Concordance as evidence in the Watson for Oncology decision-support system

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Concordance as evidence in the Watson for Oncology decision-support system. / Tupasela, Aaro Mikael; Di Nucci, Ezio.

In: AI & Society, Vol. 35, 2020, p. 811–818.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Tupasela, AM & Di Nucci, E 2020, 'Concordance as evidence in the Watson for Oncology decision-support system', AI & Society, vol. 35, pp. 811–818. https://doi.org/10.1007%2Fs00146-020-00945-9

APA

Tupasela, A. M., & Di Nucci, E. (2020). Concordance as evidence in the Watson for Oncology decision-support system. AI & Society, 35, 811–818. https://doi.org/10.1007%2Fs00146-020-00945-9

Vancouver

Tupasela AM, Di Nucci E. Concordance as evidence in the Watson for Oncology decision-support system. AI & Society. 2020;35:811–818. https://doi.org/10.1007%2Fs00146-020-00945-9

Author

Tupasela, Aaro Mikael ; Di Nucci, Ezio. / Concordance as evidence in the Watson for Oncology decision-support system. In: AI & Society. 2020 ; Vol. 35. pp. 811–818.

Bibtex

@article{f6082de521094694b5e287370f3bde0e,
title = "Concordance as evidence in the Watson for Oncology decision-support system",
abstract = "Machine learning platforms have emerged as a new promissory technology that some argue will revolutionize work practices across a broad range of professions, including medical care. During the past few years, IBM has been testing its Watson for Oncology platform at several oncology departments around the world. Published reports, news stories, as well as our own empirical research show that in some cases, the levels of concordance over recommended treatment protocols between the platform and human oncologists have been quite low. Other studies supported by IBM claim concordance rates as high as 96{\%}. We use the Watson for Oncology case to examine the practice of using concordance levels between tumor boards and a machine learning decision-support system as a form of evidence. We address a challenge related to the epistemic authority between oncologists on tumor boards and the Watson Oncology platform by arguing that the use of concordance levels as a form of evidence of quality or trustworthiness is problematic. Although the platform provides links to the literature from which it draws its conclusion, it obfuscates the scoring criteria that it uses to value some studies over others. In other words, the platform “black boxes” the values that are coded into its scoring system.",
author = "Tupasela, {Aaro Mikael} and {Di Nucci}, Ezio",
year = "2020",
doi = "10.1007{\%}2Fs00146-020-00945-9",
language = "English",
volume = "35",
pages = "811–818",
journal = "A I & Society",
issn = "0951-5666",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - Concordance as evidence in the Watson for Oncology decision-support system

AU - Tupasela, Aaro Mikael

AU - Di Nucci, Ezio

PY - 2020

Y1 - 2020

N2 - Machine learning platforms have emerged as a new promissory technology that some argue will revolutionize work practices across a broad range of professions, including medical care. During the past few years, IBM has been testing its Watson for Oncology platform at several oncology departments around the world. Published reports, news stories, as well as our own empirical research show that in some cases, the levels of concordance over recommended treatment protocols between the platform and human oncologists have been quite low. Other studies supported by IBM claim concordance rates as high as 96%. We use the Watson for Oncology case to examine the practice of using concordance levels between tumor boards and a machine learning decision-support system as a form of evidence. We address a challenge related to the epistemic authority between oncologists on tumor boards and the Watson Oncology platform by arguing that the use of concordance levels as a form of evidence of quality or trustworthiness is problematic. Although the platform provides links to the literature from which it draws its conclusion, it obfuscates the scoring criteria that it uses to value some studies over others. In other words, the platform “black boxes” the values that are coded into its scoring system.

AB - Machine learning platforms have emerged as a new promissory technology that some argue will revolutionize work practices across a broad range of professions, including medical care. During the past few years, IBM has been testing its Watson for Oncology platform at several oncology departments around the world. Published reports, news stories, as well as our own empirical research show that in some cases, the levels of concordance over recommended treatment protocols between the platform and human oncologists have been quite low. Other studies supported by IBM claim concordance rates as high as 96%. We use the Watson for Oncology case to examine the practice of using concordance levels between tumor boards and a machine learning decision-support system as a form of evidence. We address a challenge related to the epistemic authority between oncologists on tumor boards and the Watson Oncology platform by arguing that the use of concordance levels as a form of evidence of quality or trustworthiness is problematic. Although the platform provides links to the literature from which it draws its conclusion, it obfuscates the scoring criteria that it uses to value some studies over others. In other words, the platform “black boxes” the values that are coded into its scoring system.

U2 - 10.1007%2Fs00146-020-00945-9

DO - 10.1007%2Fs00146-020-00945-9

M3 - Journal article

VL - 35

SP - 811

EP - 818

JO - A I & Society

JF - A I & Society

SN - 0951-5666

ER -

ID: 235307195