Neonatal vitamin D levels and cognitive ability in young adulthood

Research output: Contribution to journalJournal articleResearchpeer-review

Purpose: Intelligence has a strong influence on life capability, and thus, identifying early modifiable risk factors related to cognitive ability is of major public health interest. During pregnancy, vitamin D is transported from the mother to the fetus through the placenta in the form of 25-hydroxyvitamin D (25(OH)D). Levels of 25(OH)D have in some studies been associated with childhood neurodevelopment; however, results from all studies are not in agreement. We investigated if neonatal 25(OH)D3 concentrations were associated with Børge Priens IQ test score (BPP) in young adulthood. Methods: In this nested cohort study, 25(OH)D3 concentrations were measured in dried blood spots from 818 newborns. We followed the children for their IQ BPP test scores in the Danish Conscription Register, which holds information on test results from the BPP test on individuals who have been recruited for Danish mandatory military draft board examination. Using general linear models, we investigated the crude and adjusted relationship between quintiles of 25(OH)D3 concentrations and BPP IQ test results. Results: The study population consisted of 95.8% men, with a mean age of 19.4 years. The median and range of the neonatal 25(OH)D3 levels were 26.2 nmol/L (0–104.7 nmol/L). The overall Wald test did not show an association between neonatal 25(OH)D3 levels and BPP IQ scores (p = 0.23); however, individuals within the 3rd (BPP IQ = 101.0, 98.0–103.9) and 4th (BPP IQ = 101.2, 99.1–104.3) quintiles had slightly higher BPP IQ scores than individuals from the first quintile (BPP IQ = 97.6, 94.6–100.6). Conclusions: Our results support the hypothesis that individuals with the lowest levels of neonatal vitamin D might have slightly lower BPP. However, more studies are needed with larger study populations to confirm our results.

Original languageEnglish
JournalEuropean Journal of Nutrition
Publication statusE-pub ahead of print - 2020

    Research areas

  • Cognitive development, Fetal programming, IQ, Neonatal, Vitamin D

ID: 238528323