout the proof, expectations and conditional expectations will
be taken with respect to an observation O, considering estimated nuisance parameters fixed.
For the first statement we have

P (ϕaj (ν̂)− τaj ) =E
{
L̂j(0, t

∗ | a,X)− Lj(0, t
∗ | a,X)

}

+ E




1(A = a)

π̂(a | X)

∑

i=1,2

∫ t∗

0

Ĥij(s, t
∗ | a,X)

ŜC(s | a,X)
dM̂i(s | a,X)



 (18)

and we will expand the two terms separately. For the first term note that

F̂j(t | a, x)− Fj(t | a, x) =
∫ t

0
Ŝ(s | a, x)− S(s | a, x) dΛ̂j(s | a, x)

+

∫ t

0
S(s | a, x)

[
Λ̂j(s | a, x)− Λj(s | a, x)

]
. (19)

Define
Λ(s | a, x) = Λ1(s | a, x) + Λ1(s | a, x),

then Duhamel’s equations (Gill and Johansen, 1990) gives

Ŝ(s | a, x)− S(s | a, x) =
∫ s

0

S(u | a, x)
Ŝ(u | a, x)

d
[
Λ(u | a, x)− Λ̂(u | a, x)

]
Ŝ(s | a, x).

Plugging this into the first term in (19) gives

∫ t

0
Ŝ(s | a, x)− S(s | a, x) dΛ̂j(s | a, x)

=

∫ t

0

∫ s

0

S(u | a, x)
Ŝ(u | a, x)

d
[
Λ(u | a, x)− Λ̂(u | a, x)

]
Ŝ(s | a, x) dΛ̂j(s | a, x)

=

∫ t

0

∫ t

u
Ŝ(s | a, x)S(u | a, x)

Ŝ(u | a, x)
dΛ̂j(s | a, x) d

[
Λ(u | a, x)− Λ̂(u | a, x)

]

=

∫ t

0

S(u | a, x)
Ŝ(u | a, x)

(
F̂j(t | a, x)− F̂j(u | a, x)

)
d
[
Λ(u | a, x)− Λ̂(u | a, x)

]

=

∫ t

0

S(u | a, x)
Ŝ(u | a, x)

(
F̂j(t | a, x)− F̂j(u | a, x)

)
d
[
Λ1(u | a, x)− Λ̂1(u | a, x)

]

+

∫ t

0

S(u | a, x)
Ŝ(u | a, x)

(
F̂j(t | a, x)− F̂j(u | a, x)

)
d
[
Λ2(u | a, x)− Λ̂2(u | a, x)

]
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Using this expansion, we can write (19) as

F̂j(t | a, x)− Fj(t | a, x)

=

∫ t

0

S(u | a, x)
Ŝ(u | a, x)

(
F̂j(u | a, x)− F̂j(t | a, x)

)
d
[
Λ̂1(u | a, x)− Λ1(u | a, x)

]

+

∫ t

0

S(u | a, x)
Ŝ(u | a, x)

(
F̂j(u | a, x)− F̂j(t | a, x)

)
d
[
Λ̂2(u | a, x)− Λ2(u | a, x)

]

+

∫ t

0
S(s | a, x)

[
Λ̂j(s | a, x)− Λj(s | a, x)

]

=
∑

i=1,2

∫ t

0
S(s | a, x)

(
1(i = j) +

F̂j(s | a, x)− F̂j(t | a, x)
Ŝ(s | a, x)

)
d
[
Λ̂i(u | a, x)− Λi(u | a, x)

]

(20)

For the second term in (18) note that

E

(∫ t∗

0

Ĥij(s, t
∗ | A,X)

ŜC(s | A,X)
dM̂i(s | A,X)

∣∣∣∣ A,X
)

=

∫ t∗

0

Ĥij(s, t
∗ | A,X)

ŜC(s | A,X)
E(dNi(s) | A,X)

−
∫ t∗

0

Ĥij(s, t
∗ | A,X)

ŜC(s | A,X)
E(1(T̃ ≥ s) | A,X) dΛ̂i(s | A,X)

=

∫ t∗

0

Ĥij(s, t
∗ | A,X)

ŜC(s | A,X)
S(s | A,X)SC(s | A,X) d

[
Λi(s | A,X)− Λ̂i(s | A,X)

]
. (21)

Hence, by collecting (20) and (21), and using iterated expectation, we can write (18) as

E




∑

i=1,2

∫ t

0
S(s | a,X)

(
1(i = j) +

F̂j(s | a,X)− F̂j(t | a,X)

Ŝ(s | a,X)

)
d
[
Λ̂i(u | a,X)− Λi(u | a,X)

]

−π(a | X)

π̂(a | X)

∑

i=1,2

∫ t∗

0

Ĥij(s, t
∗ | a,X)

ŜC(s | a,X)
S(s | a,X)SC(s | a,X) d

[
Λ̂i(s | a,X)− Λi(s | a,X)

]




=E




∑

i=1,2

∫ t∗

0
S(s | a,X)Ĥij(s, t

∗ | a,X) (22)

×
(
1− π(a | X)SC(s | a,X)

π̂(a | X)ŜC(s | a,X)

)
d
[
Λ̂i(s | a,X)− Λi(s | a,X)

]}

which gives the first statement. For the second statement note that

P{ϕj(ν̂)− τ j} = P{ϕj1(ν̂)− τ j1} − P{ϕj0(ν̂)− τ j0}.

Applying the representation above along with assumption B3 gives the result.
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Lemma C.2. Let g(s | a, x) = π(a | x)SC(s | a, x) and ĝ(s | a, x) = π̂(a | x)ŜC(s | a, x).
Under assumption B1 and B2, the uncentered EIF, φj, is bounded in L2(P )-norm as:

∥φj(ν̂)− φj(ν)∥ ≤C∗
1

∥∥∥∥sup
s≤t∗

∣∣∣Λ̂1(s | a,X)− Λ1(s | a,X)
∣∣∣
∥∥∥∥

+ C∗
2

∥∥∥∥sup
s≤t∗

∣∣∣Λ̂2(s | a,X)− Λ2(s | a,X)
∣∣∣
∥∥∥∥

+ C∗
c

∥∥∥∥sup
s≤t∗

|ĝ(s | a,X)− g(s | a,X)|
∥∥∥∥

Proof of lemma C.2. Note that

∥φj(ν̂)− φj(ν)∥ ≤
∥∥φ1

j (ν̂)− φ1
j (ν)

∥∥+
∥∥φ0

j (ν̂)− φ0
j (ν)

∥∥ .

Hence we need to show
∥∥∥φaj (ν̂)− φaj (ν)

∥∥∥ = op(1) for a = 0, 1. Observe that

P{φaj (ν̂)− φaj (ν)}2

≤2E
{
L̂j(0, t

∗ | a,X)− Lj(0, t
∗ | a,X)

}2
(23)

+ 2E




∑

i=1,2

∫ t∗

0

Ĥij(s, t
∗ | a,X)

ĝ(s | a,X)
− Hij(s, t

∗ | a,X)

g(s | a,X)
dNi(s)





2

(24)

+ 2E




∑

i=1,2

[∫ t∗∧T̃

0

Ĥij(s, t
∗ | a,X)

ĝ(s | a,X)
dΛ̂i(s | a,X)−

∫ t∗∧T̃

0

Hij(s, t
∗ | a,X)

g(s | a,X)
dΛi(s | a,X)

]


2

.

(25)

We will deal with each of the terms separately, but first we will derive some results for the
consistency of F̂j , L̂j and Ĥij . For F̂j we have that

F̂j(t
∗ | a, x)− Fj(t

∗ | a, x)

=

∫ t∗

0
Ŝ(s | a, x) d

[
Λ̂j(s | a, x)− Λj(s | a, x)

]
+

∫ t∗

0
Ŝ(s | a, x)− S(s | a, x) dΛj(s | a, x)

=Ŝ(t∗ | a, x)
[
Λ̂j(t

∗ | a, x)− Λj(t
∗ | a, x)

]
− Ŝ(0 | a, x)

[
Λ̂j(0 | a, x)− Λj(0 | a, x)

]

−
∫ t∗

0
Λ̂j(s | a, x)− Λj(s | a, x) dŜ(s | a, x) +

∫ t∗

0
Ŝ(s | a, x)− S(s | a, x) dΛj(s | a, x)

≤2 sup
s≤t∗

∣∣∣Λ̂j(s | a, x)− Λj(s | a, x)
∣∣∣+ Λ̂j(t | a, x) sup

s≤t∗

∣∣∣Ŝ(s | a, x)− S(s | a, x)
∣∣∣

≤2 sup
s≤t∗

∣∣∣Λ̂j(s | a, x)− Λj(s | a, x)
∣∣∣

+ log(η−1)eC sup
s≤t∗

[∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+
∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)

∣∣∣
]

=C1 sup
s≤t∗

∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+ C2 sup

s≤t∗

∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)
∣∣∣ (26)
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for constants C1 > 0 and C2 > 0. The second equality follows from partial integration and
the second inequality follows from the mean value theorem with C > 0 is some value between
Λ̂(s | a, x) and Λ(s | a, x) together with assumption B1.

From (26) it follows immediately that

L̂j(0, t
∗ | a, x)− Lj(0, t

∗ | a, x)
≤t∗C1 sup

s≤t∗

∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+ t∗C2 sup

s≤t∗

∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)
∣∣∣ . (27)

For Ĥij , observe

Ĥij(s, t
∗ | a, x)−Hij(s, t

∗ | a, x)−Hij(s, t
∗ | a, x)−Hij(s, t

∗ | a, x)

=

∫ t∗

s

F̂j(s | a, x)− Fj(s |, a, x)− (F̂j(u | a, x)− Fj(u |, a, x))
Ŝ(s | a, x)

du

+

∫ t∗

s

(
1

Ŝ(s | a, x)
− 1

S(s | a, x)

)
(Fj(s | a, x)− F (u)) du

≤t∗
∣∣∣∣∣
F̂j(s | a, x)− Fj(s | a, x)

Ŝ(s | a, x)

∣∣∣∣∣+ η−1

∫ t∗

s

∣∣∣F̂j(u | a, x)− Fj(u | a, x)
∣∣∣du

+ η−2
∣∣∣Ŝ(s | a, x)− (s | a, x)

∣∣∣
(
Fj(s | a, x)−

∫ t∗

s
Fj(u | a, x) du

)

≤C3 sup
s≤t∗

∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+ C4 sup

s≤t∗

∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)
∣∣∣ (28)

for some constants C3 > 0 and C4 > 0, which follows from (26). Now we proceed to bound
each of the three terms initially stated. The bound of (23) follows directly from (27):

2 E
{
L̂j(0, t

∗ | a,X)− Lj(0, t
∗ | a,X)

}2

≤2E

{
C5 sup

s≤t∗

∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+ C6 sup

s≤t∗

∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)
∣∣∣
}2

. (29)
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For (24) we have

E




∑

i=1,2

∫ t∗

0

Ĥij(s, t
∗ | a,X)

ĝ(s | a,X)
− Hij(s, t

∗ | a,X)

g(s | a,X)
dNi(s)





2

=E




∑

i=1,2

∫ t∗

0

Ĥij(s, t
∗ | a,X)−Hij(s, t

∗ | a,X)

ĝ(s | a,X)
dNi(s)

+

∫ t∗

0
Hij(s, t

∗ | a, x)
(

1

ĝ(s | a,X)
− 1

g(s | a,X)

)
dNi(s)

}2

≤E

{
η−2 sup

s≤t∗

∣∣∣Ĥij(s | a,X)−Hij(s | a,X)
∣∣∣ (30)

+η−4 sup
s≤t∗

|ĝ(s | a,X)− g(s | a,X)| |Hij(s, t
∗ | a,X)|

}2

≤E

{
C7 sup

s≤t∗

∣∣∣Λ̂1(s | a,X)− Λ1(s | a,X)
∣∣∣+ C8 sup

s≤t∗

∣∣∣Λ̂2(s | a,X)− Λ2(s | a,X)
∣∣∣

+ C9 sup
s≤t∗

|ĝ(s | a,X)− g(s | a,X)|
}2

. (31)

The first inequality follows from assumption B1 and the second inequality follows from (28)
together with

Hij(s, t
∗ | a, x) ≤η−1

∫ t∗

s
|Fj(s)− Fj(u)|du+ t∗ − s

≤η−12t∗ (32)

by assumption B1.
Lastly, for (25) we have

E




∑

i=1,2

[∫ t∗∧T̃

0

Ĥij(s, t
∗ | a,X)

ĝ(s | a,X)
dΛ̂i(s | a,X)−

∫ t∗∧T̃

0

Hij(s, t
∗ | a,X)

g(s | a,X)
dΛi(s | a,X)

]


2

=E





∑

i=1,2

[∫ t∗∧T̃

0
Ĥij(s, t

∗ | a,X)

(
1

ĝ(s | a, x) −
1

g(s | a, x)

)
dΛ̂i(s | a, x)

]

︸ ︷︷ ︸
(a)

+

∫ t∗∧T̃

0

∑

i=1,2

Ĥij(s, t
∗ | a,X)

g(s | a,X)
dΛ̂i(s | a,X)−

∫ t∗∧T̃

0

∑

i=1,2

Hij(s | a,X)

g(s | a,X)
dΛi(s | a,X)

︸ ︷︷ ︸
(b)





2

.

(33)
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and we will bound (a) and (b) separately. For (a) we have that for almost all x

∫ t∗∧T̃

0
Ĥij(s, t

∗ | a, x)
(

1

ĝ(s | a, x) −
1

g(s | a, x)

)
dΛ̂i(s | a, x)

≤
∑

i=1,2

sup
s≤t∗

∣∣∣Ĥij(s, t
∗ | a, x)

∣∣∣ sup
s≤t∗

∣∣∣∣
1

ĝ(s | a, x) −
1

g(s | a, x)

∣∣∣∣ Λ̂i(t∗ | a, x)

≤4η−5t∗ log(η) sup
s≤t∗

|ĝ(s | a, x)− g(s | a, x)| . (34)

by (32) together with assumption B1. Next, to control (b), define

Hj(s, t
∗ | a, x) =

∫ t∗

s

Fj(s | a, x)− Fj(u | a, x)
S(s)

du

and let
Λ(s | a, x) = Λ1(s | a, x) + Λ2(s | a, x)

such that S(s | a, x) = e−Λ(s|a,x). Observe that

Hj(s, t
∗ | a, x)

=−
∫ t∗

s

Fj(u | a, x)− Fj(s | a, x)
S(s)

du

=−
∫ t∗

s

∫ u

s

S(v | a, x)
S(s | a, x)Λj(dv | a, x) du

(∗)
= −

∫ t∗

s

∫ u

s

(
1−

∫ v

s

S(v | a, x)
S(w | a, x)Λ(dw | a, x)

)
Λj(dv | a, x) du

=−
[∫ t∗

s

∫ u

s
Λj(dv | a, x) du−

∫ t∗

s

∫ u

s

∫ v

s

S(v | a, x)
S(w | a, x)Λ(dw | a, x)Λj(dv | a, x) du

]

=−
[∫ t∗

s

∫ t∗

v
duΛj(dv | a, x)−

∫ t∗

s

∫ t∗

w

∫ u

w

S(v | a, x)
S(w | a, x)Λj(dv | a, x) duΛ(dw | a, x)

]

=−
[∫ t∗

s

∫ t∗

v
duΛj(dv | a, x)−

∫ t∗

s

∫ t∗

w

Fj(u | a, x)− Fj(w | a, x)
S(w | a, x) duΛ(dw | a, x)

]

=−
∫ t∗

s

∑

i=1,2

Hij(w, t
∗ | a, x)Λi(dw | a, x)

where (∗) follows from the backward equation (theorem 5, Gill and Johansen, 1990). Hence

Hj(ds, t
∗ | a, x) =

∑

i=1,2

Hij(s, t
∗ | a, x)Λi(ds | a, x).
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From this expression we can derive a bound for (b) using integration by parts:

∫ t∗∧T̃

0

∑

i=1,2

Ĥij(s, t
∗ | a, x)

g(s | a, x) dΛ̂i(s | a, x)−
∫ t∗∧T̃

0

∑

i=1,2

Hij(s | a, x)
g(s | a, x) dΛi(s | a, x)

=

∫ t∗∧T̃

0

1

g(s | a, x) d
[
Ĥj(s, t

∗ | a, x)−Hj(s, t
∗ | a, x)

]

=
1

g(t∗ | a, x)
[
Ĥj(t

∗ ∧ T̃ , t∗ | a, x)−Hj(t
∗ ∧ T̃ , t∗ | a, x)

]

− 1

g(0 | a, x)
[
Ĥj(0, t

∗ | a, x)−Hj(0, t
∗ | a, x)

]

−
∫ t∗∧T̃

0

[
Ĥj(s, t

∗ | a, x)−Hj(s, t
∗ | a, x)

](1

g

)
(ds | a, x)

≤3η−1 sup
s≤t∗

∣∣∣Ĥj(s, t
∗ | a, x)−Hj(s, t

∗ | a, x)
∣∣∣

≤C10 sup
s≤t∗

∣∣∣Λ̂1(s | a, x)− Λ1(s | a, x)
∣∣∣+ C11 sup

s≤t∗

∣∣∣Λ̂2(s | a, x)− Λ2(s | a, x)
∣∣∣ (35)

for some constants C10 > 0 and C11 > 0. Applying the bounds (34) and (35) to (33) gives
that (25) is bounded by

E

{
C10 sup

s≤t∗

∣∣∣Λ̂1(s | a,X)− Λ1(s | a,X)
∣∣∣+ C11 sup

s≤t∗

∣∣∣Λ̂2(s | a,X)− Λ2(s | a,X)
∣∣∣

+ C12 sup
s≤t∗

|ĝc(s | a,X)− g(s | a,X)|
}2

. (36)

Thus, applying (29), (30) and (36) to (23), (24) and (25), respectively, gives the result.

Proof of Theorem 1. Consider the decomposition

Pknφ(ν̂−k) = Pknψ̃ψj
+ (Pkn − P )(φ(ν̂−k)− φ(ν)) + Pφ(ν̂−k)

such that

ψ̂CFj − ψj =
K∑

k=1

nk
n
Pknφ(ν̂−k)− ψj

= Pnψ̃ψj
+

K∑

k=1

nk
n
(Pkn − P )(φ(ν̂−k)− φ(ν))

︸ ︷︷ ︸
empirical process term

+

K∑

k=1

nk
n
P (φ(ν̂−k)− ψj)

︸ ︷︷ ︸
remainder term

.

Now, if both the empirical process term and the remainder term in the above display are
op(n

−1/2), it follows that ψ̂CFj is asymptotically linear with influence function given by ψ̃j .
By Proposition 2 in Kennedy (2022) this is achieved if ∥φ(ν̂−k)− φ(ν)∥ = op(1) for each k
and if the remainder is op(n

−1/2). Under assumption B for each k, the former is achieved
by lemma C.2 and the latter is achieved by lemma C.1. An application of the central limit
theorem together with Slutsky’s lemma gives the convergence in distribution.
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Proof of Theorem 2. We will show that Γ̂l,CFj and χ̂l,CFj are asymptotically linear with

influence function given by ψ̃Γl
j
and ψ̃χl

j
, respectively. Since Ω̂l,CFj is a ratio of the two,

it follows from the functional delta method that it is asymptotically linear with influence
function given by ψ̃Ωj (van der Vaart, 2000, ch. 25.7).

That χ̂l,CF is asymptotically linear follows from Theorem 5 in Ziersen and Martinussen
(2024). To show that Γ̂l,CFj is asymptotically linear, we consider the decomposition

PknϕΓl
j
(ν̂−k) = Pknψ̃Γl

j
+ (Pkn − P )(ϕΓl

j
(ν̂−k)− ϕΓl

j
(ν)) + PϕΓl

j
(ν̂−k)

such that

Γ̂l,CFj − ψj =

K∑

k=1

nk
n
PknϕΓl

j
(ν̂−k)− Γlj

= Pnψ̃Γl
j
+

K∑

k=1

nk
n
(Pkn − P )(ϕΓl

j
(ν̂−k)− ϕΓl

j
(ν))

︸ ︷︷ ︸
empirical process term

+

K∑

k=1

nk
n
P (ϕΓl

j
(ν̂−k)− Γlj)

︸ ︷︷ ︸
remainder term

.

Again, by Proposition 2 in Kennedy (2022), the desired asymptotic linearity follows if we can

show that
∥∥∥ϕΓl

j
(ν̂−k)− ϕΓl

j
(ν)
∥∥∥ = op(1) for each k and that the remainder term is op(n

−1/2).

For both results, we will consider arguments that are similar to the ones given in the proof of
Theorem 4 in Ziersen and Martinussen (2024).

Empirical process term

Consider the following expansion for a given k:

ϕΓl
j
(ν̂−k)(O)− ϕΓl

j
(ν)(O) =[φj(ν̂−k)(O)− φj(ν)(O)][Xl − Êl−k(X−l)]

− [τ̂ lj,−k(X−l)− τ lj(X−l)][Xl − Êl−k(X−l)]

− [Êl−k(X−l)− E(Xl | X−l)][φj(ν)(O)− τ lj(X−l)].

For the first term we have

E
{
[φj(ν̂−k)(O)− φj(ν)(O)][Xl − Êl−k(X−l)]

}2
≤M E {φj(ν̂−k)(O)− φj(ν)(O)}2 = op(1),

where the inequality follows from assumption (i) and the equality follows from lemma C.2,
since we have assumed that assumption B2 holds for each k. Consistency in L2(P ) of the
second term follows by analogous arguments, replacing assumption B2 with assumption (ii).
Consistency of the third term in L2(P ) follows from assumption (iii) if [φj(ν)(O)− τ lj(X−l)]2
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is bounded almost surely. To that end, observe that for almost all o ∈ O we have

[φj(ν)(o)− τ lj(x−l)]
2

≤2
[
τ(x)− τ lj(x−l)

]2
+ 4


∑

i=1,2

1(A = 1)

π(1 | x)

∫ t∗

0

Hij(s, t
∗ | 1, x)

Sc(s | 1, x)
dMi(s |, a, x)



2

+ 4


∑

i=1,2

1(A = 0)

π(0 | x)

∫ t∗

0

Hij(s, t
∗ | 0, x)

Sc(s | 0, x)
dMi(s |, 0, x)



2

.

Hence consistency of the empirical process term follows, if we can bound each term in the
display above. The first term is clearly bounded, since τ is bounded by t∗. For the second
and third term observe that


∑

i=1,2

1(A = a)

π(a | x)

∫ t∗

0

Hij(s, t
∗ | a, x)

Sc(s | a, x)
dMi(s |, a, x)



2

≤2η−2


∑

i=1,2

∫ t∗

0
Hij(s, t

∗ | a, x) dNi(s |, a, x)



2

+ 2η−2


∑

i=1,2

∫ t∗

0
Hij(s, t

∗ | a, x)1(T̃ ≥ s) dΛi(s |, a, x)



2

≤2η−2


∑

i=1,2

2η−1t∗



2

+ 2η−2


2η−1t∗

∑

i=1,2

∫ t∗

0
1(T̃ ≥ s) dΛi(s |, a, x)



2

=32η−4(t∗)2 + 16η−4(t∗)2
[∫ t∗

0
1(T̃ ≥ s) dΛ(s |, a, x)

]2

≤η−4(t∗)2(32 + 16 log(η−1)2)

where the first and third inequality follows from assumption B1 and the second inequality

follows from (32). Thus it follows that
∥∥∥ϕΓl

j
(ν̂−k)− ϕΓl

j
(ν)
∥∥∥ = op(1) for each k.

Remainder term

As in Ziersen and Martinussen (2024), we consider the decomposition

P{ϕΓl
j
(ν̂−k)− ϕΓj (ν)} =E

{
[φ(ν̂−k)(O)− φj(ν)(O)][Xl − Êl−k(X−l)]

}

− E
{
[τ̂ lj,−k(X−l)− τ lj(X−l)][Xj − Êj−k(X−l)]

}

− E
{
[Êl−k(X−j)− E(Xl | X−l)][φj(ν)(O)− τ lj(X−l)]

}
(37)
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and we want to show that each term is op(n
−1/2). For the third term we note that

E(φj(ν)(O)− τ lj(X−l) | A,X)

=

(
1(A = 1)

π(1 | X)
− 1(A = 0)

π(0 | X)

) ∑

i=1,2

E

(∫ t∗

0

Hij(s, t
∗ | A,X)

SC(s | A,X)
dMi(s | A,X)

∣∣∣∣A,X
)

=0

since the integral is a martingale conditional on A and X, and hence, that the third term is
equal to 0 by iterated expectation. The second term is op(n

−1/2) by Cauchy-Schwarz together
with assumption (ii) and (iii). Following the derivations in the proof of C.1, we can use
iterated expectation to write the first term as

E



[Xl − Êl−k(X−l)]

∑

a=0,1

∑

i=1,2

∫ t∗

0
S(s | a,X)Ĥij(s, t

∗ | a,X)

×
(
1− π(a | X)SC(s | a,X)

π̂(a | X)ŜC(s | a,X)

)
d
[
Λ̂i(s | a,X)− Λi(s | a,X)

]


 .

By assumption (i) this is bounded by

√
M
∑

a=0,1

E





∣∣∣∣∣∣
∑

i=1,2

∫ t∗

0
S(s | a,X)Ĥij(s, t

∗ | a,X)

×
(
1− π(a | X)SC(s | a,X)

π̂(a | X)ŜC(s | a,X)

)
d
[
Λ̂i(s | a,X)− Λi(s | a,X)

]∣∣∣∣∣

}

which is op(n
−1/2) by assumption B3.

We have now shown that summands of the empirical process term and remainder term are
op(n

−1/2) for each k, and hence it follows from Proposition 2 in Kennedy (2022) that Γ̂l,CFj is

asymptotically normal with influence function given by ψ̃Γl
j
. The convergence in distribution

of
√
n(Ω̂l,CFj −Ωlj) follows from the central limit theorem together with Slutsky’s lemma.
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