Vascular calcium signaling and aging

Research output: Contribution to journalJournal articleResearchpeer-review

Changes in cellular Ca2+ levels have major influences on vascular function and blood pressure regulation. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) orchestrate vascular activity in distinct ways, often involving highly-specific fluctuations in Ca2+ signaling. Aging is a major risk factor for cardiovascular diseases, but the impact of aging per se on vascular Ca2+ signaling has received insufficient attention. We reviewed the literature for age-related changes in Ca2+ signaling in relation to vascular structure and function. Vascular tone dysregulation in several vascular beds has been linked to abnormal expression or activity of SMC voltage-gated Ca2+ channels, Ca2+-activated K+ channels or TRPC6 channels. Some of these effects were linked to altered caveolae density, microRNA expression, or 20-HETE abundance. Intracellular store Ca2+ handling was suppressed in aging mainly via reduced expression of intracellular Ca2+ release channels, and Ca2+ reuptake or efflux pumps. An increase in mitochondrial Ca2+ uptake, leading to oxidative stress, could also play a role in SMC hypercontractility and structural remodeling in aging. In ECs, aging entailed diverse effects on spontaneous and evoked Ca2+ transients, as well as structural changes at the EC-SMC interface. The concerted effects of altered Ca2+ signaling on myogenic tone, endothelium-dependent vasodilatation, and vascular structure are likely to contribute to blood pressure dysregulation and blood flow distribution deficits in critical organs. With the rise in the world aging population, future studies should be directed at solving specific aging-induced Ca2+ signaling deficits to combat the imminent accelerated vascular aging and increased risk of cardiovascular diseases.
Original languageEnglish
JournalThe Journal of Physiology
Issue number24
Pages (from-to)5361-5377
Publication statusPublished - 2021

ID: 282743223