Changes in the diurnal rhythms of cortisol, melatonin, and testosterone after 2, 4, and 7 consecutive night shifts in male police officers

Research output: Contribution to journalJournal articlepeer-review

Night work is associated with a large range of acute health problems and possibly also health consequences in the long run. Yet, only very few field studies specifically investigate the effects of consecutive night shift on key physiological regulatory systems. In this field study, we investigated the effects of consecutive night shifts on three hormones, melatonin, cortisol, and testosterone, among police officers at work. More specifically, the aim was to investigate how the diurnal rhythms of melatonin, cortisol, and testosterone responded to two, four, and seven consecutive night shifts and a corresponding number of days for recovery. The study was part of the “In the Middle of the Night” project and included 73 male police officers from five different police districts. The participants were exposed to three intervention conditions: “2+2”: two consecutive night shifts followed by two consecutive day recovery days; “4+4”: four consecutive night shifts followed by four consecutive recovery days; “7+7”: seven consecutive night shifts followed by seven consecutive recovery days. On the last day with night shift and the last recovery day in each intervention, the participants collected saliva samples every 4th hour when awake. The diurnal rhythms of melatonin, cortisol, and testosterone were all affected differently by an increasing number of consecutive night shifts: the amplitude of the melatonin rhythm was suppressed by 4.9% per day (95% CI 1.4–8.2% per day; p = 0.006). The diurnal rhythm of cortisol phase was delayed with an increasing number of night shifts by 33 min/day (95% CI 18–48 min per day; p ≤ 0.001), but did not show any changes in amplitude. For the diurnal rhythm of testosterone, there was no effect of the number of consecutive night shifts and the diurnal rhythm completely followed the sleep/wake cycle. We found that there were no differences in the rhythms of melatonin, cortisol, and testosterone after 2, 4, and 7 recovery days, respectively. In conclusion, we found signs of desynchronization in terms of suppressed amplitude of melatonin and phase delay of salivary cortisol as a consequence of the increasing number of consecutive night shifts among police officers at work. Lack of synchronization has been suggested as a possible mechanism linking night work to disease, but this remains to be determined.
Original languageEnglish
JournalChronobiology International
Volume33
Issue number9
Pages (from-to)1280-1292
Number of pages13
ISSN0742-0528
DOIs
Publication statusPublished - Nov 2016

ID: 164884977