Small amounts of dietary medium-chain fatty acids protect against insulin resistance during caloric excess in humans

Research output: Contribution to journalJournal articlepeer-review

Medium-chain fatty acids (MCFAs) have in rodents been shown to have protective effects on glucose homeostasis during high-fat overfeeding. In this study, we investigated whether dietary MCFAs protect against insulin resistance induced by a hypercaloric high-fat diet in humans. Healthy, lean men ingested a eucaloric control diet and a three-day hypercaloric high-fat diet (+75% energy, 81-83E% fat) in randomized order. For one group (n=8), the high-fat diet was enriched with saturated long-chain FAs (LCSFA-HFD), while the other group (n=9) ingested a matched diet, but with ∼30 g (5E%) saturated MCFAs (MCSFA-HFD) in substitution for a corresponding fraction of the saturated LCFAs. A hyperinsulinemic-euglycemic clamp with femoral arteriovenous balance and glucose tracer was applied after the control and hypercaloric diets. In LCSFA-HFD, whole body insulin sensitivity and peripheral insulin-stimulated glucose disposal were reduced. These impairments were prevented in MCSFA-HFD, accompanied by increased basal FA oxidation, maintained glucose metabolic flexibility, increased non-oxidative glucose disposal related to lower starting glycogen content and increased glycogen synthase activity, together with increased muscle lactate production. In conclusion, substitution of a small amount of dietary LCFAs with MCFAs rescues insulin action in conditions of lipid-induced energy excess.

Original languageEnglish
JournalDiabetes
Volume70
Issue number1
Pages (from-to)91-98
Number of pages8
ISSN0012-1797
DOIs
Publication statusPublished - 2021

Bibliographical note

© 2020 by the American Diabetes Association.

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 250814870